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Abstract. The evolution of IoT has revolutionized industrial automation. Industrial devices at every level such as field devices,
control devices, enterprise level devices etc., are connected to the Internet, where they can be accessed easily. It has significantly
changed the way applications are developed on the industrial automation systems. It led to the paradigm shift where novel IoT
application development tools such as Node-RED can be used to develop complex industrial applications as IoT orchestrations.
However, in the current state, these applications are bound strictly to devices from specific vendors and ecosystems. They
cannot be re-used with devices from other vendors and platforms, since the applications are not semantically interoperable. For
this purpose, it is desirable to use platform-independent, vendor-neutral application templates for common automation tasks.
However, in the current state in Node-RED such reusable and interoperable application templates cannot be developed. The
interoperability problem at the data level can be addressed in IoT, using Semantic Web (SW) technologies. However, for an
industrial engineer or an IoT application developer, SW technologies are not very easy to use. In order to enable efficient use
of SW technologies to create interoperable IoT applications, novel IoT tools are required. For this purpose, in this paper we
propose a novel semantic extension to the widely used Node-RED tool by introducing semantic definitions such as iot.schema.org
semantic models into Node-RED. The tool guides a non-expert in semantic technologies such as a device vendor, a machine
builder to configure the semantics of a device consistently. Moreover, it also enables an engineer, IoT application developer to
design and develop semantically interoperable IoT applications with minimal effort. Our approach accelerates the application
development process by introducing novel semantic application templates called Recipes in Node-RED. Using Recipes, complex
application development tasks such as skill matching between Recipes and existing things can be automated. We will present the
approach to perform automated skill matching on the Cloud or on the Edge of an automation system. We performed quantitative
and qualitative evaluation of our approach to test the feasibility and scalability of the approach in real world scenarios. The
results of the evaluation are presented and discussed in the paper.

Keywords: Industrial Internet of Things, Web of Things, Node-RED, iot.schema.org, Semantic interoperability, Edge computing,
Skill matching
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1. Introduction

The vision of Internet of Things (IoT) is to digi-
tize the physical world and offer new classes of ap-
plications that are based on this digitization. In this
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process, various sensors and actuators are attached to
physical things in order to sense and interact with the
physical environment. IoT is used to interconnect de-
vices and bring added-value in many domains such
as personal things: e.g., health monitors, wearable de-
vices etc., in automation systems such as Building Au-
tomation System (BAS), Industrial Automation Sys-
tem (IAS), plants and manufacturing facilities. IoT
used in complex domains such as automation systems
BAS, IAS, plants and manufacturing facilities is called
Industrial Internet of Things (IIoT) [1]. IIoT envisions
to create seamless integration of things, where things
"know" what they should do, and interact accordingly
by exchanging information. In order to fulfill this vi-
sion,IAS should be flexible and the process of devel-
oping new applications on them should be simplified.
That is, we should be able to develop new applications
on them faster, with low-cost, less effort. While new
applications are required to enable interaction between
devices to automate processes, for predictive mainte-
nance, early fault detection, mass customized produc-
tion, etc., that keep a production process alive and con-
trols the surrounding environment. Nevertheless, a key
challenge should be addressed in order to enable rapid
IIoT application development: vast amounts of data is
produced by sensors and actuators on an IAS and BAS,
which is unstructured. That is, the Knowledge about
the data (metadata) is not available. The Knowledge
about the data should be described consistently using
common and standardized domain semantic models, in
order to process the data efficiently and bring added
value. Moreover, it should also accelerate and simplify
the application development on an IAS or BAS, since
the applications can be developed against the common
and standardized semantics. Application development
here means to design, develop, configure and deploy
new applications on an Automation System (AS).

The methods employed today for the development
of a new application on a complex IAS or BAS re-
quires a lot of manual effort, they are time-consuming
and expensive, since the state of the art IAS and BAS
are engineered with certain applications in mind. Once
these systems are engineered and deployed, it is not
feasible to develop and deploy new types of applica-
tions on them [2]. This would require very high ef-
fort and time by expert engineers who have knowledge
about the capabilities and configurations of the com-
plex machinery on the system. The data about the com-
plex machinery is described using heterogeneous se-
mantics. Therefore, even an expert might struggle to
understand the non-uniform data coming from differ-

ent sources. He then uses a special engineering IDE
(e.g., 4DiAC [3], TIA portal1) to develop a Function
Block, test it and deploy it with considerable effort on
control devices that are controlling the machinery such
as a Programmable Logic Controller (PLC). Consid-
ering all the above steps, the development of new ap-
plications on state of the art automation systems is a
high-effort and time consuming process. With the in-
troduction of Service Oriented Architecture (SOA) in
industrial automation, the application development on
IAS can be simplified significantly, since every device
can be exposed as a Web service, an application can
be developed as Web service choreography [4]. Fur-
thermore, with the advent of IoT, industrial devices are
being equipped with micro-controllers that enable the
devices to connect to the internet, which led to IIoT.
In IIoT, application development can be further sim-
plified: now applications can be developed as IoT or-
chestrations using IoT application development tools
such as Node-RED. Nevertheless, still an expert engi-
neer with domain knowledge is required to develop ap-
plications, since the knowledge about the capabilities
of the devices, their configurations and, commission-
ing information is described using heterogeneous se-
mantics. Therefore, the devices are not interoperable,
only experts can understand their capabilities. Appli-
cations are being developed by experts, and they are
bound to the devices from a specific vendor and a spe-
cific platform. Thus, the applications are not interop-
erable between diverse vendors, platforms and device
ecosystems. For every platform and vendor an expert
needs to create applications, which is time consuming,
expensive and requires a lot of effort. Several domain
semantic models such as OPC UA companion specifi-
cations are available to address this problem. However,
they are hard to use.

1.1. Vision

The application development process can be rev-
olutionized by using modern Web technologies such
as Semantic Web (SW) and Web of Things (WoT)
technologies. In this paper, our vision is to develop a
novel approach for rapid development of interoperable
IoT applications using these technologies, where rapid
means faster application development with low-cost
and less manual effort. As we discussed before, only
expert engineers can develop applications on complex

1www.siemens.com/global/en/home/products/automation/industry-
software/automation-software/tia-portal.html
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Fig. 1. Overview of rapid IIoT application development approach.

automation systems and the availability of the experts
is limited. In addition to experts, if we enable various
IoT stakeholders such as Web developers, IoT appli-
cation developers and machine vendors etc. in the ap-
plication development process then we can realize the
vision of rapid application development. The vision is
depicted in Figure 1, which is to design and develop
composable and customizable applications on existing
things quickly and easily. Figure 1, Box C shows an
application to control the temperature of liquid in a
tank by measuring the current temperature of the liq-
uid and controlling it using a thermostat. Such appli-
cations are required for common automation tasks. In
order to speed up the application development pro-
cess, it is desirable to create standardized application
templates as shown in Figure 1, Box A. These tem-
plates can be instantiated with things on an IAS or a
BAS as shown in Figure 1, Box B. However, instanti-
ating an application template on things with matching
skills is not easy, since, the complex machinery on an
AS is usually described with heterogeneous semantics
and considerable manual effort is required to discover
things with matching skills for an application template.
Therefore, to simplify and accelerate application de-
velopment, skill matching needs to be simplified. Our
goal is to automate the skill matching process. For this
purpose, we propose to use common and standardized
semantic models as shown in Figure 1, Box D. Using
these semantic models our approach can be described
as follows:

1, 2. Configure the attributes, capabilities, config-
urations and commissioning information of the

things [5–8] consistently using common and stan-
dardized semantic models as shown in Figure 1,
Box E.

3. Describe the application templates also using
common and standardized semantic models as
shown in Figure 1, Box A.

4. Automate the skill matching between configured
things and application templates to generate cus-
tomized applications with matching things on an
AS, as shown in Figure 1, Box C.

In our approach, we choose the semantic mod-
els described using SW knowledge representation
formalisms such as RDFS, OWL, etc. Using SW
formalisms, the knowledge becomes machine inter-
pretable and SW technologies offer efficient query en-
gines and reasoners that can be employed for auto-
mated skill matching between the application require-
ments and existing things.

The application templates in our approach are called
Recipes [9]. A Recipe describes the skills or ca-
pabilities of things required to run an application
and the data-flow between the things in a machine-
interpretable format. It can be instantiated any number
of times with the existing things from any platform,
ecosystem or vendor. Since Recipes and things are de-
scribed using platform-independent and format-neutral
semantics, this enables semantic interoperability. It en-
hances the re-usability of applications, which in turn
lowers the cost and time required for application de-
velopment. In addition to this, the complex application
development tasks are automated using Recipes, which
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enables non-expert engineers to design, develop, con-
figure and deploy IIoT applications.

Figure 2 represents the semantically interoperable
IIoT ecosystem that we propose in this paper. Here, the
domain experts and semantic experts create the seman-
tic interfaces for IIoT things. These semantic interfaces
are then used by various IoT stakholders to achieve
rapid application development. A machine vendor can
use these interfaces to describe the semantics of their
things and offer them to their customers. A system in-
tegrator can then add the commissioning information
to the semantic description provided by the vendor,
where a thing is deployed in a factory or building or
a vehicle etc. Such a semantic description of a thing
can then be stored in a knowledge store. On the other
hand, a Web developer or an IoT application devel-
oper can use the semantic interfaces and design an IoT
application template, that is, a Recipe. These Recipes
can be stored in a Recipe store which is a knowledge
store where they can be discovered and reused. In such
a scenario, a customer can simply login to the Recipe
store, browse for the required Recipes and then he can
easily instantiate the application and deploy it on his
workstation, since the complex application task such
as the skill matching is automated in our approach.
Moreover, Recipes reduce the effort of application de-
velopment, since, the applications need not be devel-
oped from scratch every time.

1.2. Building Blocks

In this paper, we chose the following building blocks
to realize our rapid IIoT application development ap-
proach:

1. IoT semantic models such as iot.schema.org,
which describe affordances and data schema of
things in several IoT domains. iot.schema.org se-
mantic models act as a common and standardized
semantic models in our approach;

2. novel engineering and IoT application develop-
ment tools such as Node-RED that simplify the
IoT application development process through vi-
sual programming. Node-RED acts as a tool that
enables a non-expert to do complex application
development tasks easily;

3. the upcoming W3C Web of Things (WoT)
standard which provides Thing Descriptions
(TD) to describe things in a format neutral and
platform-independent manner.

There is no semantic interoperability in Node-RED,
in the current state, which limits the usage of appli-
cations (developed in Node-RED) across diverse IoT
platforms. In this work, our goal is to enable seman-
tic interoperability in Node-RED by extending it with
iot.schema.org semantics. As mentioned earlier, it em-
powers machine builders, device vendors to mark-up
their things with iot.schema.org semantics and gen-
erate semantically enriched W3C WoT TD for their
things. Further, it allows applications to be easily im-
plemented for things across diverse device ecosystems
and platforms. Ultimately, it opens up a huge mar-
ket for interoperable and highly re-usable IoT applica-
tions.

1.3. Contributions

Our main contribution in this work is a novel ap-
proach to build a semantically interoperable ecosys-
tem for IIoT that can be easily used by different IoT
stakeholders for rapid application development. For
this purpose, we propose the usage of lightweight IoT
semantic models and a novel way of using them as
graphical templates in an IoT application development
tool. In this way, all the IoT stakeholders can easily
use the semantics, since, various stakeholders in IoT
may not be experts in SW technologies. We further
developed an approach to integrate semantic query-
ing into the tool for the purpose of automated skill
matching during IoT application development. These
approaches are deployed in real industrial environment
on an IAS, where we conducted qualitative and quan-
titative experiments. We will present the results of the
experiments in this paper.

1.4. System Architecture

Figure 3 represents the system architecture of our
approach. In our approach there are three levels. They
are the Field level, the Edge or Factory level and the
Cloud level as shown in Figure 3. The data flow occurs
in the following manner: (1) heterogeneous data from
complex ASs from field level is sent to the edge/fac-
tory level; (2) the structuring of the data can be done
on the Edge or, alternatively the Edge collects the data
and sends it to the Cloud; (3) the unstructured data is
sent to the Cloud where semantically extended Node-
RED is running. There the data is structured uniformly
(this approach presented in Section 4 & Section 5); (4)
the structured data can then be stored in a knowledge
graph in a machine interpretable format. It enables ef-
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Fig. 2. Overview of rapid IIoT application development approach.

Fig. 3. System Architecture of Interoperable IIoT Application Development Approach using Semantic Node-RED.
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ficient discovery of data (presented in Section 6); (5)
The standardized semantic models are also used to de-
sign Recipes as Node-RED flows (the approach pre-
sented in Section 7); (6) the Recipes thus created can
also be stored in a knowledge graph and they can be
discovered, reused, extended and shared (presented in
Section 7); (7) we enable automated skill matching us-
ing Recipes, which can be done either on the Cloud or
on the Edge (this approach is presented in Section 7).
Finally the applications can be deployed on the Cloud
or optionally on the Edge.

1.5. Paper Structure

This paper is structured as follows: In Section 2,
we provide an overview of the background and related
work. In Section 3, we will briefly present an indus-
trial use case, which will be used throughout the pa-
per to explain all the concepts developed in this work.
We describe our approach in Section 4, Section 5, Sec-
tion 6 and Section 7. In Section 8, we will discuss
the evaluation performed to analyze the feasibility and
scalability of our automated skill matching approach
in real world use cases, and our qualitative evalua-
tion of the semantically extended Node-RED tool. In
the same section, we also evaluate the semantic Node-
RED tool against the existing IoT application devel-
opment tools, industrial engineering tools etc. Sec-
tion 9 presents the details about implementing the As-
set Administration Shell (AAS) by employing W3C
WoT technologies and semantic Node-RED tool. Sec-
tion 10 briefly describes the industry challenges faced
and lessons learned. In Section 11, we will conclude
the work, present the limitations of the approach and
discuss future research directions.

2. Background & Related Work

2.1. W3C Web of Things Working Group

is developing a standard to create interoperability
between physical things on the Web. For this, WoT
Group is developing a protocol binding to enable in-
teroperability between various protocols such as OCF,
OPC-UA [10], BacNet [11] and so on. Apart from
the protocol binding, WoT Group also proposes Thing
Description, which is a platform independent descrip-
tion of a physical device. Thing Description describes
a device in terms of its interactions such as Proper-
ties, Events and Actions. A Thing Description is seri-

alized in JSON-LD [12] format. Further on, Thing De-
scription uses JSON Schema [13] to model syntacti-
cal constraints on data. JSON Schema provides simple
data types such as integer, number, string, boolean and
complex data types such as object, array and enumer-
ation.

2.2. IoT Ontologies

In order to provide semantic discovery and interop-
erability between devices, Thing Description is sup-
posed to be extended with external ontologies and
schemas [14, 15]. Many ontologies are developed for
IoT. Domain-independent ontologies such as W3C
Semantic Sensor Networks (SSN) [16], M3 [17] to
model sensors, their observations and their domain.
QUDT [18] to model physical quantities and Units of
measurement. WGS84 [19] describes concepts to de-
fine spatial features of IoT things. IoT Ontology [20]
which models IoT entity features required for their
automated deployment. There also exists several do-
main ontologies such as SAREF2 for Smart appli-
ances, Brick [21] for Building Management Sys-
tems (BMS) domain. There exists eCl@ssOWL on-
tology [22] for industry domain and so on. A TD
can be semantically enriched by marking up with
the terms defined in these ontologies. More recently,
community work on iot.schema.org (currently re-
ferred to as iotschema.org3) has started which provides
lightweight RDFS semantics to expose capabilities of
a device in order to simply IoT application develop-
ment. iot.schema.org Capability model is aligned with
WoT TD model [14]. In order to model domain fea-
tures of a physical device, iot.schema.org normalizes
semantics from existing standards such as OneM2M4,
OpenT2T5, OCF6, IPSO Objects7. Moreover, the se-
mantics of Capability model can be further extended
with existing IoT semantics. For example, Capability
model can be extended with Feature of Interest model
defined in W3C SSN/SOSA ontology.

2.3. iot.schema.org

More recently, community work on iot.schema.org
(currently referred to as iotschema.org8) has started,

2https://w3id.org/saref
3http://iotschema.org/
4http://www.onem2m.org/
5https://github.com/openT2T/translators
6https://oneiota.org/
7https://github.com/IPSO-Alliance/pub/tree/master/reg
8http://iotschema.org/
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which provides lightweight RDFS semantics to ex-
pose capabilities of a thing in order to simplify IoT
application development. iot.schema.org is a publicly
available repository of domain-specific semantic def-
initions for connected things.9 It is being developed
as an extension to the widely used schema.org to en-
able descriptions of things and their data in the phys-
ical world. iot.schema.org definitions provide a proto-
col independent and format neutral way for applica-
tions to understand the affordances of, and data pro-
vided by physical things. These definitions are used to
annotate instances of physical things and their data us-
ing simple markup with common formats like HTML,
JSON and web linking formats. Device vendors can
use iot.schema.org to publish protocol-neutral defini-
tions for their things to enable Web scale adoption.
Application providers can use iot.schema.org to make
their applications portable across platforms.

The iot.schema.org Capability model is aligned
with the WoT TD model [14]. In order to model do-
main semantics of a physical device, iot.schema.org
normalizes semantics from existing standards such
as OneM2M10, OpenT2T11, OCF12, IPSO Objects13.
Moreover, the semantics of the Capability model can
be further extended with existing IoT semantics. For
example, the iot.schema.org Capability model is ex-
tended with the Feature of Interest model defined in
W3C SSN/SOSA ontology [16].

An iot.schema.org Capability provides a semantic
description of a physical thing in terms of its interac-
tion patterns (Properties, Events and Actions) and their
input and output data schemas. Let us consider an ex-
ample iot.schema.org Capability defined for an air con-
ditioner. The Capability is created referring to OCF,
OneM2M and IPSO description of an air conditioner.
Due to space constraints, we only present a part of
the Capability in Listing 1. The complete specification
of the AirConditioner Capability, its interaction pat-
terns and data can be found in the GitHub repository
mentioned above. Among others, the AirConditioner
Capability provides the following interaction patterns
(1) TurnOn, an action to turn on an air conditioner;
(2) TurnOff, an action to turn off an air conditioner;
(3) SwitchStatus, a property to check the current sta-

9https://github.com/iot-schema-collab/intro-
materials/blob/master/iotschema-intro-overview.pdf

10http://www.onem2m.org/
11https://github.com/openT2T/translators
12https://oneiota.org/
13https://github.com/IPSO-Alliance/pub/tree/master/reg

tus of an air conditioner; (4) RunMode, an action to
set the operating mode of an air conditioner to Fan-
Mode, CoolMode, DryMode or EnergyOrPowerSaver-
Mode. These interaction patterns are further described
in terms of their input and/or output data schema as
shown in Listing 2.

2.3.1. Data Description
The Data schema of an interaction pattern is well-

defined in terms of the value type, allowed val-
ues for the data, units of measurement, minimum
and maximum range of the data etc. iot.schema.org
uses the W3C standard Shapes Constraint Language
(SHACL) [23] to describe an interaction pattern and its
data schema. This is because the interaction patterns
and their data schema can be expressed as RDF shape
constraints, which enables a machine to validate input
or output data associated with an interaction. Listing 2
shows the definition of data for the Temperature inter-
action pattern of the AirConditioner Capability. The
Temperature property has output data called Temper-
atureData. The TemperatureData shape describes that
the Temperature interaction pattern provides a value of
type float. Minimum and maximum range for Temper-
ature should be specified in float. Moreover, the unit
of measurement for Temperature should be either Cel-
sius, Fahrenheit or Kelvin.14 Data description for all
interaction patterns of AirConditioner Capability can
be found in iot.schema.org GitHub repository.

In this manner, iot.schema.org uses the RDFS se-
mantics to model capabilities and RDF SHACL shape
constraints to model interaction patterns and data
schema. Such Capability semantic descriptions can
be used to model the affordances and data schema
of physical things in the real world. However, an
iot.schema.org Capability defines a class of physical
things, not all the physical things belonging to that
class can fulfill a Capability, interaction pattern and
data schema definition. That is, every device vendor
should configure/customize a capability definition, in
order to fit to his physical thing specification. Later in
this paper, we will present how shape constraints on
an interaction pattern and data schema can be used to
configure an iot.schema.org definition according to a
physical thing specification.

However, semantic descriptions are difficult to use
by Web developers, IoT application developers, de-
vice vendors and machine builders. The existing ap-
proaches to enable usage of semantic models such as

14shorturl.at/ckM14
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1 { "@context" : [{
2 "schema": "http://schema.org/",
3 "iot": "http://iotschema.org/" }],
4 "@id": "iot:AirConditioner",
5 "rdfs:subClassOf": { "@id": "iot:Capability" },
6 "rdfs:label": "Air conditioning Capability",
7 "iot:domain": [{"@id": "iot:Industry"}, {"@id": "iot:Building"}],
8 "iot:providesInteractionPattern": [{
9 "@id": "iot:Temperature",

10 "@id": "iot:TargetTemperature",
11 "@id": "iot:SwitchStatus",
12 "@id": "iot:TurnOn",
13 "@id": "iot:TurnOff",
14 "@id": "iot:RunMode",
15 "@id": "iot:CountDown",
16 "@id": "iot:WindStrength"}] }

Listing 1: Specification of iot.schema.org AirConditioner Capability

the schema.org approach provides a Web page which
describes a class in terms of its relations and their ex-
pected values. Moreover, the schema.org also provide
examples on how to use a class. This is proven to be a
good approach to use semantic models by Web devel-
opers. However, this approach is error-prone, since a
Web developer should mark-up a Web page using the
semantic model manually and the process is not vali-
dated. Therefore, we should simplify this process fur-
ther to enable non-experts to use semantic definitions
to mark-up their things or WoT applications.

2.4. Web Service Composition

Service composition is a process of discovering the
required services, reserving them and connecting them
to each other. There has been significant work done in
this area where the initial methods such as Web Ser-
vice Description Language (WSDL) [24] focused only
on the syntactical information of services for compo-
sition. Later came the approaches that took semantic
information about services into consideration during
composition. They are approaches using OWL-S [25]
ontology which is a W3C recommendation that can
be used together with OWL to define semantics of
data and operations of Web services. Other methods
such as WSMO standard [26], SAWSDL [27] came
into existence. However, in more recent years, the de-
sign of Web services and APIs followed more often
the REST principles, instead of WSDL and SOAP

based Web services. Then came the approaches such
as hRESTs [28], RESTdesc [29] into existence. With
the advent of IoT some low-code application develop-
ment tools such as Node-RED [30], IFTTT [31], etc.,
came into existence for the composition of IoT things
and services. A detailed related work about this topic
can be found in this paper [9]. In this work we de-
veloped a novel approach of Web service composi-
tion tailored for Web of Things. The IoT ecosystems
such as Amazon IoT Things Graph, Alibaba cloud IoT
platform, Microsoft Azure IoT describe their things in
terms of Properties (or services), Events and Actions
(or commands). These interactions are being normal-
ized by W3C Web of Things Thing Description. Our
Recipe mechanism is a novel approach for composi-
tion of Web of Things interactions. Some of the main
differences between existing Web service composition
methods and Recipes is that, application logic is not
part of a Recipe description, which makes it simple and
lightweight. Moreover, a Recipe is a reusable template
for the composition of things. One of the main aims of
Recipe is to make it easily usable by IoT stakeholders
such as machine vendors, system integration, IoT ap-
plication developers, Web developers, etc who may not
be experts in using semantic technologies. Therefore,
it is embedded into existing IoT application develop-
ment tools such as Node-RED, instead of developing
yet another new tool for semantic-based IoT service
composition.
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1 iotsh:TemperatureDataShape a sh:NodeShape ;
2 sh:targetClass iot:TemperatureData ;
3 sh:and (
4 [ sh:property [
5 sh:path schema:propertyType ;
6 sh:minCount 1 ;
7 sh:maxCount 1 ;
8 sh:datatype xsd:float ; ]; ]
9 [ sh:property [

10 sh:path schema:minValue ;
11 sh:minCount 1 ;
12 sh:maxCount 1 ;
13 sh:datatype xsd:float ; ]; ]
14 [ sh:property [
15 sh:path schema:maxValue ;
16 sh:minCount 1 ;
17 sh:maxCount 1 ;
18 sh:datatype xsd:float ; ]; ]
19 [ sh:property [
20 sh:path schema:unitCode ;
21 sh:minCount 1 ;
22 sh:maxCount 1 ;
23 sh:in ( iot:Celsius iot:Fahrenheit iot:Kelvin ) ; ]; ] ).
24

25 iotsh:TemperatureShape a sh:NodeShape ;
26 sh:targetClass iot:Temperature ;
27 sh:and (
28 [ sh:property [
29 sh:path iot:providesOutputData ;
30 sh:minCount 1 ;
31 sh:maxCount 1 ;
32 sh:node iot:TemperatureData ; ]; ] ).

Listing 2: SHACL shape definition for iot.schema.org Temperature interaction pattern

3. Use Case

We consider the industrial integration use case de-
fined by the W3C WoT community to demonstrate
the rapid WoT application development approach de-
veloped in this work.15 The use case is taken from
one of the W3C WoT PlugFests where participants
from different companies participated and things came
from diverse vendors such as Panasonic, Fujitsu, Festo,
KETI, Siemens etc. The use case demonstrates the
complexity of real world scenarios as the things used

15https://github.com/w3c/wot/blob/master/plugfest/2018-
lyon/Scenarios.md

in this use case belong to diverse device ecosystems,
different vendors and are heterogeneous. This demon-
strates how W3C WoT technologies can be used to
bind things from diverse ecosystems to uniformly in-
teract with the things to create value-added services
using the things. In addition, we will also demon-
strate how domain semantic interoperability will en-
able rapid development of added-value services on
such systems.

The use case is to “automatically alert and protect
citizens when a chemical plant has an accident”. The
scenario is the following: The KETI environment sen-
sor is capable of measuring air quality by measuring
the oxygen level. When a low oxygen condition is de-
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tected, then, the connected devices take the appropri-
ate action to protect and alert citizens, such as draining
a tank in the factory, turning off all air-conditioners,
flash alert and warning lights, publish alert messages
and make voice announcements.

The use case is demonstrated using things provided
by different vendors such as the following: an envi-
ronment sensor from KETI, a FESTO PA worksta-
tion with tank liquid level control system deployed at
Siemens which is shown in Figure 8, warning lights
provided by Fujitsu, air conditioners from Panasonic.
All the things are connected to the Web over the Oracle
cloud. In the next sections, we will see how semanti-
cally interoperable WoT application can be developed
for this use case using our approach.

4. Semantic Configuration Nodes in Node-RED

One of the motivations behind extending Node-RED
with semantics is to enable a user who is not an ex-
pert in SW technologies such as a thing vendor, an en-
gineer, etc., to describe the semantics of a thing, its
affordances and data schema. A machine-interpretable
description of a thing plays a key role in automating
the engineering process of an IAS, in automating the
application development on an IAS and for plug-and-
play functionality of things.

In our previous work [32], we described how an
iot.schema.org semantic model can be configured or
customized using Shape constraints to describe thing
variants in a class of physical things. In this work, we
will present a novel approach to model thing variants
in Node-RED. Node-RED has always been used to cre-
ate run-time IoT applications. For the first time, we in-
troduce a novel feature to use Node-RED for design
purposes, that is, for tasks such as semantic config-
uration of skills or capabilities of a thing, designing
semantically interoperable WoT application templates,
etc. In order to do this, we introduced standardized
semantic definitions provided by iot.schema.org com-
munity into Node-RED in the following manner. Ev-
ery interaction pattern and its data schema defined in
iot.schema.org is a Node-RED node in our approach.
We call these nodes iotschema nodes. This is the first
step in our approach as shown in step 1 of Figure 1. An
interaction pattern with its data schema is an atomic
capability of a thing. A complex thing (physical or vir-
tual) can be described using one or more iotschema
nodes in Node-RED. These semantic definitions of
things can then be used for multiple purposes, which
we will explain throughout the paper.

4.1. Usage of iotschema Nodes

An iotschema node in Node-RED represents a
SHACL shape defined for an interaction pattern in
iot.schema.org. Listing 2 shows the SHACL shape for
a Temperature interaction pattern. The shape specifies
that the value type of a temperature data should be
float, the minimum and maximum scale of the tem-
perature data should be specified and it should also
be a float value. Further on, the unit of measurement
of temperature data should be defined and it should
be either iot:Celsius, iot:Fahrenheit or iot:Kelvin as
described by iot.schema.org. Such an interaction pat-
tern definition can be exposed as a node in Node-RED.
These nodes correspond to Box D, that is standardized
semantic models in Figure 1. A user can configure the
parameters of these nodes and its data by giving input.
The process of giving input is guided by the semantic
definition of an interaction pattern and it is validated by
its SHACL shape. Figure 4 shows an iotschema node
and its configuration attributes in Node-RED. The con-
figuration attributes of an iotschema node are the pa-
rameters that are configurable by a user to describe his
thing specifications. There are several attributes that a
user can configure for a thing’s interaction pattern and
its data. They are the following:

1. Capability: the capability or skill of a thing;
2. Feature Of Interest Type: the type of entity whose

quantity is being observed or actuated [16]. e.g.,
a room, a tank, a door etc;

3. Feature Of Interest: an entity instance whose
quantity is being observed or actuated [16]. e.g.,
room 1, tank 2 etc;

4. MinValue: if applicable, minimum scale of a
quantity being observed or actuated by a thing’s
interaction;

5. MaxValue: if applicable, maximum scale of a
quantity being observed or actuated by a thing’s
interaction;

6. UnitCode: if applicable, unit of measurement of
a quantity being observed or actuated by a thing’s
interaction;

The user’s input for configuration attributes of an
iotschema node are used to update the SHACL shape
of an interaction pattern according to a thing’s spec-
ification. Listing 3 shows a snippet of the shape up-
dated according to a user’s specification for a tempera-
ture sensor. The shape states that the temperature sen-
sor provides temperature data which is a float and it
can measure temperatures between 0.00 and 100.00
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degrees Celsius. Such a shape can be used to generate
a semantically marked-up description of a thing for a
specific ecosystem such as W3C WoT, OPC-UA [10]
etc. In the future, we assume that a device vendor can
ship a thing with its semantic (machine-interpretable)
description and an engineer or a system integrator can
easily add commissioning information to the semantic
description of a thing. In order to simplify the job of a
device vendor, an engineer, a machine builder, our tool
supports them to provide a vendor-independent and
format-neutral semantic description for things easily
using semantic configuration nodes provided in Node-
RED.

4.2. Generation & Installation of iotschema Nodes

The generation of iotschema nodes in Node-RED
is a simple process. Once a semantic expert has mod-
eled a SHACL shape for an interaction pattern and
its data schema in iot.schema.org, he or she can gen-
erate a corresponding iotschema node by executing
a Node.js script. The script and iotschema nodes for
existing iot.schema.org interaction pattern semantic
definitions are open-source.16 The script generates
iotschema nodes and installs them in Node-RED. A
user can download the generated nodes from the open
source iotschema-node-red project and install them in
their Node-RED. The detailed instructions on how to
install the nodes can be found in the project GitHub
repository.

5. Semantic Integration of Existing IoT Things

There exist several IoT things from diverse vendors
and ecosystems such as sensors or actuators (for ex-
ample: Philips HueMagic17, Amazon Alexa18, Google
Home kit19, Xiaomi smart home20, etc.) available in
Node-RED. W3C WoT things can also be easily repre-
sented as nodes in Node-RED. Furthermore, there ex-
ists several existing things on the state of the art au-
tomation systems. All these things have vendor and/or
platform specific data formats and heterogeneous se-
mantics. In the current state, they are not interoperable

16https://github.com/iot-schema-collab/iotschema-node-red
17https://flows.nodered.org/node/node-red-contrib-huemagic
18https://flows.nodered.org/node/node-red-contrib-alexa-home
19https://flows.nodered.org/node/node-red-contrib-google-home-

notify-volume-adjustable
20https://flows.nodered.org/node/node-red-contrib-xiaomi-smart-

home

with each other. In order to create interaction between
them, a gateway must be developed. However, if we
can integrate these diverse things using common and
standardized semantic models, then we can address the
semantic interoperability problem in Web of Things.
Moreover, this would accelerate WoT application de-
velopment.

Our semantic integration approach using iotschema
nodes in Node-RED addresses this problem. The pur-
pose of iotschema nodes is not only to create seman-
tic descriptions of new IoT things, but the nodes can
also be used for semantic integration of existing IoT
things on the stare of the art automation systems. In
this section, we explain how semantic interoperabil-
ity among diverse IoT platforms and vendors can be
achieved with semantically extended Node-RED.

In Node-RED, an IoT thing is represented by a node.
A thing can be observed or actuated using its thing
node. Semantic integration of diverse things is done
using a thing node and a corresponding iotschema
node to describe its semantics. It is done by wiring
an existing thing node with a corresponding iotschema
node and configuring the iotschema node according
to the specification of the existing thing as shown in
Figure 5. However, several aspects should be taken
into consideration for the integration of existing IoT
things with the iot.schema.org semantics. Especially,
the input and output data schema of a thing should be
adapted to be compliant with the iot.schema.org speci-
fication. That is, value type, encoding format, and unit
of measurement of data of an existing thing should be
adapted as prescribed by a corresponding iotschema
semantic model. For example, if a temperature thing
gives integer value as output, however, iotschema tem-
perature interaction pattern prescribes that the temper-
ature data should be float, the output of the temper-
ature thing node should be adapted from integer to
float, in order to integrate the thing’s semantics with
iot.schema.org’s temperature definition.

Therefore, it may require a few adaptations to in-
tegrate an existing IoT thing semantics with a corre-
sponding iot.schema.org semantic definition. For this
purpose, we offer an adaptation API to adapt data for-
mats from the diverse IoT ecosystem or diverse se-
rialization formats to the iot.schema.org data format.
The adaptation API is also offered as a set of nodes in
Node-RED. For example: we provide nodes to convert
a data from integer to float or from float to double. We
provide nodes to convert data in string format to JSON
or vice verse. We provide nodes to convert data from
one unit of measurement to another. A user should use
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1 iotsh:TemperatureDataShape a sh:NodeShape ;
2 sh:targetClass iot:TemperatureData ;
3 sh:and (
4 [ sh:property [
5 sh:path schema:propertyType ;
6 sh:datatype xsd:float ;
7 sh:minInclusive 0.0 ;
8 sh:maxInclusive 100.0 ; ]; ]
9 [ sh:property [

10 sh:path schema:unitCode ;
11 sh:hasValue iot:Celsius ; ]; ] ).
12 iotsh:TemperatureShape a sh:NodeShape ;
13 sh:targetClass iot:Temperature ;
14 sh:and (
15 [ sh:property [
16 sh:path iot:providesOutputData ;
17 sh:minCount 1 ;
18 sh:maxCount 1 ;
19 sh:node iot:TemperatureData ; ]; ] ).

Listing 3: Temperature shape customized according to a vendor specification

Fig. 4. Configuration parameters of iot.schema.org temperature interaction pattern node
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Fig. 5. Semantic integration of a temperature thing node with iotschema temperature node.

one or more adaptation nodes to integrate an existing
IoT thing’s data with the iot.schema.org specification
as shown in Figure 5. For this purpose, a user should
carry out the following steps:

1. He or she creates a flow by wiring a thing node
with one or more adaptation nodes and then by
connecting the adaptation nodes with iotschema
node.

2. He then configures the iotschema node according
to the specification of the thing.

3. The iotschema node gives two outputs. The first
output is the SHACL shape, which is configured
according to the thing’s specification. The second
output is the run-time value given as output by the
thing (if that IoT thing gives output).

4. For convenience, a user can save the flow he cre-
ated using a thing node, adaptation nodes and
iotschema node as sub-flow in Node-RED, and
later he can use it as a single node during applica-
tion development.

5. The semantic description of an IoT thing thus
created can be stored in a knowledge graph for
discovery.

In this way, using our approach semantic integration
of heterogeneous IoT things can be easily achieved
even by non-experts in semantic technologies.

6. Generation Of Semantic Thing Descriptions

As mentioned in the previous sections, the config-
ured SHACL shapes generated in Sections 4 & 5 can
be used to generate W3C WoT Thing Descriptions
(TDs). According to the state of the art, TDs are mod-
eled manually and semantic enrichment of TDs is also
done manually which is a time-consuming and error-
prone process, since the common practice is to manu-
ally write a TD, find the required semantic descriptions
from iot.schema.org website and edit the TD manually
to annotate it. In order to overcome these problems,
we developed an approach to automate the process of
creation and semantic enrichment of TDs. In our pre-
vious work [32], we described an algorithm to gen-
erate a semantically-enriched Thing Description (TD)

from configured shapes of iotschema interaction pat-
terns. However, the approach is still hard to use for
users who are not experts in SW technologies. There-
fore, we integrated the algorithm into Node-RED to
enable a non-expert to easily create a semantically en-
riched TD. In this section, we describe the approach to
generate semantically enriched W3C WoT TDs from
the configured iotschema nodes and show how these
machine-interpretable descriptions can be stored in a
knowledge graph for discovery. This is step 2 in our
approach as shown in Figure 1

6.1. Thing Description Generator Node

We introduce a node in Node-RED called Thing
Description Generator, that generates a TD with se-
mantic mark-ups from iot.schema.org, using config-
ured iotschema nodes as input. The algorithm for gen-
erating a TD from SHACL shapes is described in de-
tail in our previous publication [32]. In this paper, we
describe the procedure to generate TDs in Node-RED
using the Thing Description Generator node.

Let us assume that a machine builder wants to gen-
erate a semantically enriched TD for his thing. Then
he performs the following steps: he searches for the re-
quired iotschema interaction pattern nodes, configures
the semantics of them as described in Sections 4 and
5; then he wires the output of iotschema nodes (first
output which is a SHACL shape) to the input of the
Thing Description Generator node as shown in Fig-
ure 6. The Thing Description Generator takes the se-
mantically configured interaction patterns of a thing
(that is configured iotschema nodes) as input and then
it constructs a thing description with the interaction
patterns. In addition, the Thing Description Genera-
tor node itself can be configured to define the endpoint
where the thing can be accessed, name, id of the thing
etc. Thus the output of the Thing Description Genera-
tor is a semantically enriched TD, that can be stored in
a knowledge store.

The TD of the thing can then be stored in a knowl-
edge graph as shown in Figure 3, for example in the
Thing Directory which is a knowledge graph with
RESTful interface provided by W3C WoT community.
In order to simplify the process of storing and dis-
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covering things TDs in a knowledge graph, we cre-
ated a node called Thing Directory node which acts as
a Thing Directory client. Using this node, a user can
store his TD in the directory which enables him to dis-
cover, query, modify or delete the TD.

The approach can be used to generate TDs for sim-
ple things and also for complex automation systems
such as the FESTO workstation presented in our use
case.21 Figure 6 shows the TD generation in Node-
RED for all the sensors and actuators deployed on the
FESTO workstation. The figure shows that the seman-
tics of all the sensors and actuators on FESTO work-
station are configured using corresponding iotschema
nodes. Then the output of the iotschema nodes is given
as input to the TD Generator node, that generates the
semantically enriched TD of the FESTO workstation.
A snippet of the generated TD is presented in Listing 4
(where the TD generation algorithm converts SHACL
constraints on the data schema into JSON schema con-
straints, as TD specifies data constraints using JSON
Schema). The output of the TD Generator node is
given as input to the Thing Directory node to store the
generated TD in the Thing Directory. Then the things
are available for discovery and application develop-
ment.

7. Semantically Interoperable IoT Application
Development

For rapid IoT application development, we devel-
oped an approach using machine interpretable appli-
cation templates called Recipes, as mentioned in the
introduction. In this section, we describe the applica-
tion development approach in detail and explain how
the semantic-driven approach automates the complex
application development tasks and how the approach
is integrated into Node-RED, these are steps 3 and 4
of our approach as shown in Figure 1. Using our ap-
proach, a user who is not an expert in semantic tech-
nologies and an engineer not familiar with the domain
can quickly and easily design and develop seman-
tically interoperable IoT applications as Node-RED
flows, thanks to the semantic querying which automate
the complex application development tasks.

21https://www.festo-didactic.com/int-en/learning-
systems/process-automation/compact-workstation/mps-pa-
compact-workstation-with-level,flow-rate,pressure-and-
temperature-controlled-systems.htm

The basis for this work is the concept of Recipes that
we published previously in [9] by considering a smart
city use case. In that paper we presented the Recipe
model and a prototypical implementation of a UI tool
to design and develop Recipes. In the current paper,
we describe how the Recipe concept is introduced in a
widely used IoT application development tool, Node-
RED.

A Recipe describes the requirements of a WoT ap-
plication in terms of Ingredients and Interactions. An
Ingredient represents an interaction pattern of a thing
with certain capabilities required for an application.
Interactions specify the data-flow between Ingredients
in order to execute the application. In Node-RED, an
iotschema node is treated as a Recipe Ingredient, since
an iotschema node acts as a machine-interpretable
template to describe the capabilities of an interaction
pattern of a thing. An iotschema node can thus be used
to describe the required things of a Recipe. The data-
flow between Ingredients is represented by wiring the
Ingredient nodes with each other. In Node-RED, the
IoT applications are called Flows. Therefore, we call
Recipes in Node-RED Recipe Flows, that represent a
semantically interoperable application template. They
can be stored in a knowledge graph such as Thing Di-
rectory for discovery and re-use.

As we mentioned earlier that Recipe flows are se-
mantically interoperable IoT application templates.
They are not bound to things from any specific plat-
form, ecosystem or domain. This enables a Web de-
veloper or IoT application developer to create a Recipe
Flow without thinking about the existing things. If a
user is interested in an application, then he can sim-
ply discover a required Recipe Flow from Thing Di-
rectory. In order to bind the Recipe Flow with his
things, our approach provides automated discovery of
the matching things. Therefore, one can easily instan-
tiate a Recipe Flow with one’s things and deploy the
application. Thus, the Recipe Flows are re-usable, they
can be instantiated with things from diverse device
vendors and platforms. In the following sections we
will present in detail the application design and devel-
opment approach using Recipe Flows.

7.1. Design a Recipe Flow

Creating a Recipe flow is as simple as creating a
flow in Node-RED. A Web developer or IoT applica-
tion developer simply drags and drops the Ingredients,
that is, required iotschema nodes for his application.
He then configures the iotschema nodes to specify the
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1 {
2 "@type": [
3 "Thing",
4 "iot:Pump",
5 "iot:Valve",
6 "iot:FloatSwitch",
7 "iot:UltrasonicSensing",
8 "iot:ProximitySensing" ],
9 "id": "urn:dev:wot:siemens:festolive",

10 "name": "FestoLive",
11 "iotcs:deviceModel": "urn:com:siemens:wot:festo",
12 "security": [{ "scheme": "basic" }],
13 "properties": {
14 "PumpStatus": {
15 "@type": "iot:OperationStatus",
16 "iot:capability": "iot:Pump",
17 "iot:isPropertyOf":{"@id":"Pipe2", "@type":"iot:LiquidPipe"},
18 "type": "object",
19 "properties": { "PumpStatus": { "type": "boolean" } },
20 "writable": false,
21 "observable": false,
22 "forms": [
23 {
24 "href": "coap://192.168.0.101:5683/PumpP101/status",
25 "mediaType": "application/json"
26 }
27 ]
28 },
29 "ValveStatus": {
30 "@type": "iot:OperationStatus",
31 "iot:capability": "iot:Valve",
32 "iot:isPropertyOf":{"@id": "Pipe1", "@type":"iot:LiquidPipe"},
33 "type": "object",
34 "properties": { "ValveStatus": { "type": "boolean" } },
35 "writable": false,
36 "observable": false,
37 "forms": [
38 {
39 "href": "coap://192.168.0.102:5683/status",
40 "mediaType": "application/json"
41 }
42 ]
43 }
44 }
45 }

Listing 4: A snippet of semantically enriched FESTO workstation Thing Description generated by Semantic Node-
RED tool.
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Fig. 6. Usage of Semantic Node-RED tool to generate semantically enriched W3C WoT Thing Description for all the sensors and actuators on
FESTO workstation. The green color nodes represent the device nodes that act as endpoints to access an interaction pattern data on a thing. Petrol
color nodes represent the iotschema nodes. The grey node, TDGenerator is the Thing Description generator node.

functional requirements of the application. That is, he
can assign a capability, feature of interest, data scale,
unit of measurement, etc. to an iotschema node to de-
scribe the application requirements. Then, he can write
an application logic by using function nodes in Node-
RED. He then describes the data-flow between the in-
gredients by wiring the nodes into a flow.This corre-
sponds to step 3 of our approach as shown in Figure 1
For every flow, Node-RED provides a JSON descrip-
tion, which can be saved into the flow library of Node-
RED. However, the flow description is not machine-
interpretable, therefore, it cannot be easily discovered
and semantic reasoning cannot be employed on such
a flow description. In order to overcome this prob-
lem, we developed a simple semantic model to de-
scribe Node-RED Flows and generated a JSON-LD
context from it. By adding the context to a JSON flow
description, it can be easily enriched with semantics.
Thereby, the JSON flow description is represented in
the JSON-LD format and is enabled to be stored in a
knowledge graph such as Thing Directory. Moreover,
semantic querying using SPARQL queries can be used
for efficient discovery of Recipe flows and to automate
application development tasks such as skill matching.
For this purpose, we introduce a new node called the
Matchmaker.

A user can search the flow library or Thing Direc-
tory to discover the required Recipe flow for his ap-
plication and instantiate it with the matching things on
his IAS using the Matchmaker node. The functioning
of this node is presented in detail in the next sections
using the following use case.

Figure 7 shows the Recipe flow designed for our
industrial integration use case presented in Section 3.
The Recipe flow represents the following application:
when the CO2 concentration in a chemical factory ex-
ceeds a certain limit, then drain the liquid from the
tank, turn on a flash light to warn the employees in the
factory and also turn off the air conditioners in the fac-
tory based on the CO2 concentration. The application
also checks for the current liquid level in a tank and
changes the color of the light. The interesting point to
be observed in this Recipe flow is that the iotschema
nodes turnOn and turnOff are used three times in the
Recipe flow and each time they are configured differ-
ently to model application requirements. That is, the
nodes are configured with different capabilities such as
Pump (to start the pump to drain liquid from the tank),
Light (to turn on a light), Air conditioner (to turn on an
air conditioner) respectively. Figure 7 shows that such
a complex application can be created easily by drag-
ging and dropping the required iotschema nodes, con-
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Fig. 7. Recipe Flow designed in Semantic Node-RED for the industrial integration use case & discovery of matching things for the Recipe Flow
by Matchmaker node.

figuring them and wiring them together. Then, the user
can use the Matchmaker node in order to connect to the
knowledge graph where his TDs are stored. Then the
Matchmaker discovers the compatible things on which
the Recipe Flow can be instantiated. In the following
section, we will describe in detail about automated ap-
plication development using the Matchmaker node.

7.2. Automated Application Development

A Recipe ingredient describes the skills that is ca-
pability, interaction pattern, feature of interest and
data schema of a thing required for an application. A
SPARQL query is generated from an ingredient de-
scription. The SPARQL query is then executed on a
thing directory or knowledge store where the TDs of
a workstation are stored. Then the query gives the
matching things on the workstation, that can run the
application as a result. Currently the matchmaking pro-
cess is a binary case. That is only full match cases are
considered. The Matchmaker node automates match-
making process. Moreover, it also enables a user to se-
lect a thing (from discovery results) for each Ingredient
and instantiates the Recipe flow with selected things to
create an application or a Recipe instance flow. List-
ing 5 shows the SPARQL query that is generated from
the Recipe ingredient node, TurnOn of AirConditioner.

We described the matchmaking process in our previ-
ous publication [9] in detail. Here we elaborate on cen-
tral and distributed discovery approaches for match-
making. Firstly, semantically enriched TDs of things
are stored in a knowledge graph as described in the
previous sections. The knowledge graph can be hosted

centrally in a Cloud or it can be hosted locally on the
Edge of an IAS or BAS, that is, on an Edge device de-
ployed on an IAS or BAS based on the user’s require-
ments. For both Cloud and Edge approach, we describe
here two methods for discovery. They are: (1) central
discovery and (2) distributed discovery.

7.2.1. Central Discovery
If the semantically enriched TDs are stored on the

Cloud which hosts a knowledge graph such as Thing
Directory, then the central discovery approach is used
for skill matching, that is, to discover things that com-
ply to the requirements of a Recipe. Standard seman-
tic querying using SPARQL queries can be applied for
discovery in the central approach. The Matchmaker
node running on Node-RED connects to the knowl-
edge graph hosted on the Cloud and does the match-
making process.

Figure 8A shows the system architecture for cen-
tral discovery. Here we consider a FESTO PA work-
station as an IAS. The figure shows that TDs of all
the field devices deployed on the FESTO workstation
are stored in Thing Directory hosted on the Cloud. Us-
ing the Matchmaker node, a user can connect to Thing
Directory from Node-RED. The Matchmaker gener-
ates queries from the Recipe flow description and exe-
cutes the generated queries on Thing Directory, in or-
der to discover matching things for a Recipe. Since
the Cloud has sufficient resource in terms of computa-
tional power and memory, the performance for discov-
ery is good. The central discovery approach for appli-
cation development is feasible and scalable. We con-
ducted extensive experiments using the central discov-
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ery approach; the results are presented in detail in Sec-
tion 8.

7.2.2. Distributed Discovery
If the semantically enriched TDs are stored on

an Edge device deployed on an AS, then the dis-
tributed discovey approach is used to disccover match-
ing things to instantiate a Recipe. Figure 8B shows the
system architecture for distributed and local discovery
on the Edge of an AS. In this case we again consider
a FESTO PA Workstation as the IAS. For Edge pro-
cessing, one or more Edge devices can be deployed
on an IAS or BAS and semantically enriched TDs can
be stored on them as shown in Figure 8B. This is in
contrast to the central approach where TDs are stored
on the Cloud. In distributed discovery approach, the
TDs of the things on an AS are distributed among all
the Edge devices deployed on the AS. This way, lo-
cal intelligence can be achieved by employing seman-
tic querying on the Edge devices. Nevertheless, IoT
Edge devices are resource constrained when compared
to the resources on a Cloud, thus PC-based semantic
querying techniques are not feasible on the Edge de-
vices. Therefore, we propose to use non-standard se-
mantic querying techniques on the Edge devices [33].
We propose here to do querying using datalog on an
Edge device. For this purpose, we deployed a column-
oriented datalog reasoner called VLog [34] on an Edge
device.22 Using VLog, we can store the semantic de-
scriptions of things on an Edge device of an AS. Then
we can perform semantic querying and reasoning to
discover matching things required to run an applica-
tion as shown in Figure 8B. This way, we can support
a user in decision making process, to decide whether
an application should be deployed on the AS or not.

Depending on the complexity and number of things
on an IAS or BAS, one or more Edge devices can be
deployed on it. In order to do the discovery on the Edge
of an AS, the VLog engine is installed on all the Edge
devices and distributed querying techniques are em-
ployed. The distributed querying approach on the Edge
of an AS is explained in detail in our previous publica-
tion [35]. In this paper, the focus is on integrating the
distributed querying with Node-RED. The VLog en-
gine on an Edge device can be offered as a Web ser-
vice, which enables a user to connect to the engine re-
motely (from Node-RED). It offers flexibility to a user
to send his TDs to an Edge device from Node-RED and
also to send matchmaking queries easily to the VLog

22https://github.com/karmaresearch/vlog

engine on an Edge device. Similar to the central ap-
proach, a user can use the Matchmaker node to connect
to the VLog engine running on an Edge device, where
the distributed discovery takes place. We conducted
extensive experiments to evaluate the feasibility, per-
formance and scalability of the local & distributed dis-
covery approach using the VLog engine. The results
are presented in Section 8.

7.3. Deployment of an Application

The user can deploy an application, that is, an in-
stantiated Recipe flow either locally on his computer,
on the Cloud, or on an Edge device wherever Node-
RED can run.

This is also a novel feature we introduce in Node-
RED, since, until today, it is only possible to de-
ploy Node-RED flows locally. In our approach, we ex-
tended this feature by offering a flexibility to the user
to deploy an application wherever he wants, provided
that Node-RED is running on that machine, since the
Node-RED run-time is required to run an application.
For this purpose, we provided a new node in Node-
RED called App Deployer. A user can configure this
node to give the URI (IP address) where the applica-
tion should be deployed. Then the application will be
sent to Node-RED running on that address and, it will
be deployed. Therefore, our approach offers flexibil-
ity to the user to deploy an application anywhere. If
it is an application where the data from multiple au-
tomation systems is collected and processed or an ap-
plication whose results should be shared with different
people then, he can deploy it on the Cloud. If it is an
application performing local analytics or orchestrating
things locally on an AS, then, he can deploy it on the
Edge of an AS such that it works efficiently without
high network latency. Otherwise, he can simply run the
application locally on his PC.

8. Evaluation

We performed extensive experiments to evaluate
our rapid WoT application development approach pre-
sented in this paper. The experiments are conducted
with a real FESTO Process Automation Workstation
shown in Figure 8 with the real data from the things on
it. We conducted four experiments to perform a quan-
titative and qualitative evaluation of our approach. The
aim of the quantitative evaluation is to check the fea-
sibility of the automated application development ap-
proach using Matchmaker in real world scenarios.
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Fig. 8. System Architecture: (a) Central discovery on the Cloud, (b) Distributed & Local discovery on the Edge

1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX schema: <http://schema.org/>
3 PREFIX iot: <http://iotschema.org/>
4 PREFIX td: <http://www.w3.org/ns/td#>
5

6 SELECT DISTINCT ?interactionName WHERE { GRAPH ?g {
7 ?t rdf:type td:Thing .
8 ?t td:interaction ?interaction .
9 ?interaction td:name ?interactionName .

10 ?interaction rdf:type iot:TurnOn .
11 ?interaction iot:capability iot:AirConditioner .
12 ?interaction iot:featureOfInterest ?foi .
13 ?interaction ?p ?data .
14 }
15 }

Listing 5: Complex SPARQL query to discover a TurnOn interaction of a thing of type air conditioner.
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8.1. Quantitative Evaluation

Two sets of experiments are conducted for the quan-
titative evaluation. The aim of the first experiment is to
analyze if the local discovery approach is feasible to be
done on an Edge device. Another goal is to test if the
performance of the approach is good and scalable in
real life scenarios. The aim of the second experiment is
to compare the performance of Matchmaker between
central discovery and local discovery approaches.

8.1.1. Experimental Setup
The FESTO PA workstation used in the experiments

has eight sensors (two capacitive sensors, two float
switches, ultrasound sensor, flow sensor, pressure sen-
sor, temperature sensor) and three actuators (pump,
two-way ball valve with pneumatic quarter turn actua-
tor and end-position sensing, heater). Therefore, there
are 11 physical things on our IAS with a total of
17 interaction patterns (Properties/Events/Actions) on
them. A SIMATIC IOT200023 device is deployed on
the workstation, which acts as the Edge device on the
IAS. SIMATIC IOT2000 is an IoT gateway, which can
be deployed on an IAS or BAS. It has an Intel Quark
x1000 operating system and 512 MB RAM. The dat-
alog engine, VLog is installed on it. With this setup,
we created semantically enriched TDs for all the things
(field devices) on FESTO as shown in the Figure 6. For
the evaluation of the local discovery approach the TDs
is stored in the VLog engine installed on IOT2000. For
evaluation of the central discovery approach, the TDs
are stored in ThingDirectory running on a PC with 512
GB storage and 4GB RAM. In this experiments, the
PC plays the role of the Cloud.

For the experiments, we considered the overflow
protection Recipe flow shown in Figure 9. For this
Recipe Flow, the Matchmaker generated three queries
to discover matching things for the Ingredients of the
Recipe. With this data, we conducted experiments on
the Edge and the PC to check time taken to load TDs
into VLog and time taken by VLog to materialize the
data with the given set of datalog rules. We first con-
ducted the experiment with the original data set that is
a TD with 11 sensors & actuators. Then we linearly in-
creased the data set by a factor of five with simulated
data. That is, we conducted experiments with the data
set for 11 things, 55 things, 110 things, 165 things and
220 things as shown in Table 1. With this setup, we

23https://www.siemens.com/global/en/home/products/automation/pc-
based/iot-gateways/iot2000.html

conducted the experiments. The results of the experi-
ments are presented in the following section.

Table 1
Experimental Set up on FESTO PA Workstation for quantitative
evaluation.

Dataset Number of things Number of Datapoints
1 11 17
2 55 85
3 110 170
4 165 255
5 220 340

8.1.2. Results
For the local discovery evaluation, each data set

shown in Table 1 was stored on the SIMATIC IOT2000
device deployed on the FESTO workstation. We checked
the time taken to load and materialize the data in the
VLog engine for each data set. The results are pre-
sented in Figure 10A. The figure shows that the time
taken to load the TD data for 11 things is 7.2 seconds
and the time taken to load TD data for 220 things is
10.8 seconds. This is due to the fact that the Edge de-
vice under our consideration is resource constrained in
terms of memory and processing power. Moreover, in
real life scenarios a AS is equipped with more than one
Edge devices and each Edge device is connected to a
maximum of 20 things. Therefore, the resulting time
to load data in the VLog engine is acceptable as the
results occur during engineering or application devel-
opment time but not at run-time.

The second part of the experiment was to test the
time taken to execute the queries for each data set
on the VLog engine and the Thing Directory running
on the PC. The results are presented in Figure 10B.
The graph shows that the VLog engine takes 4.5 sec-
onds for query execution on a data set for 220 things
whereas, the Thing Directory running on the PC takes
2.2 seconds for the same query and the same data set.
Therefore, we clearly see that the central discovery ap-
proach on the PC performs better than the local dis-
covery on the Edge. This is because the PC has more
resources than are available on a constrained Edge de-
vice. Nevertheless, the results are acceptable, since it is
during application development time but not run-time.
Moreover, as we argued before, typically 20 things
are connected to an Edge device in real life scenarios.
Therefore, we can conclude from our experiments that
it is feasible to perform automated development of ap-
plications on the Edge device deployed on an AS. Fur-
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Fig. 9. Tank overflow protection Recipe

thermore, the approach is scalable. The performance
can be improved further by using more powerful rea-
soning engines24 and by using more powerful Edge de-
vices such as SIMATIC Nanobox25, Raspberry Pi26,
etc with more storage and computational power.

8.2. Qualitative Evaluation

The aim of the qualitative evaluation is to analyze
the usability and applicability of the semantic Node-
RED tool for interoperable WoT application devel-
opment. The Node-RED tool extended with semantic
nodes is a very novel approach and provides an end to
end solution for WoT application development. In or-
der to evaluate the features of this tool, we conducted
an experiment to compare the features of our tool with
existing tools for WoT application development. We
also compared our tool with the tools available to use
semantic models and the tools to do engineering of
new applications on an IAS. Our semantic Node-RED
tool is used to design and develop following classes
of applications: non-time critical applications, diag-
nosis applications, applications at the level of MES
(Manufacturing Execution System), SCADA (Super-
visory Control and Data Acquisition), etc. Therefore
we choose the tools that are used to create these classes
of applications.

We conducted a second set of experiments to ana-
lyze the usability of the tool by users who are semantic
and domain experts for developing WoT applications.
The tool was demonstrated to over 100 experts includ-
ing WoT experts during the W3C WoT PlugFest27, to

24https://cecs.anu.edu.au/events/souffle-datalog-engine-static-
analysis

25https://w3.siemens.com/mcms/pc-based-
automation/en/industrial-pc/box-pc/simatic-
ipc227e/pages/default.aspx

26https://www.raspberrypi.org/products/raspberry-pi-3-model-b-
plus/

27https://github.com/w3c/wot/tree/master/plugfest/2018-lyon

industry experts during Global University Challenge
for Automation Meets Edge28 and to Siemens engi-
neers during user evaluation. In the following sections,
we detail the experiments conducted and, the results
obtained. We present the users feedback about pros and
cons of the tool, the scope for improvement, limita-
tions of the tool and future directions for the develop-
ment of the tool.

8.2.1. Feature Comparison
There are few tools available for engineering appli-

cations on complex IAS such as 4DiAC. On the other
hand, there are several tools available for IoT appli-
cation development such as Node-RED, IFTTT [31],
IoTivity29, glue.things [36], 3TwoOne30, etc. There
is a tool available for WoT application development
called WoTKit [37]. However, semantics is not part
of any of the above mentioned tools. Few tools ex-
ist for semantic-based IoT application development
such as ReApp31, AllJoyn [38], SWAS [35] (Se-
mantic Web of Things for Automation Systems), or
RecipeCooker [9]. These tools integrate semantics to
be used in their Integrated Development Environment
(IDE) for marking-up IoT sensors/actuators, robots
with semantics, for discovery of things, to display se-
mantic models graphically, etc. All these tools consti-
tute the related work for our work on extending Node-
RED with semantics.

We evaluated the features of some of the above men-
tioned tools against the requirements of a semantic-
driven tool for rapid application development on
complex ASs. We evaluated Node-RED, IFTTT and
4DiAC as they are open source. We also evaluated
SWAS and RecipeCooker as these tools were ac-
cessible for us. We could not evaluate glue.things,
3TwoOne, IoTivity, ReApp and WoTKit in detail,

28http://www.siemens.com/automation-meets-edge-challenge
29https://www.iotivity.org/
30https://3twoone.com/
31http://www.reapp-projekt.de/
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Fig. 10. Results of quantitative evaluation on FESTO PA Workstation (a) The bar graph represents the results of loading time and materialization
time for each dataset on SIMATIC IOT2000 Edge device for local discovery (b) The bar graph represents the results of comparison between
querying time in local and central discovery approaches.

since they are not publicly available. In this section,
we will provide the evaluation results in detail. The
Heatmap shown in Figure 11 presents the feature com-
parison results between these tools.

The features for comparison are chosen with fo-
cus on the requirements for a semantic-driven IoT ap-
plication development tool, a tool which can create
an ecosystem for device vendors, machine builders,
IoT application developers, AS engineers and Web de-
velopers to easily use semantic models for purposes
such as: (1) semantic mark-up of simple and complex
things; (2) designing, developing, discovering, shar-
ing, reusing and extending WoT applications on com-
plex IAS or BAS. Based on these requirements we de-
rived the following features for comparison.

(1) Is the tool suitable for WoT application devel-
opment?

(2) Is the tool suitable for application development
on complex IAS?

(3) Can a user describe a thing affordances seman-
tically using the tool?

(4) Does the tool support discovery of required
things?

(5) Can a user create application templates using
the tool?

(6) Does the tool support discovery of application
templates?

(7) Can matchmaking be done using the tool, which
enables rapid application development?

(8) Does the tool support the applications to be de-
ployed remotely?

(9) Is there a user community for the tool to create
and share the applications?

(10) Does the tool enable IoT semantic interoper-
ability?

(11) Is it open source?
(12) Is the tool Web friendly?

The evaluation of the tools is carried out based on these
questions. The results of the evaluation are shown in
Figure 11 and we present a detailed discussion of each
tool below.

Node-RED: Node-RED in the current state is a Web
friendly tool to wire IoT hardware and software com-
ponents. It is a low-code platform that enables a user to
easily design and develop applications without focus-
ing on writing the code for an application. However,
as mentioned earlier, interoperable WoT applications
cannot be developed on Node-RED, since semantics is
not a part of Node-RED in the current state. Moreover,
applications should be deployed locally in Node-RED.
The features of current Node-RED are discussed in de-
tail through out the paper.

IFTTT: IFTTT is a Web-based tool for very quick
and easy IoT application development using applets. It
provides a user-friendly interface to discover and in-
stantiate applets. The applets in IFTTT are very eas-
ily usable and highly reusable. However, there is only
one fixed pattern in IFTTT to create applications:"If
this, then that". If a user wants to create a complex pat-
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tern, then, he has to combine many applets which is
not user friendly. Further, IFTTT is suitable for sim-
ple IoT applications, but it is not suitable for creating
applications for complex ASs. Moreover, the applets
are bound to a specific device ecosystem (for example,
some applets work only with the Amazon Alexa de-
vice, Philips Hue devices etc.) and they cannot be used
with devices from other ecosystems. Semantic service
discovery or matchmaking are not features of IFTTT.
IFTTT does not enable users to create interfaces for
their devices or to provide semantic description for
their devices.

SWAS tool: The advantages of the SWAS tool [35]
are that the tool is suitable for developing semanti-
cally interoperable WoT applications on complex IAS
and semantics is integrated in the SWAS tool. It has
features such as semantic discovery of things, design
and discovery of Recipes, matchmaking and remote
deployment. However, semantic description of a thing
is not a feature of the SWAS tool. Moreover, it is
an eclipse-based tool, which makes it heavy weight
and less Web friendly. The SWAS tool is implemented
in Java which limits its deployment on smart devices
or IoT Edge devices. Moreover, the tool is not open
source.

Recipe-cooker: The Recipe-cooker tool [9] is a
browser based editor for creating semantic applica-
tion templates for building applications for automa-
tion, smart cities, etc. The tool is implemented in
Node.js, therefore, it is lightweight and Web-friendly.
A user can design semantic Recipes, discover them, do
matchmaking and instantiate Recipes using this tool.
However, this tool does not support semantic descrip-
tion of a thing. A user has to use another tool to create
semantic description of an IoT offering. Moreover, the
tool is not open source and it does not have a strong
user base. Therefore, there is very limited community
support.

4DiAC: 4DiAC is an eclipse based engineering tool
for engineering applications on complex IAS or BAS.
The tool enables a user to efficiently develop Function
Blocks, test them and deploy them on a PLC or Rasp-
berry Pi or PC. However, the tool is not meant to be
used for IoT application development and semantics is
not integrated into the tool.

Semantic Node-RED: The tool was created to meet
all the requirements mentioned above. It is an exten-
sion of the widely used Node-RED tool. Instead of de-
veloping a new tool we extended Node-RED which is
open-source and has a huge user base. All the nodes,
flows and extensions that we developed for Node-RED

for semantic extension are open source. We believe
that this extension will enable a perfect ecosystem
for semantic-driven rapid application development on
complex ASs. We envision that, using this tool, we en-
able device vendors not only to create semantic de-
scriptions for their things, but also to provide seman-
tically interoperable application templates that can in-
tegrate physical devices across diverse platforms and
ecosystems.

8.2.2. User Evaluation
Our basic assumption for the user evaluation is that

a user has some basic knowledge about the things on
the AS. In our use case, the assumption is that the users
participating in the evaluation have the knowledge
about the basic functionality of a valve, pump, etc.
Automation Meets Edge Challenge: The Semantic
Node-RED tool was first exhibited at the Global Uni-
versity Challenge for Automation meets Edge com-
petition conducted by Siemens at Nuremberg, Ger-
many, in October, 2018.32 It was a world wide compe-
tition, in which students from 55 universities partici-
pated. At this competition, we presented our idea en-
titled "Rapid IoT application development approach"
and presented the semantic Node-RED tool to design
and develop IoT applications. The applications devel-
oped are then deployed on the Siemens new industrial
Edge device called SIMATIC Nanobox. In this com-
petition, we won the "Highest Business Impact" award
for our idea. Several industrial experts and students
participated in this event. It gave us a good opportunity
to present the tool to industrial experts and get their
feedback about our approach and the tool. In the fol-
lowing we summarize the feedback.

22 experts participated in the evaluation. They ex-
pressed that the approach:

– addresses key issues in IoT such as the need to
use common and structured data models and need
for simplified application development.

– simplifies the task of data users to structure com-
plex data using common data models.

– enables anyone to become an application devel-
oper to develop simple applications on automa-
tion systems quickly and easily.

– encourages creating different applications using
common & well-defined semantic models.

– saves the costs and brings added value.

32http://www.siemens.com/automation-meets-edge-challenge
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Fig. 11. Heatmap representing the results of the feature comparison between various industrial engineering and application development tools.

– creating the application on the Cloud and option-
ally deploying it on the Edge or the Cloud offers
flexibility to the users.

On the other hand, they noted that it would be diffi-
cult to have a data model that is common to all the sup-
pliers, and that the applications might be limited for
real world scenarios. They expressed that, there should
be the possibility to deploy the applications first in a
simulated environment to test them before deploying
them on the real equipment.

W3C WoT Face to Face Meeting, Lyon: A W3C
Face to Face meeting was conducted in Lyon, France in
October, 2018. A Plugfest was conducted on October
20-21 as part of the Face to Face meeting.33 WoT ex-
perts from various companies such as Intel, Siemens,
Fujitsu, Panasonic, Oracle, SmartThings, etc. partici-
pated in this event with their physical devices and WoT
demos. On this occasion, we presented the semantic
Node-RED tool to the Plugfest participants demon-
strating how to create semantically enriched TDs for
the physical devices from the participants using the
tool. Using iotschema nodes on Node-RED, we were
able to create several Recipe flows very easily in few
minutes. With the Recipe flows we demonstrated se-
mantic interoperability and how devices from different

33https://github.com/w3c/wot/tree/master/plugfest/2018-lyon

device vendors can be used to instantiate a Recipe flow
in order to create WoT applications. A Recipe to flash a
warning light when the oxygen level is under a certain
threshold, and a Recipe to protect a tank from over-
flow of liquid are just a few examples of Recipe flows
demonstrated at the Plugfest. We collected informal
feedback from the Plugfest participants. The overall
feedback about the approach to rapidly develop WoT
applications using Recipe flows in Semantic Node-
RED tool was very good. We were able to create WoT
applications within few minutes using the approach.

User Evaluation with Siemens Engineers: In or-
der to evaluate the usability of the tool for modeling a
thing’s affordances and data schema with IoT seman-
tics, and to design and develop semantically interop-
erable applications we conducted a user evaluation of
the tool with Siemens engineers (who are not experts
in semantics). We created a questionnaire34 to collect
their feedback. The engineers were first given short in-
troduction to the tool. Then they were given two tasks:
(1) develop a semantic description of a thing on the
FESTO workstation using the tool; (2) develop an ap-
plication on FESTO: to do this, the user should de-
sign a Recipe flow for an application on FESTO, use
the Matchmaker node to discover compatible things
on FESTO, instantiate the application with discovered

34https://goo.gl/forms/wbFitAeUin26Cnp82
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things and deploy it on the workstation. The engineers
were able to do the tasks in approximately 15 minutes.
Then we collected their feedback using the question-
naire. Nine engineers participated in the evaluation and
we got good feedback from them. We present the eval-
uation results in Figure 12.

We asked the following five questions to the users:

Q1. Do you find it easy to use iot.schema.org nodes
in Node-RED in order to enrich a Thing Descrip-
tion (when compared to common practice i.e.,
finding required semantic description from the
iot.schema.org website and editing a Thing De-
scription manually)?

Q2. Do you find it easy to use semantic mod-
els from Node-RED when compared to existing
approaches such as schema.org, SSN Ontology,
SAREF Ontology etc.?

Q3. Do you find it easy to work with iot.schema.org
nodes?

Q4. Do you find it easy to create WoT applications
as flows that contain iot.schema.org nodes?

Q5. How satisfied are you with this tool’s ease of
use?

For the questions 1 to 4, the users answered on a scale
of 1 to 5 (1-Difficult, 5- Very easy) rating the usabil-
ity of the tool for various purposes. The results for
the evaluation of these questions is presented in Fig-
ure 12A. The results show that the tool is fairly easy
to use by users who are not semantic experts, to work
with the semantic models, to enrich a TD with seman-
tics, and to create semantically interoperable IoT appli-
cations. The overall satisfaction of the users about the
tool is evaluated in Question 5. The results of Question
5 are presented in Figure 12B, which show that most
of the users are very satisfied with the tool.

The users also gave us feedback about some limita-
tions of the tool. For instance, currently the tool does
not facilitate to discover required iotschema nodes to
create a TD. This is a subject of future work. In fu-
ture releases, we plan to enable discovery of iotschema
nodes in the tool. Additionally, users mentioned that
there should be a way to simulate the applications be-
fore deploying them on a running AS. However, this is
out of scope of this work.

In summery, we conducted a systematic and exten-
sive quantitative and qualitative evaluation of our ap-
proach to evaluate the feasibility, scalability and limi-
tations of the tool. The evaluation results are very en-
couraging and they also pointed us to future directions
to enhance our approach.

9. Case Study on Asset Administration Shell

Asset Administration Shell (AAS) is one of the key
concepts in Industry 4.0 that is used to describe an as-
set electronically in a standardized manner. The idea
of AAS is to structure the information and functions
in the context of the manufacturing industry based on
the assets in a uniform manner. We conducted an ex-
periment to implement the usage view of the AAS
with W3C WoT technologies, since WoT TD provides
a platform-independent and format-neutral vocabulary
to describe IoT things and the protocol binding pro-
vides accesses to things across diverse protocols and
platforms seamlessly. Every asset corresponds to a
WoT thing. Each asset service is an interaction pattern
(property/event/action) of a thing. TD of a thing cor-
responds to the asset service registry. The knowledge
store, Thing Directory where the TDs are stored cor-
responds to the computing infrastructure of the AAS.
With this setup, plug and play use case of AAS is
implemented with Recipes using semantic Node-RED
tool.

Our experiment showed that AAS can be efficiently
implemented with W3C WoT technologies since they
are standardized and light-weight technologies. On top
of WoT technologies, Recipes and semantic Node-
RED tool is very nice addition to implement plug and
play use case, since, semantic Node-RED tool enables
very simple usage of Recipe and automated match-
making concepts. Together with these technologies,
plug and play can be implemented easily as Node-RED
flows. For example, once an application is instantiated
and deployed with Recipes, a new thing that is added in
a manufacturing unit can be automatically plugged to
the application with automated matchmaking. More-
over, a malfunctioning thing used in an application
can be replaced automatically with another compatible
thing in a manufacturing unit using automated match-
making. Therefore, AAS ecosystem can use Recipes,
matchmaker and semantic Node-RED tool to build
AAS applications.

10. Industry Challenges Faced & Lessons Learned

Throughout this work we learned that SW technolo-
gies are good to apply in Industry 4.0 for various pur-
poses. Industrial automation systems are very complex
with large number of machines that are producing huge
amounts of data. Usage of SW technologies in indus-
try addresses several issues such as semantic interop-
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Fig. 12. Results of the user evaluation. The Heatmap (a) represents the evaluation results for Questions 1 to 4, the Pie chart (b) represents the
evaluation results for Question 5.

erability between systems, querying the machine mod-
els and live data from the machines using standard SW
technologies and tools. SW also provides standardized
technologies for validation such as SHACL, ShEX etc.
These technologies can be used to validate the data that
is being exchanged between industrial machines and to
validate the machine models. However, it is very chal-
lenging to introduce new changes in industrial automa-
tion. Moreover, it is also challenging to gain commu-
nity support to push the development of semantic mod-
els e.g., iotschema.org.

11. Conclusions & Future Work

In summary, we investigated the possibility of us-
ing Semantic Web technologies and technologies be-
ing standardized in W3C WoT, to achieve semantic in-
teroperability in IoT and enable rapid development of
interoperable IoT applications. We chose the novel IoT
orchestration tool called Node-RED for this purpose.
We extended the Node-RED tool with semantic def-
initions developed by iot.schema.org and we showed
how our approach simplifies development of semanti-
cally enriched TDs and of semantically interoperable
IoT applications. We conducted an extensive qualita-
tive and quantitative evaluation of our approach with
real world use cases. The results show that the ap-
proach is feasible and scalable in real world scenar-
ios, and that the tool enables engineers who are not do-
main experts and non-experts in semantic technologies

to easily design and develop semantically interopera-
ble WoT applications.

We showed that our approach accelerates applica-
tion development in many ways: firstly by using low-
code platforms such as Node-RED, where lot of func-
tionalities come from the Node-RED ecosystem itself
e.g. nodes such as CoAP, HTTP etc. Moreover, we in-
troduced application templates with Recipes which are
reusable. Therefore, there is no need to develop an ap-
plication from scratch.

The current limitations of the tool are as follows:
complex applications involving multiple sensors and
actuators cannot be created with the tool. Since the tool
is currently hosted on AWS, it does not support multi-
tenancy. The proposed approach of IoT application de-
velopment with Recipes is implemented with Node-
RED. Node-RED is a good tool for prototyping IoT
applications quickly and easily without much domain
know-how. However it has limitations such as scala-
bility, performance. Node-RED is not suitable for de-
veloping and deploying large number of IoT applica-
tions on multiple devices simultaneously, therefore, it
is not scalable. Node-RED is only one way of imple-
mentation of Recipe technology, however, other tools
can also implement the Recipe mechanism.

In the future, we plan to extend the tool with ex-
isting industry standards such as the OPC UA se-
mantics. This will facilitate the integration of state of
the art automation systems into IoT and also enable
rapid application development on them. We will ex-
tend Recipes to create complex Recipes with multi-
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ple sensors and actuators. Provide semantic templates
for machine vendors to describe the semantics of their
things and offer them to their customers. Another re-
search direction is to implement the tool we presented
in this paper with other low-code development plat-
forms e.g., Mendix35.
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