Semantic Web 0 (0) i IOS Press

Network Metrics for Assessing the Quality of Entity Resolution Between Multiple Datasets¹

Al Idrissou^{a,b,*}, Frank van Harmelen^a and Peter van den Besselaar^b

^a Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

E-mails: o.a.k.idrissou@vu.nl, frank.van.harmelen@vu.nl

^b Department of Organization Sciences, Vrije Universiteit Amsterdam, The Netherlands

E-mail: p.a.a.vanden.besselaar@vu.nl

Editors: Catherine Faron Zucker, University of Nice Sophia Antipolis, France; Chiara Ghidini, Fondazione Bruno Kessler, Italy Solicited reviews: Dmitry Ustalov, University of Mannheim, Germany; Francesco Corcoglioniti, Free University of Bozen-Bolzano, Italy; Three anonymous reviewers

Abstract. Matching entities between datasets is a crucial step for combining multiple datasets on the semantic web. A rich literature exists on different approaches to this entity resolution problem. However, much less work has been done on how to *assess* the quality of such entity links once they have been generated. Evaluation methods for link quality are typically limited to either comparison with a *ground truth dataset* (which is often not available), *manual work* (which is cumbersome and prone to error), or *crowd sourcing* (which is not always feasible, especially if expert knowledge is required). Furthermore, the problem of link evaluation is greatly exacerbated for links between more than two datasets, because the number of possible links grows rapidly with the number of datasets.

In this paper, we propose a method to estimate the quality of entity links between multiple datasets. We exploit the fact that the links between entities from multiple datasets form a network, and we show how simple metrics on this network can reliably predict their quality. We verify our results in a large experimental study using six datasets from the domain of science, technology and innovation studies, for which we created a gold standard. This gold standard, available online, is an additional contribution of this paper. In addition, we evaluate our metric on a recently published gold standard to confirm our findings.

Keywords: entity resolution, data integration, network metrics

1. Introduction

Matching entities between datasets (known as entity resolution) is a crucial step for the use of multiple datasets on the semantic web. There exists a fair amount of entity resolution tools for *generating* links between pairs of resources: AGDISTIS[2], LIMES[3] Linkage Query Writer [4, 5], SILK [6], etc. However, much fewer methods exist for *validating* the links produced by these methods. Currently, only three vali-

¹This is an extended version, by invitation, of a paper accepted at the 21st International Conference on Knowledge Engineering and Knowledge Management (EKAW 2018) [1]

Knowledge Management (EKAW 2018) [1]

dation options are available for such validation: (1) ground truth, which is often not available; (2) man-*ual work*, which is a cumbersome task prone to error; (3) crowd sourcing, which is not always feasible es-pecially if specialist knowledge is required. Further-more, the problem of link evaluation is greatly exac-erbated for entity resolution between more than two datasets, because the number of possible links grows rapidly with the number of datasets. Therefore, it is important to investigate the accurate automated eval-uation of discovered links. Any answer to this question should generalise beyond the setting of just two datasets, and be applicable to the general setting of links between multiple datasets. In such a multi-dataset scenario, linked resources cluster in small groups that

i

^{*}Corresponding author. E-mail: o.a.k.idrissou@vu.nl.

we call Identity Link Networks (ILNs). The goal of this paper is not to propose any new method for entity resolution but instead to provide a method to estimate the 3 quality of an identity link network, and consequently 4 validate a set of discovered links. To do so, we hypoth-6 esise that the structure of an identity link network correlates with its quality.

We test our hypothesis in two experiments where 8 we show that the proposed metric indeed reliably es-9 timates the quality of an identity network. We also 10 test our hypothesis on recently published experimental 11 data from ESWC 2018 (see Section 9). Here too, the 12 results confirm that our quality metric reliably predicts 13 human assessment of entity links. 14

In summary, our contribution is a method that esti-15 16 mates the quality of non-trival identity networks (size three or bigger). This paper extends our prior work [1] 17 to weighted methods that take into account the strength 18 of links in the network. All methods are tested against 19 human judgement in three large experiments, which 20 21 show that such strength-weighted methods outperform the methods in [1]. All data of these experiments are 22 available online². 23

This paper begins with a short motivation in Section 2. Section 3 discusses the related work and Section 4 describes the proposed metric. In Section 6 we 26 describe the datasets involved in our experiments. Sections 7 to 9 describe our three experiments. While Section 5 presents refinements of the proposed metric, Section 10 evaluates them and Section 11 concludes.

2. Identity Link Networks

We assume the well known setting of a real-world 35 entity that has one or more digital representations in 36 multiple datasets. The task of entity resolution is to 37 discover which entity (or entities) in each dataset de-38 notes the same real world entity. An Identity Link Net-39 work (ILN) is a network of links between entities from 40 a number of datasets that are found by one or more 41 entity resolution algorithms to represent the same real 42 world entity. An ILN can be derived directly from en-43 tity resolution results (Sections 7 and 8), or it may 44 be generated by sophisticated clustering methods as in 45 our experiment in Section 9. In this work we do not 46 propose any new entity resolution algorithm. Instead, 47 we propose a method to automatically evaluate discov-48 ered links, particularly when they involve more than 49

50 51

²https://github.com/alkoudouss/Identity-Link-Network-Metric

two datasets. Unfortunately, gold standards in initiatives such as OAEI³ do not go beyond two datasets.

Fig. 1 shows two examples of such ILNs that have been generated by an entity resolution algorithm between entities from six datasets taken from the field of Science, Technology and Innovation studies (STI) (more details in Section 6). Fig. 1a shows the ILN for the real world entity University of Trier, Fig. 1b shows the same for the National Chung Cheng University. In this paper, we hypothesise that the structure of these ILNs is a reliable indicator for the correctness of the links in the network they form.

. ional Chung Cheng University(grid_20170712 grid.412047.4)

(b) Potentially wrong representation of the National Chung Cheng University.

Fig. 1. Two real life examples of Identity Link Networks (ILNs); dotted lines indicate links with a low confidence.

Simple Clustering Algorithm. Our aim is not clustering, it is instead the quality approximation of ILNs. So, for reproducibility purposes we present here the

51

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ii

1

2

5

7

24

25

27

28

29

30

31

32

33

³http://oaei.ontologymatching.org/

straight forward simple clustering algorithm (see al-1 2 gorithm 1) implemented and used for clustering can-3 didate linked resources in order to generate ILNs. For 4 the purpose of cluster quality estimation, the algo-5 rithm also documents the discovered links and their re-6 spective strength(s). By documenting more than one 7 strength for a single link, the clustering algorithm en-8 ables the use of several matching algorithms. With this 9 feature, for a link with strengths computed by differ-10 ent matching algorithms, the topmost strength is used 11 for assessing the quality of an ILN. All basic opera-12 tions such as SEARCH (search for the cluster to which 13 a node belongs), INSERTION (add a node to the set of 14 nodes of a particular cluster, add a link to the set of 15 16 links of a particular cluster, add a strength to the map-17 ping link \rightarrow strength of a particular cluster), and DELE-18 TION (deleting a cluster, reassign a cluster to a node) 19 are supported by hash tables (O(1)). However, when 20 accounting for the MERGING of clusters, its worst case 21 scenario yields a complexity of $O(\log n)$ where n is 22 the number of nodes. This brings the overall time com-23 plexity to $O(m \log n)$ in the worst case and O(m) in the 24 best case, where *m* is the size of the input or the num-25 ber of links to be more precise. Figure 2 illustrates an 26 application of algorithm 1. 27

Fig. 2. Example of link clustering using Algorithm 1.

48 This example illustrates the creation and merging of clusters but leaves out the documentation of links and their strengths. 49

50 51

28

31

32

33

34

35

37

40

41

42

43

44

47

Algorithm 1: Simple resource clustering algorithm & network documentation. All search, insertion and deletion within a cluster is supported with hash tables which allows for a complexity O(1) leading the algorithm to be of $O(m \log n)$ where m is the input size (number of links), n is the number of nodes and $O(\log n)$ accounts for the worst case scenario where all first merged clusters are of size two. In detail, the worst case of the algorithm is when all links result in one cluster and require merging $\frac{n}{2}$ clusters of size two

	10
input : N, the set of nodes. L, the set of tuples $\langle (n_1, n_2), s \rangle$	11
representing the mapping $N \times N \to \mathbb{R}$ where $n_i \in N$ and links (n_i, n_j) have a strength $n_i \in \mathbb{R}$	
initis (n_1, n_2) have a strength $s \in \mathbb{R}$.	12
similar nodes according to some set of criteria Π meaning	13
for each pair of nodes n_i , $n_j \in C$, $n_i = \prod n_j$.	14
begin	15
$\int \langle \phi \rangle = \int \langle $	16
$ \begin{array}{c} \text{Ior } ((n_1, n_2), s) \in L \text{ do} \\ /* \text{ O(m) } */ \\ /* \text{ nt and } n_2 \text{ are not in any cluster } */ \\ \end{array} $	17
if $n_1, n_2 \notin C_i$ for all $C_i \in \Gamma$ then	1 /
C.(nodes, links, strengths)	18
$\leftarrow \left(\{n_1, n_2\}, \{(n_1, n_2)\}, \{((n_1, n_2), [s])\}\right)$	19
$\Gamma.add(C)$	20
/* Only n_1 is assigned a cluster */	21
else if $n_1 \in C_1 \in \Gamma$ and $n_2 \notin C_i$ for all $C_i \in \Gamma$ then	22
$ \begin{bmatrix} C_1 \text{.add}((\{n_2\}, \{(n_1, n_2)\}, \{((n_1, n_2), [s])\})) \\ (n_1, n_2) \end{bmatrix} $	22
/* Only n_2 is assigned a cluster */	23
etse if $n_2 \in C_2 \in I$ and $n_1 \notin C_i$ for all $C_i \in I$ then $\int_{C_2} 2dd((n_1 + 1) f(n_1 - n_2)) f((n_1 - n_2) - f(n_1)) f(n_1 - n_2) f(n_1 - n$	24
$(n_1, n_2), (n_1, n_2), (n_1$	25
else if $n_1 \in C_1 \in \Gamma$ and $n_2 \in C_2 \in \Gamma$ then	26
/* both are in different clusters	20
*/	27
if $C_1 \neq C_2$ then	28
$C_s \leftarrow \text{smallest of } C_1 \text{ and } C_2$	29
$C_b \leftarrow \text{biggest of } C_1 \text{ and } C_2$	30
Γ delete(C) /* $O(log(n))$ */	21
$C_b \text{ links add}((n_1 - n_2))$	31
C_{h} .strength.add($((n_1, n_2), [s])$)	32
/* both are in the same cluster */	33
else	34
if $(n_1, n_2) \in C_1$. links then	35
C_1 .strengths $[(n_1, n_2)]$.add (s)	55
else C_1 links add $((n_1, n_2))$	36
C_1 .strength.add((n_1, n_2) , $[s]$))	37
return Γ	38
1	39

3. Related work

We briefly discuss a number of related areas from the literature, and indicate how our work differs from these in aim and scope.

Schema matching. Much work in the literature focuses on ontology matching, especially schema matching [7]. Some rely on concept distance or an extended version of it [8-10]. Some rely on alignment similarities [11], others relies on formal logical conflicts be1

2

3

4

5

6

7

8

9

40

41

42 43

44

45

46

47

48

49

50

tween ontologies to detect and possibly repair mappings at a schema-level [12]. The current paper does not aim to match ontologies, nor does it critically rely 3 on using ontological or schema information. We only 4 assume the existence of external entity resolution algo-6 rithms for suggesting links between entities. Such algorithms may or may not exploit ontological information, but this does not affect our central hypothesis. 8

9 Information gain. The work in [13] also uses net-10 work structure to evaluate link quality, but in a very 11 different way. The main intuition there is that an indi-12 vidual link in an ILN is more reliable when it leads to a 13 greater information gain. The paper does not consider 14 the structure of the ILN as a whole, as we do in this 15 paper. 16

Entity clustering. Part of the literature also uses 17 clustering of the digital representations of the same 18 real world entity in one or multiple sources. While 19 their data sources are mainly unstructured [14, 15], our 20 interest lies in clusters derived from the mappings of 21 entities exclusively across knowledge-bases. In addi-22 tion, they also do not consider the structure of the ILN 23 as a whole. Another part of the literature specifically 24 focuses on clustering algorithms. The FAMER [16] 25 framework for example provides and compares seven 26 different link-based entity clustering approaches. The 27 aim of our work is different from all of these. Whereas 28 these works use clustering algorithms to construct en-29 tity resolutions, we show how a cluster-based metric 30 can be used to assess the quality of a network of entity 31 links, irrespective of how these links were generated. 32

33 Network metrics. The work by Guéret et al. [17] is 34 one of the few papers to our knowledge that uses net-35 work metrics to assess the quality of links. The key 36 point that separates this work from ours is that it uses 37 local network features, i.e. only the direct neighbours 38 of a single node, while we employ global network fea-39 tures. [18] also addresses the same challenge. It eval-40 uates a given cluster G by comparing it to a reference 41 cluster R based on the number of splits and merges re-42 quired to go from G to R. Our proposed metric does 43 not need such a reference cluster, and is hence more 44 easily applicable. 45

4. Network Properties & Quality of a Link-Network

Figure 3 illustrates a set of six simple network topologies over the same number of nodes. Our proposed metric is based on the intuition that multiple links provide corroborating evidence for each other, suggesting that in the case of an ILN, the ideal topology is a *fully connected* network. It illustrates a total agreement between all resources (not the case for any other topology), and it does not require any intermediate resource to establish an identity-link between two resources (again, not the case for any other topology). Hence, intuitively, the amount of redundancy between paths in an ILN is an indicator for the quality of the links in the ILN. We will capture these and similar intuitions using three different global graph features over ILNS: Bridge, Diameter and Closure.

Fig. 3. Example of network topologies. Source: https://en.wikipedia.org/wiki/Network_topology

We will now first define and explain the rationale behind each metric, then normalise each metric to values⁴ between 0 and 1, and finally average the sum of all metrics to obtain the metric which we will use for estimating the quality of the ILN.

Bridge Metric. A bridge (also known as an isthmus or a cut-edge) in a graph is an edge whose removal increases the number of connected components of the graph, or equivalently, an edge that does not belong to any cycle. The intuition for this measure is that a bridge in an ILN suggests a potentially problematic link which is not corroborated by any other links. As a graph with *n* nodes contains at most n - 1 bridges (e.g. in a Line network), the bridge value is normalised as $n_b = \frac{B}{n-1}$, where B is the number of bridges. An ideal link network would have no bridge $(n_b = 0)$. As n_b is sensitive to the total number of nodes in the graph (it decreases for large graphs, even when the number of bridges is constant), we "soften" the value of n_b with a sigmoid function: $n'_b = max(n_b, sigmoid_{\eta=1.6}(B)),$ where the function $sigmoid_{\eta=1.6}(x) = \frac{x}{|x|+\eta}$ helps sta-

1

2

5

7

46

47

48

49

50

51

50

51

1

⁴The metric value indicates the negative impact of one or more missing links in an ILN

bilising the impact of the size of the graph by providing a minimal value for n'_{h} (see Section 9.1).

The value $\eta = 1.6$ in $|x| + \eta$ at the denominator 3 4 of the sigmoid function is a hyper-parameter that has 5 been chosen not based on the data at hand but by qual-6 itatively picking a gradual penalty that can be imposed on a network based on the number of times a particular 7 rule has been broken. Thus, we do not claim that this 8 9 value is optimal, we only show that this value is suffi-10 cient, and works across multiple experiments (see Section 9.1 were we further discuss the sigmoid function.) 11

12 **Diameter Metric.** The diameter D of a graph with n 13 nodes is the maximum number of edges (distance) in 14 a shortest path between any pair of vertices (i.e. the 15 longest shortest path). In an ideal scenario, if three re-16 sources A, B and C are representations of the same 17 real world object, there would be no need for an in-18 termediate resource for confirming the identity of any 19 of the resource in the network. In a fully connected 20 graph of n nodes, each node is 1 edge-distance away 21 from the rest, meaning that the diameter D has value 22 1. The longest diameter is observed in a *Line* net-23 work structure, with D = n - 1 for a line network 24 of n nodes. To scale to the [0,1] interval, the diam-25 eter is normalised as $n_d = \frac{D-1}{(n-1)-1}$. Like the bridge, 26 because the diameter is also sensitive to the num-27 ber of nodes, the normalised diameter is calculated as 28 $n'_{d} = max(n_{d}, sigmoid_{\eta=1.6}(D-1)).$ 29

30 Closure Metric. In a connected graph of n nodes, 31 the closure is the ratio of the number of arcs A in the 32 graph over the total number of possible arcs $\frac{1}{2}n(n-1)$. 33 In a complete graph, this ratio has value 1. Hence, to 34 evaluate how far the observed graph is from the ideal 35 (complete) one, we normalise the closure metric as 36 $n_c = 1 - \frac{A}{\frac{1}{2}n(n-1)}$. The minimum number of connec-37 tions is n-1, as observed in *Line* and *Star* network 38 structures. 39

Estimated Quality Metric. All of these metrics cap-40 ture the same intuition: the more an ILN resembles a 41 fully connected graph, the higher the quality of the 42 links in the ILN. Of course, these three metrics are not 43 independent: $n_c = 0$ or $n'_d = 0$ implies $n'_b = 0$. How-44 ever, using only n_c or n'_d would be too uninformative 45 since the converse of the implication does not hold. Ta-46 ble 1 shows that each of n_c , n'_d and n'_b capture different 47 48 (though related) amounts of redundancy in the ILN and that each metric by itself fails to properly discriminate 49 between the seven ILNs depicted in Figure 3. For ex-50 ample, n_c and n'_b treat a *Tree*, *Star* and *Line* as quali-51

tatively equal but disagree on whether a *Full Mesh* is as good as a *Ring*. Consequently, to compute an overall estimated quality $\mathbf{e}_{\mathbf{Q}}$ of an identity link network, we combine the three separate metrics by taking their average, and invert them so that the value 1 indicates the highest quality:

$$\mathbf{e}_{\mathbf{Q}} = 1 - \frac{n_b' + n_d' + n_c}{3}.$$

In short, applying the e_Q to a candidate identity link network assumes that all possible links are evaluated between resources across and within datasets of interest (see Figure 5). So, the lack of one or more links is considered a potential evidence for suggesting the corresponding entities being different. This applies to identity graphs composed of more than two nodes (see Section 11.2 discussing network of size two).

Complexity. The e_Q metric is implemented using the NetworkX Python package. To evaluate the overall time complexity of the propose algorithm, we assess the complexity of each sub-metric: bridge, diameter and closure. (i) The last metric, the closure, is straightforward. It is an algebraic operation of computing the number of observed arcs over the space of possible arcs and therefore of O(1). (ii) According to the NetworkX documentation, the bridge implementation uses the Chain Decomposition algorithm⁵ of [19] which is described to be of O(m + n) where n is the number of nodes in the graph and m is the number of edges. (iii) Computing the diameter metric appears to be the most time expensive. NetworkX documentation reports the diameter of a graph as the maximum eccentricity, where the eccentricity of a node v is the maximum distance from v to all other nodes in the graph. This therefore translates into computing all pairs shortest path lengths. Referring to the Johnson's algorithm for computing all shortest path between each pair of nodes in a weighted graph, the complexity of computing the diameter of a graph is of $O(n^2 \log n + nm)$, where n is the number of nodes and m the number of edges in the graph.

This indicates that the complexity of the e_Q metric is of $O(n^2 \log n + nm)$, which is a function of the size of the graph and the number of edges composing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

⁵An edge is a bridge if and only if it is not contained in any chain. In NetworkX, chain are found using the function chain_decomposition(). The documentation can be found at https://networkx.github.io/documentation/latest/ reference/algorithms/generated/networkx.algorithms.bridges.bridges.html.

Link-Network Quality Estimation								
ILN	Bridge	Diameter	Closure	Est. Quality				
Ring	$B=0 n_b=0.00$	$D = 3$ $n_d = 0.56$	$C = 0.40 \ n_c = 0.60$	$e_Q = 0.61$				
Mesh	$B = 1 n_b = 0.38$	$D = 3$ $n_d = 0.56$	$C = 0.47 \ n_c = 0.53$	$e_Q=0.51$				
Star	$B = 5 n_b = 1.00$	$D = 2$ $n_d = 0.38$	$C = 0.33 \ n_c = 0.67$	$e_Q = 0.32$				
Full Mesh	$B=0 n_b=0.00$	$D = 3$ $n_d = 0.00$	$C = 1.00 \ n_c = 0.00$	$e_Q = 1.00$				
Line	$B = 5$ $n_b = 1.00$	$D = 1$ $n_d = 1.00$	$C = 0.33 \ n_c = 0.67$	$e_{Q}=0.11$				
Tree	$B = 5 n_b = 1.00$	$D = 4$ $n_d = 0.38$	$C = 0.33 \ n_c = 0.67$	$e_{Q}=0.34$				

Table 1	
Metrics values for each of the topologies from Fig	g. 2.

13 the graph. In reality, assuming that data-sources do not 14 15 contain duplicates, the maximum size of an ILN can 16 be limited to the number of datasets involved. How-17 ever, as this is a strong assumption to make over real 18 data and because matching algorithms are not perfect, 19 a candidate ILN can unexpectedly reach a very big size. 20 In general, a relatively big ILN (with respect to the 21 number of data-sources) often suggests the infiltration 22 of false positive nodes and thereby suggesting a BAD 23 ILN. To avoid unbearable waiting time for computing 24 the e_0 of large ILNs, an upper bound can be set on the 25 maximum size of candidate ILNs. 26

27 **Discrete Intervals.** The e_0 metric scores all ILNs on 28 a continuous value in the [0,1] interval. To automati-29 cally discriminate potentially good networks from bad 30 ones, we divide this interval into three segments: ILNs 31 with values $0.9 \leq e_0 \leq 1$ will be rated as GOOD, with 32 values $0.75 < e_Q < 0.9$ as UNDECIDED, and with val-33 ues $0 \leq e_Q \leq 0.75$ as BAD. These boundaries are em-34 pirically determined, and can be adjusted depending on 35 the use-case. The specific values of these boundaries 36 does not affect the essence of our hypothesis. 37

³⁹ *Hypothesis.* We can now state our hypothesis more formally: "*The* e_Q *intervals defined above are predictive of the quality of the links in an entity link network between multiple datasets*".

In the following sections, we will test this hypothe sis against human evaluation on hundreds of ILNs con taining thousands of links in three experiments using
 between three to six datasets.

5. Refinements of *e*_Q Using Link Confidence Scores Produced by Entity Resolution Algorithms

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Given that all links have been searched for, the absence of a link in an ILN network is shown to cripple the ideal structure of the network as it increases the chance for a *longer diameter* and the appearance of *bridges*, and it *reduces the density* of the network. These characteristics are thereby used by the e_Q metric as a potential evidence for tagging as GOOD or BAD the network as a whole. Furthermore, the metric assumes a *link correctness confidence score of 1* for all links in the network although it is not the case in the realm of entity matching unless a perfect match is found. Entity matching algorithms often produce pairwise matched entities with a confidence score in the interval [0, 1] as a quantitative justification for the pair to be the same.

So far, we strictly estimate the quality of an identity network based on the cost of its missing links and thereby its structure. Now, the wonder lies in *how to capture the toll of an existing link on estimating the quality of the network given that the link has a confidence score below one?* In other words, *is the strength of an identity link relevant in estimating the quality of the network using its structure?*

To understand the importance of the strength of links in estimating the quality of an identity network using its structure, we propose three new network quality estimation metrics ($e_{Q_{min}}$, $e_{Q_{avg}}$ and e_{Q_w}) that in their respective ways *combine structure and link strength* for network quality estimations. We evaluate these alternative metrics on the same ground truths used in Sections 7 to 9, and compare each one of them to the original e_Q metric based on their respective F_1 scores in these various scenarios.

1

2

3

4

5

6

7

8

9

10

11

12

Before diving into the intricacies of link strength integration, we first start with the formalism that pave the way for understanding it.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

A weighted, undirected, connected (WUC) graph⁶ is defined as G = (V, L, w) where *v* is the set of nodes, *L* is the set of links or edges, and $w : L \mapsto \mathbb{R}^+$ is a function mapping edges $e_i = (v_{i-1}, v_i) \in L$ where $v_i \in V$ for $i \in [1, k]$ where k is the number of edges in G, unordered pair of vertices, to their decimal values $w(e_i)$ in the interval [0, 1]. The weight of sub-graph $H \subset G$ is $w(H) = \sum_{e \in L(H)} w(e)$ where L(H) are the edges of *H*.

For two vertices *a* and $b \in V$, a path between *a* and *b* is a sequence $\pi = (e_1, e_2, ..., e_k)$ where $e_i = \{v_{i-1}, v_i\} \in L$ and $v_i \in V$ for $i \in \{1, ..., k\} = [1, k]$ where *k* is the number of edges in π , with $v_a = a$ and $v_k = b$. $\Pi(a, b)$ denotes the set of all paths from *a* to *b*. The geodesic distance and weighted geodesic distance between *a* and *b* are respectively given by eqs. (1) and (2).

$$dist(a,b) = \min_{\pi \in \Pi(a,b)} |\pi|$$
(1)

$$dist_w(a,b) = \min_{\pi \in \Pi(a,b)} \sum_{e \in \pi} w(e)$$
(2)

and the diameter and weighted diameter of G are given by eqs. (3) and (4)

$$diam(G) = \max_{a, b \in V} dist(a, b)$$
(3)

$$diam_w(G) = \max_{a, b \in V} dist_w(a, b)$$
(4)

We now have the prerequisites in place for presenting three hybrid ways of integrating link strength into the proposed network quality estimation metric.

5.1. Weakest Link

In this approach, we define $e_{Q_{min}}$ as the metric to estimate the quality of an identity network G based on both the structure of G and the strength of the links composing G. $e_{Q_{min}}$ is computed as the product of the original e_Q score and the weakest link strength in the network as given by eq. (5).

$$e_{\mathcal{Q}_{min}} = e_{\mathcal{Q}} \times \min_{e \in L(G)} w(e) \tag{5}$$

 $^{6}\mathrm{We}$ interchangeably refer to the undirected identity graph as network or cluster.

5.2. Link Average

Compared to the first weight integration approach, here, we simply replace the weakest link strength of G by the average of all strengths in G to obtain $e_{Q_{avg}}$ as provided in eq. (6).

$$e_{\mathcal{Q}_{avg}} = e_{\mathcal{Q}} \times \frac{\sum\limits_{e \in L(G)} w(e_i)}{|L(G)|}$$
(6)

5.3. Rooted Link

As opposed to the first two approaches where we integrate the link strength without modifying the initial e_Q computation, here, we do the opposite. We use the link confidence score for computing each sub-metric score (bridge-diameter and closure). Doing so, the link confidence score is now more rooted into the initial e_Q formulation, leading to its equation adjustment. The detail on how the e_Q formula is adjusted for integrating the link's strength leading to Equation 10 is provided in the next paragraphs.

Weighted Bridge Metric. Given an identity graph G with n nodes, the idea here is to capture *the softening of the bridge metric measure as the strength of the edges composing the set of bridges in G weaken*. This is formulated in Equation 7: *the weaker the strength of a bridge gets, the less it negatively affects the quality of an identity network*.

The approach may sound counter-intuitive, specially if one expects the quality estimation of a graph G to correlate positively with the strength of its edges. This, under the assumption that the strength of the bridgeedge(s) is the only available evidence for considering identical the nodes in the identity graph.

However, with respect to the presence of one or 37 more bridges in a graph, our proposal assumes the op-38 posite. Take for example Figure 1b where the two com-39 ponents of the graph (different universities) are con-40 nected by a bridge. Here, as we take the existence of 41 the bridge as an indication that the graph should be par-42 titioned into isolated components, then we shall agree 43 that generating a bridge with a high strength for con-44 necting isolated components is more damaging than a 45 bridge with a weak strength. In short, a bridge should 46 be seen as a penalty, not a reward hence its strength 47 negatively correlates with the graph's quality. In Fig-48 ure 4b, for example, the maximum penalty for having 49 three strong bridges in the star network is 1 whereas it 50 is 0.57 as the majority of the bridge-edges are weak. 51

vii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

The weighted bridge metric $n'_{h_{\mu}}(G)$ of a graph G is the maximum between the normalisation of the weighted bridges $n_{b_w}(G)$ of the graph and the sigmoid of the sum of the weighted bridges w(B) of the graph.

$$n'_{b_{w}}(G) = max(n_{b_{w}}(G), sigmoid(w(B)))$$
(7)
where B is defined as sub-graph(s) of G whose edges are
the bridges in G and $n_{b_{w}}(G) = \frac{w(B)}{n-1} = \frac{\sum\limits_{e \in L(B)} w(e)}{n-1}$

Weighted Diameter Metric. Defined in Equation 8, the weighted diameter metric $n'_{d_w}(G)$ includes strength by elongating the unweighted geodesic distance eDiam(G)15 of G as the edges composing it weaken in strength. In 16 other words, the smaller the strength, the longer the *diameter gets.* This allows us to predict the decrease 18 of the quality of an identity network whenever its di-19 ameter increases. It furthermore allows to increase 20 the decrease of the quality of the identity network with respect to the weakening of the strength of each edge composing the network's diameter. In Equation 8, $n'_{d_{n}}(G)$ is then the maximum between the normalisation of the weighted diameter $n_{d_w}(G)$ of the graph and the sigmoid of the elongated diameter eDiam(G) - 1. 26

$$n'_{d_{w}}(G) = max(n_{d_{w}}(G),$$

$$sigmoid(eDiam(G) - 1))$$
(8)

where $eDiam(G) = 2diam(G) - diam_w(G)$

and
$$n_{d_w}(G) = \begin{cases} 1 & \text{if } eDiam(G) > n-2\\ \frac{eDiam(G)}{(n-1)-1} & \end{cases}$$

Weighted Closure Metric. This last metric $n_{c_w}(G)$ is computed by inverting the normalised sum of the weighted edges w(G) of G as provided in Equation 9.

$$n_{c_w}(G) = 1 - \frac{w(G)}{\frac{1}{2}n(n-1)} = 1 - \frac{\sum_{e \in L} w(e)}{\frac{1}{2}n(n-1)}$$
(9)

We are now able to compute a weighted e_0 as defined in Equation 10. Observe that each of the three metrics outputs a score in the interval [0,1]. Therefore, the overall measure is also in the interval [0,1].

$$e_{\mathcal{Q}_w}(G) = 1 - \frac{n'_{b_w}(G) + n'_{d_w}(G) + n_{c_w}(G)}{3} \quad (10)$$

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42 43

44

45

46

47

48

49

50

51

Fig. 4. Examples of e_Q values for two weighted ILNs.

Examples. For a better understanding of these measures, let us assume two networks A and B with three edges (see Figure 4). A with 3 nodes is a complete network and B with 4 nodes is a star network. For each network, the edges' strengths are respectively $w(e_1) = 0.9$, $w(e_3) = 0.5$ and $w(e_3) = 0.3$. Regardless of the strength in each network, the unweighted bridge, diameter and closure metrics' values for A and B are respectively $n_b(A)$ $= \frac{0}{3-1} = 0$ and $n_b(B) = \frac{3}{4-1} = 1$; $n_d(A) = \frac{1-1}{3-2} = 0$ and $n_d(B) = \frac{1}{3-1} = 0$ $\frac{2-1}{4-2} = 0.5$; $n_c(A) = 1 - \frac{3}{3} = 0$ and $n_c(B) = 1 - \frac{3}{6} = 0.5$ while their weighted bridge, diameter and closure metrics' values are $n_{b_w}(A) = \frac{0}{3-1} = 0$ and $n_{b_w}(B) = \frac{0.9+0.3+0.5}{4-1} = \frac{1.7}{4-1} = 0.57$; $n_{d_{W}}(A) = \frac{2-0.3-1}{3-2} = \frac{0.7}{1} = 0.7$ and $n_{d_{W}}(B) = \frac{4-(0.3+0.5)-1}{4-2} =$ $\frac{2.2}{2} = 1.1$ but converted to 1; $n_{c_W}(A) = |1 - \frac{0.9 + 0.5 + 0.3}{3}| = |1 - \frac{1.7}{3}| = |1 - \frac{1.7}{3}|$ 0.43 and $n_{d_W}(B) = |1 - \frac{0.9 + 0.5 + 0.3}{6}| = |1 - \frac{1.7}{6}| = 0.72$. This example illustrates among others that the weaker the edges of a diameter, the longer the weighted diameter.

6. Datasets

We considered using datasets and gold standards from the OAEI initiative, but none of these go beyond links between two datasets. We therefore created our own gold standard on realistic datasets taken from the domain of social science, more specifically from the field of Science, Technology and Innovation (STI) studies. We consider this to be an important contribution of this paper. All datasets and our gold standard

viii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

17

21

22

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

are available online at the locations given in later paragraphs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Entities of interest to the STI domain of study are (among others) universities and other research-related organisations, such as R&D companies and funding agencies. Our six datasets are widely used in the field, and describe organisations and their properties such as name, location, type, size and other features.⁷

Grid⁸ describes 80248 organisations across 221 countries using 12308 relationships. All organisations are assigned an address, while 96% of them have an organisation type, and only 78% have geographic coordinates.

OrgRef⁹ collates data about the most important worldwide academic and research organisations (31000) from two main sources: Wikipedia and ISNI.

The Leiden Ranking dataset10 offers scientific per-20 21 formance indicators of more than 900 major universi-22 ties. These universities are only included when they are 23 above the threshold of 1000 fractionally counted Web 24 of Science indexed core publications. This explains its 25 coverage across only 54 worldwide countries. 26

Eter¹¹ is a database on European Higher Education Institutions that not only includes research universities, but also colleges and a large number of specialized 30 schools. The dataset covered 35 countries in 2015.

OrgReg¹² is based on Eter but adds to the about 2700 higher education institutions some 500 public research organizations and university hospitals. Collected between 2000 and 2016, its organisations are distributed across 36 countries.

The European Organisations' Projects H2020 database¹³ documents the Horizon 2020 participating organisations.

8 https://www.grid.ac

9http://www.orgref.org

7. e_O Put to the Test

We test our hypothesis on a real life case study that revolves around the six datasets described in Section 6, with the goal to investigate the coverage of OrgReg (coverage analysis of datasets is a typical question asked by social scientists before including a dataset in their studies). This is done by comparing the entities in OrgReg to those in the other five datasets (Figure 5).

Fig. 5. Disambiguating OrgReg.

7.1. Experiment Design

Organisations are linked across or within datasets using an approximate string matching on their names with a minimal similarity threshold of 0.8. Based on this, we generate links between each pair of datasets, resulting in 21 sets of links (including linking a dataset to itself in order to detect duplicate entities in the dataset). We then take the union of all 21 sets of links, resulting in a collection of ILN's of varying size using algorithm 1 (see figure Figure 6).

Now that we have constructed a large collection of multi-dataset ILNs, we will compute the e_0 value for all of them. Then, the machine-predicted GOOD/BAD categories (using e_0) will be checked against the ground truth by a non-domain expert (the first author of this paper) and further verified by a domain expert (the third author). This ground truth is available online. In the ground truth, a candidate ILN is classified as positive (GOOD) only if all nodes in the network are co-referent (all resources point to the same real-life object), regardless of whether the network is complete (full mesh network) or not. Whenever the resources in the network point to more than one real life object, the network is classified as negative (BAD).

Notice that we have deliberately used a very weak entity resolution algorithm in this experiment (approximate string matching). This produces links of both 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

⁷The information provided here about the datasets was collected in January 2018. The datasets themselves are of earlier dates: Grid: 2017.07.12; Orgref: 2017.07.03; OpenAire: 2017.08.16; OrgReg: 2017.07.18; Eter: 2014; Leiden Ranking 2015; 2017.6.16; and Cordis-H2020; 2016.12.22. All these datasets are available on the RISIS platform at http://datasets.risis.eu/.

¹⁰http://www.leidenranking.com/

¹¹ https://www.eter-project.com/

⁵⁰ 12 http://risis.eu/orgreg/

¹³ http://www.gaeu.com/sv/item/horizon-2020 51

Fig. 6. Overview of the generated Identity Link Networks.

very high and rather low quality, providing a genuine test for our e_0 metric to distinguish between them.

7.2. Results of first evaluation (non expert)

Ideally, we would find only ILNs of size 6 if each OrgReg entity were linked with one and only one entity in each of the five other datasets. With less than 100% coverage of OrgReg, we also expect to find ILNs of size smaller than 6. Figure 6 shows that we also find a substantial number of ILNs of size bigger than 6. This is due to (i) duplicates occurring in a single dataset, resulting in links in the ILN between two items from the same dataset, and (ii) an imperfect matching algorithm (in our case approximate name matching), resulting in incorrect links in the ILN.

Due to the high number of ILNs generated¹⁴, we 28 evaluate only the 846 ILNs of size 5 to 10, with the 29 following frequencies: 391 (size 5), 224 (6), 96 (7), 66 30 (8), 45 (9) and 24 (10). We predict a GOOD or BAD 31 score based on the e_0 interval values for each of the 32 846 ILNs, and then compare the scores against those 33 of a human expert, resulting in F_1 scores. In red, Fig-34 ure 6 displays the F_1 value for each ILN size. Over-35 all, our e_Q metric resulted in high F_1 values (0.806 \leq 36 $F_1 \leq 0.933$). We also pitched our e_Q metric against 37 a Majority Class Classifier, which automatically clas-38 sifies all identity link networks as GOOD if the major-39 ity of networks are positive according to the human 40 judges or classifies them all as BAD otherwise. Table 2 41 shows that our e_0 metric outperforms the Classifier on 42 F_1 measure, Accuracy (ACC) and Negative Predicted 43 Value (NPV) for ILNs of all sizes. 44

All of these findings show the very strong predictive 46 power of our e_0 metric for the quality of ILNs when compared to human judgement.

¹⁴On a 6th Gen Intel[®] CoreTM i7 notebook with 8GB RAM, it takes about 100 seconds to automatically evaluate all 4398 clusters of size three and above (see Figure 6).

7.3. Results of second evaluation (expert)

Preferably, all results should be evaluated by domain experts. Realistically, this is not feasible. To show, however, that the evaluation by non-experts is not biased and mostly reliable, we include the validation of an expert by having him validate the fraction of the results for which he has the expertise. Therefore, a Dutch domain expert from the field of STI (the third author of this paper), was given the fraction of 148 ILNs (ranging from size 3 to 10 as depicted in Table 2) in which at least one entity is located in the Netherlands. The expert deviated from the first evaluation in only 12 out of 148 cases. Although the changes slightly affect the ground truth for each ILN size, the F_1 values computed here are even higher $(0.848 \leq F_1 \leq 1)$ as compared to the previous experiment. This shows that the nonexpert nature of the first human judgement was not detrimental to our results¹⁵. This second experiment confirms our finding in the first experiment that e_0 is a reliable predictor of ILN quality.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

7.4. Analysis

Both of the evaluations of e_Q above resulted in very high F_1 average values of 0.847 and 0.961 respectively. Furthermore, e_Q outperformed a majority-class classifier in the first experiment (not in the second because of the highly imbalanced distribution). All this supports our hypothesis that our e_0 measure is strongly predictive of the quality of the links between the entities in an Identity Link Network.

8. *e_Q* Estimations in Noisy Settings

The previous experiment created links between entities using a rather weak entity resolution heuristic. This was an interesting setting because such weak matching strategies are a fact of daily life on the semantic web (and in data integration in general). In the next experiment, we will use e_0 to evaluate ILN's that have been constructed using a more sophisticated matching heuristic, where we can control the amount of incorrect links in the ILNs. We will see that also in this case, e_Q is strongly predictive of human judged link quality.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

45

47

48

49

50

¹⁵However, the very imbalanced character of the ground truth makes it hard to always outperform the baseline as illustrated in Table 2.

		Majority C	Class Classifi	er (Baseline)	vs Network N	Ietric (e_Q)		
			Majority Cla	ass Classifier Net	work Metrics			
		GT_P	= Ground Truth	Positive $GT_N =$	Ground Truth Neg	ative		
Size	$GT_P GT_N$	F_1	ACC	NPV	$GT_P GT_N$	F_1	ACC	NPV
3					56 8	0.933 0.931	0.875 0.875	- 0.5
4					19 5	0.884 0.878	0.792 0.792	- 0.5
5	$272 \mid 119$	0.821 0.824	0.696 0.747	- 0.598	14 1	0.966 0.929	0.933 0.867	- 0
6	139 85	0.766 0.817	0.621 0.768	- 0.709	14 5	0.848 0.848	0.737 0.737	- 1 -
7	50 56	0.685 0.808	0.521 0.792	- 0.810	10 2	0.909 1.0	0.833 1.0	- 1.0
8	35 31	0.693 0.806	0.530 0.80 3	- 0.765	$4 \mid 0$	1.0 1.0	1.0 1.0	- 1 -
9	$21 \mid 24$	- 0.894	0.533 0.889	0.533 1	8 1	0.941 1.0	0.889 1.0	- 1.0
10	8 16	- 0.933	0.667 0.958	0.667 0.941	1 0	1.0 1.0	1.0 1.0	- -

A. Idrissou et al. / Network Metrics for Assessing the Quality of Entity Resolution Between Multiple Datasets

Table 2

Majority Class Classifier baseline against the e_Q metric using non expert Ground Truth (left), and Expert sampled Ground Truth (right).

The stronger matching heuristic that we use in this second experiment combines organisation names with the geo-location of the organisation. The experiment is run over Eter, Grid and OrgReg as they are the only datasets at our disposal that contain such geocoordinates for organisations. To test the performance of the e_0 metric at various levels of noise, we implement three sub-experiments where noise (the number of false positive links) is introduced by decreasing the name similarity threshold from 0.8 (experiment 1) to 0.7 and by increasing the geographic proximity distance threshold as described in the next sub-section.

8.1. Experiment Design

This subsection describes in three phases how the experiment is conducted.

Phase-1: Create links. The first phase links organizations across the three datasets whenever they are located within a radius of 50 meters, 500 meters and 2 kilometres. This creates nine sets of links (three for each radius).

Phase-2: Refine links. Each set of links is then refined by applying an approximate name comparison over the linked resources with a threshold of 0.7.

By now, we have geo-only (without name compar-ison) and geo+names sets of links, organised in three subgroups (50m, 500m and 2km) each.

Phase-3: Combine links. To generate the final ILNs, the sets of links within each subgroup are combined

using the union operator. The goal of this is to compare, within a specified distance, ILNs that where generated without name matching to those generated with name matching.

Choice of parameters. THRESHOLD: in the previous experiment, the threshold of 0.8 is set relatively high to compensate for using only 'name' as means to validate resources, which has a low discriminative power. In this second experiment, because the name similarity is combined with geolocation, the threshold is dropped by 0.1 hoping for the geolocation to correct obvious noise due to the lower threshold of 0.7. As with the choice of the sigmoid parameter in Section 4, we do not make any optimality claim about this parameter, but only show that our qualitative choice is already sufficient to obtain good results.

VICINITY OF 50M, 500M AND 2KM: these numbers are chosen to observe their influence on the quality of the network generated under each condition. The expectation is that, by increasing the vicinity distance we anticipate an increase in the number of false positive links (noise) and we want to test if the e_0 metric will highlight potentially problematic ILNs.

8.2. Strict vs. Liberal Clustering

To understand how link-networks are formed as we increase the geo-similarity distance, Figure 7 illustrates how ILNs may evolve as we move from strict constraints (scenario 1) to liberal constraints (scenario 3). First, in scenario 1, four ILNs are derived from

xi

Fig. 7. Decrease/Increase of ILNs

A line pattern is associated to each cluster. The non-black line colours (red and cvan) in scenarios 2 and 3 indicate the inclusion of a new links between resources

the six links: $c_1 = \{ \langle a_1 \rangle, \langle b_3 \rangle \}, c_2 = \{ \langle a_3 \rangle, \langle b_1 \rangle \},$ $c_3 = \{ \langle a_4 \rangle, \langle b_4 \rangle \}$ and $c_4 = \{ \langle a_5 \rangle, \langle b_6, b_8, b_9 \rangle \}$. Then, the new link between a_3 and b_3 in scenario 2 forces c_1 and c_2 to *merge*. We now have a total of three ILNS: $c_1 = \{ \langle a_1, a_3 \rangle, \langle b_1, b_3 \rangle \}, c_3 = \{ \langle a_4 \rangle, \langle b_4 \rangle \}$ and $c_4 = \{ \langle a_5 \rangle, \langle b_6, b_8, b_9 \rangle \}$. Finally, in scenario 3, two new links appear. The first link between a_4 and b_6 causes the merging of c_3 and c_4 while the second link connecting a_6 to b_2 causes the creation of a new ILN. Thereby, the total number of ILNs remains 3.

These scenarios show that, as the ILN constraints become more liberal, the number of links discovered increases while the number of ILNs may increase, re-main equal, or even decrease. In other words, when the matching conditions become liberal or less strict, two types of event may happen: (1) formation of new ILNs and/or (2) merging of ILNs. Table 3, shows that, in ex-periment 2, phenomenon (1) overtakes (2), which ex-plains the increase in the number of ILNs as the near-by distance increases.

8.3. Result and Analysis

Respectively, Figure 8.a and 8.b show the distri-bution of ILNs using geo-only and geo+names meth-ods¹⁶. When combined, resource's vicinity and name reduce the ILNs bins to mostly sizes 2 and 3 as shown in Figure 8.b.

Overall, as illustrated in Table 3, the number of ILNs generated in this experiment increases with the in-crease of the geo-similarity radius. Within a radius of 50 meters, a total of 230 ILNs are generated based on geo-distance only. This number reached 841 ILNs at a 2 kilometres radius. After performing name matching,

> ¹⁶Bins of size two are omitted as they are too large to be plotted together with the rest of the histogram bars

Fig. 8. Overview of the generated Identity Link Networks.

many links are pruned. Depending on the matching radius, the number of ILNs varies from 36 to 371.

	S	tatistics	on ILNs	of size >	2	
	50 n	neters	500 r	neters	2 kilo	metres
Size	geo only	geo+ names	geo only	geo+ names	geo only	geo+ names
$\geqslant 3$	230	36	738	168	841	371

Table 3
link-network overview.

Due to manpower limitations we restrict our evaluation efforts to networks of size 3. These ILNs cover 86% of the overall ILNs (*size* > 2) within 50m radius and 92% within 500m and 2k radius. Table 4 shows the results of pitching our e_0 metric against the human evaluation of the ILNs under both the geo-only and the geo+names conditions.

As an example, the values $F_1 = 0.803$ and $F_1 =$ 0.912 respectively depicted in the confusion matrices in Table 5 and Table 6 detail the machine quality judgements versus human evaluations of the networks generated within 2 kilometres radius under respectively geo-only and geo+names conditions.¹⁷

Analysis. In this experiment, we test the behaviour of the proposed e_0 metric in both noisy (*proximity only*) and noise-less (proximity plus name) scenarios. The

¹⁷All confusion matrices supporting the analysis can be found on the RISIS project website at http://sms.risis.eu/assets/pdf/metrics-link-network.pdf

500 meters

2 kilometres

50 meters

networks in noisy environments and to include GOOD networks in noise-less environments. In addition, on the one hand, the relatively low F_1 measures displayed in Table 7 in noisy scenarios, highlight that for the data at hand, proximity alone is not a good enough crite-rion for identity. On the other hand, the relatively high

 F_1 measures in noise-less scenarios is an indication of stability and consistency that is in line with results outlined in experiment 1.

The results depicted in Table 7 show an uneven distribution of the candidate-sets. In a relatively balanced candidate-set scenario, our approach works well as can be seen in the first experiment and in the proximity

	Majority	Class Classifier (Baseli	ne) vs Network	Metrics (e_Q)				
	Majority Class Classifier Network Metrics							
	$GT = Ground Truth$ $GT_P = Ground Truth Positive$ $GT_N = Ground Truth Negative$							
50m geo-only	GT=92	$GT_P=30 \ GT_N=62$	F1 :- 0.693	ACC: 0.674 0.75	NPV: 0.674 0.915			
500m geo-only	GT=249	$GT_P=66 \ GT_N=183$	<i>F</i> ₁ : - 0.682	ACC: 0.735 0.779	NPV: 0.735 0.978			
2km geo-only	GT=198	$GT_P=61 \ GT_N=137$	<i>F</i> ₁ : - 0.803	ACC: 0.692 0.859	NPV: 0.692 0.966			
50m geo+names	GT=31	$GT_P=27$ $GT_N=4$	$F_1: 0.931 \mid 0.826$	ACC: 0.871 0.742	NPV: - 0.333			
500m geo+names	GT=155	$GT_P=148$ $GT_N=7$	$F_1:0.977 \mid 0.909$	ACC: 0.955 0.839	NPV: - 0.179			
2km geo+names	GT=342	$GT_P=322 \ GT_N=20$	$F_1:0.97 \mid 0.912$	ACC: 0.942 0.845	NPV:- 0.238			

Table 7

Network-metric (e_Q) result versus the MCC baseline.

only scenario. However, even though in extreme cases (*proximity plus name*) the Majority Class Classifier takes the lead, the network metric does not fall far behind. It is important to realise that our network metric does it with *without* knowing what the majority class is, knowledge that the Majority Class Classifier is of course privy to.

As in the first experiment, for further evaluation, we extracted a sample based on ILNs in which at least one organisation originates from the Netherlands. Out of the **107** sampled ILNs, the domain expert deviated from the first evaluation in only 1 case.

9. e_Q Put to a Ranking Test

The authors of the recently published paper [16] compared seven algorithms (CLIP, CCPIVOT, CENTER, CONCOM, MCENTER, STAR1, STAR2) for clustering entities from multiple sources at different string similarity thresholds (0.75, 0.80, 0.85, 0.90). They evaluated the quality of the clusters generated by these algorithms on three gold standard datasets¹⁸, one manually built (referred here as GT1), and two syntactically generated. We take the evaluation results from [16] on GT1, and then test if our e_Q score is able to correctly predict the ranking of the algorithms as found in the reported evaluation. In contrast to the earlier experiments (where we use e_Q to assess the quality of clusters), we are now testing if e_Q can be used to correctly rank different clustering algorithms across datasets.

A slightly complicating factor is that the evaluation in [16] relies on F_1 values computed on *true pairs* of entities found. Since e_Q evaluates on a per cluster basis (i.e. sets of more than two pairs of entities

¹⁸https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer

Fig. 9. Evaluation of e_Q on the ranking from [16]

(S > 2)) and not on individual pairs, we recompute the F_1 values based on *true clusters found* (S > 2) and plot these performance measures for each algorithm in Figure 9 as *Baseline*. The resulting plot is comparable to the original one in [16]. We then run the e_Q metric over the outputs of each algorithm at the same thresholds, displayed in Figure 9 as e_Q *Evaluation*. Looking at the result with bare eye, it shows that the ranking of the algorithms by e_Q (**e**_Q *Evaluation*) does not significantly deviate from the recomputed ranking of the algorithms as found in [16] (*Baseline*). To quantitatively support our findings, we have computed the F_1 -based rankings error difference between the baseline and the e_Q metrics and displayed it in Fig-

Fig. 10. Ranking deviations

ure 10. Zooming in on Figure 9, Figure 10 shows a standard deviation of ± 0.096 depending on the threshold (x axis) under which the clustering algorithms are evaluated. It also shows that, overall, the ranking error increases with the increase of the threshold, indicating that it becomes harder to discriminate between algorithms as the string similarity is set to tolerate less errors. Furthermore, the standard error distribution suggests a significant difference in the means of F_1 scores registered between the baseline and the e_0 metric. Using the parametric dependent t-test over random samplings with replacement (bootstrap), repeated 100 times, the test statistic reveals that on average, at a medium effect size (r = 0.39338), the baseline (M = 0.78441, SE = 0.00201) presents significantly (p = 4.71137e-05 < 0.05) higher F_1 scores compared to those registered with the e_0 metric (M = 0.77152, SE = 0.00216), t(99) = 4.25727. However, the goal here is to evaluate the ranking capability of the e_0 metric. In doing so (ranking the algorithms performance from 1 to 7 based on there respective the F_1 scores), the t-test statistic reveals no significant ranking difference (p = 0.527044592 > 0.05) between the baseline and the e_0 metric. From this we can conclude that e_0 can indeed be used as a reliable proxy (i.e. with no statistically significant difference) for a human-produced baseline. Overall, these results illustrate the usefulness of the e_0 metric by demonstrating its potential to rank (clearly dissociate) clustering algorithms.

9.1. Discussion on hyper-parameters.

50 Sigmoid hyper-parameter. The hyper-parameter η 51 set to 1.6 in the sigmoid function $\frac{x}{|x|+\eta}$ has been determined not based on the data at hand but by looking at a gradual penalty that can be imposed on a network given the number of times a particular metricrule has been broken, regardless of the network's size. The value attributed to η is inversely proportional to the resulting penalty, e.g. for breaking a rule just once meaning fixing x = 1, at $\eta = 1.0$ the penalty is 0.5, at $\eta = 1.6$ the penalty is 0.38462 and at $\eta = 2$ the penalty is 0.333. Looking at the bridge metric, for example, the rule is to have no bridges. So, given two graphs of 4 and 11 nodes respectively and a single bridge each, instead of $n_{b1} = \frac{1}{4-1} = 0.33$ and $n_{b2} = \frac{1}{11-1} = 0.1$ respectively, with η set to 1.6, we have $n'_b = sigmoid_{\eta=1.6}(1) = 0.38$ for both graphs. Now, the penalty for having one bridge is fixed and does not depend on the number of nodes composing the graph. In the mindset of finding a penalty independent of the size of the graph, not too strong and not too weak for a single mistake, the qualitatively chosen $\eta = 1.6$ has been successfully tested with our benchmark data in Sections 7 and 8 and against external data in Section 9. It is encouraging to see that this qualitatively chosen value works well across multiple experiments.

Surely, the value of η can be picked from a wider interval. In order to determine the effect of η we look at the standard deviation between the baseline and the e_0 predictions at two extremes η values (0.1 and 3) on the GT1 dataset (because the generation of a new benchmark is too costly). What do we expect from these extreme η values? Since the final normalised bridge and diameter metric scores are set to the maximum between the respective scores and the sigmoid penalty, the intuition here is that setting η to 0.1, for example, would have the effect of always choosing the sigmoid penalty as $sigmoid_{0,1}(1) = 0.90909$. Instead, setting it to 3 would likely have the inverse effect. However, the results reveal no difference in the F_1 based evaluation. This suggests that there are no borderline predictions in this experiment for which the change in η values could cause a switch of a flag from GOOD to BAD or vice versa. This observation reflects the restrictive flagging of a candidate ILN as GOOD ($0.9 < e_Q < 1$) or BAD.

Similarity thresholds. More experiments is always better. However, even though experiment 1 and 2 used respectively a single similarity threshold, the experiment conducted in Section 9 especially tests the eQ metric at various thresholds and thereby complements the experiments in Sections 7 and 8.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

10. Weighted Metrics to the Test

Evaluation in noiseless settings. We now re-run the experiments conducted in Section 7 using all metrics, namely e_Q , $e_{Q_{min}}$, $e_{Q_{avg}}$ and e_{Q_w} for estimating the quality of clusters of varying sizes: (i) size 5 to 10 for non expert ground truth and (ii) size 3 to 10 for Dutch expert in Figure 11. The goal of these experiments is to find out which of the metrics performs well overall given the range of cluster sizes. This is done by comparing the metrics respective performances on the basis of their F_1 measures.

Fig. 11. Comparative evaluation in noiseless settings by a non expert (11.a) and Dutch domain expert (11.b)

Although in the expert evaluation, $e_{Q_{min}}$ and $e_{Q_{avg}}$ performed equally bad at least once, the observations show that, for both experiments, two main conclusions can be drawn: (1) $e_{Q_{min}}$ seems unreliable while (2) the rest of the metrics appear to perform alike, giving no solid indication on whether to combine structure and link confidence score.

Evaluation in noisy settings. Again here, we re-run the same experiments conducted in Section 8 only now using all metrics. This, with the goal of comparing the metrics against each other for further understand-ing the effect(s) of incorporating the link strength in the structure-based e_0 metric. Figure 12 again shows no solid evidence for being in favour of structurebased metric or "hybrid-based metrics" (structure + strength). The figure also shows that, whenever the identity network is composed of links with only confi-

dence score of 1 (geo-similarity only), all approaches produce the same estimation score.

Fig. 12. Comparative evaluation by a domain expert in noisy settings

Evaluation for ranking clustering algorithms. Using data from [16], we show in Figure 13 the results of an experiment where we compare the ranking potential of each approach $(e_Q, e_{Q_{min}}, e_{Q_{avg}} \text{ and } e_{Q_w})$ for estimating the quality of an identity network against the algorithm rankings computed by Saeedi et al. (baseline). Bare in mind that here, we not only look at the performance in terms of F_1 measure but also in terms of ranking capability.

At first, the results show that all approaches appear to rank the algorithms almost equally. However, the deviation in terms of F_1 score for the $e_{Q_{min}}$ metric appears quite off compared to the baseline as it shifted considerably below the target's measures. With $e_{Q_{avg}}$, the previous F_1 measures move up but not yet close enough to those of the target. In the last option, which implements e_{Q_w} (Equation 10), the result is comparable to the target ranking and to the e_Q ranking as well, leading to a first judgement that these two approaches perform better than the other two. According to the visualisation provided by Figure 13, e_Q and e_{Q_w} appear to be qualitatively comparable in performance with respect to the F_1 measures.

With the quantitative comparison provided by Table 8, the e_Q and e_{Q_w} metrics appear to deviate from the baseline far less on average than the remaining approaches (in 4 cases out of 7 with ties observed in 3 of these cases). This later observation helps breaking the tie between the two metrics (e_{Q_w} and $e_{Q_{avg}}$) and indicates that, among hybrid metrics, e_{Q_w} is indeed the way to go. In general, we believe that an hybrid method is potentially better than the original method as it provides additional information that enables us to explain more in details the prediction of the metric and thereby brings the measure closer to expressing "how a network structure can be accurately translated into estimated quality".

xvi

Comparing the ranking capability of each of the e_Q approaches. For each algorithm, we compare the baseline F_1 scores to those of an e_Q approach, and only report the difference. Then, for each approach, we compute by how much the e_Q metric scores under scrutiny deviate on average from those of the baseline. Using the later average, we compare the e_Q approaches against each other.

where link confidence could be assigned a score in the range [0.3, 1] for example, even $e_{Q_{min}}$ could turn up stable. This, because, in our scenarios, we filter the potentially good links prior to estimating the quality of the network they form. Now, what if this task is given to the metric?

Discussion. Although our last experiment seems in general to favour the e_{Q_w} among hybrid metrics, truth is, we need more ground-truth data for making a con-vincing case on whether one of the hybrids methods is worth the extra computation compared to the original metric, or whether a specific hybrid method works best in some particular settings. For example, we suspect that in settings where matching algorithms are rather permissive, there should be compelling reasons for the link strength to be included. Perhaps, in this situation

THRESHOLD	0.75	0.80	0.85	0.90	AVG
CLIP BASELINE	0.9607	0.94908	0.91951	0.72195	0.88781
e_Q	0.0107	0.01708	0.03051	0.09595	0.03856
$e_{Q_{min}}$	0.2557	0.24808	0.22351	0.09595	0.20581
$e_{Q_{avg}}$	0.0317	0.02808	0.03251	0.09595	0.04706
e_{Q_W}	0.0127	0.01608	0.03051	0.09595	0.03881
CCPIVOT BASELINE	0.75448	0.83596	0.83253	0.62367	0.76166
eq	0.03852	0.01704	0.00247	0.02967	0.02193
$e_{Q_{min}}$	0.15948	0.19196	0.18053	0.02967	0.14041
$e_{Q_{avg}}$	0.02852	0.00704	0.00147	0.02967	0.01667
e_{Q_W}	0.04052	0.01904	0.00247	0.02967	0.02293
CENTER BASELINE	0.85883	0.84593	0.8006	0.54985	0.7638
e_Q	0.00683	0.01293	0.0196	0.03285	0.01805
$e_{Q_{min}}$	0.24983	0.23993	0.2096	0.03285	0.18305
$e_{Q_{ave}}$	0.02283	0.01993	0.0206	0.03285	0.02405
e_{Q_W}	0.00783	0.01193	0.0196	0.03285	0.01805
CONCOM BASELINE	0.67103	0.80233	0.84734	0.69571	0.7541
eq	0.02297	0.02167	0.01034	0.08571	0.03517
$e_{Q_{min}}$	0.17103	0.18833	0.19834	0.08571	0.16085
$e_{Q_{ave}}$	0.00997	0.01067	0.01234	0.08571	0.02967
e_{Q_W}	0.02297	0.02167	0.01034	0.08571	0.03517
ICENTER BASELINE	0.73774	0.82684	0.84658	0.63994	0.76277
e_Q	0.02226	0.01716	0.00558	0.04694	0.02298
e _{Omin}	0.18074	0.19284	0.19158	0.04694	0.15302
e _{Oave}	0.00826	0.00616	0.00758	0.04694	0.01724
e _{Ow}	0.02326	0.01716	0.00558	0.04694	0.02323
STAR1 BASELINE	0.72218	0.83963	0.86427	0.70183	0.78198
eq	0.00782	0.00263	0.02427	0.08983	0.03114
eQmin	0.18618	0.21363	0.20927	0.08983	0.17473
e _{Oava}	0.00618	0.01363	0.02627	0.08983	0.03398
e_{O_w}	0.00882	0.00163	0.02427	0.08983	0.03114
STAR2 BASELINE	0.84647	0.8769	0.85674	0.62547	0.80139
e ₀	0.00347	0.0069	0.00774	0.01347	0.00789
е _О	0.21147	0.2219	0.19974	0.01347	0.16164
e _{Oava}	0.02147	0.0179	0.00874	0.01347	0.01539
en	0.00247	0.0059	0.00774	0.01347	0.00739
- QW				-	

Table 8

xvii

At present, with the limited ground-truth datasets, and relying on the results per matching threshold, the data show that the more precise the matching results get (high threshold), the more the metrics' predictions converge. For example, at threshold 0.90, all metrics have exactly the same prediction results but the e_{O_w} metric appears to be the one of choice for thresholds from 0.80 and higher. As the threshold drops to 0.75, $e_{Q_{ave}}$ performs better. These observations suggest that the choice of a metric to use depends on the matching algorithms' precision. In this regard, at very low thresholds even $e_{Q_{min}}$ may turn out relevant.

11. Conclusion and Future Work

11.1. Conclusion

Entity resolution is an essential step in the use of 19 multiple datasets on the semantic web. Since entity res-20 olution algorithms are far from being perfect, the links they discover must often be human validated. Because 22 this is both a costly and an error-prone process, it is 23 desirable to have computer support that can accurately estimate the quality of ILNs.

26 In this paper, we have proposed a metric for precisely this purpose: it estimates the quality of links be-27 tween entities from multiple datasets, using a combi-28 nation of graph metrics over the network (*size* > 2) 29 formed by these links. Our metric captures the intu-30 ition that high redundancy in such a linking-network 31 correlates with high quality. Furthermore, we have pro-32 posed hybrid-metrics that combine structure and link 33 confidence score (strength) for the same purpose of es-34 timating the quality of links between entities. The intu-35 36 ition here is an incremental improvement of the original metric by evaluating the integration of link strength 37 in the quality estimation. 38

We have tested our metric in three different sce-39 narios. Using a collection of six widely used social 40 science datasets in the first two experimental set-41 tings, we compared the predictions of link quality by 42 our metric against human judgements on hundreds of 43 networks involving thousands of links. In both eval-44 uations, our metric correlated strongly with human 45 judgement ($0.806 \leq F_1 \leq 1$), and it consistently beats 46 47 the Majority Class Classifier baseline (except in cases 48 where this is numerically near impossible because of a highly skewed class distribution). In the experimental 49 condition where we deliberately constructed noisy and 50 non-noisy link-networks, we showed that our metric 51

is in general able to exclude poor networks in noisy environments and to include good networks in noiseless environments. With the last experiment, we also show that our metric is able to rank entity resolution algorithms on their quality, using an externally produced dataset and corresponding ground truth. All this amounts to testing the e_Q metric on a dozen different algorithms and parameter settings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

After showing that our quality metric consistently agrees with human judgement across these different experimental conditions, we re-run all experiments on both the e_0 and hybrid metrics. The results suggest that the hybrid methods seam to have an effect on estimating the quality of an identity network, only it is yet unclear in what specific condition(s) these metrics bear fruit (do significantly well as opposed to e_0). This yells for more experiments on the matter.

Finally, to encourage replication studies and extensions to our work, all the datasets used in these experiments are available online.

11.2. Future work

Networks of size two. The presented metrics are shown to work well in clusters of size bigger than two. Finding ways in which networks of size two can be validated using the e_0 metrics would be an added value as the amount of clusters of such size is not negligible. The e_Q metric is about corroborating links using other redundant links. It can be extended by combining it with external knowledge (external to the ILN) for corroborating an existing link. For example, if we use a relation like "marriage" as external knowledge to interconnect ILNs, such information can then be used to corroborate pair of nodes. Hence, if there exist two records A and B reporting the marriage of John and Mary then the pair $(John_A, John_B)$ can be corroborated by the pair $\langle Mary_A, Mary_B \rangle$ and vice-versa.

In this context, when a link is corroborated with the use of external knowledge, then the metric can be applied to networks lacking redundant identity-links such as networks of size two. In addition, such modification may improve the e_0 prediction on the quality of incomplete networks such as those in a star or line topology. We, furthermore expect some external knowledge to be useful for detecting inconsistency in links between resources in a candidate identity network. For example, John cannot be his own father. In this scenario, the knowledge could then be used to immediately flag a network as BAD.

xviii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

21

24

Dynamic link adjustment. The current work ideally 1 takes clustered ILNs as input. However, when such net-2 works are not provided, it simply takes the output of an 3 entity resolution algorithm as given, applies the simple 4 5 clustering algorithm (algorithm 1) and tries to estimate 6 the quality of that output. A closer coupling between our metric and an entity resolution algorithm would 7 allow this algorithm to dynamically adjust its output 8 9 based on the e_0 quality estimates. Similarly, embedded 10 in a user-interface, the score of our metric could help the user to give the final judgement to accept or reject 11 12 an ILN.

13 **Parameter tuning.** In this work, we qualitatively de-14 termined the sigmoid hyper-parameter (1.6), the dis-15 crete e_0 intervals and the string similarity thresholds. 16 Our experiments show that these chosen values are suf-17 ficient to get good results in multiple experiments, but 18 we do not claim them to be optimal. Experimenting on 19 fine-tuning these parameters using the current ground-20 truth and data from other domains would help under-21 standing how and when different choices could lead 22 to an increase or a decrease of the metrics' predictive 23 power. Also, experimenting on whether one or more 24 metrics (bridge, diameter and closure) can be left out 25 or whether to always use the sigmoid penalty can fur-26 ther help strengthen our intuition that high redundancy 27 correlates with high quality. 28

11.3. Acknowledgement

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

We kindly thank *Paul Groth* for his constructive comments and proofreading, *Alieh Saeedi* for sharing her experiments data and supporting the reproducibility of their experiments, and both the *EKAW reviewers* and the reviewers of this extended version for their constructive comments. This work was supported by the European Union's Horizon 2020 Programme under the project RISIS (GA no. 313082).

References

- A.K. Idrissou, F. van Harmelen and P. van den Besselaar, Network Metrics for Assessing the Quality of Entity Resolution Between Multiple Datasets, in: *Knowledge Engineering and Knowledge Management*, C. Faron Zucker, C. Ghidini, A. Napoli and Y. Toussaint, eds, Springer International Publishing, Cham, 2018, pp. 147–162. ISBN 978-3-030-03667-6. doi:10.1007/978-3-030-03667-610.
- [2] R. Usbeck, A.-C.N. Ngomo, M. Röder, D. Gerber, S.A. Coelho, S. Auer and A. Both, AGDISTIS - Graph-Based Disambiguation of Named Entities Using Linked Data, in:

The Semantic Web–ISWC 2014, Springer International Publishing, Cham, 2014, pp. 457–471. ISBN 978-3-319-11964-9. doi:10.1007/978-3-319-11964-929.

- [3] A.-C.N. Ngomo and S. Auer, LIMES A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data, in: *IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011*, 2011, pp. 2312–2317. doi:10.5591/978-1-57735-516-8/IJCAI11-385.
- [4] O. Hassanzadeh, R. Xin, R.J. Miller, A. Kementsietsidis, L. Lim and M. Wang, Linkage Query Writer, *Proceed-ings of the VLDB Endowment* 2(2) (2009), 1590–1593. doi:10.14778/1687553.1687599.
- [5] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R.J. Miller and M. Wang, A Framework for Semantic Link Discovery over Relational Data, in: *Proceedings of the 18th ACM Conference on Information and Knowledge Management*, CIKM '09, Association for Computing Machinery, 2009, pp. 1027–1036, ACM. ISBN 9781605585123. doi:10.1145/1645953.1646084.
- [6] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Discovering and Maintaining Links on the Web of Data, in: *The Semantic Web - ISWC 2009*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 650–665. ISBN 978-3-642-04930-9. doi:10.1007/978-3-642-04930-9₄1.
- [7] J. Euzenat and P. Shvaiko, *Ontology Matching*, 2nd edn, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. ISBN 978-3-642-38720-3. doi:10.1007/978-3-642-38721-0.
- [8] A. Maedche and S. Staab, Measuring Similarity between Ontologies, in: *Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 251–263. ISBN 978-3-540-45810-4. doi:10.1007/3-540-45810-7₂4.
- [9] D. Vrandečić and Y. Sure, How to Design Better Ontology Metrics, in: *The Semantic Web: Research and Applications*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 311–325. ISBN 978-3-540-72667-8. doi:10.1007/978-3-540-72667-8₂3.
- [10] J. David and J. Euzenat, Comparison between Ontology Distances (Preliminary Results), in: *The Semantic Web - ISWC* 2008, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 245–260. ISBN 978-3-540-88564-1. doi:10.1007/978-3-540-88564-116.
- [11] J. David, J. Euzenat and O. Šváb-Zamazal, Ontology Similarity in the Alignment Space, in: *The Semantic Web – ISWC* 2010, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 129–144. ISBN 978-3-642-17746-0. doi:10.1007/978-3-642-17746-09.
- [12] W. Li, S. Zhang and G. Qi, A graph-based approach for resolving incoherent ontology mappings, *Web Intelligence* 16 (2018), 15–35, IOS Press. doi:10.3233/WEB-180371.
- [13] C. Sarasua, S. Staab and M. Thimm, Methods for Intrinsic Evaluation of Links in the Web of Data, in: *The Semantic Web*, Springer International Publishing, Cham, 2017, pp. 68– 84. ISBN 978-3-319-58068-5. doi:10.1007/978-3-319-58068-5₅.
- [14] A. Baron and M. Freedman, Who is Who and What is What: Experiments in Cross-Document Co-Reference, in: *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, EMNLP '08, Association for Computational Linguistics, USA, 2008, pp. 274–283. doi:10.3115/1613715.1613754.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

A. Idrissou et al. / Network Metrics for Assessing the Quality of Entity Resolution Between Multiple Datasets

- [15] S. Cucerzan, Large-Scale Named Entity Disambiguation Based on Wikipedia Data, in: Proc. of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Association for Computational Linguistics, Prague, Czech Republic, 2007, pp. 708–716.
 - [16] A. Saeedi, E. Peukert and E. Rahm, Using Link Features for Entity Clustering in Knowledge Graphs, in: *The Semantic Web*, Springer International Publishing, Cham, 2018, pp. 576–592. doi:10.1007/978-3-319-93417-4₃7.
- [17] C. Guéret, P. Groth, C. Stadler and J. Lehmann, Assessing

Linked Data Mappings using Network Measures, in: *The Semantic Web: Research and Applications*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 87–102. ISBN 978-3-642-30284-8. doi:10.1007/978-3-642-30284-8₁3.

- [18] D. Menestrina, S.E. Whang and H. Garcia-Molina, Evaluating Entity Resolution Results, *Proceedings* of the VLDB Endowment 3(1–2) (2010), 208–219. doi:10.14778/1920841.1920871.
- [19] J.M. Schmidt, A simple test on 2-vertex-and 2-edgeconnectivity, *Information Processing Letters* 113(7) (2013), 241–244. doi:10.1016/j.ipl.2013.01.016.