
Semantic Web 1 (0) 1–5 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Gravsearch: transforming SPARQL to query
humanities data
Tobias Schweizer a,b and Benjamin Geer a,c

a Data and Service Center for the Humanities, Gewerbestrasse 24, 4123 Allschwil, Switzerland
b E-mail: tobias.schweizer@dasch.swiss
c E-mail: benjamin.geer@dasch.swiss

Editors: Antonis Bikakis, University College London, UK; Beatrice Markhoff, University of Tours, FR; Alessandro Mosca, Faculty of
Computer Science, Free University of Bozen-Bolzano, IT; Stephane Jean, University of Poitiers - ENSMA, FR; Eero Hyvönen, University of
Helsinki, Aalto University, Finland
Solicited reviews: Pietro Liuzzo, Hiob Ludolf Centre for Ethiopian Studies, Universität Hamburg, Germany; Martin Rezk, DMM.com, Japan;
Benjamin Cogrel, KRDB, Free University of Bozen-Bolzano, Italy

Abstract. RDF triplestores have become an appealing option for storing and publishing humanities data, but available technolo-
gies for querying this data have drawbacks that make them unsuitable for many applications. Gravsearch (Virtual Graph Search),
a SPARQL transformer developed as part of a web-based API, is designed to support complex searches that are desirable in
humanities research, while avoiding these disadvantages. It does this by introducing server software that mediates between the
client and the triplestore, transforming an input SPARQL query into one or more queries executed by the triplestore. This design
suggests a practical way to go beyond some limitations of the ways that RDF data has generally been made available.

Keywords: SPARQL, humanities, querying, qualitative data, API

1. Introduction

Gravsearch transforms SPARQL queries and results
to facilitate the use of humanities data stored as RDF.1

Efforts have been made to use RDF triplestores for the
storage and publication of humanities data [1–3], but
there is a lack of appropriate technologies for search-
ing this data for items and relationships that are of in-
terest to humanities researchers. A SPARQL endpoint
backed directly by the triplestore is one option, but
presents a number of drawbacks. It can be cumbersome
in SPARQL to query certain data structures that are es-
pecially useful in the humanities, and there is no stand-
ard support for permissions or for versioning of data.
Queries that may return huge results also pose scalabil-
ity problems. A technical solution to these problems is

1The source code of the Gravsearch implementation, and its
design documentation, are freely available online; see https://www.
knora.org.

proposed here. Gravsearch aims to provide the power
and flexibility of a SPARQL endpoint, while provid-
ing better support for humanities data, and integrating
well into a developer-friendly web-based API. Its ba-
sic design is of broad relevance, because it suggests
a practical way to go beyond some limitations of the
ways that humanities data has generally been made
searchable.

A Gravsearch query is a virtual SPARQL query, i.e.
it is processed by a server application, which trans-
lates it into one or more SPARQL queries to be pro-
cessed by the triplestore. Therefore, it can offer sup-
port for data structures that are especially useful in
the humanities, such as text markup and calendar-
independent historical dates, and are not included in
RDF standards. More generally, a Gravsearch query
can use data structures that are simpler than the ones
used in the triplestore, thus improving ease of use. A
virtual query also allows the application to filter results
according to user permissions, enforce the paging of

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:tobias.schweizer@dasch.swiss
mailto:benjamin.geer@dasch.swiss
https://www.knora.org
https://www.knora.org

2 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

results to improve scalability, take into account the ver-
sioning of data in the triplestore, and return responses
in a form that is more convenient for web applica-
tion development. The input SPARQL is independent
of the triplestore implementation used, and the trans-
former backend generates vendor-specific SPARQL
as needed, taking into account the triplestore’s im-
plementation of inference, full-text searches, and the
like. Instead of simply returning a set of triples, a
Gravsearch query can produce a JSON-LD response
whose structure facilitates web application develop-
ment.

The current implementation of Gravsearch is closely
tied to a particular application, but its design is of more
general interest to developers of RDF-based systems.
It demonstrates that, for an application that manages
data in an RDF triplestore and provides a web-based
API, there is considerable value in a SPARQL-based
API, which accepts SPARQL queries from the cli-
ent, transforms them in the application, runs the trans-
formed queries in the triplestore, and transforms the
results before returning them to the client. It also sug-
gests solutions to some of the practical issues that arise
in the development of such a system. Consideration
of this approach may lead others to develop similar
application-specific tools, or to envisage more generic
approaches to SPARQL transformation.2

1.1. Institutional and technical context

Gravsearch has been developed as part of Knora
(Knowledge Organization, Representation, and An-
notation), an application developed by the Data and
Service Center for the Humanities (DaSCH) [6] to en-
sure the long-term availability and reusability of re-
search data in the humanities.3 The Swiss National
Science Foundation (SNSF) requires researchers to
have a plan for making their research data publicly ac-
cessible,4 and the DaSCH was created to provide the
necessary infrastructure to meet this requirement.

It is not feasible or cost-effective for the DaSCH to
maintain a multitude of different data formats and stor-
age systems over the long term. Moreover, part of the

2For some steps in this direction, see [4] and [5].
3The DaSCH as an institution is responsible for research data cre-

ated by humanities projects. However, this does not rule out the pos-
sibility that the technical solutions developed by the DaSCH are use-
ful to other fields of research as well.

4http://www.snf.ch/en/theSNSF/research-policies/open_
research_data/Pages/default.aspx

DaSCH’s mission is to make all the data it stores inter-
operable, so that it is possible to search for data across
projects and academic disciplines in a generic way, re-
gardless of the specific data structures used in each
project. For example, many projects store text with
markup, and it should be possible to search the markup
of all these texts, regardless of whether they are letters,
poems, books, or anything else. When markup con-
tains references to other data, it is useful for human-
ities researchers to search through the markup to the
data it refers to, e.g. by searching for texts that refer
to a person born after a certain date (as in the example
in Section 2.2). It is therefore desirable to store text
markup in the same way as other data, so they can be
searched together.

The DaSCH must also mitigate the risks associated
with technological and institutional change. The more
its data storage is based on open standards, the easier
it will be to migrate data to some other format if it
becomes necessary to do so in the future.

With these requirements in mind, the DaSCH has
chosen to store all data in an RDF triplestore as far
as possible (the main exceptions being images, au-
dio, and video). RDF’s flexibility allows it to accom-
modate all sorts of data structures. Its standardisation,
along with the variety of triplestore implementations
available, helps reduce the risks of long-term preserva-
tion. Even if RDF technology disappears over time, the
RDF standards will make it possible to migrate RDF
graphs to other types of graph storage.

Knora is therefore based on an RDF triplestore and
a base ontology. The base ontology defines basic data
types and abstract data structures; it is generic and does
not make any assumptions about semantics.5 Each re-
search project using Knora must provide one or more
ontologies defining the OWL classes and properties
used in its data, and these ontologies must be derived
from the Knora base ontology.

Knora is a server application written in Scala; it
provides a web-based API that allows data to be quer-
ied and updated, and supports the creation of virtual re-
search environments that can work with heterogeneous
research data from different disciplines.6

The DaSCH’s mission of long-term preservation re-
quires it to minimise the risk of vendor lock-in. Knora

5For details of the Knora base ontology, see the documentation at
https://www.knora.org.

6For more information on Knora, see https://www.knora.org. A
list of projects implemented, planned, or under development using
Knora can be found at https://dasch.swiss/projects/.

http://www.snf.ch/en/theSNSF/research-policies/open_research_data/Pages/default.aspx
http://www.snf.ch/en/theSNSF/research-policies/open_research_data/Pages/default.aspx
https://www.knora.org
https://dasch.swiss/projects/

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

must therefore, as far as possible, avoid relying on
any particular triplestore implementation, or on any
type of data storage that has not been standardised and
does not have multiple well-maintained implementa-
tions. This means that as long as there is no widely
implemented RDF standard for some of the DaSCH’s
requirements, such as access control and versioning,
Knora has to handle these tasks itself to ensure consist-
ent behaviour, regardless of which triplestore is used.7

It was therefore decided, for example, to use an in-
band approach to storing permissions in a role-based
access control model, and to store previous versions of
values as linked lists, all in standard RDF.8 Over time,
if new RDF standards for these features are created and
widely supported, it will become possible to remove
them from Knora and allow the triplestore to handle
them.

1.2. Problem definition

Knora’s API required a query language that allows
for complex searches in specific projects, as well as
cross-project searches using ontologies shared by dif-
ferent projects, such as FOAF9 or dcterms.10 Re-
searchers need to be able be to find connections in their
data across project boundaries, and developers need to
present a project’s data online in an interactive way to
researchers and the interested public. There needs to
be a flexible way to request particular graphs of data,
not only for searches, but also to present combinations
of resources that are known to be of interest to users.
For example, the Bernoulli-Euler Online project (see
Section 3) needed to present a manuscript page aligned
with different layers of transcription, ranging from dip-
lomatic transcriptions to translations [9]. To maximise
the autonomy of web developers, Knora’s API needs to
make this possible without introducing project-specific
API routes.

The query language also needs to allow queries to
use data structures that are simpler than the ones stored
in the triplestore. The DaSCH’s requirement to have a

7One exception is full-text search, which is implemented by the
triplestore but is not standardised.

8For an overview of different approaches to RDF access control,
see [7]. See The Fundamentals of Semantic Versioned Querying for
a proposed versioning extension to RDF. The RDF*/SPARQL* re-
ification proposal [8] may also lead to new ways of solving these
problems.

9http://xmlns.com/foaf/spec/
10https://www.dublincore.org/specifications/dublin-core/

dcmi-terms/

generic storage system for humanities data, as outlined
in Section 1.1, introduces complexities in the the RDF
data structures used in the triplestore, and these com-
plexities should be hidden from clients for the sake of
usability.

For example, in humanities research, it is useful
to search for dates independently of the calendar in
which they are written in source materials. If an an-
cient Chinese manuscript records a solar eclipse or a
sighting of a comet, and an ancient Greek manuscript
records the same astronomical event at the same time,
a search for texts mentioning the event and the date
should find both texts, even though the date was writ-
ten in different calendars. Astronomers and historians
have long used a calendar-independent representation
of dates, called Julian Day Numbers (JDNs), to facilit-
ate such comparisons [10, 11]. A Julian Day Number
is an integer, and can therefore be efficiently compared
in a database query. Moreover, historical dates are of-
ten imprecise, e.g. when only the year is known, but
not the month or day, or when a date is known only to
fall within a certain range.

Knora therefore stores each date in the triplestore
as an instance of its DateValue class, which con-
tains two JDNs, representing a possibly imprecise date
as a date range. Each date in the range (i.e. the start
date and the end date) has a precision (year, month,
or day). The date range also indicates the calendar in
which the date was originally recorded. This allows
a SPARQL query to determine the chronological re-
lationship between two dates, regardless of the calen-
dar that they were originally created in. This approach
cannot handle dates whose JDN cannot be computed
(e.g. dates in a calendar system whose points of refer-
ence are not known); these would need to be stored in
a different way. It would also be possible to extend this
system to express different sorts of imprecision. How-
ever, the current design is already sufficient for many
historical research projects. For our purposes here, the
important point is to illustrate the usefulness of hav-
ing different internal and external representations of
dates.11

11Projects such as GODOT [12] approach this task differently, by
creating reference entries for calendar dates identified by URIs that
can then be used in online editions to allow for searches for a spe-
cific date. In our view, the approach of storing and comparing JDNs
in the triplestore allows for more powerful searches, because JDNs
can be compared using operators such as less than and greater than.
In the future, we would like support period terms. These refer to
timespans that are not expressed in terms of calendar dates, and can
be represented as IRIs. For example, historians of mathematics use

https://rdfostrich.github.io/article-versioned-reasoning/
http://xmlns.com/foaf/spec/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/

4 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

JDNs are clearly not a convenient representation for
clients to use. Search requests and responses should in-
stead use whatever calendars the client prefers. The cli-
ent should not have to send or receive JDNs itself, or to
deal with the complexities of comparing JDN ranges in
SPARQL. In the Knora API, all dates are input and out-
put as calendar dates; Knora converts between JDNs
and calendar dates using the International Components
for Unicode library.12

Another example concerns text with markup, which
Knora stores as RDF data (see Section 3.3). A hu-
manities researcher might wish to search a large num-
ber of texts for, say, a particular word marked up as a
noun. Knora could optimise this search by using a full-
text search index. This also involves rather complex
SPARQL, which is partly specific to the type of full-
text indexing software being used. The client should
not have to deal with these details.

SPARQL lacks other features required in this con-
text. Knora must restrict access to data according to
user permissions. It also implements a system for ver-
sioning data in the triplestore, such that the most re-
cent version is returned by default, but the version his-
tory of resources can be requested. To improve scalab-
ility, Knora should enforce the paging of search results,
rather than leaving this up to the client as in SPARQL.

1.3. Related work

One way of making RDF data publicly available
and queryable is by means of a SPARQL endpoint
backed directly by a triplestore. Prominent examples
include DBpedia [16], Wikidata [17], and Europeana
[3]. While this approach offers great flexibility and al-
lows for complex queries, its drawbacks have been cri-
ticised. In a widely cited blog post [18], Dave Rogers
argues that SPARQL endpoints are an inherently poor
design that cannot possibly scale, and that RESTful
APIs should be used instead. For example, a SPARQL
endpoint allows a client to request all the data in the re-
pository; this could easily place unreasonable demands
on the server, particularly if many such requests are
submitted concurrently.

the expression ‘Erste Petersburger Periode’ [13] to refer to the first
timespan Leonhard Euler lived in St. Petersburg. Projects such as
ChronOntology [14] or PeriodO [15] relate period terms to
timespans and geographical regions. Period terms can also be made
to correspond to calendar dates stored as JDNs, as long as the calen-
dar date representation can express the imprecision required in each
term.

12http://site.icu-project.org/home

GraphQL [19] is a newer development and – despite
its name – not restricted to graph databases. It is meant
to be a query language that integrates different API en-
dpoints. Instead of making several requests to different
APIs and processing the results individually, GraphQL
is intended to allow the client to make a single request
that defines the structure of the expected response. (See
section 2.1 for a discussion of extensions to GraphQL
for querying RDF.)

From our perspective, triplestore-backed SPARQL
endpoints and GraphQL both have limitations that
make them unsuitable for Knora and for humanities
data in general. They assume that the data structures in
the triplestore are the same as the ones to be returned to
the client. They offer no standard way to restrict query
results according to the client’s permissions. They do
not enforce the paging of results, but leave this to the
client. And they provide no way to work with data that
has a version history (so that ordinary queries return
only the latest version of each item). These require-
ments led us to develop a different approach.

2. A hybrid between a SPARQL endpoint and a
web API

One option would be to create a domain-specific
language, but it was simpler to use SPARQL, lever-
aging its standardisation and library support, while in-
tegrating it into Knora’s web API. Gravsearch there-
fore accepts as input a subset of standard SPARQL
query syntax, and requires queries to follow certain ad-
ditional rules.

Gravsearch is thus a hybrid between a SPARQL
endpoint and a web API, aimed at combining the ad-
vantages of both. By supporting SPARQL syntax, it
enables clients to submit queries based on complex
graph patterns given in a WHERE clause. By supporting
SPARQL CONSTRUCT queries, it allows each query to
specify a complex graph structure to be returned in the
query results. At the same time, the application is able
to add additional functionality not supported in stand-
ard SPARQL. The Knora API server processes the in-
put query, transforming it into one or more SPARQL
queries that are executed by the triplestore, using data
structures that are more complex than the ones in the
input query. It then processes and transforms the triples
returned by the triplestore, this time converting com-
plex data structures into simpler ones, to construct the
response.

http://site.icu-project.org/home

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

This extra layer of processing enables Gravsearch to
avoid the disadvantages of SPARQL endpoints backed
directly by a triplestore, and to provide additional
features. Certain data structures can be queried in a
more convenient way, results are filtered according to
the user’s permissions, the versioning of data in the
triplestore is taken into account (only the most recent
version of the data is returned), and scalability is im-
proved by returning results in pages of limited size.

2.1. Scope of Gravsearch

Gravsearch was developed as part of Knora and is
used as part of the Knora API. Knora is an integrated
system, taking care of creating, updating and reading
data by mediating between the triplestore and the cli-
ent. Gravsearch is not meant to replace direct commu-
nication with a triplestore via a SPARQL endpoint, but
rather to provide an integrated system with a flexible
way of querying data. The result of a Gravsearch query
is returned in the same format used by the rest of the
Knora API, making it suitable for web applications.

HyperGraphQL [20], an extension to GraphQL,
makes it possible to query SPARQL endpoints using
GraphQL queries, by converting them to SPARQL. Its
intended advantages include the reduction of complex-
ity on the client side and a more controlled way of
accessing a SPARQL endpoint, avoiding some of the
problems discussed in Rogers’s blog post [21]. A sim-
ilar approach has been taken with GraphQL-LD [22],
differing from HyperGraphQL in that GraphQL quer-
ies are translated to SPARQL on the client-side. We
think that both HyperGraphQL and GraphQL-LD
could be viable approaches to generating SPARQL that
is further processed before being sent to the triplestore,
thus integrating with Gravsearch. We consider this a
promising avenue for future development.

When the full flexibility of SPARQL is needed, pro-
jects always have the possibility to make their data
openly accessible via a SPARQL endpoint. In such a
case, a named graph can be made for queries but not
for updates, and possibly transformed into a simpler
data model than used internally in order to facilitate
integration with other data sets.

It is true that, even with pagination, it is possible
to write ‘inefficient or complex SPARQL that returns
only a few results’ [18], and this could also be true of
Gravsearch queries. As a last resort, some triplestores
provide a way to set arbitrary limits on execution time
or the number of triples or rows returned, but this still
means consuming significant resources before reject-

ing the query. Moreover, setting a limit on the number
of triples returned by a CONSTRUCT query can cause
the triplestore to return incomplete entities, with no in-
dication to the client that the response has been trun-
cated.

It would be better to reject a badly written query
without running it, and users would appreciate error
messages explaining what needs to be changed to im-
prove the query. The presence of an application layer
that analyses and transforms the input query provides
opportunities to do this. This is why, for example,
Gravsearch currently does not allow subqueries. It
would also be possible to reject a triple pattern like ?s
?p ?o whose variables are not restricted by any other
pattern. We see this kind of analysis as a promising
topic for future research.

Although SELECT queries are not currently suppor-
ted, if tabular output is desired, (e.g. for statistical ana-
lysis), the results of a CONSTRUCT query can be con-
verted into a table by combining results pages and con-
verting the RDF output to tabular form. This could be
done either in the client or on the server.

2.2. Ontology schemas

A design goal of Gravsearch is to enable queries to
work with data structures that are simpler than the ones
actually used in the triplestore, thus hiding some com-
plexity from the user. To make this possible, Knora
implements ontology schemas. Each ontology schema
provides a different view on ontologies and data that
exist in the triplestore. The term internal schema refers
to the structures that are actually in the triplestore, and
external schema refers to a view that transforms these
structures in some way for use in a web API.

Knora’s built-in ontologies as well as all project-
specific ontologies are available in each schema, but
in the triplestore, all ontologies are stored only in the
internal schema; the other schemas are generated on
the fly as needed. An ontology always has a differ-
ent IRI in each schema, but the triplestore sees only
the IRIs for the internal schema. In Knora, the IRIs of
built-in and project-specific ontologies must conform
to certain patterns; this allows Knora to convert onto-
logy IRIs automatically, following simple rules, when
converting ontologies and data between schemas. An
additional convention is that Knora’s base ontology
is called knora-base in the internal schema, and
knora-api in the external schemas.

In the internal schema, the smallest unit of research
data is a Knora knora-base:Value, which is an

6 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

RDF entity that has an IRI. Subclasses of Value rep-
resent different types of data (text, integers, dates, and
so on). If a client wishes to update a value via the
Knora API, it needs to know the value’s IRI. How-
ever, a Knora Value also contains information that is
represented in a way that is not convenient for clients
to manipulate (e.g. dates are stored as JDNs, as men-
tioned above). Therefore, Knora provides an external
schema called the knora-api complex schema, in
which each value has an IRI, but its contents are rep-
resented in more convenient form (e.g. calendar dates
are used instead of JDNs).

For clients that need a read-only view of the data,
Knora provides a simple schema, in which there is
no Value class; instead, Knora values are represen-
ted as literal datatypes such as xsd:string, and the
metadata attached to each value is hidden. An advant-
age of the simple schema is that it facilitates the use of
standard ontologies such as dcterms, in which val-
ues are typically represented as datatypes without their
own metadata. For example, if a property is defined in
Knora as a subproperty of dcterms:title, its ob-
ject in Knora will internally be a Knora TextValue
with attached metadata, but a Gravsearch query in the
simple schema can treat it as a literal, in keeping with
its definition in dcterms.

Gravsearch queries can thus be written in either of
Knora’s external schemas, and results can also be re-
turned in either of these schemas.

To illustrate the differences between these schemas,
Appendix A shows a Gravsearch query that searches
for a letter in the Bernoulli-Euler Online (BEOL) pro-
ject (see Section 3), using the complex schema. The
query searches for a letter from the mathematician An-
ders Johan Lexell (identified by his IRI), specifying
that the text of the letter must refer to a person whose
birthdate is after 1706 CE. To do this, the query in
Listing 1 searches the triples representing the text’s
standoff markup (see Section 3.3) for a link to a
beol:person resource whose birthdate is greater
than that date.

To run this query, the Gravsearch transformer gen-
erates a SPARQL CONSTRUCT query; part of the
triplestore’s response is shown in Listing 2 (the full
response contains many more details such as permis-
sions, timestamps, and so on). A beol:person rep-
resenting Leonhard Euler is returned, because he is
identified in the text markup and was born after 1706.
Note that the date values are represented as ranges of
JDNs, and each markup tag is represented as an RDF
entity.

If the client requested a JSON-LD response in the
complex schema, it will look like Listing 3. Here each
date is represented as a calendar date, the text with its
markup has been converted to an XML document (one
of several possible representations that the client can
request), and each link to a beol:person resource
is represented as a JSON-LD object containing the tar-
get resource as a nested object. Each resource is ac-
companied by additional metadata added by the Knora
API server (some of which is not shown here), e.g. an
ARK URL serving as a permanent link to the resource.

This JSON-LD representation in the complex schema
is designed to be convenient to use in the development
of web applications. The ARK URLs in this listing can
be opened in a web browser to show an example of
such an application.13

If the client requested a JSON-LD response in
the simple schema, it will look like Listing 4. (The
client can also request an equivalent response in
Turtle or RDF/XML.) Here, the structure of the re-
sponse has been simplified, so that values are rep-
resented as simple literals. For example, the object
of beol:title is a string literal rather than a
TextValue. Moreover, if the client dereferences
the BEOL ontology IRI given in the JSON-LD con-
text,14 the definition of beol:title says that it
is a datatype property, and that it is a subproperty
of dcterms:title. A client that knows about
dcterms:title, and processes titles in some par-
ticular way, can then apply the same processing to
the beol:title. As this example shows, the simple
schema lends itself to use in applications that rely
mainly on standard ontologies to integrate data from
different sources.

The simple schema also makes it possible to use
standard ontologies in the Gravsearch query itself.
Listing 5 shows a Gravsearch query that uses the
FOAF ontology to search the BEOL project data for
foaf:Person objects whose foaf:familyName
is ‘Euler’, without using the BEOL ontology at all.
This works because beol:person is a subclass of
foaf:Person, and beol:hasFamilyName is a
subproperty of foaf:familyName. Depending on
the triplestore’s inference capabilities, Knora either
uses the triplestore’s RDFS inference or expands the
query itself using property path syntax.

13For example, see http://ark.dasch.swiss/ark:/72163/1/0801/
25Ro4c5gSIioLstzJ25FiAC for a representation of the letter.

14http://api.dasch.swiss/ontology/0801/beol/simple/v2

http://ark.dasch.swiss/ark:/72163/1/0801/25Ro4c5gSIioLstzJ25FiAC
http://ark.dasch.swiss/ark:/72163/1/0801/25Ro4c5gSIioLstzJ25FiAC
http://api.dasch.swiss/ontology/0801/beol/simple/v2

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

The query in Listing 5 specifies that the object
of foaf:familyName is an xsd:string. This
is consistent with the definition of the subproperty
beol:hasFamilyName in the simple schema. In
the internal schema, the object of that property is the
IRI of a Knora TextValue, which contains a string
as well as permissions and other metadata. When
Gravsearch generates SPARQL from the input query,
it transforms the WHERE clause of the input query to
handle this difference (see Section 2.6). This design
allows standard ontologies using simple literal values,
such as FOAF, to be used in Gravsearch queries, even
though Knora actually stores values as IRIs with at-
tached metadata.

In short, Gravsearch transforms queries, ontologies,
and data on the fly according to the ontology schema
that the client is using. The implementation is partly
object-oriented (the Scala classes representing differ-
ent sorts of RDF entities have methods for generat-
ing representations of themselves in different schemas)
and partly based on sets of transformation rules for
each schema (e.g. to remove certain properties and add
others, and to change OWL cardinalities). Additional
external schemas could be added in the future.

2.3. Permissions

In Knora, each resource and each value has role-
based permissions attached to it. Internally, permis-
sions are represented as string literals in a compact
format that optimises query performance. For ex-
ample, a Knora value could contain this triple:

<http://rdfh.ch/0001/R5qJ6oPZPV>
knora-base:hasPermissions
"V http://rdfh.ch/groups/00FF/reviewer" .

This means that the value can be viewed by mem-
bers of the specified group. With a SPARQL endpoint
backed directly by a triplestore, there would be no way
to prevent other users from querying the value. There-
fore, the application must filter query results according
to user permissions.

To determine whether a particular user can view the
value, Knora must compute the intersection of the set
of groups that the user belongs to and the set of groups
that have view permission on the value. If not, Knora
removes the value (and the resource that contains it)
from the results of the Gravsearch query.

2.4. Versioning

Internally, a resource is connected only to the cur-
rent version of each of its values. Each value ver-
sion is connected to the previous version via the prop-
erty previousVersion, so that the versions form
a linked list. When a client requests a single resource
with its values via the Knora API, the client can specify
a version timestamp. Knora then generates a SPARQL
query that traverses the linked list to retrieve the values
that the resource had at the specified time.

Gravsearch is designed to query only current data.
This is easily achieved, because the only way to ob-
tain a value in Gravsearch is to follow the connec-
tion between the resource and the value, which is
always the current version. Knora’s external onto-
logy schemas do not expose the version history data
structure at all (e.g. they do not provide the prop-
erty previousVersion). Therefore, the client can-
not use previousVersion to query a past version
of a value, which would be possible if they could
submit SPARQL directly to the triplestore. A specific
(non-Gravsearch) API request enables clients to ac-
cess the version history of a value. The version history
data structure is hidden from clients, enabling it to be
changed in the future as RDF technology develops.

2.5. Gravsearch syntax and semantics

Syntactically, a Gravsearch query is a SPARQL
CONSTRUCT query. Thus it supports arbitrarily com-
plex search criteria. One could, for example, search
for persons whose works have been published by
a publisher that is located in a particular city. A
CONSTRUCT query also allows the client to specify,
for each resource that matches the search criteria,
which values of the resource should be returned in the
search results.

Results are returned by default as a JSON-LD array,
with one element per search result. Each search result
contains the ‘main’ or top-level resource that matched
the query. If the query requests other resources that
are connected to the main resource, these are nested as
JSON-LD objects within the main resource. To make
this possible, a Gravsearch query must specify (in the
CONSTRUCT clause) which variable refers to the main
resource. The resulting tree structure is generally more
useful to web application clients than the flat set of
RDF statements returned by SPARQL endpoints.

Gravsearch uses the SPARQL constructs ORDER
BY and OFFSET to enable the client to step through

8 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

pages of search results, and does not allow LIMIT.
The client can use ORDER BY with one or more vari-
ables to determine the order in which results will be
returned, and OFFSET to specify which page of res-
ults should be returned. (This is different from the
standard SPARQL OFFSET, which counts solutions to
the pattern in the WHERE clause, rather than pages of
results.) The maximum number of results per page is
configurable in the application’s settings, and cannot
be controlled by the client. The server indicates that
more pages of results may be available by including a
boolean property mayHaveMoreResults in the re-
sponse. To retrieve all results, the client continues re-
questing pages until this property is absent (false); it is
possible that the last page will be empty.

2.6. Processing and execution of a Gravsearch query

In processing Gravsearch queries, the API server
is free to use a SPARQL design that best suits the
performance characteristics of the triplestore. For ex-
ample, as described below, our implementation trans-
forms each input query into multiple SPARQL queries
that are run in the triplestore, and generates different
SPARQL for different triplestores. Clients and users
need not be aware of this.

In theory, such transformations could be implemen-
ted using a more generic rule system, such as Rule In-
terchange Format (RIF),15 which is intended to be used
for this purpose by the GeoSPARQL standard.16 How-
ever, RIF is not widely implemented, and even most
GeoSPARQL implementations do not support query
rewriting [23].17

Rather than introduce an additional programming
language for query transformation, we chose to imple-
ment a traditional compiler design in Scala, taking ad-
vantage of the RDF4J18 SPARQL parser and Knora’s
extensive built-in support for working with OWL on-
tologies. An abstract syntax tree (AST) is construc-
ted, type information is collected from it (see Sec-
tion 2.6.3), and it is passed through a sequence of
transformations, each of which recursively traverses
the AST, transforming graph patterns to produce a

15https://www.w3.org/TR/rif-overview/
16https://www.opengeospatial.org/standards/geosparql
17Another example of a mapping language for RDF is R2RML,

which intended for defining mappings between relational databases
and RDF datasets. Similarly, EPNet [24] maps SPARQL queries
onto heterogeneous queries in different sorts of databases, and On-
top [25] allows for querying relational databases with SPARQL.

18https://rdf4j.org

new AST. There are different backends for differ-
ent triplestores, which take into account triplestore-
specific features such as RDFS inference capabilities
and full-text search. We are currently exploring adding
an optimisation phase to reorder patterns in the WHERE
clause in cases where the triplestore’s query optimiser
may not do so effectively.

For the reasons explained in Section 1.2, the gener-
ated SPARQL is considerably more complex than the
provided Gravsearch query, and deals with data struc-
tures in the internal schema. Each Gravsearch query
is converted to two SPARQL queries to improve per-
formance. First, a SELECT query (prequery) is gener-
ated, to identify a page of matching resources. Then a
CONSTRUCT query (main query) is generated, to re-
trieve the requested values of those resources. Figure 1
illustrates this process graphically.

2.6.1. Generation of the Prequery
The prequery’s purpose is to get one page of IRIs

of matching resources and values. It is a SELECT
query whose WHERE clause is generated by transform-
ing the statements of the input query’s WHERE clause.
Thus it contains all the restrictions of the input query,
transformed into the internal schema (see 2.2), as well
as additional statements, e.g. to implement RDFS in-
ference if the triplestore’s inference capabilities are
not adequate, and to ignore resources and values that
have been marked as deleted. The prequery’s SELECT
clause is generated automatically.

The prequery’s result consists of the IRIs of one
page of matching main resources, along with their val-
ues and linked resources. Since correct paging requires
the query to return one row per matching main re-
source, the results are grouped by main resource IRI,
and the IRIs of matching values and of linked re-
sources are aggregated using GROUP_CONCAT. The
results are ordered by the criteria in the ORDER BY
clause of the input query, as well as by main resource
IRI (to ensure deterministic results).

The following sample Gravsearch query gets all the
entries with sequence number equal to 10 from differ-
ent manuscripts.

PREFIX beol:
<http://beol.dasch.swiss/ontology/
0801/beol/simple/v2#>

PREFIX knora-api:
<http://api.knora.org/ontology/
knora-api/simple/v2#>

CONSTRUCT {

https://www.w3.org/TR/rif-overview/
https://www.opengeospatial.org/standards/geosparql
https://www.w3.org/TR/r2rml/
https://rdf4j.org

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

?entry knora-api:isMainResource true .
?entry beol:manuscriptEntryOf ?manuscript .
?entry beol:seqnum ?seqnum .

} WHERE {
?entry a beol:manuscriptEntry .
?entry beol:manuscriptEntryOf

?manuscript .
?manuscript a beol:manuscript .
?entry beol:seqnum ?seqnum .
FILTER(?seqnum = 10)

}

The resulting prequery looks like this:

SELECT DISTINCT
?entry
(GROUP_CONCAT(DISTINCT(?manuscript);

SEPARATOR=’\u001F’)
AS ?manuscript__Concat)

(GROUP_CONCAT(DISTINCT(?seqnum);
SEPARATOR=’\u001F’)
AS ?seqnum__Concat)

(GROUP_CONCAT(DISTINCT(
?manuscriptEntryOf__LinkValue);
SEPARATOR=’\u001F’)
AS
?manuscriptEntryOf__LinkValue__Concat)

WHERE {...}
GROUP BY ?entry
ORDER BY ASC(?entry)
LIMIT 25

The variables in the prequery’s SELECT clause rep-
resent the IRIs of the matching main resources and the
linked resources and values present in the input query’s
WHERE clause. Besides the IRIs of the main resources,
all IRIs are returned concatenated as the result of an
aggregation function.

2.6.2. Generation of the Main Query
The result of the prequery is a collection of IRIs

of matching resources and values, grouped by main
resource. The main query is then generated; it is
a SPARQL CONSTRUCT query that specifically re-
quests the resources and values identified by those
IRIs.

Unlike the prequery, the main query’s WHERE clause
is not based on the input query; its structure is always
the same. The application creates statements using the
VALUES keyword, and inserts the IRIs returned by the
prequery for different categories of information, using
UNION blocks: the main resources, linked resources,
values, and standoff markup (if necessary).

The code below shows a snippet from the main
query.

CONSTRUCT {
...

}
WHERE {
{

VALUES ?mainResourceVar {
<http://rdfh.ch/0803/1>
<http://rdfh.ch/0803/2> ...

}
?mainResourceVar a knora-base:Resource .

...
}
} UNION { ...

The main query’s results are the contents of a page
of resources and values that matched the input query’s
WHERE clause. The application can now perform per-
mission checks and filter out those resources and val-
ues that the client does not have permission to see.

Finally, the application orders the main query’s res-
ults according to the order in which the main resources
were returned by the prequery, returning a JSON-LD
array with one element per main resource.

2.6.3. Type checking and inference
SPARQL does not provide type checking; if a

SPARQL query uses a property with an object that is
not compatible with the property definition, the query
will simply return no results.

However, Gravsearch requires the types of the en-
tities used in a query so it can generate the cor-
rect SPARQL. Specifically, if a query uses the simple
schema, it needs to be expanded to work with the in-
ternal schema, by taking into account an additional
layer of value entities rather than simple literal values.
The compiler therefore needs to know:

– The type of each variable or entity IRI used as the
subject or object of a statement.

– The type that is expected as the object of each
property used.

For the sake of efficiency, it is desirable to obtain
this information without doing additional SPARQL
queries, using only the information provided in the
query itself along with the available ontologies in the
triplestore (which Knora keeps in memory).19

Gravsearch therefore implements a simple type in-
ference algorithm, focusing on identifying the types

19This approach contrasts with a mechanism such as SHACL [26],
which can run SPARQL queries in the triplestore.

10 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 1. Processing and Execution of a Gravsearch Query

that are relevant to the compiler.20 It first collects the
set of all entities whose types need to be determ-
ined (typeable entities) in the WHERE clause of the
input query. It then runs the WHERE clause through
a pipeline of type inspectors. Each inspector imple-
ments a particular mechanism for identifying types,
and passes an intermediate result to the next inspector
in the pipeline.

At the end of the pipeline, each typeable entity
should have exactly one type from the set of types that
are relevant to the compiler. Unlike a SPARQL end-
point, if Gravsearch cannot determine the type of an
entity, or finds that an entity has been used inconsist-
ently (i.e. with two different types in that set), it returns
an error message rather than an empty response.

The first type inspector reads type annotations. Two
annotations are supported:

– rdf:type, used to specify the types of entities
that are used as subjects or objects.

– knora-api:objectType, which can be used
to specify the expected type of the object of a non-
Knora property such as dcterms:title.

Annotations are needed when a query uses a non-
Knora ontology such as FOAF or dcterms. In the
future, it would be useful for Knora to take type in-
formation from standard non-Knora ontologies, mak-
ing these annotations unnecessary.

The second inspector in the pipeline infers types by
using class and property definitions in ontologies. It

20The Knora base ontology determines the set of types that the
algorithm needs to identify, and thus simplifies the algorithm. For an
attempt at more complete type inference for SPARQL queries, see
[27].

runs each typeable entity through a pipeline of infer-
ence rules. These include rules such as the following:

– The type of a property’s object is inferred from
the expected object type of the property (which
is specified in the definition of each Knora prop-
erty).

– The expected object type of a property is in-
ferred from the type of its actual object. (Thus if
the query specifies ?book dcterms:title
?title and ?title a xsd:string, the
rule infers that dcterms:title expects an
xsd:string object.)

– If a FILTER expression compares two entities,
they are inferred to have the same type.

– Function arguments are inferred to have the re-
quired types for the function.

Since the output of one rule may allow another rule
to infer additional information, the pipeline of infer-
ence rules is run repeatedly until no new information
can be determined. In practice, two iterations are suffi-
cient for most realistic queries.

Appendix B shows an input query in the simple
schema. It searches for books that have a particular
publisher (identified by IRI), and returns them along
with the family names of all the persons that have some
connection with those books (e.g. as author or editor).

In this example, the definition of the property
hasPublisher specifies that its object must be a
Publisher, allowing Gravsearch to infer the type
of the resource identified by the specified IRI. Sim-
ilarly, the definition of hasFamilyName specifies
that its subject must be a Person and its object must
be a Knora TextValue; this allows the types of
?person and ?familyName to be inferred. Once

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the type of ?person is known, the object type of
?linkProp can be inferred.

3. Use case from the Bernoulli-Euler Online
project

One project that is using Gravsearch is Bernoulli-
Euler Online (BEOL),21 a digital edition project fo-
cusing on 17th- and 18th-century primary sources in
mathematics. BEOL integrates written sources relat-
ing to members of the Bernoulli dynasty and Leon-
hard Euler into a web application based on Knora,
with data stored in an RDF triplestore. The BEOL
web site provides a user interface that enables users to
search and view these texts in a variety of ways. It of-
fers a menu of common queries that internally gener-
ate Gravsearch using templates, and the user can also
build a custom query using a graphical search inter-
face, which also generates Gravsearch internally.

3.1. Example 1: finding correspondence between two
mathematicians

Most of the texts that are currently integrated in the
BEOL platform are letters exchanged between math-
ematicians. On the project’s landing page, we would
like to present the letters arranged by their authors
and recipients. With Gravsearch, it is not necessary to
make a custom API operation for this kind of query
in Knora. Instead, a Gravsearch template can be used,
with variables for the correspondents.

Appendix C shows a template for a Gravsearch
query that finds all the letters exchanged between
two persons. Each person is represented as a resource
in the triplestore. It would be possible to use the
IRIs of these resources to identify mathematicians,
but since these IRIs are not yet stable during devel-
opment, it is more convenient to use the property
beol:hasIAFIdentifier, whose value is an In-
tegrated Authority File (IAF) identifier (maintained by
the German National Library), a number that uniquely
identifies that person. This example thus illustrates
searching for resources that have links to other re-
sources that have certain properties. The user chooses
the names of two mathematicians from a menu in a
web browser, and the user interface then processes the
template, substituting the IAF identifiers of those two
mathematicians for the placeholders ${iaf1} and

21https://beol.dasch.swiss/

${iaf2}. The result of processing the template is a
Gravsearch query, which the user interface submits to
the Knora API server. This query specifies that the au-
thor and recipient of each matching letter must have
one of those two IAF identifiers. The results are sorted
by date. The page number ${offset} is initially set to
0; as the user scrolls, the page number is incremented
and the query is run again to load more results.

This query is simple enough to be written in the
simple schema. For example, this allows the ob-
ject of beol:hasIAFIdentifier to be treated
as a string literal. Internally, this is an object prop-
erty. Its object is an entity belonging to the class
knora-base:TextValue, and has predicates and
objects of its own. This extra level of complexity is
hidden from the client in the simple schema. After we
substitute the IAF identifiers of Leonhard Euler and
Christian Goldbach for the placeholders in the tem-
plate, the input query contains:

?author beol:hasIAFIdentifier
?authorIAF .

FILTER(?authorIAF =
"(DE-588)118531379" ||
?authorIAF = "(DE-588)118696149")

Gravsearch transforms these two lines to the follow-
ing SPARQL:

?author beol:hasIAFIdentifier ?authorIAF .
?authorIAF knora-base:isDeleted false .
?authorIAF knora-base:valueHasString

?authorIAF__valueHasString .
FILTER(?authorIAF__valueHasString =

"(DE-588)118531379"^^xsd:string ||
?authorIAF__valueHasString =
"(DE-588)118696149"^^xsd:string)

Since values in Knora can be marked as deleted, the
generated query uses knora-base:isDeleted
false to exclude deleted values. It then uses the gen-
erated variable ?authorIAF__valueHasString
to match the content of the TextValue.

3.2. Example 2: a user interface for creating queries

Users can also create custom queries that are not
based on a predefined template. For this purpose, a
user-interface widget generates Gravsearch, without
requiring the user to write any code (Appendix E).

For example, a user can create a query to search
for all letters written since 1 January 1700 CE (the
user specifies the Gregorian calendar) by Johann I

https://beol.dasch.swiss/

12 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Bernoulli, that mention Leonhard Euler but not Daniel
I Bernoulli, and that contain the word Geometria. The
user can choose to order the results by date. The
web-based user interface generates a Gravsearch query
based on the search criteria (Appendix D).

In generating SPARQL to perform the requested
search, the Gravsearch compiler converts the date
comparison to one that uses a JDN. In the example,
the input SPARQL requests a date greater than a date
literal in the Gregorian calendar:

FILTER(?date >=
"GREGORIAN:1700-1-1"^^knora-api:Date)

Gravsearch converts this to a JDN comparison. The
Gregorian date 1 January 1700 is converted to the JDN
2341973. In the generated SPARQL, a matching date’s
end point must be greater than or equal to that JDN:

?date knora-base:valueHasEndJDN
?date__valueHasEndJDN .

FILTER(?date__valueHasEndJDN >=
"2341973"^^xsd:integer)

Other date comparisons work as follows:

– Two DateValue objects are considered equal if
there is any overlap between their date ranges.

– Two DateValue objects are considered unequal
if there is no overlap between their date ranges.

– DateValue A is considered to be less than
DateValue B if A’s end date is less than B’s
start date.

To specify that the text of the letter must contain
the word Geometria, the input SPARQL uses the func-
tion knora-api:matchText, which is provided
by Gravsearch:

FILTER knora-api:matchText(?text,
"Geometria")

Gravsearch converts this function to triplestore-
specific SPARQL that (unlike the standard SPARQL
CONTAINS function) performs the query using a full-
text search index. For example, with the GraphDB
triplestore using the Lucene full-text indexer, the gen-
erated query contains:

?text knora-base:valueHasString
?text__valueHasString .

?text__valueHasString
lucene:fullTextSearchIndex
"Geometria"^^xsd:string .

3.3. Example 3: Searching for text markup

Here were are looking for a text containing the word
Acta that is marked up as a bibliographical reference.22

Knora stores text markup as ‘standoff markup’: each
markup tag is represented as an entity in the triplestore,
with start and end positions referring to a substring
in the text. This makes it straightforward to represent
non-hierarchical structures in markup,23 and makes it
possible for queries to combine criteria referring to
text markup with criteria referring to other entities in
the triplestore, including links within text markup that
point to RDF resources outside the text. Projects may
define own standoff entities in their project-specific
ontologies, deriving them from the types defined by
the Knora base ontology.

To search for text markup, the input query must be
written in the complex schema. The input query uses
the matchTextInStandoff function provided by
Gravsearch:

?text knora-api:textValueHasStandoff
?standoffBibliographyTag .

?standoffBibliographyTag a
beol:StandoffBibliographyTag .

FILTER knora-api:matchTextInStandoff(
?text,
?standoffBibliographyTag,
"Acta")

Gravsearch translates this FILTER into two opera-
tions:

1. An optimisation that searches in the full-text
search index to find all texts containing this
word.

2. A regular expression match that determines
whether, in each text, the word is located within
a substring that is marked up as a paragraph.

The resulting generated SPARQL looks like this24:

?text knora-base:valueHasString
?text__valueHasString .

?text__valueHasString
lucene:fullTextSearchIndex

22‘Acta’ refers to an article published by Jacob Bernoulli in Acta
Eruditorum in December 1695.

23See the TEI guidelines [28, chapter 20, Non-hierarchical Struc-
tures] for a discussion of this problem.

24Knora uses 0-based indexes in standoff markup, but SPARQL
uses 1-based indexes: https://www.w3.org/TR/xpath-functions/
#func-substring.

https://www.w3.org/TR/xpath-functions/#func-substring
https://www.w3.org/TR/xpath-functions/#func-substring

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

"Acta"^^xsd:string .
?standoffTag

knora-base:standoffTagHasStart
?standoffTag__start .

?standoffTag
knora-base:standoffTagHasEnd
?standoffTag__end .

BIND(substr(?text__valueHasString,
?standoffTag__start + 1,
?standoffTag__end -
?standoffTag__start)

AS ?standoffTag__markedUp)
FILTER(regex(?standoffTag__markedUp,

"Acta", "i"))

4. Conclusion

To ensure the long-term accessibility of research
data, a case can be made for storing nearly all data
(with the exception of a few binary file formats)
in RDF, in a way that works with any standards-
compliant triplestore, and avoiding non-standard tech-
nologies and vendor lock-in. However, this approach
implies that clients cannot be given direct access to
the triplestore, both because the necessary generic data
structures are inconvenient for clients to use, and be-
cause features such as versioning and access control
cannot be handled by the triplestore in a standard way.
There are also scalability issues associated with using
a SPARQL endpoint backed directly by the triplestore.
Yet humanities researchers want to be able to do the
sorts of powerful graph searches that they can do in
SPARQL.

The solution proposed here is to let users submit
SPARQL, but to a virtual endpoint (the Knora API)
rather than to the triplestore. In this way, the Knora
API can serve its main purpose of keeping research
data available for the long term without relying on
vendor-specific triplestore features, while providing
flexible, controllable, and consistent access to data. By
sending SPARQL queries to the Knora API, users can
access only the data they have permission to see, only
the current version of the data is served, and imple-
mentation details are hidden. Results are returned us-
ing a paging mechanism controlled by the Knora API.
By default, the query results are returned in a tree
structure in JSON-LD. This data structure is suitable
for web application development, while maintaining
machine-readability of the data as well as interoperab-
ility with other RDF-based tools.

Acknowledgements

This work was supported by the Swiss National Sci-
ence Foundation (166072) and the Swiss Data and Ser-
vice Center for the Humanities.

14 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix A. Ontology schemas

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX knora-api-simple: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX beol: <http://api.dasch.swiss/ontology/0801/beol/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true .
?letter beol:title ?title .
?letter beol:hasAuthor <http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg> .
?letter beol:hasRecipient ?recipient .
?letter beol:creationDate ?creationDate .
?letter beol:hasText ?text .
?letter knora-api:hasStandoffLinkTo ?person .
?person beol:hasBirthDate ?birthDate .

} WHERE {
?letter a beol:letter .
?letter beol:title ?title .
?letter beol:hasAuthor <http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg> .
?letter beol:hasRecipient ?recipient .
?letter beol:creationDate ?creationDate .
?letter beol:hasText ?text .
?text knora-api:textValueHasStandoff ?entityTag .
?entityTag a beol:StandoffEntityTag .
FILTER knora-api:standoffLink(?letter, ?entityTag, ?person)
?person a beol:person .
?person beol:hasBirthDate ?birthDate .
FILTER(knora-api:toSimpleDate(?birthDate) >= "GREGORIAN:1706 CE"^^knora-api-simple:Date)
?letter knora-api:hasStandoffLinkTo ?person .

}

Listing 1: Searching for a letter whose text mentions a person born after 1706

@prefix knora-base: <http://www.knora.org/ontology/knora-base#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix beol: <http://www.knora.org/ontology/0801/beol#>

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA> a beol:letter;
rdfs:label "Lexell à Condorcet";
beol:title <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/LWf9YstAQ4iq4CI1MmOzUA>;
beol:creationDate <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/M4eNIJ1MR_eB9mvTGtaZng>;
beol:hasAuthorValue <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/7ExuBcDbQZyRJRbAcORyKg>;
beol:hasRecipientValue <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/wCaspGWvS6SZXeuZy3h9MA>;
beol:hasText <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/im2jaDG_RKCx999ozN3RZg> .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/LWf9YstAQ4iq4CI1MmOzUA> a knora-base:TextValue;
knora-base:valueHasString "Annexe 1: Lexell à Condorcet, Saint-Pétersbourg, 2 (13) décembre 1775" .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/M4eNIJ1MR_eB9mvTGtaZng> a knora-base:DateValue;
knora-base:valueHasCalendar "JULIAN";
knora-base:valueHasEndJDN 2369712;
knora-base:valueHasEndPrecision "DAY";
knora-base:valueHasStartJDN 2369712;
knora-base:valueHasStartPrecision "DAY" .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/7ExuBcDbQZyRJRbAcORyKg> a knora-base:LinkValue;

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

rdf:object <http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg>;
rdf:predicate beol:hasAuthor;
rdf:subject <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA> .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/wCaspGWvS6SZXeuZy3h9MA> a knora-base:LinkValue;
rdf:object <http://rdfh.ch/0801/7z7sHo5aTLqSUeSXR14qpg>;
rdf:predicate beol:hasRecipient;
rdf:subject <http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA> .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/im2jaDG_RKCx999ozN3RZg> a knora-base:TextValue;
knora-base:valueHasStandoff
<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/im2jaDG_RKCx999ozN3RZg/standoff/3>;

knora-base:valueHasString """
Monsieur le Marquis
Ayant communiqué à Monsieur Euler [...]""" .

<http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/im2jaDG_RKCx999ozN3RZg/standoff/3>
a beol:StandoffEntityTag;
beol:standoffEntityType "person";
knora-base:standoffTagHasEnd 90;
knora-base:standoffTagHasLink <http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg>;
knora-base:standoffTagHasStart 90 .

<http://rdfh.ch/0801/7z7sHo5aTLqSUeSXR14qpg> a beol:person;
rdfs:label "Le marquis de Condorcet" .

<http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg> a beol:person;
rdfs:label "Anders Johan Lexell" .

<http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg> a beol:person;
beol:hasBirthDate <http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg/values/vtlhBetvSRONLutapTKcaw>;
rdfs:label "Leonhard Euler" .

<http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg/values/vtlhBetvSRONLutapTKcaw> a knora-base:DateValue;
knora-base:valueHasCalendar "GREGORIAN";
knora-base:valueHasEndJDN 2344633;
knora-base:valueHasEndPrecision "DAY";
knora-base:valueHasStartJDN 2344633;
knora-base:valueHasStartPrecision "DAY";
knora-base:valueHasString "1707-04-15 CE" .

Listing 2: Query results in the internal schema

{
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA",
"@type": "beol:letter",
"beol:creationDate": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/M4eNIJ1MR_eB9mvTGtaZng",
"@type": "knora-api:DateValue",
"knora-api:dateValueHasCalendar": "JULIAN",
"knora-api:dateValueHasEndDay": 2,
"knora-api:dateValueHasEndEra": "CE",
"knora-api:dateValueHasEndMonth": 12,
"knora-api:dateValueHasEndYear": 1775,
"knora-api:dateValueHasStartDay": 2,
"knora-api:dateValueHasStartEra": "CE",
"knora-api:dateValueHasStartMonth": 12,
"knora-api:dateValueHasStartYear": 1775,
"knora-api:valueAsString": "JULIAN:1775-12-02 CE"

16 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

},
"beol:hasAuthorValue": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/7ExuBcDbQZyRJRbAcORyKg",
"@type": "knora-api:LinkValue",
"knora-api:linkValueHasTarget": {
"@id": "http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg",
"@type": "beol:person",
"knora-api:arkUrl": {
"@type": "xsd:anyURI",
"@value": "http://ark.dasch.swiss/ark:/72163/1/0801/1PkbSo2nRIeOK9ISp6JSdgr"

},
"rdfs:label": "Anders Johan Lexell"

}
},
"beol:hasRecipientValue": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/wCaspGWvS6SZXeuZy3h9MA",
"@type": "knora-api:LinkValue",
"knora-api:linkValueHasTarget": {
"@id": "http://rdfh.ch/0801/7z7sHo5aTLqSUeSXR14qpg",
"@type": "beol:person",
"knora-api:arkUrl": {
"@type": "xsd:anyURI",
"@value": "http://ark.dasch.swiss/ark:/72163/1/0801/7z7sHo5aTLqSUeSXR14qpgJ"

},
"rdfs:label": "Le marquis de Condorcet"

}
},
"beol:hasText": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/im2jaDG_RKCx999ozN3RZg",
"@type": "knora-api:TextValue"
},
"knora-api:textValueAsXml": "[...] Monsieur le Marquis [...]",

},
"beol:title": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/LWf9YstAQ4iq4CI1MmOzUA",
"@type": "knora-api:TextValue"
},
"knora-api:valueAsString": "Annexe 1: Lexell à Condorcet, Saint-Pétersbourg, 2 (13) décembre 1775"

},
"knora-api:arkUrl": {
"@type": "xsd:anyURI",
"@value": "http://ark.dasch.swiss/ark:/72163/1/0801/25Ro4c5gSIioLstzJ25FiAC"

},
"knora-api:hasStandoffLinkToValue": {
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA/values/aK3JZSkOR6StGyiaIn6Vlg",
"@type": "knora-api:LinkValue",
"knora-api:linkValueHasTarget": {
"@id": "http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg",
"@type": "beol:person",
"beol:hasBirthDate": {
"@id": "http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg/values/vtlhBetvSRONLutapTKcaw",
"@type": "knora-api:DateValue",
"knora-api:dateValueHasCalendar": "GREGORIAN",
"knora-api:dateValueHasEndDay": 15,
"knora-api:dateValueHasEndEra": "CE",
"knora-api:dateValueHasEndMonth": 4,
"knora-api:dateValueHasEndYear": 1707,
"knora-api:dateValueHasStartDay": 15,
"knora-api:dateValueHasStartEra": "CE",
"knora-api:dateValueHasStartMonth": 4,
"knora-api:dateValueHasStartYear": 1707,

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

"knora-api:valueAsString": "GREGORIAN:1707-04-15 CE"
},
"knora-api:arkUrl": {
"@type": "xsd:anyURI",
"@value": "http://ark.dasch.swiss/ark:/72163/1/0801/NbmhfOBlQoGbX3HwXuC3Tg_"

},
"rdfs:label": "Leonhard Euler"

}
},
"rdfs:label": "Lexell à Condorcet",
"@context": {
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"knora-api": "http://api.knora.org/ontology/knora-api/v2#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"beol": "http://api.dasch.swiss/ontology/0801/beol/v2#",
"xsd": "http://www.w3.org/2001/XMLSchema#"

}
}

Listing 3: Gravsearch response in the complex schema

{
"@id": "http://rdfh.ch/0801/25Ro4c5gSIioLstzJ25FiA",
"@type": "beol:letter",
"beol:creationDate": {
"@type": "knora-api:Date",
"@value": "JULIAN:1775-12-02 CE"

},
"beol:hasAuthor": {
"@id": "http://rdfh.ch/0801/1PkbSo2nRIeOK9ISp6JSdg"

},
"beol:hasRecipient": {
"@id": "http://rdfh.ch/0801/7z7sHo5aTLqSUeSXR14qpg"

},
"beol:hasText": "\n Monsieur le Marquis\n Ayant communiqué à Monsieur Euler [...]",
"beol:title": "Annexe 1: Lexell à Condorcet, Saint-Pétersbourg, 2 (13) décembre 1775",
"knora-api:arkUrl": {
"@type": "xsd:anyURI",
"@value": "http://ark.dasch.swiss/ark:/72163/1/0801/25Ro4c5gSIioLstzJ25FiAC"

},
"knora-api:hasStandoffLinkTo": {

"@id": "http://rdfh.ch/0801/NbmhfOBlQoGbX3HwXuC3Tg"
},
"rdfs:label": "Lexell à Condorcet",
"@context": {
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"knora-api": "http://api.knora.org/ontology/knora-api/simple/v2#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"beol": "http://api.dasch.swiss/ontology/0801/beol/simple/v2#",
"xsd": "http://www.w3.org/2001/XMLSchema#"

}
}

Listing 4: Gravsearch response in the simple schema

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

18 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

CONSTRUCT {
?person knora-api:isMainResource true .
?person foaf:familyName ?familyName .
?person foaf:givenName ?givenName .

} WHERE {
?person a knora-api:Resource .
?person a foaf:Person .
?person foaf:familyName ?familyName .
?familyName a xsd:string .
?person foaf:givenName ?givenName .
?givenName a xsd:string .
FILTER(?familyName = "Euler")

}

Listing 5: Gravsearch query using FOAF

Appendix B. A simple Gravsearch query

PREFIX example: <http://example.org/ontology/0001/example/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
?book knora-api:isMainResource true .
?book ?linkProp ?person .
?person example:hasFamilyName ?familyName .

} WHERE {
?book a example:Book ;
example:hasPublisher <http://rdfh.ch/0001/B3lQa6tSymIq7> ;
?linkProp ?person .

?person example:hasFamilyName ?familyName .
}
OFFSET 0

Listing 6: A Simple Query

Appendix C. A Gravsearch template

PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true .
?letter beol:creationDate ?date .
?letter beol:hasAuthor ?author .
?letter beol:hasRecipient ?recipient .

} WHERE {
?letter a beol:letter .
?letter beol:creationDate ?date .

?letter beol:hasAuthor ?author .
?author beol:hasIAFIdentifier ?authorIAF .
FILTER(?authorIAF = "${iaf1}" || ?authorIAF = "${iaf2}")

?letter beol:hasRecipient ?recipient .
?recipient beol:hasIAFIdentifier ?recipientIAF .
FILTER(?recipientIAF = "${iaf1}" || ?recipientIAF = "${iaf2}")

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

}
ORDER BY ?date
OFFSET ${offset}

Listing 7: A Gravsearch template

Appendix D. A user-generated query

PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/simple/v2#>
PREFIX knora-api: <http://api.knora.org/ontology/knora-api/simple/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true .
?letter beol:creationDate ?date .

} WHERE {
?letter a beol:letter .

?letter beol:creationDate ?date .
FILTER(?date >= "GREGORIAN:1700-1-1"^^knora-api:Date)

?letter beol:hasAuthor <http://rdfh.ch/biblio/Johann_I_Bernoulli> .
?letter beol:mentionsPerson <http://rdfh.ch/biblio/Leonhard_Euler> .

FILTER NOT EXISTS {
?letter beol:mentionsPerson <http://rdfh.ch/biblio/Daniel_I_Bernoulli> .

}

?letter beol:hasText ?text .
FILTER knora-api:matchText(?text, "Geometria")

}
ORDER BY ?date
OFFSET ${offset}

Listing 8: A user-generated query

20 T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix E. GUI widget

Figure 2. Advanced Search Widget

Appendix F. Searching for text markup

PREFIX knora-api: <http://api.knora.org/ontology/knora-api/v2#>
PREFIX standoff: <http://api.knora.org/ontology/standoff/v2#>
PREFIX beol: <http://beol.dasch.swiss/ontology/0801/beol/v2#>

CONSTRUCT {
?letter knora-api:isMainResource true .
?letter beol:hasText ?text .

} WHERE {
?letter a beol:letter .
?letter beol:hasText ?text .
?text knora-api:textValueHasStandoff ?standoffParagraphTag .
?standoffParagraphTag a standoff:StandoffParagraphTag .
FILTER knora-api:matchTextInStandoff(?text, ?standoffParagraphTag, "Richtigkeit")

}

Listing 9: Search for Text Markup

References

[1] Bibliothèque nationale de France SPARQL endpoint. https://data.bnf.fr/current/sparql.html.

https://data.bnf.fr/current/sparql.html

T. Schweizer and B. Geer / Gravsearch: transforming SPARQL to query humanities data 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[2] ISIDORE platform SPARQL endpoint. https://isidore.science/sparql.
[3] Europeana SPARQL endpoint. http://sparql.europeana.eu/.
[4] C. Allocca, A. Adamou, M. d’Aquin and E. Motta, SPARQL Query Recommendations by Example, in: 13th European Semantic Web

Conference (ESWC) 2016, Crete, Greece, 2016. http://oro.open.ac.uk/46757/.
[5] O. Bruneau, E. Gaillard, N. Lasolle, J. Lieber, E. Nauer and J. Reynaud, A SPARQL Query Transformation Rule Language: Applica-

tion to Retrieval and Adaptation in Case-Based Reasoning, in: ICCBR 2017: Case-Based Reasoning Research and Development, 25th
International Conference on Case-Based Reasoning, Trondheim, Norway, 2017. https://hal.inria.fr/hal-01661651.

[6] L. Rosenthaler, P. Fornaro and C. Clivaz, DASCH: Data and Service Center for the Humanities, Digital Scholarship in the Humanities 30
(2015), i43–i49, Issue suppl_1. doi:10.1093/llc/fqv051.

[7] S. Kirrane, A. Mileo and S. Decker, Access Control and the Resource Description Framework: A Survey, Semantic Web 8(2) (2017),
311–352. doi:10.3233/SW-160236.

[8] O. Hartig and B. Thompson, Foundations of an Alternative Approach to Reification in RDF, Computing Research Repository (CoRR)
(2014). http://arxiv.org/abs/1406.3399.

[9] T. Schweizer, S. Alassi, M. Mattmüller, L. Rosenthaler and H. Harbrecht, An Interactive, Multi-layer Edition Of Jacob Bernoulli’s Scientific
Notebook Meditationes As Part Of Bernoulli-Euler Online, in: Digital Humanities 2019 Conference Abstracts, Utrecht, Netherlands, 2019.
https://dev.clariah.nl/files/dh2019/boa/0115.html.

[10] D.D. McCarthy, The Julian and Modified Julian Dates, Journal for the History of Astronomy 29(4) (1998), 327–330.
doi:10.1177/002182869802900402.

[11] A. Grafton, Some Uses of Eclipses in Early Modern Chronology, Journal of the History of Ideas 64(2) (2003), 213–229.
doi:10.1353/jhi.2003.0024.

[12] GODOT, Graph of Dated Objects and Texts. https://godot.date/.
[13] E.A. Fellmann, Leonhard Euler,

Historisches Lexikon der Schweiz (HLS). https://hls-dhs-dss.ch/de/articles/018751/2005-11-22/.
[14] chronOntology, iDAI.chronontology. https://chronontology.dainst.org.
[15] PeriodO, A gazetteer of periods for linking and visualizing data. https://perio.do.
[16] DBpedia SPARQL endpoint. http://dbpedia.org/sparql.
[17] Wikidata SPARQL endpoint. https://query.wikidata.org.
[18] D. Rogers, The Enduring Myth of the SPARQL Endpoint. https://daverog.wordpress.com/2013/06/04/

the-enduring-myth-of-the-sparql-endpoint/.
[19] GraphQL, GraphQL. https://www.howtographql.com/.
[20] HyperGraphQL, HyperGraphQL. https://www.hypergraphql.org/.
[21] S. Klarman, Querying DBpedia with GraphQL. https://medium.com/@sklarman/querying-linked-data-with-graphql-959e28aa8013.
[22] R. Taelman, M.V. Sande and R. Verborgh, GraphQL-LD: Linked Data Querying with GraphQL. https://comunica.github.io/

Article-ISWC2018-Demo-GraphQlLD/.
[23] T. Ioannidis, G. Garbis, K. Kyzirakos, K. Bereta and M. Koubarakis, Evaluating Geospatial RDF stores Using the Benchmark Geographica

2, 2019. https://arxiv.org/abs/1906.01933.
[24] D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk and G. Rull, Ontology-based data integration in EPNet: Produc-

tion and distribution of food during the Roman Empire, Engineering Applications of Artificial Intelligence 51 (2016), 212–229.
doi:10.1016/j.engappai.2016.01.005.

[25] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop: Answering SPARQL
queries over relational databases, Semantic Web 8(3) (2017), 471–487. doi:10.3233/SW-160217.

[26] W3C, SHACL. https://www.w3.org/TR/shacl/.
[27] P. Seifer, M. Leinberger, R. Lämmel and S. Staab, Semantic Query Integration With Reason, The Art, Science, and Engineering of Pro-

gramming 3(3) (2019). doi:10.22152/programming-journal.org/2019/3/13.
[28] TEI-Consortium (ed.), Guidelines for Electronic Text Encoding and Interchange, Last updated on 13th February 2020. http://www.tei-c.

org/P5/.

https://isidore.science/sparql
http://sparql.europeana.eu/
http://oro.open.ac.uk/46757/
https://hal.inria.fr/hal-01661651
http://arxiv.org/abs/1406.3399
https://dev.clariah.nl/files/dh2019/boa/0115.html
https://godot.date/
https://hls-dhs-dss.ch/de/articles/018751/2005-11-22/
https://chronontology.dainst.org
https://perio.do
http://dbpedia.org/sparql
https://query.wikidata.org
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://daverog.wordpress.com/2013/06/04/the-enduring-myth-of-the-sparql-endpoint/
https://www.howtographql.com/
https://www.hypergraphql.org/
https://medium.com/@sklarman/querying-linked-data-with-graphql-959e28aa8013
https://comunica.github.io/Article-ISWC2018-Demo-GraphQlLD/
https://comunica.github.io/Article-ISWC2018-Demo-GraphQlLD/
https://arxiv.org/abs/1906.01933
https://www.w3.org/TR/shacl/
http://www.tei-c.org/P5/
http://www.tei-c.org/P5/

	Introduction
	Institutional and technical context
	Problem definition
	Related work

	A hybrid between a SPARQL endpoint and a web API
	Scope of Gravsearch
	Ontology schemas
	Permissions
	Versioning
	Gravsearch syntax and semantics
	Processing and execution of a Gravsearch query
	Generation of the Prequery
	Generation of the Main Query
	Type checking and inference

	Use case from the Bernoulli-Euler Online project
	Example 1: finding correspondence between two mathematicians
	Example 2: a user interface for creating queries
	Example 3: Searching for text markup

	Conclusion
	Acknowledgements
	Appendix A. Ontology schemas
	Appendix B. A simple Gravsearch query
	Appendix C. A Gravsearch template
	Appendix D. A user-generated query
	Appendix E. GUI widget
	Appendix F. Searching for text markup
	References

