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Abstract.

Finding a good query plan is key to the optimization of query runtime. This holds in particular for cost-based federation engines,
which make use of cardinality estimations to achieve this goal. A number of studies compare SPARQL federation engines across
different performance metrics, including query runtime, result set completeness and correctness, number of sources selected
and number of requests sent. However, although they are informative, these metrics are generic and unable to quantify and
evaluate the accuracy of the cardinality estimators of cost-based federation engines. In addition, to thoroughly evaluate cost-based
federation engines, the effect of estimated cardinality errors on the overall query runtime performance must be measured. In this
paper, we address this challenge by presenting novel evaluation metrics targeted at a fine-grained benchmarking of cost-based
federated SPARQL query engines. We evaluate the query planners of five different cost-based federated SPARQL query engines
using LargeRDFBench queries across. Our results suggest that our metrics are clearly correlated with the overall query runtime
performance of the selected federation engines, and can hence provide important solutions when developing the future generations
of federation engines.

Keywords: SPARQL, Benchmarking, cost-based, cost-free, federated, Querying

1. Introduction federation engines; a fact which is corroborated by a

plethora of works in database research [5, 6].

The availability of increasing amounts of data pub-
lished in RDF has led to the genesis of many federated
SPARQL query engines. These engines vary widely in
their approaches to generating a good query plan [1-
4]. In general, there exist several possible plans that a
federation engine can consider when executing a given
query. These plans have a different cost in terms of the
resources required and the overall query execution time.
Selection of the best possible plan with minimum cost
is hence of key importance when devising cost-based

*Corresponding author. E-mail: yklee @khu.ac kr

In SPARQL query federation, index-free (heuristics-
based) [7-9] and index-assisted (cost-based) [10-20]
engines are most commonly used for federated query
processing [1]. The heuristics-based federation engines
do not store any pre-computed statistics and hence
mostly use different heuristics to optimize their query
plans [7]. Cost-based engines make use of an index with
pre-computed statistics about the datasets [1]. Using
cardinality estimates as principal input, such engines
make use of cost models to calculate the cost of dif-
ferent query joins and generate optimized query plans.
Most state-of-the-art cost-based federated SPARQL
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2 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

processing engines [10, 11, 13—19] achieve the goal
of optimizing their query plan by first estimating the
cardinality of the query’s triple patterns. Then, they use
this information to estimate the cardinality of the joins
involved in the query. A cost model is then used to com-
pute the cost of performing different query joins while
considering network communication costs. One of the
query plans with minimum execution costs is finally
selected for result retrieval. Since the principal input for
cost-based query planning is the cardinality estimates,
the accuracy of these estimates is crucial to achieve a
good query plan.

The performance of federated SPARQL query pro-
cessing engines has been evaluated in many recent
studies [1, 10, 13, 15, 21-28] by using different fed-
erated benchmarks [29-37]. Performance metrics, in-
cluding query execution time, number of sources se-
lected, source selection time, query planning time, con-
tinuous efficiency of query processing, answer com-
pleteness and correctness, time for the first answer, and
throughput, are usually reported in these studies. While
these metrics allow the evaluation of certain compo-
nents (e.g., the source selection model), they cannot be
used to evaluate the accuracy of the cardinality estima-
tors of the cost-based federation engines. Consequently,
they are unable to show how the estimated cardinality
errors affect the overall query runtime performance of
federation engines.

In this paper, we address the problem of measuring
the accuracy of the cardinality estimators of federated
SPARQL engines, as well as the effect of these errors
on the overall query runtime performance. In particular,
we propose metrics' for measuring errors in the car-
dinality estimations of (1) triple patterns, (2) joins be-
tween triple patterns, and (3) query plans. We correlate
these errors with the overall query runtime performance
of state-of-the-art, cost-based SPARQL federation en-
gines. The observed results show that these metrics are
correlated with the overall runtime performances. In
summary, the contributions of this work are as follows:

— We propose metrics to measure the errors in cardi-
nality estimations of cost-based federated engines.
These metrics allow a fine-grained evaluation of
cost-based federated SPARQL query engines and
uncover novel insights about the performance of
these types of federation engines that were not

'Our proposed metric is open-source and available online at
https://github.com/dice-group/CostBased-FedEval

reported in previous works evaluating federated
SPARQL engines.

— We measure the correlation of the values of the
novel metrics with the overall query runtimes. We
show that some of these metrics have a strong cor-
relation with runtimes and can hence be used as
predictors for the overall query execution perfor-
mance.

— We present an empirical evaluation of five—
CostFed[10], Odyessey[13], SemaGrow [15],
LHD [11] and SPLENDID|[ 14]—state-of-the-art
cost-based SPARQL federation engines on Larg-
eRDFBench [29] by using the proposed metrics
along with existing metrics, affecting the query
runtime performance.

The rest of the paper is organized as follows: In Sec-
tion 2, we present related work. A motivating example
is given in Section 3. In Section 4, we present our novel
metrics for the evaluation of cost-based federation en-
gines. In Section 5, we give an overview of the cardinal-
ity estimators of selected cost-based federation engines.
The evaluation of these engines with proposed as well
as existing metrics is shown in Section 6. Finally, we
conclude in Section 7.

2. Related Work

In this section, we focus on the performance met-
rics used in the state of the art to compare federated
SPARQL query processing engines. Based on the pre-
vious federated SPARQL benchmarks [29-31] and per-
formance evaluations [7, 10-15, 21, 22, 25, 27, 28]
(see Table 1 for an overview), the performance metrics
used for federated SPARQL engines comparison can
be categorized as:

— Index-Related: Index-assisted approaches [1]
make use of stored dataset statistics to generate
an optimized query execution plan. The indexes
are pre-computed by collecting information from
available federated datasets. This is usually a one-
time process. However, later updates are required
to ensure the result-set completeness of the query
processing. The index generation time and its com-
pression ratio (w.r.t. overall dataset size) are im-
portant measures to be considered when devising
index-assisted federated engines.

— Query-Processing-Related: This category con-
tains metrics related to the query processing capa-
bilities of the federated SPARQL engines. The to-
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An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 3

Index Processing

Network Res RS Add

Cr Gt Qp #Ts Qet #A Sst #Tt #Er Cu Mu Cp Ct @T @K

CostFed[10] v 7/ v v v / v
SPLENDID[14] v / v

SemaGrow[15] v v /

Odyssey[13] v v 7/ v 7/ v
LHD[11] v o v v v/
DARQ[12] v v

ANAPSID[25] v

MULDER]22] v v v v /
FedX[7] v 7/ v

Lusail[21] v v v

BioFed[28] v /v v/ v o/

Table 1: Metrics used in the existing federated SPARQL query processing systems, Res: Resource Related, RS:
Result Set Related, Add: Additional, Cr: index compression ratio, Gt: the index/summary generation time, Qp:
Query Planning time, #T's: total number of triple pattern-wise sources selected, Qet: the average query execution
time, #A: total number of SPARQL ASK requests submitted, Sst: the average source selection time, #Tt: number
of transferred tuples, #Er: number of endpoint requests, Cu: CPU usage, Mu: Memory usage, Cp: Result Set
completeness, Ct: Result Set correctness, @K: dief@k, @T: dief@t

tal number of triple-pattern-wise sources selected,
number of ASK requests used to perform source
selection, source selection time, query planning
time, and overall query runtime are the reported
metrics in this category.

— Network-Related: Federated engines collect
information from multiple data sources, e.g.,
SPARQL endpoints. Thus, it is important to mini-
mize the network traffic generated by the engines
during query processing. The number of trans-
ferred tuples and the number of endpoint requests
generated by the federation engine are the two
network related metrics used in existing federated
SPARQL query processing evaluations.

— Result-Set-Related: Two systems are only com-
parable if they produce exactly the same results.
Therefore, result set correctness and completeness
are the two most important metrics in this cate-
gory.

— Resource-Related: The CPU and memory re-
sources consumed during query processing dictate
the query load an engine can bear. Hence, they are
of importance when evaluating the performance
of federated SPARQL engines.

— Additional: Two metrics dief@t and dief@k are
proposed to measure continuous efficiency of
query processing approaches.

All of these metrics are helpful to evaluate the per-
formance of different components of federated query
engines. However, none of these metrics can be used to
evaluate the accuracy of the cardinality estimators of
cost-based federation engines. Consequently, studying
the effect of estimated cardinality errors on the over-
all query runtime performance of federation engines
cannot be conducted based on these metrics. To over-
come these limitations, we propose metrics for measur-
ing errors in cardinality estimations of triple patterns,
joins between triple patterns, and overall query plan,
and show how these metrics are affecting the overall
runtime performance of federation engines.

3. Motivating Example

In this section, we present an example to motivate
our work and to understand the proposed metrics. We
assume that the reader is familiar with the concepts of
SPARQL and RDF, including the notions of a triple
pattern, the joins between triple patterns, the cardinal-
ity (result size) of a triple pattern, and left-deep query
execution plans. As aforementioned, most cost-based
SPARQL federation engines first estimate individual
triple pattern cardinality and use this information to esti-
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4 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

SELECT + WHERE {
?s :pl ?ol. A
Cr(TP1):100

Cr(BGP1TP3): 50
Cel(BGP1xTP3): 150

Ce2(TP1):200 Q(BGP1XTP3): 3

7s :p2 702.
Cr(TP2):200

BGP1
Cr(TP1MTP2): 50

Cel(TP1XTP2): 65
Q(TP1%TP2): 1.3

Ce2(TP2):600

7s p3 ?703. TP1 P2

Cr(TP3):300 Cr(TP1): 100 Cr(TP2): 200
Cel1(TP1): 90 Cel(TP2): 250
Q(TP1): 1.11 Q(TP2): 1.25

Ce2(TP3):500 }

(b) Engine 1 optimal query plan

(a) Example query

™3
Cr(TP3): 300
Ce1(TP3): 300
Q(TP3): 1

Cr(BGP1xaTP2): 50
Ce2(BGP1MTP2)): 75
Q(BGP1xTP2)): 1.5

BGP1
Cr(TP14TP3): 100

Ce2(TP1xTP3)): 50

Q(TP1xTP3)): 2 S
Cr(TP2): 200
Ce2(TP2): 600
Q(TP2): 3
TP1 3

Cr(TP1): 100 Cr(TP3): 300

Ce2(TP1): 200 Ce2(TP3): 500

Q(TP1): 2 Q(TP2): 1.66

(c) Engine 2 subOptimal query plan

Fig. 1.: Motivating Example: A sample SPARQL query and the corresponding query plans of two different federation

engines

mate the cardinality of joins found in the query. Finally,
the query execution plan is generated by ordering the
joins. In general, the optimizer first selects the triple pat-
terns and joins with minimum estimated cardinalities
[10].

Figure 1 shows a motivating example containing a
SPARQL query with three triple patterns—namely TP1,
TP2 and TP3—and two joins. Consider two different
cost-based federation engines with different cardinality
estimators. Figure 1a shows the real (Cr) and estimated
cardinalities (Cel for Engine 1 and Ce2 for Engine
2) for triple patterns of the query. Let us assume that
both engines generate left-deep query plans by selecting
triple patterns with the smallest cardinalities to perform
their first join. The results of this join are then used
to perform the second join with the remaining third
triple pattern. By using actual cardinalities, the optimal
query execution plan would be to first perform the join
between TP1 and TP2 and then perform the second join
with TP3. The same plan will be generated by Engine
1 as well, as shown in Figure 1b. The subOptimal plan
generated by Engine 2 is given in Figure 1c. Note that
Engine 2 did not select the optimal plan because of
large errors in cardinality estimations of triple patterns
and joins between triple patterns.

The motivating example clearly shows that good car-
dinality estimations are essential to produce a better
query plan. The question we aim to answer pertains
to how much the accuracy of cardinality estimations

affects the overall query plan and the overall query run-
time performance. To answer this question, the g-error
(Q in Figure 1) was introduced in [6] in the database lit-
erature. In the next section, we define this measure and
propose new metrics based on similarities to measure
the overall triple patterns error E7, overall joins error
Ej as well as overall query plan error Ep.

4. Cardinality Estimation-related Metrics

Now we formally define the g-error and our proposed
metrics, namely E7, E;, Ep to measure the overall er-
ror in cardinality estimations of triple patterns, joins
between triple patterns and overall query plan error,
respectively.

4.1. g-error

The g-error is the factor by which an estimated car-
dinality value differs from the actual cardinality value

[6].

Definition 1 (q-error). Let 7= (rq,...,r,) € R where
ri > 0 be a vector of real values and é = (e, ..., e,) €
R be the vector of the corresponding estimated values.
By defining é/7 = 5; = (e1/r1,...,en/1ry), then g-error
of estimation e of r is given as
lle/rllo = max [lei/ri

0, Where

llei/rillo = max(e;/r;, 1ife;)
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In this definition, over- and underestimations are
treated symmetrically [6]. In the motivating example
given in Figure 1, the real cardinality of TP1 is 100 (i.e.,
Cr(TP1)=100) while the estimated cardinality by en-
gine 1 for the same triple pattern is 90 (i.e., Cr(TP1) =
90). Thus, the g-error for this individual triple pattern is
max(90/100,100/90) = 1.11. The query’s overall gq-error
of its triple patterns (see Figure 1b) is the maximum
value of all the g-error values of triple patterns, i.e.,
max(1.11,1.25,1) = 1.25. The g-error of the complete
query plan would be the maximum g-error values in
all triple patterns and joins used in the query plan, i.e.,
max(1.11,1.25,1,1.3,3) = 3.

The g-error makes use of the ratio instead of an ab-
solute or quadratic difference and is hence able to cap-
ture the intuition that only relative differences matter
for making planning decisions. In addition, the g-error
provides a theoretical upper bound for the plan quality
if the g-error of a query is bounded. Since it only con-
siders the maximum value amongst those calculated, it
is possible that plans with good average estimations are
regarded as poor by this measure. Consider the query
plans given in Figure 1b and Figure 1c. Both have a
g-error of 3, yet the query plan in Figure 1b is optimal,
while the query plan in Figure 1c is not. To solve this
problem, we introduce the additional metrics defined
below.

4.2. Similarity Errors

The overall similarity error of query triple patterns is
formalised as follows:

Definition 2 (Triple Patterns Error Er ). Let Q be
a SPARQL query containing triple patterns T =
{TPy,...,TP,}. Let ¥ = (Cr(TP1),...,Cr(TP,)) €
R”" be the vector of real cardinalities of T and é =
(Ce(TP),...,Ce(TP,)) € R" be the vector of the cor-
responding estimated cardinalities of T. Then, we define
our overall triple pattern error as follows:

oo =2l _ /2 (Cr(TP)—Ce(TP,))?
T T~ /S ©rrP) /S, (CelTP))?

In the motivating example given in Figure 1, the real
cardinalities vector 7= (100,200,300) and the Engine 1
estimated cardinalities vector € = (90,250,300). Thus,
Er =0.0658. Similarly, Engine 2 estimated cardinality
vector is € = (200,500,600). Thus, Engine 2 achieves
Er =0.388.

Definition 3 (Joins Error E; ). Let Q be a SPARQL
query containing joins J = {J1,...,J,}. Let 7 =

(Cr(J1),...,Cr(J,)) € R a vector of real cardinali-
ties of J and é = (Ce(J1),...,Ce(J,)) € R" be the
vector of the corresponding estimated cardinalities of
J, then the overall joins error is defined by the same
equation in Definition 2.

Definition 4 (Query Plan Error Ep ). Let Q be a
SPARQL query and TJ be the set of triple patterns and
joinsin Q. Let 7 = (ry,...,r,) € R" be a vector of real
cardinalities of T] and € = (e1,...,e,) € R" be the
vector of corresponding estimated cardinalities of TJ,
then the overall query plan error is defined by the same
equation in Definition 2.

In the motivating example given in Figure 1b, the
real cardinalities vector of all triple patterns and joins,
7 = (100,200,300,50,50) and the Engine 1 estimated
cardinalities vectors & = (90,250,300,65,150). Thus, Ep
=0.1391 for Engine 1. Engine 2 achieves Ep = 0.3838.
In these matrices, over- and underestimations are also
treated symmetrically. The purpose of these definitions
is to keep the lower bound at 0, which could be reached
if r = e, i.e., there is no error in the estimation; and the
upper bound at 1, which could be reached if e is much
larger than r.

5. Selected Federation Engines

In this section, we give a brief overview of the se-
lected cost-based SPARQL federation engines. In par-
ticular, we describe how the cardinality estimations
for triple patterns and joins between triple patterns are
performed in these engines.

CostFed: CostFed [10] makes use of pre-computed
statistics stored in index to estimate the cardinality
of triple patterns and joins between triple patterns.
CostFed benefits from both bind join (>,) [7, 14, 15]
and symmetric hash join (><;) [25] for joining the re-
sults of triple patterns. The decision of join selection
is based on calculating the cost of both joins on query
runtime. It creates 3 buckets for each distinct predicate
used in the RDF dataset. These buckets are used for
estimating the cardinality of query triple patterns. Fur-
thermore, Costfed stores selectivity information that
is used to estimate the cardinality of triple patterns as
well as devising an efficient query plan. CostFed query
planner also considers the skew in the distribution of
objects and subjects across predicates. Separate cardi-
nality estimation is used for Multi-valued predicates.
Multi-valued predicates are the predicates that can have
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6 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

multiple values, as people can have multiple contact
numbers or graduation schools. It performs a join-aware
trie-based source selection, which uses common URI
prefixes.

Let D represent a datasets or source for short, rp =<
s, p,o > be a triple pattern having predicate p, and
R(tp) be the set of relevant sources for that triple pat-
tern. The following notations are used to calculate the
cardinality of tp.

- T(p, D) is the total number of triples with predi-
cate pin D.

— avgSS(p, D) is the average subject selectivity of p
in D.

— avgOS(p, D) is the average subject selectivity of
pinD.

— T (D) is the total number of triples in D.

- tS (D) is the total number of distinct subjects in D.

— tO(D) is the total number of distinct objects in D.

From these notations the cardinality C(¢p) of tp is cal-
culated as follows (the predicate b stands for bound):

>, T(p.Di)x1

VDi€R(tp)
= if B(p)AB(s) A 1B(0),

>, T(p,Di) x avgSS(p,Di)
VDi€R(tp)

= if b(p) A b(s) A 1b(0),
> T(p,D;) x avgOSs (p, D;)

VDi€R(1p)
= if b(p) A 'b(s) A b(0),
S T(D) x 1
VDi€R(tp)
= if 1b(p) A !b(s) A !b(0),
tT(D;) x [S(ll)[)
VDi€R(tp)
= if 1b(p) A b(s) A !b(0),
(T(Di) X 5057
VDi€R(tp)

= if !b(p) A !b(s) A b(0),

1
. 1T (Di) X 5y
VDi€R(tp)

= if 1b(p) A b(s) A b(0),
1 = if b(p) A b(s) A b(0)

A recursive definition is used to define the SPARQL
expression E [15, 38] in the query planning phase and
is defined as follows: all triple patterns are SPARQL
expressions and if E1 and E2 are SPARQL expressions
then E1 »< E2 is also a SPARQL expression. The join

cardinality of two expressions E1 and Es is estimated
as follows:

C(E1=E2)
= M(E1) x M(E2) x Min(C(E1),C(E2))

where the average frequency of multi-valued predicates
in the expression E is defined as M(E). In M(E), E
is not the result of joins between triple patterns but
the triple pattern itself. M(E) is calculated using the
following equation:

M(E) =

1/v2 if b(p) A b(s) A b(0),
C(E)/distSbjs(p,D)

1 other

If subject of the triple pattern is involved in the join , it
is defined as j(s), and b(s), b(0), and b(p) are defined
as bound subject, object, predicate respectively.

SPLENDID: SPLENDID [14] also uses VoID statis-
tics to generate a query execution plan. It uses a dy-
namic programming approach to produce a query exe-
cution plan. SPLENIDID makes use of both hash(><;)
and bind(»<;) joins.

Triple pattern cardinality is estimated as follows:

cardy(?, p,?) = cardy(p)

cardy(s,?,7) = |d| - sel.sy

(
card,(?,7,0) = |d| - sel .o,
(

)
) =

card,(s, p, 7) = cardy(p) - sel.s4(p)
) =

cardy(?, p, o) = cardy(p) - sel.oq4(p)
) =

cardy(s, 7,0 |d| - sel.s; - sel.oy

where the card,(p) is the number of triple patterns in
the data source d having predicate p. The total number
of triples in a data source d is defined as |d|. If we have
a bound predicate then the average selectivity of subject
and object is defined as sel.s;(p) and sel.o,(p) respec-
tively; if the predicate is not bound then the average
selectivity of subject and object is defined as sel.s; and
sel.o, respectively In star-shaped queries, SPLENDID
estimates the cardinality of triple patterns having the
same subject separately. All triples with same subjects
are grouped and then the minimum cardinality of all

if b(p) A 1b(s) A 1b(0) A j(s),
C(E)/distObjs(p,D) if b(p) A 'b(o) A !b(s) A j(0),
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An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines 7

triple patterns with bound object is calculated. Lastly,
the cardinality of remaining triples with unbound ob-
jects is multiplied with the average selectivity of sub-
jects and the minimum value. Formally the equation is
defined as:

cardy(T) =

min (cardy (Tpouna)) - | | (sel-sa - cardy (Tunbound))
Join cardinality is estimated as follows.
card(ql » g2) = card (q1) - card (¢2) - sel.(¢1,¢2)

In these equations the sel. is the join selectivity of
two input relations. It defines that how many bindings
are matched between two relations. SPLENDID uses
the average selectivity of join variables as join selectiv-
1ty.

LHD: LHD [11] is a cardinality-based and index-
assisted approach that aims to maximize parallel exe-
cution of sub-queries. It makes use of the VoID statis-
tics for estimating the cardinality of triple patterns and
joins between triple patterns. LHD only uses Bind joins
for query execution. LHD implements a response-time-
cost model by making an assumption that the response
time of a query request is proportional to the total num-
ber of bindings transferred. LHD determines the total
number of triples #4, distinct subjects s, and objects o,
from the VoID description of a dataset d. The VoID file
also provides other information, such as the number
of triples t,4 ,, distinct subjects 54, and distinct objects
04 in the dataset d for a predicate p. The federation
engine makes an assumption about uniform distribution
of objects and subjects in datasets. Let’s assume a triple
pattern T : {S PO} 2, the function to get the set of rel-
evant datasets of T is defined as S (7'), the selectivity
of x with respect to S (7') is defined as selT (x), and
the cardinality of x with respect to S (T') is defined as
cardT (x).

For single triple pattern cardinality estimation, the
selectivity of each part is estimated as follows:

selr(S) =

2In this section, the letters with a question mark (e.g. 7x) denote a
variable in an RDF triple - a literal value is represented by a lower-
case letter (e.g. 0) , and a variable or a literal value is defined by an
upper-case letter (e.g. S)

Zaes 4% 4y var(P) A = var(S)

szes(r) ‘Vd/
Zedes() "plSdp sep N
2 aes () Sd-p if P=pA-var(S)
if var(S)
selp(P) =
Zaesmer i p
> desr iftP=p
1 if var(P)
selr(0) =
Laesry lloa
szesu) Od/ if Var(P) A Val“(O)
2Zuaes(n) "p/0r e p N
des(r) Od-p ifP=pA VaI‘(O)
1 if var(0)

After calculating the selectivity of each part, LHD esti-
mates the cardinality of the triple pattern as follows:

card(T) =t - sely(S) - sely(P) - selr (0)

Given two triple patterns T1 and T2, LHD calculates
the join selectivity by using the following equations:
sel (T1 > Tg) =

ZdES(Tl) ‘VdApl'Zdes(rz) Sd.p2
Zdes('l'l) Sd'zdes(rg) Sd

if joinedon §1 = S5

ZdeS(Tl) Od.p1 'ZdeS(Tz) Od.p2
Zdes(n) 01"2455(12) 0d

if joined on O; = O

ZdeS(Tl) Sd-pl'zdes(rz) 0d.p2

if joinedon S = O
des(Ty) sd'zzles(rz) 0d J 1 2

1 if no shared variables.

Using the join selectivity values, join cardinality is
estimated by the following equation:

card (T1 =Ty > ... T))

= Hcard(Ti) -sel (Ty = Tapa... < T),)
i=1

SemaGrow: SemaGrow [15] query planning is based
on VoID? statistics[39] about datasets. It makes use of
the VoID index as well as SPARQL ASK queries to
perform source selection. Three types of joins, i.e, bind,
merge, and hash are used during the query planning.

3VoID vocabulary: https://www.w3.org/TR/void/

H O 0 d o U W N

[ S L N N N N S S N O T O B O B O B O O O O O R O R S N I S I S e T o T = e S e R =
B O VW O oUW NP O LV ®Jd o0 s W NP O LV ®Jo s W NP O LW ® Jdo’s W DR O


https://www.w3.org/TR/void/

O 0 u oy U W N B

GrOr s s s R s R R D W W W W W W W W W W NN N NN NN NN R B R R B R R B e e
B O W @ W o U W NP O W O deo U s W N KHE O VW ® o U s W N BFE O VW O Jo U W NP O

8 An Empirical Evaluation of Cost-based Federated SPARQL Query Processing Engines

The selection to perform the required join operation
is based on a cost function. It uses a reactive model
for retrieving results of the joins as well as individual
triple patterns. As with CostFed, SemaGrow recursively
defines SPARQL expressions. Given a data source S,
the cardinality estimations of triple patterns and joins
is explained below.

SemaGrow contains a Resource discovery compo-
nent, which returns the list of relevant sources to a triple
pattern along with statistics. The statistics related to the
data source include (1) the number of estimated distinct
subjects, predicates, and objects matching the triple pat-
tern, and (2) the number of triple patterns in the data
sources matching the triple pattern. The cardinality of
a triple pattern is provided by the Resource Discov-
ery component. On the other hand, for more complex
expressions, SemaGrow needs to make an estimation
based on available statistics. In order to estimate com-
plex expressions based on the aforementioned basic
statistics, SemaGrow adopts the formulas described by
LHD [11]. The cardinality of each expression(E) in a
data source S, is defined as Card([E], S)).

For estimating the join cardinality we need to calcu-
late the join selectivity ( JoinSel ([E1] » [E2])), which
is given as follows:

JoinSel ([E1] = [E2]) =
min (JoinSel [E1], JoinSel [E2])
JoinSel ([T]) = min (1/d;)

In these equations E1 and E2 reside any join expres-
sions or triple patterns. The T is a single triple pattern.
d; represents the number of distinct values for the i-st
join attribute in a T. Hence, the join cardinality is given
as following:

Card([E1] = [E2],S) =
Card([E1],S) - Card([E2],S) - JoinSel ([E1] »= [E2])

Odyssey: Odyssey [13] makes use of the distributed
characteristic sets (CS) [40] and characteristic pair (CP)
[41] statistics to estimate cardinalities. Odyssey es-
timates the cardinality of each type of query differ-
ently using these statistics. For star-shaped queries,
where the subject (or object) is the same for all join-
ing triple patterns; estimated cardinality for a given set
of properties P (predicates of joining triple patterns)
is computed using CSs C; containing all these prop-
erties. The common subject (or object) is defined as

an entity. CSs can be computed by scanning once a
dataset’s triples are sorted by subject; after all the entity
properties have been scanned, the entity’s CS is identi-
fied. For each CS C, Odyssey computes statistics, i.e.,
(count(C)) represents the number of entities sharing
C and (occurrences(p, C)) represents the number of
triples with predicate p occurring with these entities.

Odyssey represents estimatedCardinality ;... (P)
as the estimated cardinality of queries that contain dis-
tinct keywords, and estimatedCardinality(P) as the es-
timated cardinality of those queries that do not contain
the distinct keyword. Formally, estimated cardinality
for star-shaped queries is defined as following:

Z (count (Cj))

PCC;

estimatedCardinality p, ;... (P) =

estimatedCardinality (P) =

Z count (C;) - H ocurrences (p;, Cj)

b ep count (C;)

For arbitrary-shaped queries, Odyssey also considers
the connections (links) between different CSs. Charac-
teristic pairs (CPs) help in describing the links between
Characteristic sets (CSs) using properties. For entities
el and e2 the link is defined as (CS s(el), CS s(e2), p),
given that (el, p,e2) € s, where s is data source. The
number of links between two CS s: C; and C}, through a
property p, is represented in statistics, which is defined
as: — count(Ci, Cj, p). The equation for estimating the
cardinality (pairs of entities with a set of properties Py
and P;) for complex-shaped queries is defined as:

estimatedCardinality (P, P, p) =

ZPkQC;/\PIQCj(Count (Ci’ Cj’p) ’ HPkEPk—{P}
ocurrences (px.Ci) \ H ocurrences (p;,C;) )
count(C;) PIEP; count(C;)

In order to reduce the complexity, Odyssey treats each
star-shaped query as a single meta-node; assuming that
the order of joins has already optimized within the star-
shaped sub-queries. It uses Characteristics Pairs (CPs)
to estimate the cardinality of joins between star-shaped
queries (meta-nodes) and uses dynamic programming
(DP) to optimize the join order and find the optimal
plan.
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6. Evaluation and Results

In this section, we discuss our evaluation results.
Complete results of our evaluation are also available
from our resource homepage. First, we evaluate our
novel metrics in terms of how they are correlated with
the overall query runtime performances. Thereafter, we
compare existing cost-based SPARQL federation en-
gines against the proposed metrics and discuss the eval-
uation results.

6.1. Experiment Setup and Hardware:

Benchmarks Used: 1In our experiments, we used the
most recent state-of-the-art benchmark for federated
engines dubbed LargeRDFBench [29]. The benchmark
includes all FedBench[30] queries. LargeRDFBench
comprises a total of 40 queries: 14 simple queries (S1-
S14) from FedBench, 10 complex queries (C1-C10), 8
complex plus high sources queries (CH1-CHS), and 10
large data queries (L1-L10). Simple queries are rela-
tively fast to execute and include the smallest number of
triple patterns ranges from 2 to 7 [29]. Complex queries
are more challenging and take more time to execute as
compared to simple queries [29]. The queries in this
category have least 8 triple patterns and contain more
joins and SPARQL operators as compared to simple
queries. The complex plus high sources queries are even
more challenging as they need to retrieve results from
more data sources and they have more triple patterns,
joins and SPARQL operators as compared to simple
and complex queries [29].

We used all queries except large data queries (L1-
L10) in our experiments. The reason for skipping L1-
L10 was that the evaluation results [29] show that most
engines are not yet able to execute these queries. Larg-
eRDFBench comprises a total of 13 real-world RDF
datasets of varying sizes. We loaded each dataset into a
Virtuoso 7.2 server.

Cost-based Federation Engines: We evaluated five—
CostFed [10], Odyessey[13], SemaGrow[15], LHD[11]

and SPLENDID[ 14]—state-of-the-art cost-based SPARQL

federation engines. To the best of our knowledge, these
are most of the currently available, open-source cost-
based federation engines.

Hardware Used: Each Virtuoso was deployed on a
physical machine (32 GB RAM, Core i7 processor and
500 GB hard disk). We ran the selected federation en-
gines on a local client machine with same specifica-
tions. Our experiments were run in a local environment

where the network cost is negligible. This is a standard
setting used in the original LargeRDFBench. Please
note that the accuracy of the cardinality estimators of
the federated SPARQL query processing is independent
of the network cost.

Warm-up and Number of Runs: We warmed up each
federation engine for 10 minutes by executing the
Linked Data (LD1-LD10) queries from FedBench. Ex-
periments were run 3 times and the results were aver-
aged. The query timeout was set to 30 minutes.

Metrics: 'We present results for: (1) g-error of triple
patterns, (2) g-error of joins between triple patterns,
(3) g-error of overall query plans, (4) errors of triple
patterns, (5) errors of joins between triple patterns, (6)
errors of overall query plans, (7) the overall query run-
times, (8) the number of tuples transferred (interme-
diate results), (9) the source selection related metrics,
and (10) quality of plans generated by query planner of
each engine. In addition, we used Spearman’s correla-
tion coefficient to measure the correlation between the
proposed metrics and the overall query runtimes. The
Spearman test is designed to assess how well the depen-
dency between two variables can be described using
a monotonic function. We preferred this test over the
Pearson test given that it is parameter-free and tests at
rank level. Using the Pearson correlation does not per-
form well in this context given the intrinsic highly mul-
tivariate nature of the variables (e.g., runtimes) used in
these tests. We used simple linear and robust regression
models to compute the correlation.

6.2. Regression Experiments

First, we wanted to investigate the dependency be-
tween proposed metrics and overall query runtime per-
formance of the federation engines. Figure 2 shows the
results of a simple linear regression experiment aim-
ing to compute the dependency between g-error and
similarity errors, and the overall query runtimes. For
a particular engine, the left figure shows the depen-
dency between the g-error and overall runtime while
the right figure in the same row shows the result of
the corresponding similarity error. The higher coeffi-
cients (dubbed R in the figure) computed in the experi-
ments with similarity errors suggest that it is likely that
the similarity errors are a better predictor for runtime.
The positive value of the coefficient suggests that an
increase in similarity error also means an increase in
the overall runtime. It can be observed from the figure
that the outliers are contaminating the results. In Figure
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3, we further apply robust regression[42—44] using the
Huber loss function [45] to remove the outliers from
the results (especially for g-errors). This is because we
wanted to avoid the possible high impact of outliers.
We observe that after removing outliers using robust
regression, the similarity-based error correlation further
increases. The lower p-values in the similarity-error-
based experiments further confirm that our metrics are
more likely to be a better predictor for runtime than the
g-error. The reason for this result is clear: Our measures
exploit more information and are hence less affected by
outliers. This is not the case for the g-error, which can
be perturbed significantly by a single outlier.

To investigate the correlation between metrics and
runtimes further, we measured Spearman’s correlation
coefficient between query runtimes and corresponding
errors of each of the first six metrics. The results are
shown in Table 2 which shows that the proposed metrics
on average have positive correlations with query run-
times, i.e., the smaller the error, the smaller the query
runtimes. The similarity error of overall query plan (Ep)
has the highest impact (i.e. 0.35) on query runtimes,
followed by the similarity error of the triple pattern
(i.e. E7 with 0.27), g-error of joins (i.e. Q; with 0.26),
similarity error of Join (i.e. E; with 0.22), q-error of
overall plan (i.e. Qp with 0.17), and g-error of triple
patterns (i.e. Qr with 0.06), respectively.

In order to do a fair comparison between the results,
we only take the common queries on which every sys-
tem passed. We eliminate the LHD [11], because it
failed in 20/32 benchmark queries, (which is a very
high number and only 12 simple queries passed), and
is not adequate for comparison. We apply Spearmam’s
correlation again on common queries. Table 3 shows
that the proposed metric has a stronger positive correla-
tion with query runtime when we deal with only com-
mon queries. The similarity error of overall plan (Ep)
and triple pattern (E7) has the highest impact (i.e. 0.40)
on query runtime, followed by similarity error of joins
(i.e. E; with 0.39), g-error of joins (i.e. Q; with 0.17)
and overall query plan (i.e. Qp with 0.17), and g-error
of triple patterns (i.e. Oy with 0.01), respectively.

Furthermore, we remove outliers influencing results
by applying robust regression on both the g-error and
proposed similarity error metrics. Robust regression is
done by Iterated Re-weighted Least Squares (IRLS)
[42]. We used Huber weights[45] as weighting function
in IRLS. This approach further fine tuned the results
and made the correlation for our proposed similarity
error and run time stronger. Table 4 shows that all met-
rics have a stronger positive correlation. However, in

our proposed metric this difference is definite. The sim-
ilarity error of overall query plan (Ep) has the highest
impact (i.e. 0.56) on query runtimes, followed by the
similarity error of the triple pattern (i.e. E7 with 0.49),
similarity error of joins (E; with 0.45), g-error of joins
(i.e. @y with 0.22), g-error of overall plan (i.e. Qp with
0.18) and triple pattern (i.e. Qp with 0.18), respectively.
Table 4 also shows that the g-error for Odyssey is neg-
atively correlated with runtime. We can also observe
high g-error values from Figure 4.

Another important factor that is worth mentioning is
that the robust regression does not abide by the normal-
ity assumptions. By comparing the p-values (at 5% con-
fidence level) of the simple linear regression and robust
regression, this gives a hint that the data is sufficiently
normally distributed for simple linear regression.

Overall, the results show that the proposed similar-
ity errors correlate better with query runtimes than the
g-error. Moreover, the correct estimation of the overall
plan is clearly the most crucial fragment of the plan gen-
eration. Thus, it is important for federation engines to
pay particular attention to the cardinality estimation of
the overall query plan. However, given that this estima-
tion commonly depends on triple patterns and join esti-
mations, better means for approximating triple patterns
and join cardinalities should lead to better plans. The
weak to moderate correlation of the similarity errors
with query runtimes suggests that the query runtime
is a complex measure affected by multi-dimensional
metrics, such as metrics given in the table 1 and the
SPARQL features, such as number of triple patterns,
their selectivities, use of projection variables, number
of joins and their types[46]. Therefore, it is rather hard
to pinpoint a single metric or a SPARQL feature which
has a high correlation with the runtime [29, 46].

6.3. g-error and Similarity-Based Errors

We now present a comparison of the selected cost-
based engines based on the 6 metrics given in Figure
4. Overall, the similarity errors of query plans given
in Figure 4a suggests that CostFed produces the small-
est errors followed by SPLENDID, LHD, SemaGrow,
and Odyssey, respectively. CostFed produces smaller
errors than SPLENDID in 10/17 comparable queries
(excluding queries with timeout and runtime errors).
SPLENDID produces smaller errors than LHD in 12/14
comparable queries. LHD produces smaller errors than
SemaGrow in 6/12 comparable queries. In turn, Sema-
Grow produces smaller errors than Odyssey in 9/15
comparable queries.
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Fig. 2.: g-error and Similarity Error vs. runtime. (Simple Linear Regression Analysis). The grey shaded area in graphs
represents the confidence interval (band) in regression line.
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Rank 1 2 3
Similarity Error

4 5 6
qg-error

Feature Ey Ep Er

Average  Qy Op Or

Average

ODYSSEY 0.11 0.14

F.Q Engines

CostFed 0.23 0.14 0.26 0.1 0.17
SemaGrow = 0.33 0.33 0.33 0.33 0.37  0.001 0.28

026 0.01 0.03 —0.06 —0.01

SPLENDID | 0.3 0.24 032 017 01 024 0.17
LHD 0.16 028 —0.2 0.08 JOBIY 0.11  0.04 0.22
Average 022 035 027 0.28 026 017  0.06 0.17

Table 2: Spearman’s rank correlation coefficients between query plan features and query runtimes for all queries.

Rank 1 2 3 4 5 6
Similarity Error g-error
Feature E; Ep Er Average Q5 Op or Average
§ CostFed 0.23 0.05 0.13
go SemaGrow —0.02 0.29
=  ODYSSEY —0.04 —-0.01 —0.20 —0.08
8 SPLENDID @ 0.35 0.27 0.36 0.12 0.04 0.21 0.12

Average

0.39 JOBIOM0043Y 017 017 001 0.12

Table 3: Spearman’s rank correlation coefficients between query plan features and query runtimes after linear

regression (only for common queries between all systems).

Rank 1 2 3 4 5 6
Similarity Error qg-error
Feature E; Ep Er Average Q5 Op or Average
€  CostFed 0.60 0.66 0.62 0.63 0.16
E" SemaGrow
= ODYSSEY | 0.25 —0.04 —-0.02 —0.20 —0.08
8 SPLENDID 0.20 0.38 0.14  0.041 0.18 0.12
Average  [JOEBINOB6IN0EONINOB00 022 018 018 0.19

Table 4: Spearman’s rank correlation coefficients between query plan features and query runtimes after robust
regression (only for common queries between all systems). E;: Similarity Error of Joins, Ep: Similarity Error of
overall query plan, E7: Similarity Error of Triple Patterns, Q,: g-error of Joins, Qp: g-error of overall query plan, Qr:
g-error Error of Triple Patterns, F.Q: Federated Query. Correlations and colors (—+): 0.00...0.19 very weak (),

0.20...0.39 weak (

An overall evaluation of the g-error of query plans
given in Figure 4b leads to the following result: CostFed
produces the smallest errors followed by SPLENDID,
SemaGrow, Odyssey, and LHD, respectively. In par-
ticular, CostFed produces smaller errors than SPLEN-
DID in 9/17 comparable queries (excluding queries
with timeout and runtime error). SPLENDID pro-
duces smaller errors than SemaGrow in 9/17 compara-

ble queries. SemaGrow produces smaller errors than

), 0.40...0.59 moderate (®#®), 0.60..

.0.79 strong (@@®), 0.80...1.00 very strong (@ @®).

Odyssey in 8/13 comparable queries. Odyssey is supe-
rior to LHD in 5/8 cases.

An overall evaluation of the similarity error in joins
leads to a different picture (see Figure 4c). While
CostFed remains the best system and produces the
smallest errors, it is followed by Odyssey, SPLEN-
DID, SemaGrow, and LHD, respectively. In particu-
lar, CostFed outperforms Odyssey in 12/17 comparable
queries (excluding queries with timeout and runtime
error). Odyssey produces less errors than SPLENDID
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in 7/14 comparable queries. SPLENDID is superior to
SemaGrow in 11/17 comparable queries. SemaGrow
outperforms LHD in 7/12 comparable queries.

As an overall evaluation of the g-error of joins given
in Figure 4d, CostFed produces the smallest errors fol-
lowed by SPLENDID, SemaGrow, Odyssey, and LHD,
respectively. CostFed produces less errors than SPLEN-
DID in 12/17 comparable queries (excluding queries
with timeout and runtime error). SPLENDID produces
less errors than SemaGrow in 9/17 comparable queries.
SemaGrow produces less errors than Odyssey in 9/13
comparable queries. Odyssey produces less errors than
LHD in 4/8 comparable queries.

Overall, the evaluation of the similarity errors of
triple patterns given in Figure 4e reveals that CostFed
produces the smallest errors followed by SPLENDID,
Odyssey, SemaGrow, and LHD, respectively. CostFed
produces smaller errors than SPLENDID in 10/17 com-
parable queries (excluding queries with timeout and
runtime error). SPLENDID produces smaller errors
than Odyssey in 15/17 comparable queries. Odyssey
produces smaller errors than SemaGrow in 7/14 com-
parable queries. SemaGrow outperformed LHD in 6/12
queries.

An overall evaluation of the g—error of triple patterns
given in Figure 4f leads to a different ranking: CostFed
produces the smallest errors followed by LHD, Sema-
Grow, SPLENDID, and Odyssey, respectively. CostFed
outperforms LHD in 6/11 comparable queries (exclud-
ing queries with timeout and runtime error). LHD pro-
duces fewer errors than SemaGrow in 5/10 comparable
queries. SemaGrow is better than SPLENDID in 10/17
comparable queries. SPLENDID produces fewer errors
than Odyssey in 7/14 comparable queries.

In general, the accuracy of the estimation is depen-
dent upon the detail of the statistics stored in the index
or data summaries. Furthermore, it is important to pay
special attention to the different types of triple patterns
(with bound and unbound subject, predicate, objects)
and joins types (subject-subject, subject-object, object-
object) for the better cardinality estimations. CostFed
is more accurate because of the more detailed data sum-
maries, able to handle the different types of triple pat-
terns and joins between triple patterns. The use of the
buckets can more accurately estimate the cardinalities
of the triple patterns with most common predicates used
in the dataset. Furthermore, it handles multi-valued
predicates. The Odyssey statistics are more detailed as
compared to SPLENDID and SemaGrow (both using
VoiD statististics). The distributed characteristic sets

(CS) and characteristic pair (CP) statistics generally
leads to better cardinality estimations for joins.

6.4. How Much Does An Efficient Cardinality
Estimation Really Matter?

We observed that it is possible for a federation engine
to produce quite a high cardinality estimation error (e.g.,
0.99 is the overall similarity error for the S11 query
in SemaGrow), yet it produces the optimal query plan.
This leads to the question, how much does the efficiency
of cardinality estimators of federation engines matter to
generate optimal query plans? To this end we analyzed
query plans generated by each of the selected engines
for the benchmark queries. In our analysis, there are
three possible cases in each plan:

— Optimal plan: In the optimal plan the best possi-
ble join order is selected based on the given source
selection performed by the underlying federation
engine, i.e., the least cardinality joins are always
executed first.

— Sub-optimal plan: In the sub-optimal plan, the
engine fails to select the best join based on the
given source selection performed by the under-
lying federation engine, i.e., the least cardinality
joins are not always executed first. Please note that
this also means that the high error in the join car-
dinality estimation leads to the sub-optimal join
order.

— Only-plan: In only-plan there is only one possible
join order according to the given source selection
performed by the underlying federation engine.
This is possible if only 1 join (excluding a left-join
due to the OPTIONAL clause in the query) needs
to be executed locally by the federation engine.
This situation occurs if there is only a single join
in the query or the federation engine creates exclu-
sive groups of joins that are executed remotely by
the underlying SPARQL endpoints.

Table 5 shows the query plan generated by the query
planners of the selected engines according to the afore-
mentioned three cases possible for each plan. Since
LHD failed to generate any query plan for the major-
ity of the LargeRDFBench queries, we are skipping it
from further discussion. In our evaluation, CostFed pro-
duced the smallest sub-optimal plans (i.e, 6 ) followed
by Odyssey (i.e., 11), SemaGrow (i.e., 12), and SPLEN-
DID (i.e, 14), respectively. The reason for CostFed’s
small number of sub-optimal plans is due the fact that
it has the fewest cardinality errors in the estimation, as
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Query CostFed SemaGrow SPLENDID Odyssey LHD

S1 OnlyP OnlyP OnlyP OnlyP OnlyP

S2 OnlyP OnlyP OnlyP OnlyP

S3 OnlyP OnlyP OnlyP OnlyP

S4 OnlyP OnlyP OnlyP
g S5 OnlyP OnlyP OnlyP
B S6
5 s7
2 S8 OnlyP OnlyP OnlyP OnlyP OnlyP
g S9
2 S10

S11

S12

S13

S14

C1 Failed

C2 Failed
g Cc3 Failed
g C4 Failed
(=4 C5 Failed
ks c6 Failed
g c7 Failed
S C8 Failed

Cc9 Failed

C10 Failed
s CHI1 Failed
&g CH2 Failed
E‘,.g CH3 Failed
==t CH4 Failed Failed
: § CH5 Failed Failed
=5 CH6 Failed Failed
ER CH7 Failed
] CHS8 Failed

Table 5: Query Plans generated by query engines for all queries (Simple, Complex, Complex + High Dimensional
Queries). Failed:( ) Engine Failed to produce Query Plan, OptP:(®) Optimal Query Plan generated by engine,
subOpt:(®) subOptimal Plan generated by engine, OnlyP:(¢) Only Plan possible.

discussed in the previous section. In addition, it gener-
ates the highest number of possible only-plans (which
can be regarded as optimal plans for the given source se-
lection information). This is because CostFed’s source
selection is more efficient in terms of the total triple
pattern-wise sources selected without losing recall (ref.
see Table 8).

In Table 5, we can see that only a few sub-optimal
query plans were generated for simple queries. This is
due to the fact that simple category queries of the Larg-
eRDFBench contain very few joins (avg. 2.6, ref. [29])
to be executed by the federation engines. Thus, it is rel-
atively easy to find the best join execution order. How-
ever, for complex, and complex-plus-high-data sources
queries, more sub-optimal plans were generated. This
is because these queries contain more joins (around 4

joins on avg., ref. [29]), hence a more accurate join car-
dinality estimation is required to generate the optimal
join ordering plan. In conclusion, efficient cardinality
estimation is more important for complex queries with
more possible join ordering.

6.5. Number of Transferred Triples

Table 6 shows the number of tuples sent and received
during the query execution for the selected federation
engines. The number of sent tuples is related to the
number of endpoint requests sent by the federation
engine during query processing [7, 13]. The number
of received tuples can be regarded as the number of
intermediate results produced by the federation engine
during query processing [13]. The smaller number of
transferred tuples is considered important for fast query
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Queries CostFed SemaGrow

Odyssey LHD SPLENDID

sent received sent received

sent

received sent received sent received

st B 100 47 100 34

S2 12 11 11 11

S3 Failed Failed 4
S4 20 15 3
S5 18 18 20
S6 283 1766 36 1618
S7 29 371
S8

S9

S10 21 20055
S11 14 15
S12 Failed Failed 7442

S13 228 1161 10267 105 1161 10267
S14 2877 4033 2877 4033

Avg 379 2168 “ 981 910 2987
Cl Failed Failed Failed Failed

C2 1532 1352 Failed Failed 1532
C3 13343 8670 Failed Failed

C4 TO TO Failed Failed Failed Failed
C5 TO Failed Failed Failed Failed TO TO
Co6 TO TO Failed Failed

C7 Failed Failed

C8 Failed Failed

C9 Failed Failed Failed Failed

C10

112 1541 Failed Failed Failed Failed

CHI 390 6253 1709 9439
CH2 TO TO TO TO
CH3

CH4
CH5 Failed Failed Failed Failed
CH6 Failed Failed Failed Failed

cH7 | EEEEEEEl =10 railed

CHS8 TO TO Failed Failed

Avg 740 24622 2145 4450

TO
TO
TO

TO
TO
TO
TO
NA

TO Failed Failed Failed Failed
TO Failed Failed Failed Failed
TO Failed Failed Failed Failed

Failed Failed Failed Failed Failed Failed

TO Failed Failed TO TO
TO Failed Failed 2551094010
TO Failed Failed Failed Failed
TO Failed Failed Failed Failed
NA NA NA 1551 9401

Table 6: Number of transferred tuples. NA: "Not applicable". Failed means either "Runtime Error" or "Incomplete
Results" and TO: "Timeout", which means Query Execution exceeds threshold value. "green color"(®) means lowest
value among all systems, and "red color"(®) means highest value among all systems.

processing [13]. In this regard, CostFed ranked first
(31 green boxes, i.e., it had the best results among the
selected engines), followed by Odyssey with 24 green
boxes, SemaGrow with 12 green boxes, LHD with 10

green boxes, and then SPLENDID with 9 green boxes.

In most queries, CostFed and Odyssey produced the
only possible plans only-plan, which means only one
(excluding the Left join for OPTIONAL SPARQL op-
erator) was locally executed by the federation engine.
Consequently, these engines transfer fewer tuples in
comparison to other approaches. The largest difference
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is observed for S13, where CostFed and Odyssey clearly
outperform the other approaches, transferring 500 times
fewer tuples. The Number of received tuples in LHD
is significantly high in comparison to other approaches.
This is because it does not produce normal tree-like
query plans. Rather, LHD focuses on generating inde-
pendent tasks that can be run in parallel. Therefore, in-
dependent tasks retrieve a lot of intermediate results,
which need to be joined locally in order to get the final
query resultset.

Another advantage that CostFed and Odyssey have
over other approaches is their join-aware approach for
triple pattern-wise sources selected (TPWSS). This
join-aware nature of these engines saves many tuples
from transferring due to less overestimation of sources.
CostFed also performs better because it maintains cache
for ask requests and saves many queries from sending
to different sources. Another important factor that is
worth mentioning here is that the number of transferred
tuples does not consider the number of columns in the
result set, but only counts the number of rows returned
or sent to the endpoints. We also observed that in the
case of an only-plan or an optimal plan, the number of
received tuples is less compared to sub-optimal plans,
clearly indicating that a smaller number tuples is key to
fast query processing. The amalgamated average of all
queries could also be misleading because in complex
queries, there are more failed/timeout queries for some
systems while producing answers in others. Therefore,
we calculated the separate average for each category
of queries i.e., simple, complex and complex and high
data. From our analysis of results, it concludes that if
an engine produces optimal or only-plan, the number
of intermediate results also decreases.

6.6. Indexing and Source Selection Metrics

A smaller-sized index is essential for fast index
lookup during source selection, but it can lack impor-
tant information. In contrast, large index sizes provide
slow index lookup and are hard to manage, but may
lead to better cardinality estimations. To this end, it is
important to compare the size of the indexes generated
by the selected federation engines. Table 7 shows a
comparison of the index/data summaries’ construction
time and the index size* of the selected state-of-the-
art cost-based SPARQL federation approaches. Sema-
Grow, SPLENDID and LHD rely on VOID statistics

4The index size is given by size of summaries used for cardinality
estimation (in MBs).

with a size of 1 MB for the complete LargeRDFBench
datasets of size 34.3GB. CostFed’s index size is 10.5
MB while Odyssey’s is 5.2 GB. The much bigger index
size used by Odyssey might makes this approach less
appropriate to be used for Big RDF datasets such as
WikiData, Linked Geo Data etc. CostFed’s index con-
struction time is around lhr and 6 mins for the complete
LargeRDFBench datasets. SPLENDID, SemaGrow and
LHD took lhr and 50 mins to generate the index. The
Index construction time for Odyssey was 86 hrs and 30
mins, which makes it difficult to use for Big datasets or
datasets with frequent updates.

According to [29], the efficiency of source selection
can be measured in terms of: (1) total number of triple
pattern-wise sources selected (#T), (2) the number of
SPARQL ASK requests sent to the endpoints (#A) dur-
ing source selection, and (3) the source selection time.
Table 8 shows a comparison of the source selection al-
gorithms of the select triple stores across these metrics.
As discussed previously, the smaller #T leads to better
query plan generation [29]. The smaller #A leads to
smaller source selection time, which in turn leads to
smaller query execution time. In this regard, CostFed
ranked first (83 green boxes, i.e., the best results among
the selected engines), followed by Odyssey with 56
green boxes, LHD with 15 green boxes, SPLENDID
with 10 green boxes, and then SemaGrow with 9 green
boxes.

The approaches that perform a join-aware and hy-
brid (SPARQL + index) source selection lead to smaller
#T [29]. Both Odyssey and Costfed perform join-
aware source selection and hence lead to smaller #T
than other selected approaches. The highest number of
SPARQL ASK requests is sent by index-free federation
engines, followed by hybrid (SPARQL + index), which
in turn is followed by index-only federation engines
[29]. This is because, for index-free federation engines
such as FedX, the complete source selection is based
on SPARQL ASK queries. The Hybrid engines such as
CostFed, SPLENDID, SemaGrow and Odyssey make
use of both index and SPARQL ASK queries to per-
form source selection, thus some of the SPARQL ASK
requests are skipped due to the information used in
the index. The Index-only engines, such as LHD, only
make use of the index to perform the complete source
selection. Thus, these engines do not consume a sin-
gle SPARQL ASK query during source selection. The
source selection time for such engines is much smaller
due to only index-lookup without sending outside re-
quests to endpoints. However, they have more #T than
hybrid (SPARQL + index) source selection approaches.
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CostFed SemaGrow SPLENDID Odyssey LHD

Index Gen. Time(min) 65
Index Size(MBs) 10

110 533 110
1 5200 1

Table 7: Comparison of index construction time (Index Gen. Time) and Index Size for selected federation engines

6.7. Query Execution Time:

Finally, we present the query runtime results of
the selected federation engines across the different
queries categories of LargeRDFBench. Figure 5 gives
an overview of our results. In our runtime evaluation on
simple queries (S1-S14) (see Figure 5a), CostFed has
the shortest runtimes, followed by SemaGrow, LHD,
Odyssey, and SPLENDID, respectively. CostFed’s run-
times are shorter than SemaGrow’s on 13/13 compara-
ble queries (excluding queries with timeout and runtime
error) (average runtime = 0.5sec for CostFed vs. 2.5sec
for SemaGrow). SemaGrow outperforms LHD on 4/11
comparable queries with an average runtime of 2.5sec
for SemaGrow vs. 2.7sec for LHD. LHD’s runtimes
are shorter than Odyssey’s on 8/10 comparable queries
with an average runtime of 8.5sec for Odyssey. Finally,
Odyssey is clearly faster than SPLENDID on 8/12 com-
parable queries with an average runtime of 131sec for
SPLENDID.

Our runtime evaluation on the complex queries (C1-
C10) (see Figure 5b) leads to a different ranking:
CostFed produces the shortest runtimes followed by
SemaGrow, Odyssey, and SPLENDID, respectively.
CostFed outperforms SemaGrow in 6/6 comparable
queries (excluding queries with timeout and runtime
error) with an average runtime of 3sec for CostFed vs.
9sec for SemaGrow. SemaGrow’s runtimes are shorter
than Odyssey’s in 3/4 comparable queries with an av-
erage runtime of 63sec for Odyssey. Odyssey is bet-
ter than SPLENDID in 5/5 comparable queries, where
SPLENDID’s average runtime is 98sec.

The runtime evaluation on the complex and high
sources queries (CH1-C8) given in Figure 5c estab-
lishes CostFed as the best query federation engine, fol-
lowed by SPLENDID and then SemaGrow, respectively.
CostFed’s runtimes are smaller than SemaGrow in 3/3
comparable queries (excluding queries with timeout
and runtime error), with an average runtime of 4sec for
CostFed vs. 191sec for SemaGrow. SPLENDID has no
comparable queries with CostFed and SemaGrow. LHD
and Odyssey both fail to produce results when faced
with complex queries.

7. Conclusion

In this paper, we presented an extensive evaluation of
existing cost-based federated query engines. We used
existing metrics from relational database research and
proposed new metrics to measure the quality of car-
dinality estimators of selected engines. To the best of
our knowledge, this work is the first evaluation of cost-
based SPARQL federation engines focused on the qual-
ity of the cardinality estimations.

— The proposed similarity-based errors have a more
positive correlation with runtimes, i.e., the smaller
the error values, the better the query runtimes.

— The higher coefficients (R values) with similarity
errors, (as opposed to g-error), suggest that the
proposed similarity errors are a better predictor for
runtime than the g-error.

— The smaller p-values of the similarity errors, as
compared to g-error, further confirm that similarity
errors are more likely to be a better predictor for
runtime than the g-error.

— Errors in the cardinality estimation of triple pat-
terns have a higher correlation to runtimes than the
error in the cardinality estimation of joins.Thus,
cost-based federation engines must pay particular
attention to attaining accurate cardinality estima-
tions of triple patterns

— The number of transferred tuples have a direct co-
relation with query runtime, i.e., the smaller the
number of transferred tuples the smaller the query
runtimes.

— The smaller number of triple pattern-wise sources
selected is key to generate maximum only possible
query plans (only-plan).

— On average, the CostFed engine produces the
fewest estimation errors and has the shortest exe-
cution time for the majority of LargeRDFBench
queries.

— The weak to moderate correlation of the cardi-
nality errors with query execution time suggests
that the query runtime is a complex measure af-
fected by multi-dimensional performance metrics
and SPARQL query features.
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Odyssey SPLENDID

LHD SemaGrow CostFed

Qry #T #A ST #T  #A ST

#T

#A ST #T #A ST #T #A ST

S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
T/A

261
8
34
15
8
36
67
5
69
46
12
20

18 6

Cl1
Cc2
C3
C4
C5
Co6
C7
C8
C9
C10
T/A

CHI1
CH2
CH3
CH4
CH5
CH6
CH7
CHS8
T/A

RE
RE RE RE

RE RE RE
RE RE 57
RE RE 66
NA NA 228 328 136

RE RE

Table 8: Selected federation Engines comparison in terms of source selection time ST in msec, total number of
SPARQL ASK requests #A, and total triple pattern-wise sources selected #T. (RE represents "Runtime Error",TO
represents "Time Out" of 20 min, T/A represents "Total/Average" where Average is for ST, and Total is for #T and
#A), NA represents "Not Applicable". "green color"(®) means lowest value among all systems, and "red color"(®)

means highest value among all systems.

— The proposed cardinality estimating metrics are
generic and can be applied to non-federated
cardinality-based query processing engines as

well.

As future work, we want to compare heuristic-based
(index-free) federated SPARQL query processing en-
gines with cost-based federated engines. We want to

investigate how much an index is assisting a cost-based
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(c) Average execution time of complex and high data structures (ch) queries(LargeRDFBench)
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federated SPARQL engine to generate optimized query
execution plans.
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