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Abstract. A sequence is a useful representation of many real-world phenomena, such as co-authors, recipes, timelines, and me-
dia. Consequently, sequences are among the most important data structures in computer science. In the Semantic Web, however,
little attention has been given to Sequential Linked Data. In previous work, we have shown the sequence models that Knowledge
Graphs commonly use; that these models have an impact in query performance; and that this impact is invariant to specific
triplestore implementations. However, the specific list operations that management of Sequential Linked Data requires, beyond
the simple retrieval of an entire list or a range of its elements, remain unclear. Besides, the impact of the different models in
data management operations remains unexplored. Consequently, there is a knowledge gap on how to implement a real Semantic
Web list Application Programming Interface (API) that enables standard list manipulation and generalizes beyond specific data
models. In order to address these challenges, here we build on our previous work and propose a set of read-write Semantic
Web list operations in SPARQL, towards the realization of such an API. We identify five classic list-based computer science
sequential data structures (linked list, double linked list, stack, queue, and array), from which we derive nine atomic read-write
operations for Semantic Web lists. We propose a SPARQL implementation of these operations with five typical RDF data models
and compare their performance by executing them against six increasing dataset sizes and four different triplestores. In light of
our results, we discuss the feasibility of our devised API and reflect on the state of affairs of Sequential Linked Data.

Keywords: Sequential Linked Data, Benchmark, RDF, SPARQL

1. Introduction

Sequences are typical representations of real-world
sets of entities that require an order and possibly a
reference to their position. They support a large vari-
ety of domain knowledge, such as scholarly metadata
(paper authors — e.g., the last author), historical data
(biographies and timelines), media metadata (track-
lists — e.g., the fourth track), social media content
(recipes, howto) and musical content (e.g., scores as
MIDI Linked Data [25]). Applications typically need
to perform a variety of operations on lists, including
multiple types of access and edits, typically in the form
of queries (in, e.g., SPARQL). The practical complex-
ity of these queries can have a potentially tremendous
impact on performance and service availability [9].

*Corresponding author. E-mail: enrico.daga@open.ac.uk.

The Semantic Web community engineered various
list models across the years. For example, the Or-
dered List pattern [16], which refers to the rdf:List
of W3C specifications. A pragmatic solution is refer-
ring to each member of the list with RDF contain-
ment membership properties (rdf:_1, rdf:_2,. . . )
within an n-ary relation of type rdf:Seq. Another
alternative option may involve picking a solution from
the Ontology Design Patterns catalogue [12], for ex-
ample, the Sequence ODP1. However, either of these
choices could have a significant impact in terms of
query-ability (fitness for use in applications), per-
formance and, ultimately, availability of the data.
In our previous work [13, 26], we have shown that
most of these practical list models can be reduced
to five common representations: sequence, list, URI-

1Sequence: http://ontologydesignpatterns.org/wiki/Submissions:
Sequence.
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based, number-based, and sequence ontology pattern;
and we have started a benchmark initiative to eval-
uate their querying performance in various dataset
sizes and triplestore configurations. Other SPARQL-
based benchmarks evaluate competing storage solu-
tions against generic use cases, deemed to be represen-
tative of critical features of the query language [11] or
to mirror how real users query linked data [29].

However, an important question remains: what
methods a generic, SPARQL-based Application Pro-
gramming Interface (API) should support? In other
words, what are the standard, atomic read-write opera-
tions for the management of Sequential Linked Data?
In this article, we propose to extend our empirical eval-
uation approach of Semantic Web lists with a full set of
well-grounded, read-write atomic operations that con-
stitute the core of a Semantic Web List API. We seek
inspiration for these operations in five classic computer
science sequential data structures. These data struc-
tures give rise to a set of nine atomic read-write op-
erations. We implement these operations as SPARQL
queries, and we use these queries to develop our ex-
periments on query performance. For this, we re-use
our surveyed methods for modelling sequences in RDF
[13], and we extend our proposed pragmatic bench-
mark [26] for assessing their performance in conjunc-
tion with these atomic SPARQL queries in a number of
triplestores and dataset sizes. Specifically, we demon-
strated in [13] how the efficiency of retrieving sequen-
tial linked data depends primarily on how they are
modelled and that the impact of a modelling solution
on data availability is independent from the database
engine (triple-store invariance hypothesis). Here, we
complement this analysis by focusing on data man-
agement and perform a thorough assessment of List
read-write operations for the Semantic Web.

Our contributions are:

– A Semantic Web List API proposal consist-
ing of nine atomic, read-write list operations in
SPARQL: first, rest, append, append_front, prev,
popoff, set, get, and remove_at. We base these op-
erations on those that build the basis of the clas-
sic computer science sequential data structures of
linked lists, double linked lists, stack, queue, and
array (Section 4)

– An updated survey and catalogue on RDF list
model (Section 5)

– We accordingly update our benchmark to evaluate
them (Section 6)

– Experiments to evaluate the performance of these
read-write API operations in SPARQL with com-
peting List data models, on datasets of increasing
sizes, and against four different triplestores (Sec-
tion 7).

The rest of the paper is structured as follows. We
survey the related work in Section 2. We introduce the
research methodology in Section 3. We report our find-
ings in atomic read-write list operations based on se-
quential data structures in Section 4. Sections 5 and
6 provide background on our survey and benchmark.
Section 7 reports on the experiments. Results are dis-
cussed in Section 8, and we conclude our paper in Sec-
tion 9. In what follows, we use these namespace pre-
fixes:

midi: <http://purl.org/midi-ld/midi#>
midi-note: <http://purl.org/midi-ld/notes/>
midi-prog: <http://purl.org/midi-ld/programs

/>
prov: <http://www.w3.org/ns/prov#>
rdf: <http://www.w3.org/1999/02/22-rdf-syntax

-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>
xml: <http://www.w3.org/XML/1998/namespace>
xsd: <http://www.w3.org/2001/XMLSchema#>
song: <http://purl.org/midi-ld/song/example/>
ex: <http://www.example.org/>

2. Related work

The application of Web APIs backed by SPARQL
Endpoints is an active research area, mainly concerned
with making it easier for developers to interact with
RDF data [15, 23]. This concern is a core motivation
for the present work, whose purpose is to characterise
the requirements for a Sequential Linked Data API
and evaluate possible implementations of such API in
SPARQL by comparing a set of prototypical options
as data models. We consider research in two overlap-
ping areas with our work: modelling of sequential RDF
data; and performance of querying over such data us-
ing benchmark queries and datasets.

The Resource Description Framework (RDF) spec-
ification [32] and the RDF Schema (RDFS) recom-
mendation [8] define container classes for representing
collections. These containers are: rdf:Bag for con-
tainers of unordered elements; rdf:Alt for “alterna-
tive” containers whose typical processing will be to se-
lect one of its members; and rdf:Seq for containers
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of elements whose order is indicated by the numeri-
cal order of the container membership properties. Ad-
ditionally, [8] also defines a collection vocabulary to
describe a closed collection, i.e. one that can have no
more members, through the class rdf:List and the
properties rdf:first, rdf:rest, and rdf:nil.
In JSON-LD [33] ordered lists like "@list": [
"joe", "bob", "jaybee" ] have equivalent
representations as rdf:List in RDF. Similarly, the
RDF 1.1 Turtle [5] syntax allows for the specifica-
tion of rdf:List instances, e.g. :a :b ( "bob"
"alice" "carol"). Apart from W3C standards,
a number of ontology design patterns [18] have been
proposed to represent sequences, e.g. the Sequence
Ontology Pattern2 (SOP) and the Collections Ontol-
ogy [10] that focus on handling lists in OWL 2 DL,
specifically. In our previous work [13] we propose a
set of list modelling patterns that emerge from global
Linked Data publishing. These patterns are used in a
subsequent benchmark, List.MID [26], that we also
apply and extend here.

We focus on practical approaches that assess query-
ing sequential RDF data; for a theoretical study on the
complexity of SPARQL, see [28]. The Semantic Web
community has developed a number of benchmarks
for evaluating the performance of SPARQL engines,
proposing both benchmark queries and benchmark
data. The Berlin SPARQL Benchmark (BSBM) [7]
generates benchmark data around exploring products
and analyzing consumer reviews. The Lehigh Uni-
versity Benchmark (LUBM) [20] facilitates the eval-
uation of Semantic Web repositories by generating
benchmark data about universities, departments, pro-
fessors and students. SP2Bench [30] is a benchmark
for SPARQL processors that enables comparison of
optimization strategies, the estimation of their gen-
erality, and the prediction of their benefits in real-
world scenarios; it includes a benchmark data gener-
ator based on the DBLP bibliographic database [22].
Similarly, the DBpedia SPARQL benchmark [27] fo-
cuses on human-written queries against non-relational
schemas. The Waterloo SPARQL Diversity Test Suite
(WatDiv) focuses on “a wide spectrum of SPARQL
queries with varying structural characteristics and se-
lectivity classes” [3]. Other datasets, such as Linked
SPARQL queries (LSQ) [29], focus exclusively on of-
fering benchmark queries from (structured) SPARQL
query logs but typically miss benchmark data against

2http://ontologydesignpatterns.org/wiki/Submissions:Sequence

which to run these queries. More recently, frameworks
aiming at the comparability and integration of these
benchmarks have emerged, such as IGUANA [11]3.
Pragmatic approaches to benchmarking are not new,
and it is common practice to develop ad-hoc bench-
marks to support specific applications (e.g. [34]).
Benchmark methodologies have been proposed for
covering specific aspects of SPARQL, for example,
federation [19].

The Linked Data Benchmark Council (LDBC) is an
industry-led initiative aimed at raising state of the art
in the area by developing guidelines for benchmark
design. For example, LDBC stresses the need for ref-
erence scenarios to be realistic and believable, in the
sense that should match a general class of use cases.
Besides, benchmarks should expose the technology to
a workload, and by doing that it is essential to focus
on choke points when defining the various tasks [4].
These guidelines inspire our previous work on propos-
ing a benchmark, List.MID, for evaluating the per-
formance of common Semantic Web list representa-
tions under various query engines and operations [26].

3. Methodology

In this section, we specialise the methodology pre-
viously introduced in [13] to pragmatically evaluating
the performance of competing models for the repre-
sentation of Sequential Linked Data with relation to
a standard List API, grouping atomic read-write op-
erations. Phases of the methodology are requirements,
survey, formalisation, and evaluation.

Requirements The reference scenario is the access
and manipulations of Lists stored as RDF data and ex-
posed on a Semantic Web API, backed by a SPARQL
endpoint, following an approach akin to [15]. In the
initial phase, we identify the core set of standard,
atomic read-write operations that a generic, SPARQL-
based API for the management of lists should support.
To do this, we systematically analyse classic computer
science data structures, and study the operations they
support in their definitions. To focus on lists, we re-
strict ourselves to sequential data structures, i.e. an el-
ement can only reference linearly following or pre-
ceding elements (this excludes data structures such as
trees or graphs). The main objective is to identify the
fundamental operations for sequential data access and

3See also https://github.com/dice-group/triplestore-benchmarks

http://ontologydesignpatterns.org/wiki/Submissions:Sequence
https://github.com/dice-group/triplestore-benchmarks


4 E. Daga et al. / Sequential linked data: the state of affairs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

manipulation. By surveying classic computer science
data models for sequences, we aim to collect all these
operations, primarily the overlapping ones, to design
such an API.

Survey Modelling solutions should be relevant to
practitioners by referring to a real dataset adopting the
modelling practice. After listing the modelling solu-
tions, we abstract them in structural patterns and en-
sure these patterns are minimal concerning the data
model. Surveyed schemas can incorporate other re-
quirements (for example, a list of authors may include
components to express things other than the order such
as affiliation or email). Here, we reuse the survey of
RDF Lists included in [13].

Formalisation Each list modelling solution and op-
eration should be encoded in RDF and SPARQL. No-
tably, each list modelling pattern must be challenged
to fit the API operations designed in the require-
ments phase and the respective solutions encoded in
SPARQL queries. By doing this, it is fundamental to
ensure that the output is semantically equivalent, ide-
ally the same, for all query variants. Besides, it is fun-
damental that queries are minimal by keeping them in
the purest form, for example, adopting good practices
for SPARQL query optimization [31]. Particularly: (a)
avoiding subqueries, when possible, (b) reducing the
use of SPARQL operators to the minimum necessary,
(c) projecting variables only when strictly necessary,
and (d) preferring blank nodes to named variables4. We
build upon our previous work [13, 26] to achieve this.

Evaluation The objective of this phase is to evaluate
the different solutions empirically. Being the Linked
Data standing on a Web application architecture (the
client/server approach), the performance measure we
focus on is overall response time. In order for results to
be relevant to real applications, we measure response
time with different data sizes and generate a set of re-
alistic datasets at different scales. We perform experi-
ments for each modelling prototype; each atomic read-
write operation; with different dataset sizes; and with
different database engines.

Therefore, database engines may perform differ-
ently, or experiments results differ depending on the
nature of the modelling solutions, showing a trend
independently from the actual implementation. Here,
we focus on the more complex relationship between

4In fact, blank nodes do not require the matching node value to be
kept in memory as part of the query solution to be projected.

models, operations, dataset sizes, and triplestore im-
plementations to foster a broader discussion on where
the strengths, and possible weaknesses, of a SPARQL-
based list manipulation API lie.

4. Sequential data structures

In this Section, we identify abstract data structures
that are typically considered to represent ordered se-
quences. We focus on linear data structures that (a)
preserve the order of the items, (b) are continuous se-
quences, (c) have unrestricted size, and (d) include a
single element in each position. In what follows, we
describe the data structures by listing the core func-
tions they are meant to support and express their ex-
pected behaviour by axiomatic semantics.

4.1. Linked List

The abstract list type L with elements of some type
E is defined by the following functions and axioms:

append_ f ront : E × L→ L

f irst : L→ E

rest : L→ L

f irst(append_ f ront(e, l)) = e

rest(append_ f ront(e, l)) = l

e ∈ E, l ∈ L

(1)

where append_ f ront is the operator that constructs
memory objects which hold two values or pointers
to values. It is implicit that append_ f ront(e, l) 6=
l, append_ f ront(e, l) 6= e, append_ f ront(e1, l1) =
append_ f ront(e2, l2) if e1 = e2 and l1 = l2. Note that
f irst(nil()) and rest(nil()) are not defined.

4.2. Double Linked List

A variant of a linked list in which each item has a
link to the previous item as well as the next. This al-
lows easily accessing list items backward as well as
forward and deleting any item in constant time. Fol-
lowing the definition of linked lists, a double linked
list is defined with the same functions and axioms but



E. Daga et al. / Sequential linked data: the state of affairs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

defining an additional prev pointer and append func-
tion:

append_ f ront : (E × L)→ L

append : (L× E)→ L

f irst : L→ E

rest : L→ L

prev : L→ L

f irst(append_ f ront(e, l)) = e

rest(append_ f ront(e, l)) = l

prev(append(l, e)) = l

e ∈ E, l ∈ L

(2)

4.3. Stack

A stack is a collection of items in which only the
most recently added item may be removed. The lat-
est added item is at the top. Basic operations are
append_ f ront and popo f f . Often f irst (or top) is
available, too. Also known as "last-in, first-out" or
LIFO. These operations, already introduced in the pre-
vious sections, in the case of Stack have a different ax-
iomatic semantics, as follows.

popo f f (append_ f ront(v, S )) = S

f irst(append_ f ront(v, S )) = v
(3)

where S is a stack and v is a value.

4.4. Queue

A queue is a collection of ordered items that sup-
ports addition of items (to the tail) and access (or dele-
tion) to the earliest added item only [2]. Typically, the
retrieval of the earliest item (head of the queue), corre-
sponds to its deletion. In what follows we specify three
operations: (1) append - adds an element at the end of
the queue; (2) first - retrieves the element at the top of
the queue; and (3) popoff - deletes the element from
the top of the queue. The following axioms summarise

the semantics of the operations:

f irst(append(v, [])) = v

popo f f (append(v, [])) = []

f irst(append(v, append(w,Q))) =

f irst(append(w,Q))

popo f f (append(v, append(w,Q))) =

append(v, remove(append(w,Q)))

(4)

where Q is a queue and v and w are values.
The queue data structure, also known as FIFO (First

in, first out) is generally conceived as having unlim-
ited size, although there can be implementations that
forces a fixed number of items (bounded queue [1]).
However, here we only consider queues with dynamic
size.

4.5. Array

An Array is a collection of objects that are randomly
accessible by an index, often an integer value. Since
our focus is on sequential data structures, we only con-
sider sorted arrays, where the index is an integer. In
addition, we restrict the definition to a data structure
whose index also represents the position of the item in
the list. For example, the item at index 2 being the sec-
ond element in the sequence. Also, we do not consider
arrays with constrained sizes. One implication of this
is that removing one item may imply the shifting of
others. The operations on Arrays are the following:

set : (e× i× L)→ L

get : (i× L)→ ei

remove_at : (i× L)→ L

set(e, i, L) = L ⇐⇒ Li−1 6= ∅

remove_at(i, L) = L→

∀En ∈ L : n > i→ n = n− 1

(5)

5. Survey of the RDF data models

In this section we present a summary of Seman-
tic Web list models and their properties, recalling the
research in [13]. These models were surveyed by se-
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Table 1
Summary of operations and relevant abstract data structures.

Operation LL DLL S T QU ARR

f irst : L→ E x x x x -

rest : L→ L x x - - -

append : L× E → L x x - x -

append_ f ront : E × L→ L x x x -

prev : L→ L - x - - -

popo f f : L→ L - - x x -

set : E × I × L→ L - - - - x

get : I × L : E - - - - x

remove_at : I × L→ L - - - - x

Fig. 1. The RDF Sequence model.

lecting them from the following sources, including
W3C standards5 ontology design patterns [18], re-
source track papers in the International Semantic Web
Conference (e.g. [6], [25]), and lookups of relevant
terms in Linked Open Vocabularies [36]. For a further
detail and a description of the surveying methodology,
see [13].

5.1. RDF Sequences

The RDF Schema (RDFS) recommendation [8]
defines the container classes rdf:Bag, rdf:Alt,
rdf:Seq to represent collections. Since rdf:Bag
is intended for unordered elements, and rdf:Alt
for “alternative” containers whose typical process-
ing will be to select one of its members, these two
models do not fit our sequence definition, and thus
we do not include them among our candidates. Con-
versely, we do consider RDF Sequences: collections
represented by rdf:Seq and ordered by the proper-
ties rdf:_1, rdf:_2, rdf:_3, ... instances of the
class rdfs:ContainerMembershipProperty
(see Figure 1).

Properties. RDF Sequences indicate membership
through various properties, which are used in triples in

5https://www.w3.org/standards/

Fig. 2. The RDF List model.

predicate position. Ordering of elements is absolute in
such predicates through an integer index after an un-
derscore (“_”).

5.2. RDF Lists

The RDFS recommendation [8] also defines a vo-
cabulary to describe closed collections or RDF Lists.
Such lists are members of the class rdf:List. Re-
sembling LISP lists, every element of an RDF List
is represented by two triples: <Lk rdf:first Ek>,
where Ek is the k-th element of the list; and <Lk

rdf:rest Lk+1>, representing the rest of the list (in
particular, rdf:nil to end the list) (see Figure 2).

Properties. RDF Lists indicate membership through
the use of a unique property rdf:first in predicate
position. Ordering of elements is relative to the use of
the rdf:rest property, and given by the sequential
forward traversal of the list.

5.3. URI-based Lists

A more practical approach followed by many RDF
datasets [6, 25] consists of establishing list member-
ship through an explicit property or class membership,
and assigning order by a unique identifier embedded
in the element’s URI. For instance, the triple <http:
//ld.zdb-services.de/resource/1480923-0> a <http://
purl.org/ontology/bibo/Periodical> indicates that the
subject belongs to a list of periodicals with list order
14809234; the triple <http://purl.org/midi-ld/piece/
8cf9897/track00> midi:hasEvent <http://purl.org/midi-ld/
piece/8cf9897/track00/event0006> identifies the 7th
event in a MIDI track [25] (see Figure 3).

Properties. URI-based lists indicate containment
through the use of a class membership and a member-
ship property. Order is absolute and given by sequen-
tial identifiers embedded in the item URI string.

https://www.w3.org/standards/
http://ld.zdb-services.de/resource/1480923-0
http://ld.zdb-services.de/resource/1480923-0
a
http://purl.org/ontology/bibo/Periodical
http://purl.org/ontology/bibo/Periodical
http://purl.org/midi-ld/piece/8cf9897/track00
http://purl.org/midi-ld/piece/8cf9897/track00
midi:hasEvent
http://purl.org/midi-ld/piece/8cf9897/track00/event0006
http://purl.org/midi-ld/piece/8cf9897/track00/event0006
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Fig. 3. The URI-based list model.

Fig. 4. The Number-based list model.

5.4. Number-based Lists

Another practical model, used e.g. in the Sequence
Ontology/Molecular Sequence Ontology (MSO) [17],6

also uses class membership or object properties to
specify the elements that belong to a list, but use
a literal value in a separate property to indicate or-
der. For instance, the triple <http://purl.org/midi-ld/
piece/8cf9897/track00> midi:hasEvent <http://purl.
org/midi-ld/piece/8cf9897/track00/event0006> indi-
cates that the object belongs to a list of events;
and the additional triple <http://purl.org/midi-ld/piece/
8cf9897/track00/event0006> midi:absoluteTick 6 in-
dicates that the event has index 6 (see Figure 4).

Properties. Number-based lists indicate contain-
ment through the use of class membership and a mem-
bership property. Order is absolute and given by an
integer index in a literal as an object of an additional
property.

5.5. Sequence Ontology Pattern

A number of models use RDF, RDFS and OWL
to represent sequences in domain specific ways. For
example, the Time Ontology [21] and the Timeline
Ontology7 offer a number of classes and properties
to model temporality and order, including timestamps
(see Section ??), but also before/after relations. The

6https://github.com/The-Sequence-Ontology/Specifications/
blob/master/gff3.md

7http://motools.sourceforge.net/timeline/timeline.html#

Sequence Ontology Pattern8 (SOP) is an ontology de-
sign pattern [18] that “represents the ’path’ cognitive
schema, which underlies many different conceptual-
izations: spatial paths, time lines, event sequences, or-
ganizational hierarchies, graph paths, etc.”. We select
SOP as an abstract model representing this group of
list models (see Figure 5).

Fig. 5. The Sequence Ontology Pattern model.

Properties. SOP lists indicate list membership
through properties. Order is relative and given by the
sequential forward or backward traversal of the se-
quence.

6. Benchmark

To evaluate the performance of atomic read-write
Semantic Web list operations, we use the List.MID
benchmark, “an RDF list data generator and query
template set specifically designed for the evaluation
of RDF lists” [26]. We introduce the following exten-
sions:

– The prop_number order model can be set now
to generate unique and sequential IDs for list ele-
ments, to avoid collisions

– The list of operations is extended to the atomic
read-write Semantic Web list operations derived
from Section 4

– New dataset sizes are included to generate lists of
500, 2k, 3k, 5k, and 10k elements

6.1. The List.MID benchmark

The first component of the List.MIDbenchmark is
an algorithm to generate RDF datasets with lists ac-
cording to the modeling patterns discussed above. The
source code and all documentation are available on
GitHub at https://github.com/midi-ld/List.MID.

8http://ontologydesignpatterns.org/wiki/Submissions:Sequence

http://purl.org/midi-ld/piece/8cf9897/track00
http://purl.org/midi-ld/piece/8cf9897/track00
midi:hasEvent
http://purl.org/midi-ld/piece/8cf9897/track00/event0006
http://purl.org/midi-ld/piece/8cf9897/track00/event0006
http://purl.org/ midi-ld/piece/8cf9897/track00/event0006
http://purl.org/ midi-ld/piece/8cf9897/track00/event0006
midi:absoluteTick
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://motools.sourceforge.net/timeline/timeline.html#
https://github.com/midi-ld/List.MID
http://ontologydesignpatterns.org/wiki/Submissions:Sequence
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midi:MIDIFile mo:Track

mo:available_as

midi:Piece midi:Track midi:Event

mo:MusicArtist
foaf:maker

midi:hasTrack
midi:hasEvent

xsd:int
midi:tickOffset

midi:NoteOffEventmidi:NoteOnEvent

midi:Note
midi:velocity

midi:ProgramChangeEvent

xsd:int

midi:note

prov:wasDerivedFrom

midi:channel

midi:Program

xsd:int

midi:note

xsd:intxsd:string

xsd:int

rdfs:label midi:octave

midi:pitch

midi:program

xsd:string
rdfs:label

<http://dbpedia.org/
resource/Grand_piano>

rdfs:seeAlso

xsd:floatxsd:int

midi:metricWeight

midi:scaleDegree

xsd:int

xsd:string

midi:format

midi:key

xsd:string

midi:lyrics

<http://purl.org/midi-ld>

void:inDataset

Fig. 6. Excerpt of the MIDI ontology. Tracks contain lists of sequen-
tial MIDI events.

The benchmark uses real-world data using MIDI
files [35], a symbolic music encoding, as a basis. The
reason for this is that MIDI files, and symbolic mu-
sic notations in general, must encode musical events
(the start of a note, the end of a note, the switching
of one instrument for another, etc.) in strict sequential
order to preserve musical coherence. Consequently,
List.MID uses the midi2rdf algorithm proposed
in [24] to generate RDF graphs from MIDI files. The
generator uses the Semantic Web list models presented
in Section 5 to encode lists of MIDI events.

Figure 6 shows an excerpt of the MIDI ontology
used by the original midi2rdf algorithm. The rele-
vant elements here are midi:Track, each containing
a sequence of related musical events (e.g. notes played
by one single instrument); and midi:Event, each
representing a musical event that happens in a strict or-
der within the track (e.g. the start of a note, the end of
a note). For more details on MIDI event encoding see
[24, 25, 35].

The original midi2rdf algorithm generates im-
plicit lists of events by encoding their order in the
URI of the event (e.g. ex:track00/event02 hap-
pens immediately before ex:track00/event01
and immediately after ex:track00/event01),
and hence adhering to the URI-based Lists pattern dis-
cussed in Section 5. We extend this generation to the
remaining patterns.

6.1.1. Usage
The first step is to find a MIDI file with the desired

list size. The MIDI Linked Data cloud API9 incorpo-
rates a query10 to retrieve all track sizes in number of
events in descending order from the dataset [25]. Since
this query is expensive, we include a resulting dump

9See http://grlc.io/api/midi-ld/queries/
10http://grlc.io/api/midi-ld/queries/#/default/get_events_count_

per_track_piece

in the benchmark. An inspection of this result allows
users to select a MIDI identifier of the chosen size; this
identifier can be used in a second query11 to download
an RDF dump for the MIDI file. This dump can be
transformed into an input MIDI file with the included
rdf2midi command [24].

Once the chosen input MIDI file has been generated,
the midi2rdf CLI tool of the List.MIDbenchmark
can be used to generate its RDF graph according to the
requested list pattern. The syntax is:

midi2rdf [-h]
[--format [{xml,n3,turtle,

nt,pretty-xml,trix,
trig,nquads,
json-ld}]]

[--gz] [--order [{uri,
prop_number,
prop_time,
seq,list,sop}]]

[--version]
filename [outfile]

The relevant introduced argument is --order,
which lets the user select the RDF list modeling to use
for data generation. The mapping for the values of this
argument with the patterns of Section 5 is: RDF Se-
quences→ seq, RDF Lists→ list, URI-based Lists
→ uri, Number-based Lists→ prop_number, Se-
quence Ontology Pattern→ sop. For example, to gen-
erate benchmark data of a preselected http://purl.org/
midi-ld/pattern/bc7d9c25f81a4d90c000c30b6efc887d
MIDI with 16,638 list elements using the RDF List
pattern, we do:

midi2rdf
--format turtle
--order list
bc7d9c25f81a4d90c000c30b6efc887d.mid
benchmark.ttl

The output benchmark.ttl file is ready to be
used in a standard compliant RDF store. As shown in
the syntax above, the benchmark is agnostic with re-
spect to serialization formats, and the most frequent
(including JSON-LD) are supported.

11http://grlc.io/api/midi-ld/queries/#/default/get_pattern_graph

http://grlc.io/api/midi-ld/queries/
http://grlc.io/api/midi-ld/queries/##/default/get_events_count_per_track_piece
http://grlc.io/api/midi-ld/queries/##/default/get_events_count_per_track_piece
http://purl.org/midi-ld/pattern/bc7d9c25f81a4d90c000c30b6efc887d
http://purl.org/midi-ld/pattern/bc7d9c25f81a4d90c000c30b6efc887d
http://grlc.io/api/midi-ld/queries/##/default/get_pattern_graph
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6.2. Queries

In this section we propose a set of SPARQL query
templates for retrieval of elements of lists, according
to the patterns described in Section 5.

We extend the list of supported operations in the
benchmark, by considering all the atomic read-write
operations that derive from the sequential data struc-
tures discussed on Section 4. Specifically, these opera-
tions are:

– FIRST: returns the first element of the list
– REST: returns all the subsequent elements from

the list from the current one
– APPEND: adds the specified element at the end

of the list
– APPEND_FRONT: adds the specified element at

the beginning of the list
– PREV: returns all the previous elements from the

list from the current one
– POPOFF: returns the first element of the list and

removes it from the list
– SET: replaces the indicated element of the list

with the supplied element
– GET: returns the indicated element of the list
– REMOVE_AT: removes the indicated element of

the list

In order to systematically evaluate these in datasets
following one of the RDF list modeling patterns (Sec-
tion 5), we implement these operations as SPARQL
query templates, considering the definitions and ax-
iomatic semantics specified in Section 4. When the op-
eration requires pointing to a specific item (GET, SET,
and REMOVE_AT), we picked a random position in
the second-half of the sequence and kept the same
value in all experiments of the same list size. The val-
ues are reported in Table 2. The queries can be found

Size Position
500 332

1k 657

2k 1222

3k 2472

5k 3789

10k 7322
Table 2

Position of the n-th item for benchmarking the operations GET, SET,
and REMOVE_AT

online in the GitHub repository of the benchmark12.

7. Experiments

We prepared a dataset for each modelling solution
and six MIDI tracks of different sizes: 500, 1k, 2k,
3k, 5k, and 10k list items respectively. Therefore, there
will be a dataset with a list of size 500 implement-
ing, for example, the S eq pattern, one of size 1k, and
so on for each model type, for a total of 30 datasets.
The number of triples varies depending on the size of
the list, the content of the item (the MIDI events), and
the modelling solutions. We report statistics about the
size of datasets in Table 3. We performed experiments
with multiple triple stores. Each database was prepared
by loading all the data, each one of them in a differ-
ent named graph. At runtime, the query template was
adapted to target a specific named graph, for example,
the data for testing the Seq model on a 3k list item13.

Experiments are performed with the following databases
and only considering the SPARQL RDF entailment
regime:

– Virtuoso Open Source V7, configured to expect
12G of free RAM, no additional rules enabled ex-
cept the basic SPARQL 1.1.

– Blazegraph 2.1.5, Java VM configured with 12G
of max heap, without reasoning or inferencing
support rather then the plain SPARQL 1.1 sup-
port.

– Apache Fuseki v3 on TDB, Java VM with 12G of
max heap.

– Apache Fuseki v3 In Memory. This is the same
system as the TDB-based but using a full in-
memory setting, also with 12G of max heap
space.

The client application performing the queries and
measuring the response time resides on the same ma-
chine as the database, in order to avoid the impact of
network bandwidth on the overall response time. It is
worth reminding that the objective of the experiments
is not the compare the various data management solu-
tions but to compare the performance of the different
modelling practices and their scalability with lists of

12See https://github.com/enridaga/list-benchmark/tree/master/
queries

13One may argue that the use of an index on the graph component
may affect performance. However, whatever the impact of using the
FROM clause is, it will be equally distributed in the various models.

https://github.com/enridaga/list-benchmark/tree/master/queries
https://github.com/enridaga/list-benchmark/tree/master/queries
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Table 3
Datasets

Dataset Triples

<data:500k-uri> 2025

<data:500k-seq> 2029

<data:500k-list> 2530

<data:500k-prop_number> 3025

<data:500k-sop> 3238

<data:1k-uri> 5944

<data:1k-seq> 5948

<data:1k-list> 6949

<data:1k-sop> 7942

<data:1k-prop_number> 7944

<data:2k-uri> 12011

<data:2k-seq> 12015

<data:2k-list> 14016

<data:2k-sop> 16009

<data:2k-prop_number> 16011

<data:3k-uri> 17989

<data:3k-seq> 17993

<data:3k-list> 20994

<data:3k-sop> 23987

<data:3k-prop_number> 23989

<data:5k-uri> 30015

<data:5k-seq> 30019

<data:5k-list> 35020

<data:5k-sop> 40013

<data:5k-prop_number> 40015

<data:10k-uri> 58642

<data:10k-seq> 58646

<data:10k-list> 68647

<data:10k-sop> 78640

<data:10k-prop_number> 78642

growing sizes. Experiments are executed on a Linux
VM equipped with Intel(R) Xeon(R) CPU E5-2640 v4
@ 2.40GHz 8-core and 32G RAM. The details of the
virtual machine used for hosting the experiments are
the following:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
NUMA node(s): 1
Vendor ID: GenuineIntel

CPU family: 6
Model: 63
Model name:

Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz

Stepping: 0
CPU MHz: 2399.998
BogoMIPS: 4799.99
Hypervisor vendor: VMware
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 25600K
NUMA node0 CPU(s): 0-7

During the experiments, no application was running
on the instance apart from system processes, the target
database server, and the experiment itself.

To summarise, the dimensions considered in our ex-
periments are, therefore: (a) Model (one of): Seq, List,
Number Index, SOP, URI Index (b) Dataset Size (one
of): 500, 1k, 2k, 3k, 5k, 10k (c) Query (one of): FIRST,
GET, REST, PREV, APPEND, APPEND_FRONT,
POPOFF, SET, REMOVE_AT (d) Database (one of):
Virtuoso, Blazegraph, Fuseki-TDB, Fuseki-Mem.

In what follows, we report on overall response time,
meaning the amount of time the client had to wait
before obtaining the complete answer. We repeated
each experiment 10 times and report measures refer-
ring to average values. A timeout of 300 seconds has
been set. We also analysed the standard deviation (SD).
Most of the read operations (FIRST, GET, REST, and
PREV) reported an SD value below 10% of the to-
tal time. A few cases reported a higher SD, but they
all referred to short response times (below the sec-
ond) and are therefore not problematic. Write oper-
ations (APPEND, APPEND_FRONT, POPOFF, SET,
REMOVE_AT) reported a higher SD; in all cases be-
low the 20%. We can conclude that the reported av-
erages are significant and represent well the response
time of a client application querying lists of that form
and size. However, here we focus on the performance
concerning client applications and not on studying re-
source consumption on the server-side.

Tables 6-14 report the average values response time.
Figures 9-17 report on performance and scalability.
Results are coherent for all the queries and datasets and
demonstrate clear trends across different database en-
gines. Supplementary material is available for repro-
ducibility [14].
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8. Mapping requirements and RDF modelling
solutions

We discuss the results of the experiments by looking
into each operation individually first. After that, we de-
rive general conclusions with relation to the core data
models introduced in the requirements section.

FIRST The operator requires access and retrieval
of the item at the top of the list. For example, the
SPARQL query for the List data model is the follow-
ing:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 a midi:Track ;
5 midi:hasEvents/rdf:first ?event
6 }
7 LIMIT 1

All modelling solutions seem to perform very well at
the scales considered. Table 6 and Figure 9 display the
values in milliseconds and the scalability. Fluctuation
in the performance is not significant as the response
is always returned in less than 200 milliseconds in all
cases.

GET The operator performs a lookup and retrieves
the N-th element of the sequence. The operation scales
well for all models with a materialised index (URI,
PROP_NUMBER, and SEQ). When the index is im-
plicit, it is derivable from the position of the element in
the nested structure (SOP and List), as in the following
query (taking the case of the SOP data model):

1 SELECT
2 ?event
3 WHERE {{
4 SELECT ?event (count(?prev) as ?i)
5 WHERE {
6 song:track00 a midi:Track ;
7 midi:hasEvent ?event .
8 ?event sequence:follows* ?prev .
9 }

10 GROUP BY ?event
11 }}
12 ORDER BY ?i
13 LIMIT 1
14 OFFSET 657

However, this happens at a high cost, as it can be seen
from Table 7 and Figure 10. In particular, with large
lists, the operation either times out (Blazegraph and
Virtuoso), or returns an error (a StackOverflow Java
exception, in the cases of Fuseki with 10k sized lists).
This result is significant as it impacts several opera-
tions that depend on retrieving items at specific posi-
tions.

REST The operation returns the content of the se-
quence, except for the first element, following the se-
quence order. The following is an example query for
the SEQ data model:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 a midi:Track ;
5 midi:hasEvents [ ?seq ?event ] .
6 # extracted from, e.g. rdf:_32
7 BIND (xsd:integer(SUBSTR(STR(?seq), 45))
8 AS ?index) .
9 FILTER (?index > 1)

10 }
11 ORDER BY ?index

Again, models based on a nested structure perform
poorly as the databases require to traverse the graph for
retrieving all the elements, performing an aggregation
to compute the index, and sort the returned elements,
as in the case of List:

1 SELECT ?event
2 WHERE {
3 {{SELECT ?event (count(?mid) as ?i)
4 WHERE {
5 song:track00 a midi:Track ;
6 midi:hasEvents ?top .
7 ?top rdf:rest* ?mid .
8 ?mid rdf:rest* ?elt .
9 ?elt rdf:first ?event .

10 FILTER (?elt != ?top)
11 }
12 GROUP BY ?event
13 ORDER BY ?i}}
14 }

Similarly, this harms the scalability of the approach
(see Table 8 and Figure 11.

PREV This operation mirrors the previous one, aim-
ing at retrieving the sequence except for the last ele-
ment. The performance of the data models is compa-
rable to the REST operator, except this time, the query
needs to know the highest index, as the sequence is
of dynamic size. A notable case is the negative per-
formance of the Seq data model in combination with
Virtuoso. The SPARQL query is akin to the following:

1 SELECT
2 ?event
3 WHERE {
4 song:track00 a midi:Track ;
5 midi:hasEvents [ ?seq ?event ] .
6 BIND (xsd:integer(SUBSTR(str(?seq), 45))
7 AS ?index) .
8 FILTER (?index < ?max) .
9 # Find the Max

10 {{SELECT (MAX(?pos) as ?max)
11 WHERE {
12 song:track00 a midi:Track ;
13 midi:hasEvents [ ?seq [] ] .
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14 BIND (xsd:integer(SUBSTR(str(?seq), 45))
15 AS ?pos)
16 }}}
17 } ORDER BY ?index

Extracting the index from the predicate seems more
demanding than doing the same from the entity URI.

APPEND This operation adds an element to the list.
The operation requires either computing the index
value (for models materializing indexes) or reaching
the last item in the sequence. The following is the
query for the List data model:

1 DELETE { ?elt rdf:rest rdf:nil }
2 INSERT {
3 ?elt rdf:rest [
4 a rdf:List ;
5 rdf:first <http://example.org/appended-event> ;
6 rdf:rest rdf:nil
7 ]
8 } WHERE {
9 song:track00 a midi:Track ;

10 midi:hasEvents ?events .
11 ?events rdf:rest* ?elt .
12 ?elt rdf:rest rdf:nil
13 }

With relation to the latter problem, it is interesting to
note how the SOP model has the advantage of directly
linking all items to the container entity (the list) and,
therefore, does not require to traverse the whole list:

1 INSERT {
2 song:track00
3 midi:hasEvent
4 ex:appended-item .
5 ex:appended-item
6 sequence:follows ?event .
7 ?event sequence:precedes
8 ex:appended-item .
9 } WHERE {

10 song:track00 a midi:Track ;
11 midi:hasEvent ?event .
12 FILTER NOT EXISTS {
13 ?event sequence:precedes []
14 }
15 }

This difference is reflected in the experiments results,
in Table 10 and Figure 10.

APPEND_FRONT This operation is easy, and all
models perform well, as in the case of FIRST.

POPOFF Removing the head of a list is an interest-
ing operation as it requires an update of all indexes in
models that materialise them. For example, Seq and
URI require to refactor the predicate and the entity
names involved. The SEQ data model can be updated
with the following query:

1 DELETE {
2 ?events rdf:_1 ?event
3 }
4 INSERT {
5 ?events ?shifted ?event
6 }
7 WHERE {
8 BIND (iri(concat("http://www.w3.org/1999/02/22-rdf

-syntax-ns#_", str(?index - 1))) as ?shifted)
.

9 song:track00 a midi:Track ;
10 midi:hasEvents ?events .
11 ?events ?seq ?event .
12 BIND (xsd:integer(SUBSTR(str(?seq), 45))
13 AS ?index) .
14 FILTER (?index > 1)
15 }

The impact of refactoring URIs is difficult to bench-
mark as it partly depends on how the index is inserted
in the URI string. The solution implemented in the
MIDI benchmark assumes a zero-padded string at the
end of the URI. Embedding the index in URIs seems
the least efficient option as it requires the rewriting of
all triples associated with that entity! We report the re-
sulting query in Figure 7.

SET This operation has a behaviour similar to GET.
List and SOP suffer from the same shortcomings, as
illustrated by Table 13 and Figure 16.

REMOVE_AT This operation is the most expensive
of all, as it requires to find the item in to be removed
and shift all subsequent items, refactoring additional
data, when appropriate. Performance data is reported
in Table 14 and Figure 17. The cost of the operation is
on the side of materializing the index, for example, in
case of PROP_NUMBER:

1 DELETE {
2 song:track00 midi:hasEvent ?e .
3 ?e midi:id 23789 .
4 ?event midi:id ?oldId
5 }
6 INSERT {
7 ?event midi:id ?newId
8 }
9 WHERE {{

10 SELECT ?event ?oldId ?newId WHERE {
11 song:track00> a midi:Track ;
12 midi:hasEvent ?event .
13 ?event midi:id ?oldId .
14 FILTER ( ?oldId > 23789 ) .
15 BIND ((?oldId-1) AS ?newId)
16 }
17 }}

For SOP and List, the query needs to traverse the links
and perform multiple joins to refactor the graph struc-
ture (see Figure 8).

Table 4 summarises the fitness for use of each sur-
veyed RDF data model with relation to the sequential
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1 DELETE {
2 song:track00 midi:hasEvent ?popthis ;
3 midi:hasEvent ?olduri .
4 ?popthis ?p1 ?o1 .
5 ?olduri ?p ?o .
6 }
7 INSERT {
8 song:track00 midi:hasEvent ?newuri .
9 ?newuri ?p ?o .

10 }
11 WHERE {
12 # Point to the first element
13 BIND (<http://purl.org/midi-ld/piece/2473e18eec6cc55b82c5dddab3bea353/track00/event0000> as ?popthis) .
14 OPTIONAL { ?popthis ?p1 ?o1 }
15 OPTIONAL { ?olduri ?p ?o }
16 {{
17 SELECT ?olduri ?newuri WHERE {
18 song:track00 a midi:Track ;
19 midi:hasEvent ?olduri .
20 BIND (xsd:integer(SUBSTR(str(?olduri), 77))
21 AS ?index) .
22 FILTER (?index > 0) .
23 BIND (?index-1 AS ?newindex) .
24 BIND (
25 IF ( STRLEN(str(?newindex)) = 1, CONCAT("000",str(?newindex)),
26 IF ( STRLEN(str(?newindex)) = 2, CONCAT("00",str(?newindex)),
27 IF ( STRLEN(str(?newindex)) = 3, CONCAT("0",str(?newindex)),
28 str(?newindex)
29 )
30 )
31 ) AS ?strindex
32 ) .
33 BIND (iri(concat("http://purl.org/midi-ld/piece/2473e18eec6cc55b82c5dddab3bea353/track00/event", ?

strindex)) as ?newuri) .
34 }
35 }}
36 }

Fig. 7. The SPARQL Update query for POPOFF + URI

Table 4
Performance of data models with relation to the operators. 5: very
good, 1: very poor.

SEQ URI P_N SOP LIST

FIRST 5 5 5 5 5

GET 5 5 5 1 1

REST 5 5 5 1 1

PREV 3 5 5 1 1

APPEND 5 5 5 5 3

APPEND_FRONT 4 4 5 5 5

POPOFF 5 3 5 5 5

SET 5 5 5 1 1

REMOVE_AT 3 3 4 1 1

data structures. Also, we summarized the results con-
cerning the scalability of the data models for each op-
erator, classifying each one of them in 5 Likert cate-
gories. Results are reported in Table 5. The major prob-
lem seems to be related to RDF models following the
nested-tree approach. Pragmatically, they only perform
well if the application requires a stack. Indeed, in or-

der to retrieve pointers to the last item, we need to tra-
verse the whole list. This problem affects negatively
the performance of all operations aimed at retrieving
portions of the list (PREV, REST) but also the ones de-
pending on finding the n-th elements of the sequence
(GET, SET, REMOVE_AT). Operations requiring to
switch the position of elements in the list, such as RE-
MOVE_AT and POPOFF, still require to retrieve the
target item before performing the index update. Inter-
estingly, materializing the index as an RDF property
seems to be the way to go in all cases, as managing the
consistency of the index in a data property seems more
sustainable than exploiting the links in the graph, also
considering eventual book-keeping operations, such as
index update.

Overall, the efficiency of retrieving sequential linked
data depends heavily on how they are modelled and
can vary depending on the application use case. In-
deed, modelling practices have an impact on the per-
formance and availability of sequential retrieval. Cru-
cially, the behaviour of the various models is consis-
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1 DELETE
2 {
3 song:track00 midi:hasEvent ?event .
4 ?event sequence:precedes ?next .
5 ?next sequence:follows ?event .
6 ?prev sequence:precedes ?event .
7 ?event sequence:follows ?prev .
8 }
9 INSERT {

10 ?prev sequence:precedes ?next .
11 ?next sequence:follows ?prev .
12 }
13 WHERE {
14 song:track00 midi:hasEvent ?event
15 OPTIONAL { ?event sequence:precedes ?next } .
16 OPTIONAL { ?event sequence:follows ?prev } .
17 {{
18 {{
19 SELECT ?event (count(?prev) as ?i)
20 WHERE {
21 song:track00 a midi:Track ;
22 midi:hasEvent ?event .
23 ?event sequence:follows* ?prev .
24 }
25 GROUP BY ?event
26 ORDER BY ?i
27 LIMIT 1
28 OFFSET 23789
29 }}
30 }}
31 }

Fig. 8. The SPARQL Update query for the SOP + REMOVE_AT

Table 5
Mapping of abstract list data types with RDF data models.

Abstract Data Type Operations SEQ URI PROP_NUMBER SOP LIST

LL FIRST, REST, APPEND, APPEND_FRONT Y Y Y N N

DLL FIRST, REST, PREV, APPEND, APPEND_FRONT M Y Y N N

ST FIRST, APPEND_FRONT, POPOFF Y M Y Y Y

QU FIRST, APPEND, POPOFF Y M Y Y M

Arr SET, GET, REMOVE_AT M M Y N N

tent among different triple stores and allow us to dis-
tinguish design patterns that perform well in practice
from others that perform worse —from the point of
view of the identified requirements. The most efficient
way of representing order is by using indexes in values
like in prop_number.

Embedding the ordering semantics in string URIs
does not seem an elegant solution. Indexes hidden
in URIs perform less well in the case of manage-
ment operations, both on the entity (subject/object)
and the rdf:Seq method (predicate). The reasons
are probably related to database indexes on the ba-
sic triple patterns. However, here we focus on trends
observed among the various database engines and do
not discuss specific differences between them. Using
the rdf:Seq pattern may be a reasonable solution iff

SPARQL engines would account of the special mean-
ing of container membership properties and sort those
predicate URIs accordingly. A small update to the
SPARQL specification seems a reasonable way to go.

In our previous work [13], we hypothesised that
modelling solutions that do not store an index (SOP
and List) would, in principle, better fit management
operations. In this article, we considered a thorough
set of core operations and evaluated the various mod-
elling solutions with relation to the problem of man-
aging sequences as Linked Data. With the given re-
sults, the methods relying on rdf:List (the rec-
ommended standard) and SOP (a high-quality on-
tology engineering solution) underperform in com-
monly used triple stores and, under these circum-
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stances, their use should be discouraged for manag-
ing lists in RDF.

Finally, it is worth remarking how our evaluation of
the data models was done with relation to efficiency
of managing Linked Data, leaving out other dimen-
sions of analysis such as expressivity of the model at
the logic level, compliance with high-level ontological
requirements, and compliance to entailment regimes.
Besides, we only focused on sequences accepting a
single item in each position and most of the operations
implemented in the benchmark (like the queries for
GET and REMOVE_AT) would not be correct outside
that assumption.

9. Conclusions

In this article, we focused on Sequential Linked
Data and evaluated the feasibility of an API specifica-
tion for managing lists on the Semantic Web. With the
aid of a model-centric and task-oriented approach to
benchmark development [13], we were able to study
pragmatically how to better manage Sequential Linked
Data and identified a fundamental problem of typical,
recommended solutions. A significant result lies in the
fact that managing index as literal is by far more sus-
tainable than relying on the graph structure to estab-
lish order or embedding the index value in an entity or
predicate strings.

In the future, we aim at further exploring the appli-
cations of Sequential Linked Data. We expect that a
thorough analysis of end-user applications will expand
the set of operations. Specific cases could require test-
ing membership containment and manipulating por-
tions of the list. Finally, we work towards the develop-
ment of a full-fledged linked data Web API for efficient
management of ordered sequences in RDF.
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Table 6
FIRST: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 24.90 36.90 26.40 26.40 36.20 82.80

sop 37.40 53.70 52.30 58.70 79.10 175.50

uri 65.90 56.60 62.30 46.20 84.30 139.10

prop_number 34.50 47.60 45.40 47.80 64.80 89.40

list 26.10 40.50 43.20 21.90 42.90 36.00

(b) Virtuoso

Model 500 1k 2k 3k 5k 10k

seq 14.60 16.90 14.20 13.00 14.60 14.10

sop 15.20 17.30 20.00 14.60 18.10 13.50

uri 15.30 28.40 21.60 19.20 29.10 20.80

prop_number 13.90 22.50 15.50 16.80 25.10 16.30

list 15.90 13.80 16.00 13.90 31.90 13.80

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 15.40 20.60 15.20 16.00 17.40 14.40

sop 22.20 26.50 37.20 47.10 65.70 116.80

uri 33.70 27.80 22.80 31.40 39.40 60.70

prop_number 23.60 27.90 38.10 46.90 70.90 123.20

list 16.00 26.20 16.30 14.20 15.30 14.60

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 19.90 21.50 16.20 13.20 15.70 13.90

sop 20.80 29.60 32.60 39.00 62.10 103.60

uri 22.90 24.60 20.90 24.20 32.00 43.00

prop_number 22.50 25.00 33.40 38.90 59.90 105.60

list 26.50 23.60 16.50 14.50 15.20 16.60
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 9. FIRST: Performance and scalability
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Table 7
GET: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 43.70 51.40 45.40 52.70 76.80 156.7

sop 2213.80 12492.40 32941.00 62560.20 133663.50 E

uri 51.50 50.00 51.10 50.30 72.10 164.8

prop_number 33.10 48.70 41.60 50.30 57.40 121.6

list 3263.10 11976.20 44989.10 84454.00 167979.60 E

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 897.00 19.20 123.30 177.00 285.70 531.20

sop 803.60 16788.60 146970.80 E E E

uri 14.30 21.40 26.10 25.70 32.80 44.90

prop_number 13.30 14.20 17.10 16.80 16.90 30.10

list 834.00 17183.60 159166.70 E E E

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 19.10 26.20 27.70 35.50 39.70 65.60

sop 925.10 3822.30 15129.20 35024.90 97671.10 E

uri 20.10 20.50 23.20 31.30 36.60 56.00

prop_number 25.50 30.00 38.10 48.00 68.50 120.80

list 1819.10 7036.20 30232.40 70424.40 201876.20 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 20.20 24.20 26.10 23.80 33.30 49.20

sop 908.30 25283.30 14139.80 33207.20 96399.40 E

uri 20.40 22.30 24.40 20.90 28.40 43.10

prop_number 26.40 33.20 46.10 61.70 103.60 199.70

list 1608.20 46404.50 23774.30 54725.20 129584.80 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 10. GET: Performance and scalability
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Table 8
REST: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 56.30 50.30 59.60 77.90 110.30 210.12

sop 2103.90 12042.00 32384.50 61278.70 130310.50 E

uri 55.90 48.70 60.40 66.70 96.20 235.77

prop_number 38.80 47.50 52.50 71.20 83.30 176.66

list 3393.70 11573.00 44714.00 87013.70 166621.20 E

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 89.54 32.30 152.60 225.80 361.40 703.00

sop 852.70 16586.00 146744.10 E E E

uri 23.40 32.40 49.80 62.90 97.00 179.20

prop_number 20.20 26.50 34.70 43.90 65.80 118.40

list 891.80 17140.60 146361.90 E E E

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 23.30 31.70 40.20 53.30 76.60 139.70

sop 927.70 3821.40 15173.90 34814.20 98412.60 E

uri 27.20 33.30 33.70 47.90 64.10 110.60

prop_number 24.30 32.70 48.00 61.40 91.70 167.00

list 1841.60 7099.20 30637.30 72646.00 203595.80 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 23.80 35.10 46.10 65.50 107.40 213.80

sop 892.90 21599.80 14212.60 33000.00 97940.80 E

uri 26.10 34.70 49.00 61.10 101.70 200.30

prop_number 24.40 36.80 56.10 76.50 128.30 251.90

list 1179.60 38955.70 24048.30 57729.90 138462.70 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 11. REST: Performance and scalability
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Table 9
PREV: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 79.00 70.90 92.30 121.10 151.60 2605.00

sop 2086.50 9010.00 34912.50 65806.60 135775.30 E

uri 78.80 72.80 85.60 109.10 138.60 245.20

prop_number 36.70 43.40 47.30 63.60 72.80 186.80

list 3296.70 10981.60 43160.00 82901.60 153101.70 E

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 2243.30 5114.60 34866.40 79253.80 215425.70 E

sop 849.20 17612.40 147105.20 E E E

uri 68.10 76.70 60.80 85.90 120.70 234.80

prop_number 16.40 21.30 25.40 39.10 47.40 85.50

list 881.60 17097.40 143865.00 E E E

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 26.40 37.00 54.50 73.50 104.10 199.40

sop 923.50 3784.60 14966.80 34206.80 98235.20 E

uri 31.40 36.90 46.10 62.20 90.80 161.00

prop_number 23.00 29.60 43.10 60.10 87.10 151.10

list 1814.40 6926.90 30165.80 70452.40 200824.90 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 28.30 37.10 59.50 80.80 135.90 266.20

sop 900.30 3457.50 14032.00 32710.40 94139.30 E

uri 29.10 46.70 55.50 77.40 123.90 248.20

prop_number 24.80 33.60 44.20 69.50 109.10 205.90

list 1153.10 6221.90 23491.50 57660.70 136128.30 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 12. PREV: Performance and scalability
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Table 10
APPEND: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 64.40 56.90 57.90 68.40 75.20 754.90

sop 34.80 50.50 54.40 59.70 96.10 135.60

uri 92.00 63.80 62.70 60.70 75.00 105.10

prop_number 43.70 47.50 41.50 46.20 43.70 47.20

list 739.60 1134.10 3091.50 3846.10 6143.20 12105.00

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 26.30 24.40 194.60 344.60 712.40 1782.30

sop 21.20 19.70 27.90 30.80 61.50 227.70

uri 30.10 21.10 31.40 30.60 40.90 59.80

prop_number 25.80 18.70 184.50 356.30 710.60 1930.40

list 54.90 58.60 126.30 224.70 520.10 1782.90

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 25.20 31.80 36.80 43.30 59.30 106.30

sop 25.80 26.80 30.60 36.30 43.30 69.30

uri 29.80 30.10 34.80 43.50 56.30 93.40

prop_number 19.40 19.80 20.90 18.50 21.20 19.10

list 33.30 60.10 58.90 77.80 97.50 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 20.90 21.50 24.40 24.60 37.40 56.20

sop 17.20 22.10 19.90 27.60 37.00 51.80

uri 18.80 25.40 22.00 22.20 35.10 43.80

prop_number 17.60 17.30 15.00 14.20 15.40 14.50

list 24.40 28.00 23.70 31.20 36.80 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 13. APPEND: Performance and scalability
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Table 11
APPEND_FRONT: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 395.30 376.40 463.80 695.60 886.90 14564.40

sop 32.90 53.40 69.40 73.90 71.00 98.20

uri 602.10 1008.30 1862.90 2649.20 4823.90 9314.10

prop_number 32.40 33.20 30.50 30.80 29.70 36.30

list 38.30 38.90 37.40 33.90 39.70 37.00

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 117.10 41.90 75.40 102.30 157.60 297.40

sop 18.00 16.10 25.80 35.10 40.30 201.60

uri 108.50 52.90 64.80 84.70 129.00 204.90

prop_number 15.80 14.00 18.20 16.60 15.00 13.40

list 14.50 14.90 16.40 15.60 16.50 16.00

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 32.30 42.30 43.90 47.60 57.00 74.50

sop 23.00 27.20 31.90 49.10 45.80 69.90

uri 40.40 60.20 76.30 104.70 151.30 267.00

prop_number 19.00 20.30 18.90 17.70 22.70 19.50

list 30.00 41.30 30.10 33.70 31.60 28.70

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 19.80 22.50 23.30 20.70 31.20 42.60

sop 16.70 20.40 19.50 26.90 33.80 50.30

uri 25.00 37.90 39.00 49.60 83.70 130.40

prop_number 16.70 17.70 14.80 17.60 13.20 14.10

list 21.50 19.00 17.90 17.20 13.40 15.10
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 14. APPEND_FRONT: Performance and scalability
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Table 12
POPOFF: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 356.00 272.30 406.30 595.40 914.20 2453.40

sop 34.50 45.90 52.90 55.60 74.00 95.80

uri 70664.10 9355.10 39383.70 83051.90 185348.00 E

prop_number 197.00 300.70 575.80 783.20 1233.30 2540.80

list 38.30 39.00 43.30 33.30 40.20 31.60

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 29.60 23.40 128.30 185.60 296.10 561.80

sop 18.20 22.30 48.80 44.40 88.50 406.20

uri 7604.30 20684.80 48958.20 71571.10 158446.70 238475.90

prop_number 15.30 11.70 15.60 16.20 12.30 11.60

list 17.40 17.50 15.70 20.20 15.50 17.30

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 19.20 20.80 19.60 20.20 21.50 16.90

sop 25.30 31.00 36.30 46.10 61.90 120.80

uri 4059.20 2005.70 4137.60 7623.80 11055.40 16026.00

prop_number 17.80 18.60 20.40 17.90 19.70 18.90

list 28.50 38.30 27.20 30.70 32.80 24.20

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 19.00 19.30 15.80 13.00 16.10 15.40

sop 18.10 23.40 24.30 31.90 44.50 73.00

uri 2630.00 2843.23 2427.90 3420.70 6760.00 9748.00

prop_number 16.30 15.70 15.00 18.10 15.00 15.10

list 20.00 18.20 16.80 14.70 13.20 14.50
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 15. APPEND_FRONT: Performance and scalability
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Table 13
SET: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 38.20 35.40 32.40 33.10 33.70 36.60

sop 28700.20 17533.20 43421.40 92375.12 281717.12 E

uri 57.70 59.80 70.20 63.60 79.20 136.20

prop_number 31.70 31.10 30.20 31.20 32.40 54.10

list 5402.00 11556.90 43382.30 80875.50 153111.10 E

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 23.30 19.40 17.90 24.50 20.50 23.90

sop 812.20 16397.50 147289.90 E E E

uri 14.70 14.40 14.70 14.70 19.20 17.40

prop_number 16.30 14.00 15.60 18.30 14.20 14.50

list 879.00 17585.90 148189.90 E E E

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 19.70 19.50 21.00 19.50 18.40 17.10

sop 739.90 2778.30 11091.80 25874.30 72732.90 E

uri 19.90 21.90 19.30 19.00 21.00 18.90

prop_number 25.90 37.80 33.40 33.60 39.80 57.30

list 821.50 2706.60 11287.20 26321.40 76054.90 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 16.60 15.70 16.00 12.40 14.50 13.90

sop 316.70 7272.60 4684.90 10506.40 31507.70 E

uri 20.10 21.00 15.50 14.10 17.60 15.70

prop_number 18.10 20.40 19.80 22.80 28.00 33.40

list 345.90 11482.70 4487.10 11191.80 33846.20 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 16. SET: Performance and scalability
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Table 14
REMOVE_AT: Response Time (milliseconds)

(a) Blazegraph

500 1k 2k 3k 5k 10k

seq 7609.50 1818.30 3292.60 3670.50 6695.80 1922.20

sop 3231.30 17452.20 43268.30 89654.65 212340.25 E

uri 143.20 41.60 19298.90 19969.20 77279.10 E

prop_number 86.60 124.50 216.20 158.60 294.10 613.50

list 5308.90 12583.60 48341.40 91485.80 180755.10 E

(b) Virtuoso

500 1k 2k 3k 5k 10k

seq 968.40 25.40 130.20 189.20 294.50 566.50

sop 796.90 15993.20 146233.10 E E E

uri 2721.70 432.50 944.90 663.90 7312.30 10146.70

prop_number 14.20 14.50 14.70 14.00 12.80 11.30

list 879.30 16765.70 145936.40 E E E

(c) Fuseki (TDB)

500 1k 2k 3k 5k 10k

seq 22.20 21.10 20.50 20.90 21.60 16.50

sop 716.00 2757.60 11410.30 25974.00 72920.80 E

uri 3195.00 1039.80 2302.70 2453.30 4322.40 8883.90

prop_number 17.90 18.70 18.50 18.60 20.20 18.70

list 1629.60 5346.50 21630.30 50342.70 146528.80 E

(d) Fuseki (Mem)

500 1k 2k 3k 5k 10k

seq 18.50 16.30 16.00 13.60 16.90 14.80

sop 310.10 10209.30 4563.60 10471.20 31377.60 E

uri 2006.40 1245.40 1408.40 1352.00 2646.20 4325.21

prop_number 15.30 20.10 14.10 12.70 16.90 13.50

list 713.80 18898.60 8728.00 21462.90 64339.40 E
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(a) Blazegraph (models)
(b) Blazegraph (datasets)

(c) Virtuoso (models)
(d) Virtuoso (datasets)

(e) Fuseki TDB (models)
(f) Fuseki TDB (datasets)

(g) Fuseki In Memory (models)
(h) Fuseki In Memory (datasets)

Fig. 17. REMOVE_AT: Performance and scalability
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