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Abstract. Matching entities between datasets is a crucial step for combining multiple datasets on the semantic web. A rich
literature exists on different approaches to this entity resolution problem. However, much less work has been done on how to
assess the quality of such entity links once they have been generated. Evaluation methods for link quality are typically limited
to either comparison with a ground truth dataset (which is often not available), manual work (which is cumbersome and prone
to error), or crowd sourcing (which is not always feasible, especially if expert knowledge is required). Furthermore, the problem
of link evaluation is greatly exacerbated for links between more than two datasets, because the number of possible links grows
rapidly with the number of datasets.

In this paper, we propose a method to estimate the quality of entity links between multiple datasets. We exploit the fact that
the links between entities from multiple datasets form a network, and we show how simple metrics on this network can reliably
predict their quality. We verify our results in a large experimental study using six datasets from the domain of science, technology
and innovation studies, for which we created a gold standard. This gold standard, available online, is an additional contribution
of this paper. In addition, we evaluate our metric on a recently published gold standard to confirm our findings.

Keywords: entity resolution, data integration, network metrics

1. Introduction

Matching entities between datasets (known as en-
tity resolution) is a crucial step for the use of multi-
ple datasets on the semantic web. There exists a fair
amount of entity resolution tools for generating links
between pairs of resources: AGDISTIS[2], LIMES[3]
Linkage Query Writer [4, 5], SILK [6], etc. However,
much fewer methods exist for validating the links pro-
duced by these methods. Currently, only three vali-

1This is an extended version, by invitation, of a paper accepted
at the 21st International Conference on Knowledge Engineering and
Knowledge Management (EKAW 2018) [1]

*Corresponding author. E-mail: o.a.k.idrissou@vu.nl.

dation options are available for such validation: (1)
ground truth, which is often not available; (2) man-
ual work, which is a cumbersome task prone to error;
(3) crowd sourcing, which is not always feasible es-
pecially if specialist knowledge is required. Further-
more, the problem of link evaluation is greatly exac-
erbated for entity resolution between more than two
datasets, because the number of possible links grows
rapidly with the number of datasets. Therefore, it is
important to investigate the accurate automated eval-
uation of discovered links. Any answer to this ques-
tion should generalise beyond the setting of just two
datasets, and be applicable to the general setting of
links between multiple datasets. In such a multi-dataset
scenario, linked resources cluster in small groups that
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we call Identity Link Networks (ILNs). The goal of this
paper is not to propose any new method for entity res-
olution but instead to provide a method to estimate the
quality of an identity link network, and consequently
validate a set of discovered links. To do so, we hypoth-
esise that the structure of an identity link network
correlates with its quality.

We test our hypothesis in two experiments where
we show that the proposed metric indeed reliably es-
timates the quality of an identity network. We also
test our hypothesis on recently published experimental
data from ESWC 2018 (see Section 9). Here too, the
results confirm that our quality metric reliably predicts
human assessment of entity links.

In summary, our contribution is a method that esti-
mates the quality of non-trival identity networks (size
three or bigger). This paper extends our prior work [1]
to weighted methods that take into account the strength
of links in the network. All methods are tested against
human judgement in three large experiments, which
show that such strength-weighted methods outperform
the methods in [1]. All data of these experiments are
available online2.

This paper begins with a short motivation in Sec-
tion 2. Section 3 discusses the related work and Sec-
tion 4 describes the proposed metric. In Section 6 we
describe the datasets involved in our experiments. Sec-
tions 7 to 9 describe our three experiments. While Sec-
tion 5 presents refinements of the proposed metric,
Section 10 evaluates them and Section 11 concludes.

2. Identity Link Networks

We assume the well known setting of a real-world
entity that has one or more digital representations in
multiple datasets. The task of entity resolution is to
discover which entity (or entities) in each dataset de-
notes the same real world entity. An Identity Link Net-
work (ILN) is a network of links between entities from
a number of datasets that are found by one or more
entity resolution algorithms to represent the same real
world entity. An ILN can be derived directly from en-
tity resolution results (Sections 7 and 8), or it may
be generated by sophisticated clustering methods as in
our experiment in Section 9. In this work we do not
propose any new entity resolution algorithm. Instead,
we propose a method to automatically evaluate discov-
ered links, particularly when they involve more than

2https://github.com/alkoudouss/Identity-Link-Network-Metric

two datasets. Unfortunately, gold standards in initia-
tives such as OAEI3 do not go beyond two datasets.

Fig. 1 shows two examples of such ILNs that have
been generated by an entity resolution algorithm be-
tween entities from six datasets taken from the field
of Science, Technology and Innovation studies (STI)
(more details in Section 6). Fig. 1a shows the ILN for
the real world entity University of Trier, Fig. 1b shows
the same for the National Chung Cheng University. In
this paper, we hypothesise that the structure of these
ILNs is a reliable indicator for the correctness of the
links in the network they form.

(a) The university of Trier in an ILN across six datasets.
The more an ILN resembles a fully connected graph, the more evidence

is available to support its identity links.

(b) Potentially wrong representation of the National Chung
Cheng University.

Fig. 1. Two real life examples of Identity Link Networks (ILNs);
dotted lines indicate links with a low confidence.

Simple Clustering Algorithm. Our aim is not clus-
tering, it is instead the quality approximation of ILNs.
So, for reproducibility purposes we present here the

3http://oaei.ontologymatching.org/

https://github.com/alkoudouss/Identity-Link-Network-Metric
http://oaei.ontologymatching.org/
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straight forward simple clustering algorithm (see al-
gorithm 1) implemented and used for clustering can-
didate linked resources in order to generate ILNs. For
the purpose of cluster quality estimation, the algo-
rithm also documents the discovered links and their re-
spective strength(s). By documenting more than one
strength for a single link, the clustering algorithm en-
ables the use of several matching algorithms. With this
feature, for a link with strengths computed by differ-
ent matching algorithms, the topmost strength is used
for assessing the quality of an ILN. All basic opera-
tions such as SEARCH (search for the cluster to which
a node belongs), INSERTION (add a node to the set of
nodes of a particular cluster, add a link to the set of
links of a particular cluster, add a strength to the map-
ping link→ strength of a particular cluster), and DELE-

TION (deleting a cluster, reassign a cluster to a node)
are supported by hash tables (O(1)). However, when
accounting for the MERGING of clusters, its worst case
scenario yields a complexity of O(log n) where n is
the number of nodes. This brings the overall time com-
plexity to O(m log n) in the worst case and O(m) in the
best case, where m is the size of the input or the num-
ber of links to be more precise. Figure 2 illustrates an
application of algorithm 1.

INPUT : L (set of links) OUTPUT : Γ (set of clusters)

Γ

C1

C2

C3

The figure above depicts nine links
generated by a matching algorithm run
over two datasets. The nodes’ shape
and colour reflect the distinct datasets
they originate from. Plain links denote
an exact match while dotted links de-
note an approximate match.

The figure above illustrates a set of
three clusters (C1,C2 and C3), all de-
rived from links 1 to 6 using algo-
rithm 1. Going through links 7 to 9 will
modify the set of clusters as follow:
link 7 will add node 15 to C2 while
link 8 will merge C2 and C3 into a
new cluster C2−3 of six nodes. The last
link, link 9 will create a new cluster C4,
bringing the overall number of clusters
back to three (C1,C2−3 and C4).

01LINK 1 02

03LINK 2 04

01LINK 3 02

04LINK 4 01

10LINK 5 12

10LINK 6 13

02LINK 7 15

15LINK 8 12

16LINK 9 21

01

02

03

04

01

02

10

12

13

Fig. 2. Example of link clustering using Algorithm 1.
This example illustrates the creation and merging of clusters but leaves out the
documentation of links and their strengths.

Algorithm 1: Simple resource clustering algorithm &
network documentation. All search, insertion and deletion
within a cluster is supported with hash tables which al-
lows for a complexity O(1) leading the algorithm to be of
O(m log n) where m is the input size (number of links), n
is the number of nodes and O(log n) accounts for the worst
case scenario where all first merged clusters are of size two.
In detail, the worst case of the algorithm is when all links
result in one cluster and require merging n

2
clusters of size

two.
input : N, the set of nodes. L, the set of tuples 〈(n1, n2), s〉

representing the mapping N × N → R where ni ∈ N and
links (n1, n2) have a strength s ∈ R.

output: Γ ⊂ P(N), the set of clusters Ci where each C is a set of
similar nodes according to some set of criteria Π, meaning
for each pair of nodes ni, n j ∈ C, ni =Π n j.

begin
Γ← ∅
for 〈(n1, n2), s〉 ∈ L do /* O(m) */

/* n1 and n2 are not in any cluster */
if n1, n2 /∈ Ci for all Ci ∈ Γ then

C.(nodes, links, strengths)

←
(
{n1, n2}, {(n1, n2)}, {

(
(n1, n2), [s]

)
}
)

Γ.add(C)
/* Only n1 is assigned a cluster */
else if n1 ∈ C1 ∈ Γ and n2 /∈ Ci for all Ci ∈ Γ then

C1.add(({n2}, {(n1, n2)}, {
(
(n1, n2), [s]

)
}))

/* Only n2 is assigned a cluster */
else if n2 ∈ C2 ∈ Γ and n1 /∈ Ci for all Ci ∈ Γ then

C2.add(({n1}, {(n1, n2)}, {
(
(n1, n2), [s]

)
}))

/* n1 and n2 are assigned a cluster */
else if n1 ∈ C1 ∈ Γ and n2 ∈ C2 ∈ Γ then

/* both are in different clusters

*/
if C1 6= C2 then

Cs ← smallest of C1 and C2

Cb ← biggest of C1 and C2

Cb.add(Cs.items()) /* O(log(n)) */
Γ.delete(Cs)
Cb.links.add((n1, n2))
Cb.strength.add(

(
(n1, n2), [s]

)
)

/* both are in the same cluster */
else

if (n1, n2) ∈ C1.links then
C1.strengths[(n1, n2)].add(s)

else
C1.links.add((n1, n2))
C1.strength.add(

(
(n1, n2), [s]

)
)

return Γ

3. Related work

We briefly discuss a number of related areas from
the literature, and indicate how our work differs from
these in aim and scope.

Schema matching. Much work in the literature fo-
cuses on ontology matching, especially schema match-
ing [7]. Some rely on concept distance or an extended
version of it [8–10]. Some rely on alignment similar-
ities [11], others relies on formal logical conflicts be-
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tween ontologies to detect and possibly repair map-
pings at a schema-level [12]. The current paper does
not aim to match ontologies, nor does it critically rely
on using ontological or schema information. We only
assume the existence of external entity resolution algo-
rithms for suggesting links between entities. Such al-
gorithms may or may not exploit ontological informa-
tion, but this does not affect our central hypothesis.

Information gain. The work in [13] also uses net-
work structure to evaluate link quality, but in a very
different way. The main intuition there is that an indi-
vidual link in an ILN is more reliable when it leads to a
greater information gain. The paper does not consider
the structure of the ILN as a whole, as we do in this
paper.

Entity clustering. Part of the literature also uses
clustering of the digital representations of the same
real world entity in one or multiple sources. While
their data sources are mainly unstructured [14, 15], our
interest lies in clusters derived from the mappings of
entities exclusively across knowledge-bases. In addi-
tion, they also do not consider the structure of the ILN
as a whole. Another part of the literature specifically
focuses on clustering algorithms. The FAMER [16]
framework for example provides and compares seven
different link-based entity clustering approaches. The
aim of our work is different from all of these. Whereas
these works use clustering algorithms to construct en-
tity resolutions, we show how a cluster-based metric
can be used to assess the quality of a network of entity
links, irrespective of how these links were generated.

Network metrics. The work by Guéret et al. [17] is
one of the few papers to our knowledge that uses net-
work metrics to assess the quality of links. The key
point that separates this work from ours is that it uses
local network features, i.e. only the direct neighbours
of a single node, while we employ global network fea-
tures. [18] also addresses the same challenge. It eval-
uates a given cluster G by comparing it to a reference
cluster R based on the number of splits and merges re-
quired to go from G to R. Our proposed metric does
not need such a reference cluster, and is hence more
easily applicable.

4. Network Properties & Quality of a
Link-Network

Figure 3 illustrates a set of six simple network
topologies over the same number of nodes. Our pro-

posed metric is based on the intuition that multiple
links provide corroborating evidence for each other,
suggesting that in the case of an ILN, the ideal topol-
ogy is a fully connected network. It illustrates a total
agreement between all resources (not the case for any
other topology), and it does not require any intermedi-
ate resource to establish an identity-link between two
resources (again, not the case for any other topology).
Hence, intuitively, the amount of redundancy between
paths in an ILN is an indicator for the quality of the
links in the ILN. We will capture these and similar intu-
itions using three different global graph features over
ILNs: Bridge, Diameter and Closure.

Fig. 3. Example of network topologies.
Source: https://en.wikipedia.org/wiki/Network_topology

We will now first define and explain the rationale
behind each metric, then normalise each metric to val-
ues4 between 0 and 1, and finally average the sum of
all metrics to obtain the metric which we will use for
estimating the quality of the ILN.

Bridge Metric. A bridge (also known as an isthmus
or a cut-edge) in a graph is an edge whose removal
increases the number of connected components of the
graph, or equivalently, an edge that does not belong
to any cycle. The intuition for this measure is that a
bridge in an ILN suggests a potentially problematic
link which is not corroborated by any other links. As a
graph with n nodes contains at most n−1 bridges (e.g.
in a Line network), the bridge value is normalised as
nb = B

n−1 , where B is the number of bridges. An ideal
link network would have no bridge (nb = 0). As nb is
sensitive to the total number of nodes in the graph (it
decreases for large graphs, even when the number of
bridges is constant), we “soften” the value of nb with
a sigmoid function: n′b = max(nb, sigmoidη=1.6(B)),
where the function sigmoidη=1.6(x) = x

|x|+η
helps sta-

4The metric value indicates the negative impact of one or more missing
links in an ILN.

https://en.wikipedia.org/wiki/Network_topology
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bilising the impact of the size of the graph by provid-
ing a minimal value for n′b (see Section 9.1).

The value η = 1.6 in |x| + η at the denominator
of the sigmoid function is a hyper-parameter that has
been chosen not based on the data at hand but by qual-
itatively picking a gradual penalty that can be imposed
on a network based on the number of times a particular
rule has been broken. Thus, we do not claim that this
value is optimal, we only show that this value is suffi-
cient, and works across multiple experiments (see Sec-
tion 9.1 were we further discuss the sigmoid function.)

Diameter Metric. The diameter D of a graph with n
nodes is the maximum number of edges (distance) in
a shortest path between any pair of vertices (i.e. the
longest shortest path). In an ideal scenario, if three re-
sources A, B and C are representations of the same
real world object, there would be no need for an in-
termediate resource for confirming the identity of any
of the resource in the network. In a fully connected
graph of n nodes, each node is 1 edge-distance away
from the rest, meaning that the diameter D has value
1. The longest diameter is observed in a Line net-
work structure, with D = n − 1 for a line network
of n nodes. To scale to the [0,1] interval, the diam-
eter is normalised as nd = D−1

(n−1)−1 . Like the bridge,
because the diameter is also sensitive to the num-
ber of nodes, the normalised diameter is calculated as
n′d = max(nd, sigmoidη=1.6(D− 1)).

Closure Metric. In a connected graph of n nodes,
the closure is the ratio of the number of arcs A in the
graph over the total number of possible arcs 1

2 n(n−1).
In a complete graph, this ratio has value 1. Hence, to
evaluate how far the observed graph is from the ideal
(complete) one, we normalise the closure metric as
nc = 1− A

1
2 n(n−1)

. The minimum number of connec-
tions is n − 1, as observed in Line and Star network
structures.

Estimated Quality Metric. All of these metrics cap-
ture the same intuition: the more an ILN resembles a
fully connected graph, the higher the quality of the
links in the ILN. Of course, these three metrics are not
independent: nc = 0 or n′d = 0 implies n′b = 0. How-
ever, using only nc or n′d would be too uninformative
since the converse of the implication does not hold. Ta-
ble 1 shows that each of nc, n′d and n′b capture different
(though related) amounts of redundancy in the ILN and
that each metric by itself fails to properly discriminate
between the seven ILNs depicted in Figure 3. For ex-
ample, nc and n′b treat a Tree, Star and Line as quali-

tatively equal but disagree on whether a Full Mesh is
as good as a Ring. Consequently, to compute an over-
all estimated quality eQ of an identity link network, we
combine the three separate metrics by taking their av-
erage, and invert them so that the value 1 indicates the
highest quality:

eQ = 1− n′b + n′d + nc

3
.

In short, applying the eQ to a candidate identity link
network assumes that all possible links are evaluated
between resources across and within datasets of inter-
est (see Figure 5). So, the lack of one or more links
is considered a potential evidence for suggesting the
corresponding entities being different. This applies to
identity graphs composed of more than two nodes (see
Section 11.2 discussing network of size two).

Complexity. The eQ metric is implemented using the
NetworkX Python package. To evaluate the over-
all time complexity of the propose algorithm, we as-
sess the complexity of each sub-metric: bridge, diam-
eter and closure. (i) The last metric, the closure, is
straightforward. It is an algebraic operation of com-
puting the number of observed arcs over the space of
possible arcs and therefore of O(1). (ii) According to
the NetworkX documentation, the bridge implemen-
tation uses the Chain Decomposition algorithm5

of [19] which is described to be of O(m + n) where n
is the number of nodes in the graph and m is the num-
ber of edges. (iii) Computing the diameter metric ap-
pears to be the most time expensive. NetworkX doc-
umentation reports the diameter of a graph as the max-
imum eccentricity, where the eccentricity of a node v
is the maximum distance from v to all other nodes
in the graph. This therefore translates into computing
all pairs shortest path lengths. Referring to the John-
son’s algorithm for computing all shortest path be-
tween each pair of nodes in a weighted graph, the com-
plexity of computing the diameter of a graph is of
O(n2 log n + nm), where n is the number of nodes and
m the number of edges in the graph.

This indicates that the complexity of the eQ met-
ric is of O(n2 log n + nm), which is a function of the
size of the graph and the number of edges composing

5An edge is a bridge if and only if it is not contained in any chain. In Net-
workX, chain are found using the function chain_decomposition(). The doc-
umentation can be found at https://networkx.github.io/documentation/latest/
reference/algorithms/generated/networkx.algorithms.bridges.bridges.html.

https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.bridges.bridges.html
https://networkx.github.io/documentation/latest/reference/algorithms/generated/networkx.algorithms.bridges.bridges.html
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Link-Network Quality Estimation

ILN Bridge Diameter Closure Est. Quality
Ring B = 0 nb = 0.00 D = 3 nd = 0.56 C = 0.40 nc = 0.60 eQ = 0.61

Mesh B = 1 nb = 0.38 D = 3 nd = 0.56 C = 0.47 nc = 0.53 eQ = 0.51

Star B = 5 nb = 1.00 D = 2 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.32

Full
Mesh

B = 0 nb = 0.00 D = 3 nd = 0.00 C = 1.00 nc = 0.00 eQ = 1.00

Line B = 5 nb = 1.00 D = 1 nd = 1.00 C = 0.33 nc = 0.67 eQ = 0.11

Tree B = 5 nb = 1.00 D = 4 nd = 0.38 C = 0.33 nc = 0.67 eQ = 0.34

Table 1
Metrics values for each of the topologies from Fig. 2.

the graph. In reality, assuming that data-sources do not
contain duplicates, the maximum size of an ILN can
be limited to the number of datasets involved. How-
ever, as this is a strong assumption to make over real
data and because matching algorithms are not perfect,
a candidate ILN can unexpectedly reach a very big size.
In general, a relatively big ILN (with respect to the
number of data-sources) often suggests the infiltration
of false positive nodes and thereby suggesting a BAD

ILN. To avoid unbearable waiting time for computing
the eQ of large ILNs, an upper bound can be set on the
maximum size of candidate ILNs.

Discrete Intervals. The eQ metric scores all ILNs on
a continuous value in the [0,1] interval. To automati-
cally discriminate potentially good networks from bad
ones, we divide this interval into three segments: ILNs
with values 0.9 6 eQ 6 1 will be rated as GOOD, with
values 0.75 < eQ < 0.9 as UNDECIDED, and with val-
ues 0 6 eQ 6 0.75 as BAD. These boundaries are em-
pirically determined, and can be adjusted depending on
the use-case. The specific values of these boundaries
does not affect the essence of our hypothesis.

Hypothesis. We can now state our hypothesis more
formally: “The eQ intervals defined above are predic-
tive of the quality of the links in an entity link network
between multiple datasets”.

Example. By way of illustration, Table 1 gives the
value of our eQ metric for the six networks from Fig-
ure 3, and shows that the metric does indeed capture
redundancy in a network.

In the following sections, we will test this hypothe-
sis against human evaluation on hundreds of ILNs con-
taining thousands of links in three experiments using
between three to six datasets.

5. Refinements of eQ Using Link Confidence
Scores Produced by Entity Resolution
Algorithms

Given that all links have been searched for, the ab-
sence of a link in an ILN network is shown to crip-
ple the ideal structure of the network as it increases
the chance for a longer diameter and the appearance
of bridges, and it reduces the density of the network.
These characteristics are thereby used by the eQ metric
as a potential evidence for tagging as GOOD or BAD the
network as a whole. Furthermore, the metric assumes
a link correctness confidence score of 1 for all links in
the network although it is not the case in the realm of
entity matching unless a perfect match is found. Entity
matching algorithms often produce pairwise matched
entities with a confidence score in the interval [0, 1] as
a quantitative justification for the pair to be the same.

So far, we strictly estimate the quality of an iden-
tity network based on the cost of its missing links and
thereby its structure. Now, the wonder lies in how to
capture the toll of an existing link on estimating the
quality of the network given that the link has a confi-
dence score below one? In other words, is the strength
of an identity link relevant in estimating the quality of
the network using its structure?

To understand the importance of the strength of
links in estimating the quality of an identity network
using its structure, we propose three new network qual-
ity estimation metrics (eQmin , eQavg and eQw ) that in their
respective ways combine structure and link strength
for network quality estimations. We evaluate these al-
ternative metrics on the same ground truths used in
Sections 7 to 9, and compare each one of them to the
original eQ metric based on their respective F1 scores
in these various scenarios.
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Before diving into the intricacies of link strength in-
tegration, we first start with the formalism that pave
the way for understanding it.

A weighted, undirected, connected (WUC) graph6 is
defined as G = (V, L, w) where V is the set of nodes, L is
the set of links or edges, and w : L 7→ R+ is a function
mapping edges ei = (vi−1, vi) ∈ L where vi ∈ V f or i ∈ [1, k]

where k is the number of edges in G, unordered pair of vertices,
to their decimal values w(ei) in the interval [0, 1]. The
weight of sub-graph H ⊂ G is w(H) =

∑
e∈L(H)

w(e) where

L(H) are the edges of H.
For two vertices a and b ∈ V, a path between a and b

is a sequence π = (e1, e2, ..., ek) where ei = {vi−1, vi} ∈ L and
vi ∈ V for i ∈ {1, ..., k} = [1, k] where k is the number of edges in π,
with vo = a and vk = b. Π(a, b) denotes the set of all
paths from a to b. The geodesic distance and weighted
geodesic distance between a and b are respectively
given by eqs. (1) and (2).

dist(a, b) = min
π∈Π(a, b)

|π| (1)

distw(a, b) = min
π∈Π(a, b)

∑
e∈π

w(e) (2)

and the diameter and weighted diameter of G are given
by eqs. (3) and (4)

diam(G) = max
a, b ∈V

dist(a, b) (3)

diamw(G) = max
a, b ∈V

distw(a, b) (4)

We now have the prerequisites in place for presenting
three hybrid ways of integrating link strength into the
proposed network quality estimation metric.

5.1. Weakest Link

In this approach, we define eQmin as the metric to esti-
mate the quality of an identity network G based on both
the structure of G and the strength of the links compos-
ing G. eQmin is computed as the product of the original
eQ score and the weakest link strength in the network
as given by eq. (5).

eQmin = eQ × min
e∈L(G)

w(e) (5)

6We interchangeably refer to the undirected identity graph as network or
cluster.

5.2. Link Average

Compared to the first weight integration approach,
here, we simply replace the weakest link strength of G

by the average of all strengths in G to obtain eQavg as
provided in eq. (6).

eQavg = eQ ×

∑
e∈L(G)

w(ei)

|L(G)|
(6)

5.3. Rooted Link

As opposed to the first two approaches where we in-
tegrate the link strength without modifying the initial
eQ computation, here, we do the opposite. We use the
link confidence score for computing each sub-metric
score (bridge-diameter and closure). Doing so, the link
confidence score is now more rooted into the initial eQ
formulation, leading to its equation adjustment. The
detail on how the eQ formula is adjusted for integrating
the link’s strength leading to Equation 10 is provided
in the next paragraphs.

Weighted Bridge Metric. Given an identity graph G
with n nodes, the idea here is to capture the soften-
ing of the bridge metric measure as the strength of the
edges composing the set of bridges in G weaken. This
is formulated in Equation 7: the weaker the strength of
a bridge gets, the less it negatively affects the quality
of an identity network.

The approach may sound counter-intuitive, specially
if one expects the quality estimation of a graph G to
correlate positively with the strength of its edges. This,
under the assumption that the strength of the bridge-
edge(s) is the only available evidence for considering
identical the nodes in the identity graph.

However, with respect to the presence of one or
more bridges in a graph, our proposal assumes the op-
posite. Take for example Figure 1b where the two com-
ponents of the graph (different universities) are con-
nected by a bridge. Here, as we take the existence of
the bridge as an indication that the graph should be par-
titioned into isolated components, then we shall agree
that generating a bridge with a high strength for con-
necting isolated components is more damaging than a
bridge with a weak strength. In short, a bridge should
be seen as a penalty, not a reward hence its strength
negatively correlates with the graph’s quality. In Fig-
ure 4b, for example, the maximum penalty for having
three strong bridges in the star network is 1 whereas it
is 0.57 as the majority of the bridge-edges are weak.
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The weighted bridge metric n′bw
(G) of a graph G

is the maximum between the normalisation of the
weighted bridges nbw(G) of the graph and the sigmoid
of the sum of the weighted bridges w(B) of the graph.

n′bw
(G) = max(nbw(G), sigmoid(w(B))) (7)

where B is defined as sub-graph(s) of G whose edges are

the bridges in G and nbw (G) =
w(B)

n− 1
=

∑
e∈L(B)

w(e)

n− 1

Weighted Diameter Metric. Defined in Equation 8, the
weighted diameter metric n′dw

(G) includes strength by
elongating the unweighted geodesic distance eDiam(G)
of G as the edges composing it weaken in strength. In
other words, the smaller the strength, the longer the
diameter gets. This allows us to predict the decrease
of the quality of an identity network whenever its di-
ameter increases. It furthermore allows to increase
the decrease of the quality of the identity network
with respect to the weakening of the strength of each
edge composing the network’s diameter. In Equation 8,
n′dw

(G) is then the maximum between the normalisa-
tion of the weighted diameter ndw(G) of the graph and
the sigmoid of the elongated diameter eDiam(G)− 1.

n′dw
(G) = max(ndw(G),

sigmoid(eDiam(G)− 1))
(8)

where eDiam(G) = 2diam(G)− diamw(G)

and ndw(G) =

{
1 if eDiam(G) > n− 2
eDiam(G)
(n−1)−1

Weighted Closure Metric. This last metric ncw(G)
is computed by inverting the normalised sum of the
weighted edges w(G) of G as provided in Equation 9.

ncw(G) = 1− w(G)
1
2 n(n− 1)

= 1−

∑
e∈L

w(e)

1
2 n(n− 1)

(9)

We are now able to compute a weighted eQ as defined
in Equation 10. Observe that each of the three met-
rics outputs a score in the interval [0,1]. Therefore, the
overall measure is also in the interval [0,1].

eQw(G) = 1−
n′bw

(G) + n′dw
(G) + ncw(G)

3
(10)

eQ = 1 (nb = 0.0, nd = 0.0 and nc = 0.0)

eQmin = 0.3

eQavg = 0.567

eQw = 0.623 (nbw = 0.0, ndw = 0.7 and ncw = 0.43)

G

F

H

0.9

0.5

0.3

(a) A weighted ILN in a full mesh topology

eQmin = 0.1

eQavg = 0.189

eQ = 0.333 (nb = 1.0, nd = 0.5 and nc = 0.5)

eQw = 0.238 (nbw = 0.57, ndw = 1 and ncw = 0.72)

C

A

B

D

0.90.5

0.3

(b) A weighted ILN in a star topology

Fig. 4. Examples of eQ values for two weighted ILNs.

Examples. For a better understanding of these mea-
sures, let us assume two networks A and B with three
edges (see Figure 4). A with 3 nodes is a complete net-
work and B with 4 nodes is a star network. For each net-
work, the edges’ strengths are respectively w(e1) = 0.9,
w(e3) = 0.5 and w(e3) = 0.3. Regardless of the strength
in each network, the unweighted bridge, diameter and
closure metrics’ values for A and B are respectively nb(A)

= 0
3−1 = 0 and nb(B) = 3

4−1 = 1; nd(A) = 1−1
3−2 = 0 and nd(B) =

2−1
4−2 = 0.5; nc(A) = 1− 3

3 = 0 and nc(B) = 1− 3
6 = 0.5 while their

weighted bridge, diameter and closure metrics’ values
are nbw (A) = 0

3−1 = 0 and nbw (B) = 0.9+0.3+0.5
4−1 = 1.7

4−1 = 0.57;
ndw (A) = 2−0.3−1

3−2 = 0.7
1 = 0.7 and ndw (B) =

4−(0.3+0.5)−1
4−2 =

2.2
2 = 1.1 but converted to 1; ncw (A) = |1− 0.9+0.5+0.3

3 | = |1− 1.7
3 | =

0.43 and ndw (B) = |1 − 0.9+0.5+0.3
6 | = |1 − 1.7

6 | = 0.72. This
example illustrates among others that the weaker the
edges of a diameter, the longer the weighted diameter.

6. Datasets

We considered using datasets and gold standards
from the OAEI initiative, but none of these go be-
yond links between two datasets. We therefore created
our own gold standard on realistic datasets taken from
the domain of social science, more specifically from
the field of Science, Technology and Innovation (STI)
studies. We consider this to be an important contribu-
tion of this paper. All datasets and our gold standard
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are available online at the locations given in later para-
graphs.

Entities of interest to the STI domain of study are
(among others) universities and other research-related
organisations, such as R&D companies and funding
agencies. Our six datasets are widely used in the field,
and describe organisations and their properties such as
name, location, type, size and other features.7

Grid8 describes 80248 organisations across 221 coun-
tries using 12308 relationships. All organisations are
assigned an address, while 96% of them have an or-
ganisation type, and only 78% have geographic coor-
dinates.

OrgRef9 collates data about the most important world-
wide academic and research organisations (31000) from
two main sources: Wikipedia and ISNI.

The Leiden Ranking dataset10 offers scientific per-
formance indicators of more than 900 major universi-
ties. These universities are only included when they are
above the threshold of 1000 fractionally counted Web
of Science indexed core publications. This explains its
coverage across only 54 worldwide countries.

Eter11 is a database on European Higher Education In-
stitutions that not only includes research universities,
but also colleges and a large number of specialized
schools. The dataset covered 35 countries in 2015.

OrgReg12 is based on Eter but adds to the about 2700
higher education institutions some 500 public research
organizations and university hospitals. Collected be-
tween 2000 and 2016, its organisations are distributed
across 36 countries.

The European Organisations’ Projects H2020
database13 documents the Horizon 2020 participating
organisations.

7The information provided here about the datasets was collected in January
2018. The datasets themselves are of earlier dates: Grid: 2017.07.12; Orgref:
2017.07.03; OpenAire: 2017.08.16; OrgReg: 2017.07.18; Eter: 2014; Leiden
Ranking 2015: 2017.6.16; and Cordis-H2020: 2016.12.22. All these datasets
are available on the RISIS platform at http://datasets.risis.eu/.

8https://www.grid.ac
9http://www.orgref.org
10http://www.leidenranking.com/
11https://www.eter-project.com/
12http://risis.eu/orgreg/
13http://www.gaeu.com/sv/item/horizon-2020

7. eQ Put to the Test

We test our hypothesis on a real life case study that
revolves around the six datasets described in Section 6,
with the goal to investigate the coverage of OrgReg
(coverage analysis of datasets is a typical question
asked by social scientists before including a dataset in
their studies). This is done by comparing the entities in
OrgReg to those in the other five datasets (Figure 5).

Fig. 5. Disambiguating OrgReg.

7.1. Experiment Design

Organisations are linked across or within datasets
using an approximate string matching on their names
with a minimal similarity threshold of 0.8. Based on
this, we generate links between each pair of datasets,
resulting in 21 sets of links (including linking a dataset
to itself in order to detect duplicate entities in the
dataset). We then take the union of all 21 sets of links,
resulting in a collection of ILN’s of varying size using
algorithm 1 (see figure Figure 6).

Now that we have constructed a large collection of
multi-dataset ILNs, we will compute the eQ value for
all of them. Then, the machine-predicted GOOD/BAD
categories (using eQ) will be checked against the
ground truth by a non-domain expert (the first author
of this paper) and further verified by a domain expert
(the third author). This ground truth is available on-
line. In the ground truth, a candidate ILN is classified
as positive (GOOD) only if all nodes in the network
are co-referent (all resources point to the same real-life
object), regardless of whether the network is complete
(full mesh network) or not. Whenever the resources in
the network point to more than one real life object, the
network is classified as negative (BAD).

Notice that we have deliberately used a very weak
entity resolution algorithm in this experiment (approx-
imate string matching). This produces links of both

https://www.grid.ac
http://www.orgref.org
http://www.leidenranking.com/
https://www.eter-project.com/
http://risis.eu/orgreg/
http://www.gaeu.com/sv/item/horizon-2020
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Fig. 6. Overview of the generated Identity Link Networks.

very high and rather low quality, providing a genuine
test for our eQ metric to distinguish between them.

7.2. Results of first evaluation (non expert)

Ideally, we would find only ILNs of size 6 if each
OrgReg entity were linked with one and only one en-
tity in each of the five other datasets. With less than
100% coverage of OrgReg, we also expect to find ILNs
of size smaller than 6. Figure 6 shows that we also find
a substantial number of ILNs of size bigger than 6. This
is due to (i) duplicates occurring in a single dataset, re-
sulting in links in the ILN between two items from the
same dataset, and (ii) an imperfect matching algorithm
(in our case approximate name matching), resulting in
incorrect links in the ILN.

Due to the high number of ILNs generated14, we
evaluate only the 846 ILNs of size 5 to 10, with the
following frequencies: 391 (size 5), 224 (6), 96 (7), 66
(8), 45 (9) and 24 (10). We predict a GOOD or BAD

score based on the eQ interval values for each of the
846 ILNs, and then compare the scores against those
of a human expert, resulting in F1 scores. In red, Fig-
ure 6 displays the F1 value for each ILN size. Over-
all, our eQ metric resulted in high F1 values (0.806 6
F1 6 0.933). We also pitched our eQ metric against
a Majority Class Classifier, which automatically clas-
sifies all identity link networks as GOOD if the major-
ity of networks are positive according to the human
judges or classifies them all as BAD otherwise. Table 2
shows that our eQ metric outperforms the Classifier on
F1 measure, Accuracy (ACC) and Negative Predicted
Value (NPV) for ILNs of all sizes.

All of these findings show the very strong predictive
power of our eQ metric for the quality of ILNs when
compared to human judgement.

14On a 6th Gen Intel® CoreTM i7 notebook with 8GB RAM, it takes about
100 seconds to automatically evaluate all 4398 clusters of size three and above
(see Figure 6).

7.3. Results of second evaluation (expert)

Preferably, all results should be evaluated by domain
experts. Realistically, this is not feasible. To show,
however, that the evaluation by non-experts is not bi-
ased and mostly reliable, we include the validation of
an expert by having him validate the fraction of the re-
sults for which he has the expertise. Therefore, a Dutch
domain expert from the field of STI (the third author of
this paper), was given the fraction of 148 ILNs (rang-
ing from size 3 to 10 as depicted in Table 2) in which
at least one entity is located in the Netherlands. The
expert deviated from the first evaluation in only 12 out
of 148 cases. Although the changes slightly affect the
ground truth for each ILN size, the F1 values computed
here are even higher (0.848 6 F1 6 1) as compared
to the previous experiment. This shows that the non-
expert nature of the first human judgement was not
detrimental to our results15. This second experiment
confirms our finding in the first experiment that eQ is a
reliable predictor of ILN quality.

7.4. Analysis

Both of the evaluations of eQ above resulted in very
high F1 average values of 0.847 and 0.961 respec-
tively. Furthermore, eQ outperformed a majority-class
classifier in the first experiment (not in the second be-
cause of the highly imbalanced distribution). All this
supports our hypothesis that our eQ measure is strongly
predictive of the quality of the links between the enti-
ties in an Identity Link Network.

8. eQ Estimations in Noisy Settings

The previous experiment created links between en-
tities using a rather weak entity resolution heuristic.
This was an interesting setting because such weak
matching strategies are a fact of daily life on the se-
mantic web (and in data integration in general). In
the next experiment, we will use eQ to evaluate ILN’s
that have been constructed using a more sophisticated
matching heuristic, where we can control the amount
of incorrect links in the ILNs. We will see that also in
this case, eQ is strongly predictive of human judged
link quality.

15However, the very imbalanced character of the ground truth
makes it hard to always outperform the baseline as illustrated in Ta-
ble 2.
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Majority Class Classifier (Baseline) vs Network Metric (eQ)
Majority Class Classifier | Network Metrics

GTP = Ground Truth Positive GTN = Ground Truth Negative

Size GTP|GTN F1 ACC NPV GTP|GTN F1 ACC NPV

3 56 | 8 0.933 | 0.931 0.875 | 0.875 - | 0.5

4 19 | 5 0.884 | 0.878 0.792 | 0.792 - | 0.5

5 272 | 119 0.821 | 0.824 0.696 | 0.747 - | 0.598 14 | 1 0.966 | 0.929 0.933 | 0.867 - | 0

6 139 | 85 0.766 | 0.817 0.621 | 0.768 - | 0.709 14 | 5 0.848 | 0.848 0.737 | 0.737 - | -

7 50 | 56 0.685 | 0.808 0.521 | 0.792 - | 0.810 10 | 2 0.909 | 1.0 0.833 | 1.0 - | 1.0

8 35 | 31 0.693 | 0.806 0.530 | 0.803 - | 0.765 4 | 0 1.0 | 1.0 1.0 | 1.0 - | -

9 21 | 24 - | 0.894 0.533 | 0.889 0.533 | 1 8 | 1 0.941 | 1.0 0.889 | 1.0 - | 1.0

10 8 | 16 - | 0.933 0.667 | 0.958 0.667 | 0.941 1 | 0 1.0 | 1.0 1.0 | 1.0 - | -

Table 2
Majority Class Classifier baseline against the eQ metric using non expert Ground Truth (left), and Expert sampled Ground Truth (right).

The stronger matching heuristic that we use in this
second experiment combines organisation names with
the geo-location of the organisation. The experiment
is run over Eter, Grid and OrgReg as they are the
only datasets at our disposal that contain such geo-
coordinates for organisations. To test the performance
of the eQ metric at various levels of noise, we imple-
ment three sub-experiments where noise (the number
of false positive links) is introduced by decreasing the
name similarity threshold from 0.8 (experiment 1) to
0.7 and by increasing the geographic proximity dis-
tance threshold as described in the next sub-section.

8.1. Experiment Design

This subsection describes in three phases how the
experiment is conducted.

Phase-1: Create links. The first phase links organiza-
tions across the three datasets whenever they are lo-
cated within a radius of 50 meters, 500 meters and 2
kilometres. This creates nine sets of links (three for
each radius).

Phase-2: Refine links. Each set of links is then refined
by applying an approximate name comparison over the
linked resources with a threshold of 0.7.

By now, we have geo-only (without name compar-
ison) and geo+names sets of links, organised in three
subgroups (50m, 500m and 2km) each.

Phase-3: Combine links. To generate the final ILNs,
the sets of links within each subgroup are combined

using the union operator. The goal of this is to com-
pare, within a specified distance, ILNs that where gen-
erated without name matching to those generated with
name matching.

Choice of parameters. THRESHOLD: in the previous
experiment, the threshold of 0.8 is set relatively high
to compensate for using only ‘name’ as means to vali-
date resources, which has a low discriminative power.
In this second experiment, because the name similarity
is combined with geolocation, the threshold is dropped
by 0.1 hoping for the geolocation to correct obvious
noise due to the lower threshold of 0.7. As with the
choice of the sigmoid parameter in Section 4, we do
not make any optimality claim about this parameter,
but only show that our qualitative choice is already suf-
ficient to obtain good results.

VICINITY OF 50M, 500M AND 2KM: these numbers
are chosen to observe their influence on the quality of
the network generated under each condition. The ex-
pectation is that, by increasing the vicinity distance we
anticipate an increase in the number of false positive
links (noise) and we want to test if the eQ metric will
highlight potentially problematic ILNs.

8.2. Strict vs. Liberal Clustering

To understand how link-networks are formed as we
increase the geo-similarity distance, Figure 7 illus-
trates how ILNs may evolve as we move from strict
constraints (scenario 1) to liberal constraints (scenario
3). First, in scenario 1, four ILNs are derived from
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Fig. 7. Decrease/Increase of ILNs
A line pattern is associated to each cluster. The non-black line colours (red
and cyan) in scenarios 2 and 3 indicate the inclusion of a new links between
resources.

the six links: c1 = {〈a1〉, 〈b3〉}, c2 = {〈a3〉, 〈b1〉},
c3 = {〈a4〉, 〈b4〉} and c4 = {〈a5〉, 〈b6, b8, b9〉}. Then,
the new link between a3 and b3 in scenario 2 forces
c1 and c2 to merge. We now have a total of three
ILNs: c1 = {〈a1, a3〉, 〈b1, b3〉}, c3 = {〈a4〉, 〈b4〉} and
c4 = {〈a5〉, 〈b6, b8, b9〉}. Finally, in scenario 3, two
new links appear. The first link between a4 and b6

causes the merging of c3 and c4 while the second link
connecting a6 to b2 causes the creation of a new ILN.
Thereby, the total number of ILNs remains 3.

These scenarios show that, as the ILN constraints
become more liberal, the number of links discovered
increases while the number of ILNs may increase, re-
main equal, or even decrease. In other words, when the
matching conditions become liberal or less strict, two
types of event may happen: (1) formation of new ILNs
and/or (2) merging of ILNs. Table 3, shows that, in ex-
periment 2, phenomenon (1) overtakes (2), which ex-
plains the increase in the number of ILNs as the near-by
distance increases.

8.3. Result and Analysis

Respectively, Figure 8.a and 8.b show the distri-
bution of ILNs using geo-only and geo+names meth-
ods16. When combined, resource’s vicinity and name
reduce the ILNs bins to mostly sizes 2 and 3 as shown
in Figure 8.b.

Overall, as illustrated in Table 3, the number of ILNs
generated in this experiment increases with the in-
crease of the geo-similarity radius. Within a radius of
50 meters, a total of 230 ILNs are generated based on
geo-distance only. This number reached 841 ILNs at a
2 kilometres radius. After performing name matching,

16Bins of size two are omitted as they are too large to be plotted together
with the rest of the histogram bars.
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Fig. 8. Overview of the generated Identity Link Networks.

many links are pruned. Depending on the matching ra-
dius, the number of ILNs varies from 36 to 371.

Statistics on ILNs of size > 2

50 meters 500 meters 2 kilometres

Size geo
only

geo+
names

geo
only

geo+
names

geo
only

geo+
names

> 3 230 36 738 168 841 371

Table 3
link-network overview.

Due to manpower limitations we restrict our evalu-
ation efforts to networks of size 3. These ILNs cover
86% of the overall ILNs (size > 2) within 50m radius
and 92% within 500m and 2k radius. Table 4 shows
the results of pitching our eQ metric against the human
evaluation of the ILNs under both the geo-only and the
geo+names conditions.

As an example, the values F1 = 0.803 and F1 =
0.912 respectively depicted in the confusion matrices
in Table 5 and Table 6 detail the machine quality judge-
ments versus human evaluations of the networks gen-
erated within 2 kilometres radius under respectively
geo-only and geo+names conditions.17

Analysis. In this experiment, we test the behaviour of
the proposed eQ metric in both noisy (proximity only)
and noise-less (proximity plus name) scenarios. The

17All confusion matrices supporting the analysis can be found on the RISIS
project website at http://sms.risis.eu/assets/pdf/metrics-link-network.pdf

http://sms.risis.eu/assets/pdf/metrics-link-network.pdf
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50 meters 500 meters 2 kilometres

Size geo-only geo+names geo-only geo+names geo-only geo+names
= 3 92 31 249 155 198 342

Machine statistics on ILN’s of size 3

Machine Mgood : 45
Mmaybe: 0
Mbad : 47

Mgood : 19
Mmaybe: 12
Mbad : 0

Mgood : 115
Mmaybe: 0
Mbad : 134

Mgood : 127
Mmaybe: 0
Mbad : 28

Mgood : 81
Mmaybe: 0
Mbad : 117

Mgood : 279
Mmaybe: 0
Mbad : 63

Human evaluation on ILN’s of size 3

Human Hgood : 31
Hmaybe:4
Hbad : 57

Hgood : 27
Hmaybe:1
Hbad : 3

Hgood : 64
Hmaybe:7
Hbad : 176

Hgood : 148
Hmaybe:1
Hbad : 6

Hgood : 61
Hmaybe:3
Hbad : 134

Hgood : 322
Hmaybe:8
Hbad : 12

F1 measures

F1 = 0.693 F1 = 0.826 F1 = 0.682 F1 = 0.909 F1 = 0.803 F1 = 0.912

Table 4
Automated flagging versus human evaluation.

198 GROUND TRUTHS

GT. Pos. GT. neg.
61 137

POSITIVE True Pos. False Pos. Precision False Discovery Rate
81 57 24 0.704 0.296

NEGATIVE False Neg. True Neg. F. Omission Rate Neg. Predictive Value

PR
E

D
IC

T

117 4 113 0.034 0.966
Recall Fall-out Positive L. Ratio F1 score | Accuracy
0.934 0.175 4.021 0.803 | 0.859

Table 5
Confusion matrix for ILNs of size 3, 2km, geo-only.

342 GROUND TRUTHS

GT. Pos. GT. neg.
322 20

POSITIVE True Pos. False Pos. Precision False Discovery Rate
279 274 5 0.982 0.018

NEGATIVE False Neg. True Neg. F. Omission Rate Neg. Predictive Value

PR
E

D
IC

T

63 48 15 0.762 0.238
Recall Fall-out Positive. L. Ratio F1 score | Accuracy
0.851 0.25 3.928 0.912 | 0.845

formulae of unfamiliar terms:

– Fall-out (probability of false alarm) =
∑

False positive∑
Condition negative False Discovery Rate =

∑
False positive∑

Predicted condition positive

– False omission rate =
∑

False negative∑
Predicted condition negative Negatve Predictive Value =

∑
True negative∑

Predicted condition negative

– Positive likelihood Ratio (LR+) =
∑

True Positive Rate∑
False Positive Rate Accuracy =

∑
True positive+

∑
True negative∑

Total population

Table 6
Confusion matrix for ILNs of size 3, 2km, geo+names.

proposed eQ metric is in general able to exclude poor
networks in noisy environments and to include GOOD

networks in noise-less environments. In addition, on
the one hand, the relatively low F1 measures displayed
in Table 7 in noisy scenarios, highlight that for the data
at hand, proximity alone is not a good enough crite-
rion for identity. On the other hand, the relatively high

F1 measures in noise-less scenarios is an indication of
stability and consistency that is in line with results out-
lined in experiment 1.

The results depicted in Table 7 show an uneven dis-
tribution of the candidate-sets. In a relatively balanced
candidate-set scenario, our approach works well as can
be seen in the first experiment and in the proximity
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Majority Class Classifier (Baseline) vs Network Metrics (eQ)
Majority Class Classifier | Network Metrics

GT = Ground Truth GTP = Ground Truth Positive GTN = Ground Truth Negative

50m geo-only GT=92 GTP=30 GTN =62 F1 :- | 0.693 ACC: 0.674 | 0.75 NPV: 0.674 | 0.915

500m geo-only GT=249 GTP=66 GTN =183 F1 : - | 0.682 ACC: 0.735 | 0.779 NPV: 0.735 | 0.978

2km geo-only GT=198 GTP=61 GTN =137 F1: - | 0.803 ACC: 0.692 | 0.859 NPV: 0.692 | 0.966

50m geo+names GT=31 GTP=27 GTN =4 F1: 0.931 | 0.826 ACC: 0.871 | 0.742 NPV: - | 0.333

500m geo+names GT=155 GTP=148 GTN =7 F1:0.977 | 0.909 ACC: 0.955 | 0.839 NPV: - | 0.179

2km geo+names GT=342 GTP=322 GTN =20 F1:0.97 | 0.912 ACC: 0.942 | 0.845 NPV:- | 0.238

Table 7
Network-metric (eQ) result versus the MCC baseline.

only scenario. However, even though in extreme cases
(proximity plus name) the Majority Class Classifier
takes the lead, the network metric does not fall far be-
hind. It is important to realise that our network metric
does it with without knowing what the majority class
is, knowledge that the Majority Class Classifier is of
course privy to.

As in the first experiment, for further evaluation, we
extracted a sample based on ILNs in which at least
one organisation originates from the Netherlands. Out
of the 107 sampled ILNs, the domain expert deviated
from the first evaluation in only 1 case.

9. eQ Put to a Ranking Test

The authors of the recently published paper [16]
compared seven algorithms (CLIP, CCPIVOT, CENTER,
CONCOM, MCENTER, STAR1, STAR2) for clustering
entities from multiple sources at different string simi-
larity thresholds (0.75, 0.80, 0.85, 0.90). They evalu-
ated the quality of the clusters generated by these al-
gorithms on three gold standard datasets18, one manu-
ally built (referred here as GT1), and two syntactically
generated. We take the evaluation results from [16] on
GT1, and then test if our eQ score is able to correctly
predict the ranking of the algorithms as found in the
reported evaluation. In contrast to the earlier experi-
ments (where we use eQ to assess the quality of clus-
ters), we are now testing if eQ can be used to correctly
rank different clustering algorithms across datasets.

A slightly complicating factor is that the evaluation
in [16] relies on F1 values computed on true pairs
of entities found. Since eQ evaluates on a per clus-
ter basis (i.e. sets of more than two pairs of entities

18https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer
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Fig. 9. Evaluation of eQ on the ranking from [16]

(S > 2)) and not on individual pairs, we recompute
the F1 values based on true clusters found (S > 2) and
plot these performance measures for each algorithm
in Figure 9 as Baseline. The resulting plot is compa-
rable to the original one in [16]. We then run the eQ

metric over the outputs of each algorithm at the same
thresholds, displayed in Figure 9 as eQ Evaluation.
Looking at the result with bare eye, it shows that the
ranking of the algorithms by eQ (eQ Evaluation) does
not significantly deviate from the recomputed rank-
ing of the algorithms as found in [16] (Baseline). To
quantitatively support our findings, we have computed
the F1-based rankings error difference between the
baseline and the eQ metrics and displayed it in Fig-

https://dbs.uni-leipzig.de/de/research/projects/object_matching/famer
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Fig. 10. Ranking deviations

ure 10. Zooming in on Figure 9, Figure 10 shows a
standard deviation of±0.096 depending on the thresh-
old (x axis) under which the clustering algorithms are
evaluated. It also shows that, overall, the ranking er-
ror increases with the increase of the threshold, indi-
cating that it becomes harder to discriminate between
algorithms as the string similarity is set to tolerate
less errors. Furthermore, the standard error distribution
suggests a significant difference in the means of F1

scores registered between the baseline and the eQ met-
ric. Using the parametric dependent t-test over ran-
dom samplings with replacement (bootstrap), repeated
100 times, the test statistic reveals that on average, at a
medium effect size (r = 0.39338), the baseline (M
= 0.78441, SE = 0.00201) presents signifi-
cantly (p = 4.71137e-05 < 0.05) higher F1

scores compared to those registered with the eQ met-
ric (M = 0.77152, SE = 0.00216), t(99)
= 4.25727. However, the goal here is to evalu-
ate the ranking capability of the eQ metric. In doing
so (ranking the algorithms performance from 1 to 7
based on there respective the F1 scores), the t-test
statistic reveals no significant ranking difference (p =
0.527044592 > 0.05) between the baseline and
the eQ metric. From this we can conclude that eQ can
indeed be used as a reliable proxy (i.e. with no sta-
tistically significant difference) for a human-produced
baseline. Overall, these results illustrate the usefulness
of the eQ metric by demonstrating its potential to rank
(clearly dissociate) clustering algorithms.

9.1. Discussion on hyper-parameters.

Sigmoid hyper-parameter. The hyper-parameter η
set to 1.6 in the sigmoid function x

|x|+η
has been de-

termined not based on the data at hand but by look-
ing at a gradual penalty that can be imposed on a net-
work given the number of times a particular metric-
rule has been broken, regardless of the network’s size.
The value attributed to η is inversely proportional to
the resulting penalty, e.g. for breaking a rule just once
meaning fixing x = 1, at η = 1.0 the penalty is
0.5, at η = 1.6 the penalty is 0.38462 and at η = 2
the penalty is 0.333. Looking at the bridge metric,
for example, the rule is to have no bridges. So, given
two graphs of 4 and 11 nodes respectively and a sin-
gle bridge each, instead of nb1 = 1

4−1 = 0.33 and
nb2 = 1

11−1 = 0.1 respectively, with η set to 1.6, we
have n′b = sigmoidη=1.6(1) = 0.38 for both graphs.
Now, the penalty for having one bridge is fixed and
does not depend on the number of nodes composing
the graph. In the mindset of finding a penalty indepen-
dent of the size of the graph, not too strong and not
too weak for a single mistake, the qualitatively chosen
η = 1.6 has been successfully tested with our bench-
mark data in Sections 7 and 8 and against external data
in Section 9. It is encouraging to see that this qualita-
tively chosen value works well across multiple experi-
ments.

Surely, the value of η can be picked from a wider in-
terval. In order to determine the effect of η we look at
the standard deviation between the baseline and the eQ

predictions at two extremes η values (0.1 and 3) on the
GT1 dataset (because the generation of a new bench-
mark is too costly). What do we expect from these
extreme η values? Since the final normalised bridge
and diameter metric scores are set to the maximum be-
tween the respective scores and the sigmoid penalty,
the intuition here is that setting η to 0.1, for example,
would have the effect of always choosing the sigmoid
penalty as sigmoid0.1(1) = 0.90909. Instead, setting
it to 3 would likely have the inverse effect. However,
the results reveal no difference in the F1 based evalua-
tion. This suggests that there are no borderline predic-
tions in this experiment for which the change in η val-
ues could cause a switch of a flag from GOOD to BAD

or vice versa. This observation reflects the restrictive
flagging of a candidate ILN as GOOD (0.9 < eQ < 1)
or BAD.

Similarity thresholds. More experiments is always
better. However, even though experiment 1 and 2 used
respectively a single similarity threshold, the experi-
ment conducted in Section 9 especially tests the eQ
metric at various thresholds and thereby complements
the experiments in Sections 7 and 8.
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10. Weighted Metrics to the Test

Evaluation in noiseless settings. We now re-run the
experiments conducted in Section 7 using all metrics,
namely eQ, eQmin , eQavg and eQw for estimating the qual-
ity of clusters of varying sizes: (i) size 5 to 10 for non
expert ground truth and (ii) size 3 to 10 for Dutch ex-
pert in Figure 11. The goal of these experiments is to
find out which of the metrics performs well overall
given the range of cluster sizes. This is done by com-
paring the metrics respective performances on the ba-
sis of their F1 measures.
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Fig. 11. Comparative evaluation in noiseless settings by a non expert
(11.a) and Dutch domain expert (11.b)

Although in the expert evaluation, eQmin and eQavg

performed equally bad at least once, the observations
show that, for both experiments, two main conclusions
can be drawn: (1) eQmin seems unreliable while (2) the
rest of the metrics appear to perform alike, giving no
solid indication on whether to combine structure and
link confidence score.

Evaluation in noisy settings. Again here, we re-run
the same experiments conducted in Section 8 only now
using all metrics. This, with the goal of comparing
the metrics against each other for further understand-
ing the effect(s) of incorporating the link strength in
the structure-based eQ metric. Figure 12 again shows
no solid evidence for being in favour of structure-
based metric or “hybrid-based metrics” (structure +
strength). The figure also shows that, whenever the
identity network is composed of links with only confi-

dence score of 1 (geo-similarity only), all approaches
produce the same estimation score.
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Fig. 12. Comparative evaluation by a domain expert in noisy settings

Evaluation for ranking clustering algorithms. Us-
ing data from [16], we show in Figure 13 the results of
an experiment where we compare the ranking poten-
tial of each approach (eQ, eQmin , eQavg and eQw ) for es-
timating the quality of an identity network against the
algorithm rankings computed by Saeedi et al. (base-
line). Bare in mind that here, we not only look at the
performance in terms of F1 measure but also in terms
of ranking capability.

At first, the results show that all approaches appear
to rank the algorithms almost equally. However, the
deviation in terms of F1 score for the eQmin metric ap-
pears quite off compared to the baseline as it shifted
considerably below the target’s measures. With eQavg ,
the previous F1 measures move up but not yet close
enough to those of the target. In the last option, which
implements eQw (Equation 10), the result is compara-
ble to the target ranking and to the eQ ranking as well,
leading to a first judgement that these two approaches
perform better than the other two. According to the vi-
sualisation provided by Figure 13, eQ and eQw appear
to be qualitatively comparable in performance with re-
spect to the F1 measures.

With the quantitative comparison provided by Ta-
ble 8, the eQ and eQw metrics appear to deviate from
the baseline far less on average than the remaining ap-
proaches (in 4 cases out of 7 with ties observed in 3 of
these cases). This later observation helps breaking the
tie between the two metrics (eQw and eQavg ) and indi-
cates that, among hybrid metrics, eQw is indeed the way
to go. In general, we believe that an hybrid method is
potentially better than the original method as it pro-
vides additional information that enables us to explain
more in details the prediction of the metric and thereby
brings the measure closer to expressing “how a net-
work structure can be accurately translated into esti-
mated quality”.
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Fig. 13. Evaluation of eQ on the ranking from [16]

Discussion. Although our last experiment seems in
general to favour the eQw among hybrid metrics, truth
is, we need more ground-truth data for making a con-
vincing case on whether one of the hybrids methods is
worth the extra computation compared to the original
metric, or whether a specific hybrid method works best
in some particular settings. For example, we suspect
that in settings where matching algorithms are rather
permissive, there should be compelling reasons for the
link strength to be included. Perhaps, in this situation

THRESHOLD 0.75 0.80 0 .85 0.90 AVG

CLIP BASELINE 0.9607 0.94908 0.91951 0.72195 0.88781

eQ 0.0107 0.01708 0.03051 0.09595 0.03856

eQmin 0.2557 0.24808 0.22351 0.09595 0.20581

eQavg 0.0317 0.02808 0.03251 0.09595 0.04706

eQw 0.0127 0.01608 0.03051 0.09595 0.03881

CCPIVOT BASELINE 0.75448 0.83596 0.83253 0.62367 0.76166

eQ 0.03852 0.01704 0.00247 0.02967 0.02193

eQmin 0.15948 0.19196 0.18053 0.02967 0.14041

eQavg 0.02852 0.00704 0.00147 0.02967 0.01667

eQw 0.04052 0.01904 0.00247 0.02967 0.02293

CENTER BASELINE 0.85883 0.84593 0.8006 0.54985 0.7638

eQ 0.00683 0.01293 0.0196 0.03285 0.01805

eQmin 0.24983 0.23993 0.2096 0.03285 0.18305

eQavg 0.02283 0.01993 0.0206 0.03285 0.02405

eQw 0.00783 0.01193 0.0196 0.03285 0.01805

CONCOM BASELINE 0.67103 0.80233 0.84734 0.69571 0.7541

eQ 0.02297 0.02167 0.01034 0.08571 0.03517

eQmin 0.17103 0.18833 0.19834 0.08571 0.16085

eQavg 0.00997 0.01067 0.01234 0.08571 0.02967

eQw 0.02297 0.02167 0.01034 0.08571 0.03517

MCENTER BASELINE 0.73774 0.82684 0.84658 0.63994 0.76277

eQ 0.02226 0.01716 0.00558 0.04694 0.02298

eQmin 0.18074 0.19284 0.19158 0.04694 0.15302

eQavg 0.00826 0.00616 0.00758 0.04694 0.01724

eQw 0.02326 0.01716 0.00558 0.04694 0.02323

STAR1 BASELINE 0.72218 0.83963 0.86427 0.70183 0.78198

eQ 0.00782 0.00263 0.02427 0.08983 0.03114

eQmin 0.18618 0.21363 0.20927 0.08983 0.17473

eQavg 0.00618 0.01363 0.02627 0.08983 0.03398

eQw 0.00882 0.00163 0.02427 0.08983 0.03114

STAR2 BASELINE 0.84647 0.8769 0.85674 0.62547 0.80139

eQ 0.00347 0.0069 0.00774 0.01347 0.00789

eQmin 0.21147 0.2219 0.19974 0.01347 0.16164

eQavg 0.02147 0.0179 0.00874 0.01347 0.01539

eQw 0.00247 0.0059 0.00774 0.01347 0.00739

Table 8
Comparing the ranking capability of each of the eQ approaches.
For each algorithm, we compare the baseline F1 scores to those of an eQ

approach, and only report the difference. Then, for each approach, we compute
by how much the eQ metric scores under scrutiny deviate on average from
those of the baseline. Using the later average, we compare the eQ approaches
against each other.

where link confidence could be assigned a score in the
range [0.3, 1] for example, even eQmin could turn up sta-
ble. This, because, in our scenarios, we filter the po-
tentially good links prior to estimating the quality of
the network they form. Now, what if this task is given
to the metric?
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At present, with the limited ground-truth datasets,
and relying on the results per matching threshold, the
data show that the more precise the matching results
get (high threshold), the more the metrics’ predictions
converge. For example, at threshold 0.90, all metrics
have exactly the same prediction results but the eQw

metric appears to be the one of choice for thresholds
from 0.80 and higher. As the threshold drops to 0.75,
eQavg performs better. These observations suggest that
the choice of a metric to use depends on the match-
ing algorithms’ precision. In this regard, at very low
thresholds even eQmin may turn out relevant.

11. Conclusion and Future Work

11.1. Conclusion

Entity resolution is an essential step in the use of
multiple datasets on the semantic web. Since entity res-
olution algorithms are far from being perfect, the links
they discover must often be human validated. Because
this is both a costly and an error-prone process, it is
desirable to have computer support that can accurately
estimate the quality of ILNs.

In this paper, we have proposed a metric for pre-
cisely this purpose: it estimates the quality of links be-
tween entities from multiple datasets, using a combi-
nation of graph metrics over the network (size > 2)
formed by these links. Our metric captures the intu-
ition that high redundancy in such a linking-network
correlates with high quality. Furthermore, we have pro-
posed hybrid-metrics that combine structure and link
confidence score (strength) for the same purpose of es-
timating the quality of links between entities. The intu-
ition here is an incremental improvement of the origi-
nal metric by evaluating the integration of link strength
in the quality estimation.

We have tested our metric in three different sce-
narios. Using a collection of six widely used social
science datasets in the first two experimental set-
tings, we compared the predictions of link quality by
our metric against human judgements on hundreds of
networks involving thousands of links. In both eval-
uations, our metric correlated strongly with human
judgement (0.806 6 F1 6 1), and it consistently beats
the Majority Class Classifier baseline (except in cases
where this is numerically near impossible because of a
highly skewed class distribution). In the experimental
condition where we deliberately constructed noisy and
non-noisy link-networks, we showed that our metric

is in general able to exclude poor networks in noisy
environments and to include good networks in noise-
less environments. With the last experiment, we also
show that our metric is able to rank entity resolution
algorithms on their quality, using an externally pro-
duced dataset and corresponding ground truth. All this
amounts to testing the eQ metric on a dozen different
algorithms and parameter settings.

After showing that our quality metric consistently
agrees with human judgement across these different
experimental conditions, we re-run all experiments on
both the eQ and hybrid metrics. The results suggest that
the hybrid methods seam to have an effect on estimat-
ing the quality of an identity network, only it is yet un-
clear in what specific condition(s) these metrics bear
fruit (do significantly well as opposed to eQ). This yells
for more experiments on the matter.

Finally, to encourage replication studies and exten-
sions to our work, all the datasets used in these exper-
iments are available online.

11.2. Future work

Networks of size two. The presented metrics are
shown to work well in clusters of size bigger than two.
Finding ways in which networks of size two can be
validated using the eQ metrics would be an added value
as the amount of clusters of such size is not negligi-
ble. The eQ metric is about corroborating links using
other redundant links. It can be extended by combin-
ing it with external knowledge (external to the ILN)
for corroborating an existing link. For example, if we
use a relation like “marriage” as external knowledge to
interconnect ILNs, such information can then be used
to corroborate pair of nodes. Hence, if there exist two
records A and B reporting the marriage of John and
Mary then the pair 〈JohnA, JohnB〉 can be corrobo-
rated by the pair 〈MaryA,MaryB〉 and vice-versa.

In this context, when a link is corroborated with the
use of external knowledge, then the metric can be ap-
plied to networks lacking redundant identity-links such
as networks of size two. In addition, such modification
may improve the eQ prediction on the quality of incom-
plete networks such as those in a star or line topology.
We, furthermore expect some external knowledge to
be useful for detecting inconsistency in links between
resources in a candidate identity network. For exam-
ple, John cannot be his own father. In this scenario, the
knowledge could then be used to immediately flag a
network as BAD.
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Dynamic link adjustment. The current work ideally
takes clustered ILNs as input. However, when such net-
works are not provided, it simply takes the output of an
entity resolution algorithm as given, applies the simple
clustering algorithm (algorithm 1) and tries to estimate
the quality of that output. A closer coupling between
our metric and an entity resolution algorithm would
allow this algorithm to dynamically adjust its output
based on the eQ quality estimates. Similarly, embedded
in a user-interface, the score of our metric could help
the user to give the final judgement to accept or reject
an ILN.

Parameter tuning. In this work, we qualitatively de-
termined the sigmoid hyper-parameter (1.6), the dis-
crete eQ intervals and the string similarity thresholds.
Our experiments show that these chosen values are suf-
ficient to get good results in multiple experiments, but
we do not claim them to be optimal. Experimenting on
fine-tuning these parameters using the current ground-
truth and data from other domains would help under-
standing how and when different choices could lead
to an increase or a decrease of the metrics’ predictive
power. Also, experimenting on whether one or more
metrics (bridge, diameter and closure) can be left out
or whether to always use the sigmoid penalty can fur-
ther help strengthen our intuition that high redundancy
correlates with high quality.
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