
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

UCQ-rewritings for Disjunctive Knowledge
and Queries with Negated Atoms
Enrique Matos Alfonso, * Alexandros Chortaras and Giorgos Stamou
Electrical and Computer Engineering, National Technical University of Athens, Greece
E-mails: gardero@image.ntua.gr, achort@cs.ntua.gr, gstam@cs.ntua.gr

Editor: Bernardo Cuenca Grau, Oxford University, UK
Solicited reviews:Michael Morak, Institut für Angewandte Informatik, Austria; Three anonymous reviewers

Abstract. In this paper, we study the problem of query re-
writing for disjunctive existential rules. Query rewriting is
a well-known approach for query answering on knowledge
baseswith incomplete data.We propose a rewriting technique
that uses negative constraints and conjunctive queries to re-
move the disjunctive components of disjunctive existential
rules. This process eventually generates new non-disjunctive
rules, i.e., existential rules. The generated rules can then be
used to produce new rewritings using existing rewriting ap-
proaches for existential rules. With the proposed technique
we are able to provide complete UCQ-rewritings for union of
conjunctive queries with universally quantified negation. We
implemented the proposed algorithm in the COMPLETO sys-
tem and performed experiments that evaluate the viability of
the proposed solution.
Keywords: Disjunctive Rules, Queries with Negation, Back-
ward Chaining and Query Rewriting.

1. Introduction

Rules are very important elements in knowledge-
based systems and incomplete databases [21]; they al-
low us to perform query answering over incomplete
data and come up with complete answers. There are
twomain approaches to perform query answering in the
presence of rules, which depend on the way we use the
rules. The forward chaining approach [26] applies the
rules on the facts in order to produce new facts. On the
other hand, the backward chaining approach [20] uses
the rules to translate the input query into a set of quer-
ies (called the rewriting of the initial query) that also

*Corresponding author. E-mail: gardero@image.ntua.gr.

encode answers of the initial query. Both approaches
allow us to infer answers that cannot be extracted from
the initial data.
Example 1.1. Let us consider a rule that defines the
grand-parent relationship between two people based
on the parent relationship

r = ∀X∀Y parent(X,Z) ∧
parent(Z, Y )→ grand-parent(X, Y )

and the information that

parent(ana,maria) ∧ parent(maria, julieta).

Traditional database systems would fail to entail that
the query Q = ∃Zgrand-parent(ana, Z) holds, be-
cause it is not stated explicitly in the data. However,
since the hypothesis of the rule r holds, we can in-
fer (by forward application of the rule) that the fact
grand-parent(ana, julieta) also holds. Adding this new
information allows traditional database systems to
conclude that Q holds. Moreover, the rule r can also
be applied to Q in a backward manner to derive ad-
ditional queries that provide answers to the question
expressed in the original query, i.e.,

Q′ = ∃Z∃Y parent(ana, Z) ∧ parent(Z, Y ).

Forward chaining allows efficient query answering
in systems where data is constant and queries change
frequently. However, the size of the stored data can
grow excessively, and the method is not appropriate for
frequently changing data. For some ontologies, this ap-
proach does not always terminate [26], and may keep

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:gardero@image.ntua.gr
mailto:achort@cs.ntua.gr
mailto:gstam@cs.ntua.gr
mailto:gardero@image.ntua.gr


2 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

generating constantly new data. Backward chaining, on
the other hand, is ideal for constant queries and chan-
ging data, although the size of the rewriting can be ex-
ponential with respect to the size of the initial query
[19] or in some cases a finite rewriting may not exist.
In both approaches, the application of the rules does
not always terminate. Furthermore, having no restric-
tion on the expressivity of the rules or having negated
atoms on the query makes the query entailment prob-
lem undecidable [7].
In this paper, we focus on the entailment problem

of conjunctive queries with negated atoms (CQ¬) in
the framework of disjunctive existential rules based on
first-order logic (FOL) without function symbols.
Disjunctive existential rules allow the representation

of very expressive knowledge in FOL, e.g.,
∀X∃Y is-parent(X)→ father(X, Y ) ∨

mother(X, Y ),

where disjunction and existentially quantified variables
can appear on the right-hand side of the implication.
Conjunctive query entailment is undecidable in the
case of existential rules with disjunction. However, un-
der some restrictions the problem can become decid-
able [7, 15]. To the best of our knowledge, existing
research on existential rules with disjunction is only
based on forward chaining algorithms [13, 15] or Dis-
junctive Datalog rewriting [3, 9, 11, 16].
Conjunctive queries with negation let us define the

counterexamples of disjunctive rules, e.g.,
∃X∀Y ∀Zperson(X)∧ ¬married(X, Y ) ∧

¬parent(X,Z)

describes when the following rule does not hold
∀X∃Y ∃Zperson(X)→ married(X, Y ) ∨

parent(X,Z).

Herewe use the openworld assumption, where the neg-
ation is associated to the “cannot” semantics, and the
example query expresses the question of whether there
is a person that cannot be married and cannot be a par-
ent. We also consider universally quantified negation
[1, 27, 28], i.e., variables that are only present in neg-
ated atoms are universally quantified.
The entailment problem for CQ¬ is undecidable

even for very simple types of rules [18, 28]. On the
other hand, the use of guarded negation in queries is
proven to be decidable over frontier-guarded existential

rules [10]. Yet, the existing query rewriting-based ap-
proaches in the literature [14, 22, 23] that propose im-
plementations and experiments only deal with queries
that introduce negation in very limited ways.

Having existential variables, disjunction and queries
with negated atomsmakes the entailment problem even
more difficult. However, by using these expressive re-
sources in a smart way we can get very interesting and
useful decidable fragments.

Particularly, in this paper we are interested in solving
the entailment of a union of conjunctive queries with
universally quantified negation by rewriting it into a
union of conjunctive queries without negation (UCQ),
called a UCQ-rewriting, where each element in it is a
rewriting of the initial UCQ¬.
Related Work Rosati studies query answering with
respect to description logics (DLs) [28] and with re-
spect to relational databases with integrity constraints
(ICs) [27]. Extensions that allow safe negation and uni-
versally quantified negation are considered. The author
provides a set of decidability, undecidability and com-
plexity results for answering different types of queries
with respect to various classes of DL knowledge bases
and various combinations of ICs. In general, his res-
ults show that answering relational queries is unfeas-
ible in many DLs and IC languages. The author con-
siders unions of conjunctive queries with universally
quantified negation, and shows that answering queries
of this class is undecidable in every DL fragment and
even in the absence of ICs.

In [20], König et al. define a generic rewriting pro-
cedure for conjunctive queries with respect to existen-
tial rules which takes as a parameter a rewriting oper-
ator, i.e., a function which takes as input a CQ and a set
of existential rules and outputs a set of CQs. They also
define the properties of rewriting operators that ensure
the correctness and completeness of their algorithm.
The authors prove that piece unification provides a re-
writing operator with the desired properties. Finally,
they provide an implementation of their algorithm to-
gether with some experiments. In this paper, we extend
their definition of piece unification to deal also with
disjunctive existential rules. We also extend their re-
writing algorithm for existential rules into a sound and
complete algorithm that also supports disjunctive exist-
ential rules and queries with negated atoms. However,
the algorithm does not always terminate.

In [12], Bourhis et al. present a study of the com-
plexity of query answering with respect to guarded dis-
junctive existential rules. The problem is 2EXPTIME-



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

hard even for the simplest guarded-based class of dis-
junctive existential rules. Different types of UCQs are
also considered by the authors in order to reduce the
complexity of the problem. However, the considered
query languages do not have a positive impact on the
complexity of the problem. The only significant de-
crease in the complexity was found for atomic quer-
ies and linear disjunctive existential rules. The authors
proved that for fixed atomic queries and fixed linear
disjunctive existential rules the problem is in the AC0complexity class by establishing that the problem is
first-order rewritable, i.e., it can be reduced to the pro-
blem of evaluating a first-order query over a database.
The rewriting algorithm that we propose in this paper
terminates for the fragment considered by Bourhis et
al. The techniques and results presented in [12] can be
used as a generic tool to study the complexity of query
answering for several fragments of description logics.
Some other research papers [3, 9, 11, 16] focus on

the transformation of the query answering problem
with respect to guarded (disjunctive) existential rules
into a query answering problem with respect to (dis-
junctive) Datalog programs by getting rid of existen-
tial variables. In [3], Ahmetaj et al. provide a trans-
formation of the problem that yields a polynomial size
(disjunctive) Datalog programwhen themaximal num-
ber of variables in the (disjunctive) existential rules is
bounded by a constant. The translations proposed by
other authors [9, 11, 16] are of exponential size.
Outline of our contributions. We introduce a restric-
ted form of FOL resolution (constraint resolution)
that is sound and refutation complete, and where the
subsumption theorem holds if the consequences are
clauses without positive literals. The number of choices
at the moment of selecting clauses to perform con-
straint resolution steps is reduced with respect to the
number of choices we have for the case of unrestricted
resolution steps.
Based on the constraint resolution method, we pro-

pose an algorithm to compute a UCQ-rewriting for
an input UCQ with respect to (disjunctive) existential
rules and constraints. The algorithm can also compute
UCQ-rewritings for conjunctive queries with univer-
sally quantified negation by converting queries with
negation into rules. The algorithm is sound, provides a
complete UCQ-rewriting, and terminates for the cases
where there is a finite and complete UCQ-rewriting of
the input querywith respect to the (disjunctive) existen-
tial rules and the negative constraints. We also present
two theorems with sufficient conditions for the termin-

ation of the algorithm. One case requires disconnected
disjunctive existential rules (rules where the body and
the head do not share variables) and existential rules
that yield a finite and complete UCQ-rewriting for any
UCQ (finite unification set). The other case is based on
queries and knowledge bases where all the elements are
linear (rules with at most one atom in the body andCQs
with at most one positive atom).

Additionally, we consider unions of conjunctive
queries with negated atoms and answer variables (de-
noted as UCQa¬) with respect to existential rules and
constraints. The proposed algorithm is modified in or-
der to compute only the deterministic UCQ-rewritings,
i.e. the UCQ-rewritings that lead to certain answers
or that check the consistency of the knowledge base.
We prove that the modified algorithm terminates when
there is a finite and complete deterministic UCQ-
rewriting of the input UCQa¬ with respect to the ex-
istential rules and constraints of the knowledge base.
We also present two theorems with sufficient condi-
tions for the termination of the modified rewriting al-
gorithm. One case requires the existential rules to be a
finite unification set and the input queries to have the
variables in both the positive and negated atoms as part
of the answer variables of the query. The second case
requires the queries to have only one positive atom and
an arbitrary number of negated atoms; also the existen-
tial rules and constraints are required to have only one
atom in the body.

Finally, we implemented the proposed algorithm for
rewriting conjunctive queries with negated atoms and
answer variables with respect to existential rules in
the COMPLETO system, and performed experiments to
evaluate the viability of the proposed solution.
Paper organization. Section 2 introduces the relevant
theory needed to understand the rest of the paper. Sub-
section 2.1 introduces concepts related to FOL resol-
ution and Subsection 2.2 presents the disjunctive ex-
istential rules framework. Section 3 introduces a novel
type of resolution (Subsection 3.1) and a novel back-
ward chaining rewriting algorithm for disjunctive exist-
ential rules (Subsection 3.2). Additionally, Subsection
3.3 explores some termination conditions for the pro-
posed rewriting algorithm and Subsection 3.4 proposes
a modification of the algorithm that computes only the
deterministic UCQ-rewritings of UCQa¬s. Section 4
describes an implementation of the proposed rewriting
algorithm. Experiments describing the performance of
our implementation are presented in Subsection 4.1. Fi-
nally, Section 5 presents an overview of the paper with
some conclusions.



4 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2. Preliminaries

In this section we introduce the basic concepts re-
lated to the FOL resolution process. Resolution is the
base of all the reasoning processes we describe in this
paper. All steps in high level reasoning processes can
be tracked down to sequences of resolution steps that
ensure the correctness.We also describe the framework
of disjunctive existential rules and present the defini-
tion of conjunctive queries with negated atoms.
2.1. First-Order Logic Resolution

We assume the reader is familiar with the standard
definition of first-order logic formulas. In this paper, we
focus on FOL formulas without function symbols over
a finite set of predicate names and a finite set of con-
stant symbols. We also adopt the standard definitions
for the entailment and equivalence of formulas, as they
are rarely modified in the literature. We refer the reader
to [25] in case a background reading is needed.
Because in the following we will often need to

modify formulas, in order to make such modifications
more compact and easier to understand we introduce
the definition of conjunctive (disjunctive) set formulas
(CSFs and DSFs). However, the reader should be fa-
miliar with the notation because it is often used in FOL
when we write rules and clauses.
Definition 2.1 (Conjunctive (Disjunctive) Set For-
mula). A conjunctive (disjunctive) set formula (CSF
andDSF, respectively) is a set of formulas {F1,… , Fn},
where the set of formulas is interpreted as a con-
junction (disjunction) of the formulas in the set, i.e.,
F1 ∧… ∧ Fn (F1 ∨… ∨ Fn).
For a given set of formulas {F1,… , Fn}, a CSF con-

taining these formulas is denoted as F1,… , Fn. On the
other hand, a DSF is denoted by [F1,… , Fn]. Finally,
an empty CSF is denoted by and is equivalent to ⊤, and
an empty DSF is denoted by and is equivalent to ⊥.

Note that in case a CSF is a sub-formula of another
set formula we use parenthesis to avoid ambiguity, e.g.,
[(A,B), D] is equivalent to (A ∧ B) ∨D.
Set operators can then be used to combine set for-

mulas of the same type and obtain a new set formula.
Moreover, elements of a set formula that are equivalent
can be collapsed into a single element, e.g.,

[¬A]∪[A → ⊥,B] ≡ [¬A,A→ ⊥,B] ≡ [¬A,B].

The following axioms can be easily proven:

1. A DSF and a CSF of one element are equivalent:
[F ] ≡ F .

2. De Morgan’s Laws allow changing a DSF to a
CSF, and vice-versa, using negation:

¬[F1,… , Fn] ≡ ¬F1,… ,¬Fn
¬(F1,… , Fn) ≡ [¬F1,… ,¬Fn].

3. Let B and F be two CSFs (DSFs) such that B ∈
F . Then, F ≡ (F ⧵{B})∪B. Replacing F by the
equivalent formula (F ⧵ {B}) ∪ B is referred to
as flattening the formula F .

We model the entailment operator in FOL assuming
that on the left-hand side of the entailment symbol we
have a CSF A1,… , An of axioms Ai:

A1,… , An ⊧ F .

The right-hand side of the entailment operator is as-
sumed to be a DSF. For CSFs B and A (where B ⊆ A)
and DSFs C and F (where C ⊆ F ), we can prove that
A ⊧ F if and only if A ⧵ B ⊧ F ∪ ¬B; likewise A ⊧ F
if and only if A ∪ ¬C ⊧ F ⧵ C .

In the following, we recall the definitions of some of
the concepts that are needed for the theory presented in
this paper.

A term is a constant, a variable or an expression
f (t1,… , tm) where f is a function symbol and the ar-
guments ti are terms. However, in this paper we focus
only on simple terms, i.e., either variables or constants.
We only consider Skolem function symbols internally
in order to get rid of existentially quantified variables.

An atom is a formula a(t1,… , tn) where a is a pre-
dicate of arity n (denoted by a∕n). The arguments ti ofthe atom are terms. A literal is an atom or a negated
atom. The complement l̄ of a literal l is ¬a(t1,… , tn) if
l = a(t1,… , tn), and a(t1,… , tn) if l = ¬a(t1,… , tn).A literal is positive (or of positive polarity) if it is a non-
negated atom, and negative (or of negative polarity) if
it is a negated atom. Two literals are complementary if
one is the complement of the other.

A formula is ground if it contains no variables. In
a formula, the variables can be universally quantified,
existentially quantified, or free. A formula without free
variables is closed. The set of all the variables that ap-
pear in an expression F is denoted by vars(F ). We de-
note a sequence of variables X1,… , Xn using a bold-
face character (e.g., X).



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A substitution � = {X1 ← t1,…Xn ← tn} is a finitemapping of variables Xi to terms ti. The result of ap-plying a substitution � on an expressionF is the expres-
sion F� obtained by replacing in F every occurrence
of every variable Xi by the term ti.Let F be an expression and � the substitution {X1 ←
Y1,…Xn ← Yn}. We say � is a renaming substitution
for F , if eachXi occurs in F , and Y1,… , Yn are distinctvariables such that each Yi is either equal to some Xjin �, or Yi does not occur in F . The composition of twosubstitutions � and � is a new substitution �� that when
applied to any expression, has the same effect as ap-
plying those substitutions in sequence (i.e., first � and
after �). A substitution � is more general than another
substitution � if there exists another substitution 
 such
that � = �
 .
A substitution � is a unifier for a set of expressions

S = {F1,… , Fn} iff F1� = F2�,… , Fn−1� = Fn�.The expressions in S are said to be unifiable if there
is a unifier for S. The most general unifier (mgu) of
the expressions in S is denoted by mgu(S), and it is a
unifier for S that is more general than any other unifier
of the expressions in S. Even if it is possible for the
same set S to have more than onemgu, they are unique
up to variable renaming.
A hypergraph is a tuple ⟨A,E⟩, where A is a set of

elements called nodes or vertices, andE is a set of non-
empty subsets of A called hyperedges. We can repres-
ent a CSF of atoms as a hypergraph using the set of
variables that appear in the arguments of the atoms as
nodes. Each atom in the formula represents a hyperedge
that connects its variables. Note that hyperedges are
defined as sets of nodes and there is no notion of dir-
ection between the nodes. With this representation we
can define some properties for CSFs of atoms.
The cardinality of a CSF of atoms F is the number

of variables in the formula: card(F ) = |vars(F )|. Two
variables u and v in a CSF of atoms F are connected iff
they both belong to the same atom (∃A ∈ F |{v, u} ⊆
vars(A)), or if there is another variable z in F that is
connected to both u and v.
A CSF of atoms F is connected if all the atoms in it

contain variables and all the variables are connected to
each other. An atom that has only constants in its argu-
ments is a connected formula that is not connected to
any other atom and has a cardinality of zero. It is rep-
resented by an empty hypergraph. The constants in the
formula play no role in their hypergraph representation.
It follows that a CSF F can be partitioned into a

set {U1,… , Un} of connected CSFs such that if v ∈
vars(Ui) is connected to u ∈ vars(Uj), then i = j. If

X

Y

Z

W

Figure 1. Hypergraph corresponding to a CSF.

F is connected, this set contains only F . The connec-
ted cardinality of F is defined as the maximum car-
dinality of the connected CSFs in the partition of F
and denoted by card∗(F ) = maxi (card(Ui)). The con-nected cardinality of a DSF [F1,… , Fm] is the max-
imum connected cardinality of the formulas Fi, i.e.,
card∗([F1,… , Fm]) = maxi (card∗(Fi)).
Example 2.1. The CSF

F = parent(X, Y ), parent(Y ,Z),
grand-parent(X,Z), person(W )

is represented by the hypergraph in Figure 1. We can
split F in two connected components

{(person(W )), (parent(X, Y ),
parent(Y ,Z), grand-parent(X,Z))}.

The connected cardinality of F is 3, the cardinality of
the greatest connected component.

Lemma 2.1. Let G be a CSF, and let {U1,… , Un} be
the partition of a given CSF F of atoms into connected
CSFs. Then,

G ⊧ F iff G ⊧ Ui for every Ui.

Proof. A detailed proof is given by Tessaris [29]. How-
ever, the reader can clearly see that since no variable
is shared between the connected components Ui, theassignments for the variables that make each Ui validin G can be combined without introducing conflicts on
the values that each variable gets.
Lemma 2.2. Let k be a natural number. There are a
finite number of equivalence classes of CSFs of atoms
with connected cardinality of at most k that can be con-
structed using a finite set of predicates and constants.

Proof. It is easy to check that two CSFs of atoms are
equivalent iff they are unifiable by a renaming substi-



6 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tution. Since we have finitely many predicates and con-
stant symbols, and at most k different variables, we can
combine them in a finite numberM of ways to form a
connected CSF. In a CSF consisting of more than M
connected CSFs we know that some of the connected
components are renamings of others, and keeping only
one of them is enough for the evaluation ofF according
to Lemma 2.1. Hence, there are at most 2M different
equivalence classes.

A clause C is a DSF [l1,… , ln] of literals li, whereall the variables are universally quantified. A contra-
diction is represented by the empty clause⊥. A formula
F is in conjunctive normal form (CNF) if it is a CSF of
clauses, i.e,

F = [l11,… , l1n1 ],… , [lm1 ,… , lmnm ].

Every FOL formula can be transformed into an
equisatisfiable CNF formula using variable standariz-
ation, Skolemization, De Morgan’s laws, and the dis-
tributivity of the conjunction and disjunction logical
operators.
An instance of a clause C is the result of applying

a substitution � to the clause, i.e., C�. If two or more
literals of the same polarity in a clause C are unifiable
and � is their most general unifier, then the clause C�
is called a factor of C , and the process of applying � is
called factorization.
Definition 2.2 ((Binary) Resolution Rule). Let C1 and
C2 be two clauses with no variables in common, and let
l1 ∈ C1 and l2 ∈ C2 be complementary literals with
respect to a most general unifier � = mgu({l1, l̄2}).
The binary resolvent of C1 and C2 with respect to the
literals l1 and l2 is the clause:

C1 ∪r C2 = (C1� ⧵ [l1�]) ∪ (C2� ⧵ [l2�]).

C1 and C2 are said to be clashing clauses. A resolvent
C1∪rC2 ofC1 andC2 is a binary resolventC1�1∪rC2�2
of factors Ci�i of the two clauses.

It is easy to show that resolution is sound, i.e.,
C1, C2 ⊧ C1 ∪r C2. Consequently, the resolution rule
can be used to deduce new clauses and to prove that
a formula is unsatisfiable if we are able to derive the
empty clause.
Definition 2.3 (Resolution Derivation (Refutation)).
Let Σ be a set of clauses and C a clause. A (resolution)
derivation of C from Σ is a finite sequence of clauses
R1,… , Rk = C , such that each Ri is either in Σ, or a

⊥

[a(X)][¬a(X)]

[¬a(X), b(X)][¬b(X)]

[¬a(X),¬b(X)][a(X)]

Figure 2. A derivation tree.

resolvent of two clauses in {R1, ..., Ri−1}. If such a de-
rivation exists, we write Σ ⊧r C , and say that C can be
derived fromΣ. A derivation of the empty clause⊥ from
Σ is called a refutation of Σ. The steps of a resolution
derivation are the resolution operations performed to
obtain the resolvents in the sequence.

Sometimes it is useful to know which clauses were
used to produce a resolvent Ri in a resolution deriva-
tion. In such cases, a graph or tree representation can
be helpful.
Definition 2.4 (Derivation (Refutation) Graph). Let Σ
be a set of clauses and C a clause such that Σ ⊧r C . Aderivation (refutation) graph of C from Σ is a directed
graph where the nodes are the clauses from the deriv-
ation Σ ⊧r C , and where there is an edge from each
resolvent to the clauses used in the resolution step by
which it was derived.

If we only include in the graph the last clause C and
the clauses that are used in at least one resolution step
of the derivation, we can see the derivation graph as a
tree, in which the last resolvent C is the root of the tree
and the leaves are clauses from Σ. Indeed, by cloning
nodeswithmore than one input edges (i.e., clauses used
in several resolution steps) we can transform the deriv-
ation graph into a derivation tree. It is more convenient
to draw such derivation trees upside-down (Figure 2).
Theorem 2.1 (Soundness of Derivation). Let Σ be a
set of clauses, and C a clause. If Σ ⊧r C , then Σ ⊧ C .

Proof. This is a straightforward consequence of the
soundness of the resolution rule.
A clause logically implies any instance of it, possibly

extended with more literals. This follows directly from
the properties of the disjunction operator and the uni-
versal quantification.



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Definition 2.5 (Subsumption). Let C and D be two
clauses. We say that C subsumes D if there exists a
substitution � such that C� ⊆ D.

Definition 2.6 (Deduction). Let Σ be a set of clauses
and C a clause. We say that there exists a deduction
of C from Σ, and write Σ ⊧dr C , if C is a tautology,
or if there exists a clause D such that Σ ⊧r D and D
subsumes C . If Σ ⊧dr C , we say that the clause C can
be deduced from Σ.

Resolution steps or derivations involving ground in-
stances of clauses (i.e., clause instances that do not con-
tain variables) ensure that there are corresponding res-
olution steps or derivations involving the non-ground
version of the clauses. This process is known as lifting
a resolution step or derivation.
In the text below we recall known theorems taken

from the literature [25].
Theorem 2.2 (Lifting Lemma). Let the clauses C ′1, C ′2
be ground instances of the clauses C1, C2, respectively.
Let C ′ be a ground resolvent of C ′1 and C

′
2. Then there

is a resolvent of the clauses C of C1 and C2 such that
C ′ is a ground instance of C .

Theorem 2.3 (Derivation Lifting). Let Σ be a set of
clauses, and Σ′ a set of ground instances of clauses
from Σ. SupposeR′1, ..., R

′
k is a derivation of the clause

R′k from Σ
′. Then there exists a derivationR1, ..., Rk of

the clauseRk from Σ, such thatR′i is an instance ofRi,
for each i ∈ {1,… , k}.

Resolution derivations allow us to infer clauses that
are logical consequences of an initial knowledge in a
complete way.
Theorem 2.4 (Subsumption Theorem). Let Σ be a set
of clauses, and C a clause. Then Σ ⊧ C iff Σ ⊧dr C .

Theorem 2.5 (Refutation Completeness of Resolu-
tion). Let Σ be a set of clauses. Then Σ is unsatisfiable
iff Σ ⊧r ⊥ .

Performing resolution steps in a breath-first man-
ner ensures that we will find the empty clause for un-
satisfiable formulas. However, for satisfiable formulas,
we may never stop generating new clauses that are not
subsumed by the already generated clauses. In general,
resolution allows us to define algorithms that provide
sound and complete results, but we cannot ensure ter-
mination for all FOL formulas.
The resolution operator ∪r has some useful prop-

erties that allow us to transform derivations without
affecting the consequence.

Property 2.1 (Symmetry). If C1 and C2 are clashing
clauses, then their resolvent clause can be computed in
a symmetric way:

C1 ∪r C2 ≡ C2 ∪r C1.

Property 2.2 (Distributivity). If C1, C2 and C3 are
clauses such that C3 resolves with the resolvent of C1
and C2 using literals from both C1 and C2, then the
following distributivity property holds:

(C1 ∪r C2) ∪r C3 ≡ (C1 ∪r C3) ∪r (C2 ∪r C3). (1)

Note that on right-hand side of (1) the literals used
in the resolution steps with respect to C3 (C1 ∪r C3and C2 ∪r C3) need to be the same that are used in the
left-hand side.
Property 2.3 (Commutativity). If C1, C2 and C3 are
clauses such that C3 resolves with the resolvent of C1
and C2 using only literals from C1, then the following
commutativity property holds:

(C1 ∪r C2) ∪r C3 ≡ (C1 ∪r C3) ∪r C2.

Proving the above properties is straightforward if we
consider them over ground instances of the clauses and
track the set operations on ground literals. As a con-
sequence of Theorem 2.3, the properties also hold for
general resolution over non-ground clauses.
Example 2.2. Wewill illustrate the distributivity prop-
erty for C1 = [a(X), b(X)], C2 = [a(X),¬b(X)] and
C3 = [¬a(X), c(X)]. On the left-hand side of (1) we
have the following resolution steps:

(C1 ∪r C2) = [a(X)]

(C1 ∪r C2) ∪r C3 = [a(X)] ∪r [¬a(X), c(X)]

= [c(X)]

and on the right-hand side

(C1 ∪r C3) = [b(X), c(X)]
(C2 ∪r C3) = [¬b(X), c(X)]
(C1 ∪r C3) ∪r (C2 ∪r C3)

= [b(X), c(X)] ∪r [¬b(X), c(X)]
= [c(X)].

Clearly, [c(X)] ≡ [c(X)].



8 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2. Disjunctive Existential Rules and Conjunctive
Queries with Negation Framework

A conjunctive query (CQ) is a CSF l1,… , ln of pos-itive literals li where all the variables (which we de-
note by X) are existentially quantified, i.e., an expres-
sion of the form ∃X l1,… , ln. Queries that allow neg-
ation in the literals li are called conjunctive queries
with negation (CQ¬). All the variables X that appear
in the positive literals of a CQ¬ are assumed to be
existentially quantified. In order to avoid domain de-
pendant queries we use universally quantified negation
[1, 27, 28], i.e., all the variables Z that appear only in
negative literals are assumed to be universally quanti-
fied: ∃X∀Z l1,… , ln. Because the variable quantifica-tion rules are straightforward we omit quantifiers, e.g.,
instead of ∃X∀Y person(X),¬married(X, Y ) we write
person(X),¬married(X, Y ). The set of variables that
appear in both positive and negative literals is called
the frontier of the query. Note that for now we do not
introduce the concept of answer variables. Therefore,
the queries we define are normally known as Boolean
conjunctive queries. Consequently, throughout the pa-
per by conjunctive querywemean Boolean conjunctive
query. ADSF of conjunctive queries (conjunctive quer-
ies with negation) is usually referred to as a union of
conjunctive queries (UCQ) (union of conjunctive quer-
ies with negation (UCQ¬)). For a UCQ¬ , by ¬k we
denote the set of CQ¬s in  that contain exactly k neg-
ated atoms, and by ¬# the set of CQ¬s in  that con-
tain two or more negated atoms. We use the term query
to refer to either a CQ, CQ¬, UCQ or UCQ¬.
A fact is a CSF l1,… , ln of positive literals li,where all variables are existentially quantified, e.g.,

parent(ana, Y ), parent(maria, Y ). Existential quantifi-
ers are again omitted.
A closer look at the definition of facts reveals that

a fact is equivalent to a Boolean conjunctive query.
However, facts are used to express existing knowledge,
while queries represent questions, so they have differ-
ent roles in the process of reasoning.
A rule is a closed formula of the form
∀X∃Y B → H,

where the body B is a CSF of positive literals, and the
head H is a DSF in which all H ′ ∈ H are CSFs of
positive literals. The setX = vars(B) contains the vari-
ables that appear in the body, and they are universally
quantified. On the other hand, Y = vars(H) ⧵ vars(B)
are the variables the appear only in the head. They are

existentially quantified, and they are called existential
variables. The frontier of a rule is the set of variables
that are present in both the body and head of the rule:
vars(B) ∩ vars(H). We omit quantifiers when writing
a rule.

A disjunctive existential rule is a rule with more than
one disjoint in the head, i.e., ‖H‖ > 1. An existential
rule is a rule with exactly one disjoint in the head. For
simplicity we write the head of the existential rule as
a CSF of atoms. A rule with an empty disjoint in the
head is a negative constraint, i.e., B → ⊥. If it is clear
from the context that we refer to a negative constraint,
we can omit the “→ ⊥” and write only the body B of
the negative constraint. Sometimes we also refer to a
negative constraint as a constraint.

We say that a CSF of atoms Q depends on a rule r
iff there is a CSF of atoms F such that F ⊭ Q and
F , r ⊧ Q. A rule ri depends on a rule rj iff the body of ridepends on rj . The concept of rule dependencies allowsus to define the graph of rule dependencies (GRD) [4],
which is a graph where nodes are rules, and a directed
edge between two nodes represents the existence of a
dependency between the corresponding rules.

A knowledge base (KB) = ⟨,⟩ is composed by
a CSF of rules and a CSF of facts. For a given set
of rules, by⊥ we denote the set of constraints in,
by ∃ the set of existential rules and by ∨ the set of
disjunctive existential rules. A knowledge base ⟨,⟩

is a disjunctive knowledge base (DKB) if∨ ≠ ∅.
Example 2.3 (Disjunctive Knowledge Base). Let us
define an example DKB about family relationships.

– Facts:

(parent(Y , ana), parent(Y , jane)), (2)
sibling(ana, juan)

– Existential rules:

(sibling(X, Y )→ sibling(Y ,X)), (3)
(sibling(X, Y )→ parent(Z,X),

parent(Z, Y )) (4)

– Negative constraints:

(sibling(X, Y ), parent(X, Y )), (5)
(same-age(X, Y ), parent(X, Y )), (6)
(parent(X, Y ), parent(Y ,X)), (7)
(parent(X,X)) (8)



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Disjunctive existential rules :

first-deg-relative(X, Y )→
[parent(X, Y ), parent(Y ,X),

sibling(X, Y )]
(9)

Note that the existential rule (4) has an existential vari-
ableZ, that refers to an anonymous entity that is a par-
ent of both siblings, i.e., if two people are siblings, they
share a parent. Rule (3) states that the predicate sib-
ling/2 is symmetric. We could also add symmetry for
same-age/2. Fact (2) states that there is an anonym-
ous entity Y that is a parent of both jane and ana. The
negative constraints state the impossibility of a person
being parent of his sibling (5) and also of a person of
the same age (6). Additionally, with the negative con-
straints we express that parent/2 is asymmetric (7) and
irreflexive (8). Finally, the disjunctive existential rule
(9) defines the relation that represents the first degree
relative concept [24]: a parent, a child (inverse of par-
ent), or a sibling.

In this paper, we study the query entailment prob-
lem for disjunctive knowledge bases, i.e., the problem
of knowing whether a query  can be entailed from a
disjunctive knowledge base ⟨,⟩:

, ⊧? . (10)
In particular, we solve the entailment problem (10)

by reducing it to the entailment of a UCQ ′ with re-
spect to the set of facts , i.e., to the problem

 ⊧? ′.

We say that ′ is a UCQ-rewriting of Q with respect
to  if for all set of facts  it holds that

 ⊧ ′ implies , ⊧ . (11)
The CQs in ′ are called CQ-rewritings of Q with re-
spect to. If the converse of (11)

, ⊧  implies  ⊧ ′

also holds for all set of facts , we say that ′ is a
complete UCQ-rewriting of  with respect to . Note
that according to our definition, a UCQ-rewriting may
not be complete. In this respect, our definition follows
the definition of UCQ-rewriting from [20] because we
extend many of the concepts and algorithms proposed
by the authors.

Finally, we may be interested in the values that some
of the variables in  take. However, this does not
change the semantic definition of conjunctive queries
and therefore, we discuss it later in Subsection 3.4.

3. Backward Chaining with Disjunctive
Knowledge

In this section we first present constraint resolution,
a novel type of resolution that is sound and refutation
complete. Constraint resolution reduces the number of
available choices in the resolution process by focus-
ing on producing resolvents with a smaller number of
positive literals. Constraint resolution is then translated
into backward rewriting steps, allowing the definition
of a rewriting algorithm for the framework of disjunct-
ive existential rules that is able to solve the query en-
tailment problem (10).

3.1. Constraint Resolution

The entailment problem (10) can be transformed into
a consistency check problem

,,¬ ⊧? ⊥, (12)

which can then be solved using resolution refutation.
Depending on the expressivity of the queries in their
negation can yield new facts, negative constraints, ex-
istential rules or even disjunctive existential rules.

To apply resolution, we need to convert first the facts
 and rules of theDKB, as well as the negated query
¬ to a CNF. In what follows, our purpose is to define
a restricted resolution strategy in order to control the
process of resolution among these clauses, so as to de-
crease the number of available choices every time we
perform a resolution step. This might result in longer
derivations, but the algorithm to generate them is sim-
pler. The main goal of the restrictions we introduce
is to make the resolution process focus on eventually
generating resolvents without positive literals and any
number of negative literals. The process can then con-
tinue by eliminating those remaining negative literals
without introducing again positive literals.
Definition 3.1 (Positive/Negative Charge). The posit-
ive (negative) charge |C|+ (|C|−) of a clause C is the
number of positive (negative) literals in the clause.



10 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Properties of different types of clauses in the disjunctive existential
rules framework.

Name Properties
Rule clause (RC) |C|+ = 1 ∧ |C|− ≥ 1
Fact clause (FC) |C|+ = 1 ∧ |C|− = 0
Constraint clause (CC) |C|+ = 0 ∧ |C|− ≥ 1
Disjunctive RC (DRC) |C|+ ≥ 2 ∧ |C|− ≥ 0

According to the above definition, a Horn clause C
is a clause with positive charge smaller than or equal
to one, i.e., |C|+ ≤ 1. The clause we obtain by con-
verting to CNF a negative constraint or the negation of
a CQ has zero positive charge. We call a clause with
no positive literals a constraint clause (CC). The Skol-
emized version of an existential rule can produce sev-
eral clauses with one positive literal, while a disjunct-
ive existential rule can give rise to several clauses with
more than one positive literal. We call a clause with
only one positive literal a rule clause (RC), and a clause
with more than one positive literal a disjunctive rule
clause (DRC). Facts generate ground clauses contain-
ing only one literal, which has positive polarity, and we
call such clauses fact clauses (FCs). Note that existen-
tial variables in the facts are replaced by Skolem terms.
Table 1 summarizes the properties that define the dif-
ferent types of clauses we may encounter when doing
resolution on aDKB. As we can see, RCs, FCs and CCs
are Horn clauses. Finally, aCQ¬ may produce a FC, RC
or DRC, depending on its positive and negative charge.
Example 3.1. From theDKB of Example 2.3 we obtain
the following clauses:

– Fact clauses:

[parent(f0, ana)]
[parent(f0, jane)]
[sibling(ana, juan)].

– Rule clauses:

[¬sibling(X, Y ), sibling(Y ,X)]
[¬sibling(X, Y ), parent(f2(X, Y ), X)]
[¬sibling(X, Y ), parent(f2(X, Y ), Y )].

– Constraint clauses:

[¬sibling(X, Y ),¬parent(X, Y ))],
[¬same-age(X, Y ),¬parent(X, Y )]
[¬parent(X, Y ),¬parent(Y ,X)]
[¬parent(X,X)].

Table 2
Properties of the resolventC3 for different types of clausesC1 andC2.
C1 C2

CC DRC RC

FC |

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

|

|

C3||
− < |

|

C1||
−

RC |

|

C3||
+ = 0 1 ≤ |

|

C3||
+ ≤ |

|

C2||
+

|

|

C3||
+ = 1

DRC |

|

C3||
+ < |

|

C1||
+

|

|

C3||
+ >

max(|
|

C1||
+ , |

|

C2||
+)

CC does not exist

– Disjunctive rule clauses :

[¬first-deg-relative(X, Y ), parent(X, Y ),
parent(Y ,X), sibling(X, Y )].

Table 2 shows the properties of the resolvent for dif-
ferent types of clauses when performing a resolution
step. From these properties follows that a resolution re-
futation should involve resolution steps with respect to
fact clauses, because they always produce clauses with
a smaller negative charge. Such resolution steps can be
arranged so that they are performed in the last part of
the resolution derivation. Additionally, this type of res-
olution steps is generally linked to data retrieval with
respect to databases. For this reason, we mainly focus
on the initial part of a rearranged resolution derivation,
until it reaches a clause that has only negated atoms.
Such a process is linked to producing CQ-rewritings,
since the resulting clause corresponds to the negation
of a conjunctive query.

As we can see from Table 2, in order to get deriva-
tions that produce clauses with a non-increasing posit-
ive charge, we need to avoid resolutions steps involving
two DRCs, i.e., we need to use in every resolution step
at least one Horn clause. However, if we focus on res-
olution steps where one of the clauses used is a CC,
the resolvent will always have a smaller positive charge
(See CC column on Table 2).
Definition 3.2 (Constraint Derivation). Let Σ be a set
of clauses and C a clause. A resolution derivation (re-
futation) Σ ⊧r C of a clauseC(⊥) from Σ is a constraint
derivation (refutation) iff all its resolution steps involve
resolution with a constraint clause. A constraint deriv-
ation of a clause C from Σ is written as Σ ⊧c C . Simil-
arly, there is a constraint deduction of C from Σ, writ-
ten as Σ ⊧dc C , if C is a tautology or if there is a clause
D such that Σ ⊧c D and D subsumes C .

The subsumption theorem can be formulated using
constraint deductions and consequences with no posit-
ive literals.



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Theorem 3.1 (Constraint Subsumption for Constraint
Clause Consequences). Let Σ be a set of clauses and
C a constraint clause. Then Σ ⊧ C iff Σ ⊧dc C .

Proof. Based on the subsumption theorem for resolu-
tion derivations (Theorem 2.4), the fact that Σ ⊧ C im-
plies that we have a deduction ofC , i.e., there is a deriv-
ation Σ ⊧r D of a clause D that subsumes C . Note that
D needs to be a CC in order to subsume another CC.
This proof is based on being able to transform every
resolution derivation of a CCD into a constraint deriv-
ation of D.

The resolution derivation Σ ⊧r D for sure in-
volves resolution steps with respect to some constraint
clauses. Let Ci1 be the closest resolvent to the root (D)
of the corresponding derivation tree that is obtained by
applying binary resolution without using a constraint
clause: Ci1 =

(

Ci0 ∪r Cj0
)

. We can assume that on the
path to the root of the tree the resolution steps involve
always constraint clauses Cj1 ,… , Cjk :

(

Ci0 ∪r Cj0
)

∪r Cj1 ∪r…∪r Cjk = D.

Therefore, we can apply the distributivity property if
Cj1 clashes on literals coming from both clauses Ci0and Cj0 , obtaining

(

(Ci0 ∪r Cj1 ) ∪r (Cj0 ∪r Cj1 )
)

…∪r Cjk = D.

On the other hand, if Cj1 clashes on literals coming
from only one of the clauses (we assume it is Ci0without loss of generality) we apply the commutativity
property to obtain

(

(Ci0 ∪r Cj1 ) ∪r Cj0
)

…∪r Cjk = D.

If we continue the same process for all the clauses
Cj1 ,… , Cjk in the same order, we obtain

(

Ci0 ∪r Cj′1 ∪r…∪r Cj′
k′

)

∪r
(

Cj0 ∪r Cj′′1 ∪r…∪r Cj′′
k′′

)

= D.

Because D is a constraint clause at least one of the
clauses used to obtain it is also a constraint clause:

|

|

|

|

(

Ci0 ∪r Cj′1 ∪r…∪r Cj′
k′

)

|

|

|

|

+
= 0

or
|

|

|

|

(

Cj0 ∪r Cj′′1 ∪r…∪r Cj′′
k′′

)

|

|

|

|

+
= 0.

This eliminates the resolution step between the two
non-constraint clauses. In the same way, we can elim-
inate the rest of the resolution steps that involve two
non-constraint clauses. Thus, transforming the existing
deduction of C into a constraint deduction of C .
Theorem 3.2 (Completeness of Constraint Resolution
Derivations). A set of clausesΣ is unsatisfiable iff there
exists a constraint refutation of Σ, i.e., Σ ⊧c ⊥.

Proof. This follows from Theorem 3.1 by taking as
consequence the empty clause that has no positive lit-
erals and is only subsumed by itself.
3.2. Rewriting Operations and Resolution

Conjunctive query rewriting is a process that mimics
the constraint derivations introduced in the previous
section. However, resolution steps involving Skolem
functions are performed together in order to avoid in-
troducing literals with Skolem functions that will not
be able to be removed. For existential rules, the pro-
cess of query rewriting is well known [20]. However,
in most of the existing literature disjunctive rules are
mainly used in a forward chainingmanner [13, 15] or to
perform Disjunctive Datalog rewritings [3, 9, 11, 16].

In Example 2.3, one could infer that two first-degree
relatives that have the same age have to be siblings:

first-deg-relative(X, Y ),
same-age(X, Y )→ sibling(X, Y ). (13)

This rule can be obtained by a constraint derivation
using (9) and the clauses corresponding to:

(same-age(X, Y ), parent(X, Y )→ ⊥)
(same-age(X, Y )→ same-age(Y ,X))

expressing respectively that children and their parents
cannot have the same age and that the same-age/2
predicate is symmetric.

The new existential rule (13) can then be used in re-
writing steps defined for existential rules.

A rewriting step as defined in the existential rules
framework [20] corresponds to the resolution steps
between RCs corresponding to an existential rule and a
CC corresponding to the negation of a CQ.
Definition 3.3 (Rewriting Step). Let r = B → H be
an existential rule, and Q a conjunctive query. If there
is a subset H ′ ⊆ H that unifies with some Q′ ⊆ Q
through a mgu � (i.e.,H ′� = Q′�) such that



12 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1. if v ∈ vars(Q ⧵Q′) and v ≠ v�, then v� is a
frontier variable of r or a constant, and

2. if v is an existential variable of the rule r, then
v� ∉ vars(Q ⧵Q′),

then the query (B∪(Q⧵Q′))� is a rewriting ofQ using
the existential rule r.

If an existential rule r has more than one atoms in
its head, it gives rise to more than one RCs. Neverthe-
less, the resolution steps with such RCs are always per-
formed together in order to avoid unnecessary propaga-
tion of Skolemized existential variables. Thus, the res-
ulting clause cannot contain a Skolem term represent-
ing an existential variable of r. Hence, existential vari-
ables cannot be assigned to a variable that will be part
of the result (condition 1 in Definition 3.3) nor should
be replaced by a variable that belongs to the result (con-
dition 2 in Definition 3.3).
Definition 3.3 is an adaptation to our framework of

the piece-based rewriting step proposed in [20].
For the resolution steps between some DRCs ob-

tained from a disjunctive existential rule and a CC ob-
tained from the negation of a CQ, we define a corres-
ponding rewriting step generalizing Definition 3.3 with
the goal to support both existential rules and disjunct-
ive existential rules.
Definition 3.4 (General (Disjunctive) Rewriting Step).
Let r = B → H be a rule, and Q a conjunctive query.
If there is a subset H ′ ⊆ H , and for each ℎi ∈ H ′

there is a subset ℎ′i ⊆ ℎi that unifies with someQ
′ ⊆ Q

through a mgu � (i.e., ℎ′1� = …ℎ′n� = Q
′�) such that

1. if v ∈ vars(Q ⧵Q′) , then v� is a frontier variable
of r or a constant, and

2. if v is an existential variable of the rule r, then
v� ∉ vars(Q ⧵Q′),

then (B∪(Q⧵Q′)→ H⧵H ′)� is a rewriting ofQ using
the rule r. A rewriting step is a disjunctive rewriting
step if the rule used is a disjunctive existential rule.

A disjunctive rewriting step can yield a disjunctive
rule with fewer disjunctive components, an existential
rule in case |(H ⧵H ′)�| = 1 or a negative constraint
(the negation of a conjunctive query) in caseH = H ′.
Example 3.2. Consider a disjunctive existential rule:

r1 = diabetesRisk(X)→ [(diabetic(Y ),
sibling(Y ,X)),

(diabetic(Z),
parent(Z,X))].

If we want to rewrite the query Q = diabetic(X1), to
learn if there are any diabetic people, we can obtain the
UCQ-rewriting [diabetic(X1), diabetesRisk(X)], us-
ing r1 with the unifier � = {Y ←←← X1, Z ←←← X1}.

On the other hand, if we have the negative con-
straint singleChild(X1), sibling(Y1, X1) and the query
Q′ = diabetic(Y2), parent(Y2, X2) asking if there is a
diabetic parent, we can derive the existential rule

diabetesRisk(X), singleChild(X)→ diabetic(Z),
parent(Z,X),

by rewriting the constraint using the rule r1 and the
unifier �2 = {X1 ← X, Y1 ← Y }. Using the new exist-
ential rule we obtain the following UCQ-rewriting:

[(singleChild(X), sibling(Y ,X)),
(diabetic(Y ), parent(Y ,X)),
(diabetesRisk(X), singleChild(X))].

Note that the final UCQ-rewriting contains also neg-
ated constraints which are possible reasons for which
a query can be entailed, i.e., inconsistent knowledge
bases. However, sometimes we might want to filter out
the negated constraints if we are sure that the know-
ledge base is consistent.

Using the above-defined rewriting steps, we can now
define rewriting for DKBs.
Definition 3.5 (Rewriting). Let ⟨,⟩ be a tuple con-
sisting of a set of rules and a UCQ . A one-step re-
writing ⟨′,′⟩ of ⟨,⟩ can be obtained by adding
to or to , as appropriate, the result f ′ of a general
rewriting step that uses one of the conjunctive queries
in  and a rule in , i.e., ′ =  ∪ (¬f ′) if f ′ is a
negative constraint, otherwise ′ =  ∪ (f ′).

A k-step rewriting of ⟨,⟩ is obtained by apply-
ing a one-step rewriting to a (k − 1)-step rewriting of
⟨,⟩. For any k, a k-step rewriting of ⟨,⟩ is a
rewriting of ⟨,⟩.

So far we have dealt with rewritings of conjunctive
queries with respect to existential rules and disjunct-
ive existential rules. However, we have not considered
negative constraints and conjunctive queries with neg-
ated atoms. Negative constraints are transformed into
queries in the rewriting process, i.e.,

∃,∨,⊥, ⊧  iff ,∨, ⊧ ¬⊥,.



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In a similar way, if is aUCQ¬, the entailment prob-
lem can be reduced to the entailment of a UCQ:

∃,∨,⊥, ⊧  iff
(∃,¬¬1), (∨,¬¬#), ⊧ ¬⊥,¬0, (14)

where ¬¬1 contains existential rules (negations of
CQ¬s with one negated atom) and ¬¬# disjunctive ex-
istential rules (negations of CQ¬s with more than one
negated atom).
Theorem 3.3 (Soundness and Completeness of Re-
writings). Let ⟨,⟩ be a DKB and  a UCQ.
Then , ⊧  iff there is a rewriting ⟨′,′⟩ of
⟨

(,∨), (,¬⊥)
⟩

such that  ⊧ Qi for some con-
junctive query Qi in ′.

Proof. The k-step rewriting of ⟨(,∨), (,¬⊥)
⟩ is

based on a constraint derivation. Moreover, such a re-
writing can be mapped to a constraint derivation. Since
constraint derivations are sound and complete (The-
orem 3.2), this theorem also holds.

Algorithm 1 Function to rewrite UCQs with respect to
existential rules and disjunctive existential rules.
f unc t i on rewritek(,)

 ∶=  ∪ ¬⊥

 ∶=  ⧵⊥

do
old ∶= 
old ∶= 
 ∶= rewrite∃k(

∃,)
 ∶= rewrite∨(,)

whi le ( ≠ old or  ≠ old)
re turn 

end func t i on

Given a set of rules  and a UCQ Q, function
rewritek/2 presented in Algorithm 1 computes all
the rewritings of ⟨(,∨), (,¬⊥)

⟩. The algorithm
alternates between computing the rewritings of CQs
using existential rules (rewrite∃k/2 presented in Al-
gorithm 2) and computing the rewritings using dis-
junctive existential rules (rewrite∨/2 presented in
Algorithm 3). New CQs are used to generate more
rules, and new existential rules are used to generate
more CQs until a fixed point is reached, i.e., until no
new rule or query is produced.

Algorithm 2 Function to rewrite UCQs using existen-
tial rules.
f unc t i on rewrite∃k(,)

old ∶= 
exp ∶= 
level := 0
do

 ∶=cover(∪rew(exp,))
exp ∶=  ⧵old
old ∶= 
level := level + 1

whi le exp ≠ ∅ and level < k
re turn 

end func t i on

Algorithm 3 Function to rewrite UCQs using disjunct-
ive existential rules.
f unc t i on rewrite∨(,)

old ∶= 
exp ∶= ∨

do
 ∶= ∪rew∨(,exp)
exp ∶= ∨ ⧵old
old ∶= 

whi le exp ≠ ∅
re turn 

end func t i on

Function rew/2 (in Algorithm 2) computes the set
of the results of all possible rewriting steps for all the
combinations of existential rules and CQs in its argu-
ments. This step is known as the expansion of a query,
and it generates more conjunctive queries. On the other
hand, function rew∨/2 (in Algorithm 3) computes the
expansion of disjunctive existential rules by comput-
ing the set of the results of all disjunctive rewriting
steps for all the combinations of disjunctive existen-
tial rules and CQs in its arguments that do not yield a
conjunctive query. This restriction does not affect com-
pleteness because a CQ Q′ that can be generated from
a CQ Q in a disjunctive rewriting step using rule r can
also be generated in two steps. In particular, a disjunct-
ive rewriting step generates first an existential rule r′



14 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(r′ ∈ rew∨({Q}, {r})), and then a rewriting step using
r′ generates the query Q′ (Q′ ∈ rew({Q}, {r′})).

The cover/1 function (in Algorithm 2) computes,
for a given UCQ Q, the minimal subset Q′ ⊆ Q such
that for all q ∈ Q there is a q′ ∈ Q′ such that q′ sub-
sumes q, i.e., the corresponding clause to q′ subsumes
the corresponding clause to q.
The cover/1 function allows us to keep always the

minimal set of CQs that can yield the same results.
In [20], the authors perform a deeper analysis showing
that using the cover computation on the rewriting al-
gorithm they propose ensures that the resulting UCQ-
rewriting will be of minimal size (cardinality).
In both rewrite∃k/2 and rewrite∨/2, all newly

generated CQs and rules are also expanded, unless
someCQs are removed when computing the cover. The
process stops when a fixed point is reached.
All CQs generated by Algorithm 1 are computed ac-

cording to our definition of a rewriting; this ensures the
correctness, i.e., every CQ that is generated is a CQ-
rewriting of the input query with respect to the input
sets of rules and constraints.
The rewriting function for disjunctive existential

rules (rewrite∨/2) generates all the possible rules
using an input UCQ rewriting. The fact that new rules
have less disjunctive components in the head ensures
that the output is always finite. Therefore, the complete-
ness of the result of Algorithm 1 relies totally on the
completeness of the result provided by Algorithm 2.
Algorithm 2 describes the rewriting function for ex-

istential rules (rewrite∃k/2), and is based on the gen-eral rewriting algorithm proposed on [20]. It imple-
ments a breath-first expansion process where each it-
eration of the loop expands a new level of conjunct-
ive queries. We have introduced the parameter k that
allows us to control how many levels of CQs will be
expanded and ensures termination of each individual
call to Algorithm 2 for k ≠ ∞. However, the loop
in Algorithm 1 will keep on calling Algorithm 2 as
long as new CQs are generated, without affecting the
completeness of the whole rewriting process. The para-
meter k defines a pause on the existential rules rewrit-
ing process in order to generate more rules from the
disjunctive existential rules.
König et al. study the completeness of the UCQ-

rewriting computed by the rewriting algorithm for
existential rules based on different definitions of the
query expansion function [20]. Our expansion func-
tion (rew/2) ensures that the computedUCQ-rewriting
is complete because it corresponds to their piece-
based rewriting operator that ensures the complete-

ness. Moreover, if there is a finite and complete UCQ-
rewriting of the input UCQ, the function rewrite∃k/2will find it after a finite number of calls to it.
3.3. Rewritable Queries and Disjunctive Knowledge

Bases

The termination of Algorithm 1 depends on the ter-
mination of Algorithms 2 and 3. Algorithm 3 always
terminates because the produced rules contain less dis-
junctive components in the head. On the other hand,
setting k = ∞ or executing a possibly infinite number
of calls to Algorithm 2 is denoted by rewrite∃/2 and
corresponds to the classical rewriting algorithm for ex-
istential rules proposed in [20], whose termination is
studied in [7]. In general, the problem of knowing if
there exists a finite UCQ-rewriting for any UCQ with
respect to an arbitrary set of existential rules is undecid-
able [7]. A set of existential rules that ensures the ex-
istence of a finite UCQ-rewriting for any UCQ is called
a finite unification set (fus) [6]. There are some classes
of existential rules that have the fus property:

1. Linear existential rules [6]: existential rules with
one atom in the body.

2. Disconnected existential rules [8]: existential
rules that do not share variables between the body
and the head.

3. Acyclic graph of rule dependencies (aGRD) [4]:
existential rules that do not contain cycles in the
graph of rule dependencies.

If a set  of existential rules is a fus and the new
existential rules generated by Algorithm 3 are also a
fus, combining them could yield a new set of existential
rules that is not a fus [7]. Therefore, we need stronger
conditions to ensure that we always call Algorithm 2
with a set of existential rules that is a fus.

For a set of existential rules , a cut is a partition
{1,2} of , and it is a directed cut (1 ⊳ 2) ifnone of rules in1 depends on a rule of 2.
Property 3.1. Let  be a set of existential rules with
a directed cut 1 ⊳2. For any CQ Q and any set of
facts  we have that

, ⊧ Q if there is a CQ Q′ such that
,1 ⊧ Q′ and Q′,2 ⊧ Q.

Proof. The proof is based on being able to organize the
application of the rules of . The existing dependen-
cies ensure that the rules of1 are never depending onthe rules of2. For a detailed proof check [7].



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Property 3.1 [7] allows us to study the decidability
of entailment when we combine two sets of rules for
which the entailment problem is decidable.
In Algorithm 3, even if the resulting set of existen-

tial rules is a fus, the process of generating new rules
could potentially continue forever after we obtain new
CQs from Algorithm 2. Therefore, we need ways to en-
sure that the total number of existential rules generated
by Algorithm 3 is bounded, i.e., at some point the al-
gorithm will not produce new rules.
Existential rules with one atom in the body ensure

that the CQ-rewritings will never grow in size. Indeed,
a rewriting operation will replace one or more atoms
for the atomic body.
A rule B → H is linear if it has only one atom in

the body, i.e., |B| = 1.
Theorem 3.4. Let  be a set of rules and  a UCQ.
If  contains only atomic queries and  only linear
rules, then Algorithm 1 stops for any value of k.

Proof. Linear existential rules are a fus and rewrit-
ing queries with them stops even when k = ∞. The
new rules generated by the linear disjunctive existential
rules and the atomic queries will also be linear rules,
and combining them with ∃ will also produce a fus.
Additionally, the number of single atoms that can be
built using a finite number of predicates, variables and
constants is bounded. Therefore, the number of rules
that we can derive from the linear disjunctive existen-
tial rules is finite. Consequently, Algorithm 1 stops be-
cause at some point no new rules and no new queries
can be generated.

Theorem 3.4 is closely related to Theorem 7.13 and
Lemma 7.12 proposed by Bourhis et al. in [12]. How-
ever, it is still interesting to prove it considering the al-
gorithm we have proposed so that the technique can be
extended to the study of other fragments.
Rules that do not share variables between the head

and the body produce rewritings where the introduced
body of the rule is not connected to the remaining part
of the the query.
A rule B → H is disconnected if no variable

from the body is present in the head of the rule, i.e.,
vars(B) ∩ vars(H) = ∅. Disconnected rules can still
share constants between the body and the head of the
rule and this allows us to express knowledge about spe-
cific individuals.
Theorem 3.5. Let1 be a fus and2 a set of discon-
nected existential rules. The union of both sets1∪2
is also a fus.

Proof. Disconnected rules add atoms to the rewritings
that do not share variables with the remaining part of
the query. It follows that the connected cardinality of
CQ-rewritings produced by rules B → H ∈ 2 is
bounded as follows:

card∗(rew(B → H, Q)) ≤
max (card∗(B), card∗(Q)).

The rules in1 may produce CQ-rewritings with a lar-
ger connected cardinality, but they only produce a finite
number ofCQ-rewritings because1 is a fus. It followsthat the connected cardinality of the CQ-rewritings of
an initial query Q is bounded, i.e.,

card∗(rewrite∃ (1 ∪2, Q)) ≤
max ( card∗(rewrite∃(1, B)),

card∗(rewrite∃(1, Q))).

Using Lemma 2.2we conclude that the number of re-
writings produced by1∪2 cannot be infinite. Thus,
1 ∪2 is also a fus.
Theorem 3.6. Let be a set of rules and  a UCQ. If
∃ is a fus, and ∨ a set of disconnected disjunctive
existential rules, then Algorithm 1 stops for any set of
constraints ⊥, any UCQ  and for any value of k.

Proof. The new existential rules produced by the func-
tion rewrite∨ are disconnected rules and they can be
combined with the rules in∃ and yield a fus (follows
from Theorem 3.5).

Rewritings of disjunctive rules Bi → Hi will havethe following form:
⋃

j
B′j ∪

⋃

j
Q′j → H ′,

where H ′ ⊆ Hi� is a subset of an instance Hi�of the original head of the rule Hi, B′j ⊆ B′′�′ is
a subset of an instance B′′�′ of a rewriting of the
body Bj of a disjunctive existential rule, i.e., B′′ ∈
rewrite∃(Bj ,∃), and Q′j ⊆ Q′′�′′ is a subset of
an instance Q′′�′′ of a rewriting of an input CQ or a
negated constraintQj , i.e.,Q′′ ∈ rewrite∃(Qj ,∃).
The substitutions �′ and �′′ are compositions of the
mgus applied in the rewriting steps. None of the B′j or
Q′j share variables between them because they are in-
troduced using an atom in the head of the disjunctive
rule that does not share variables with the body.

Because ∃ is a fus we have a finite number of re-
writings B′j andQ′j . This ensures that there is only a fi-



16 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nite number of different bodiesB′ for the generated ex-
istential rules. The number of different heads,H ′ is ob-
viously finite too. Therefore, there is only a finite num-
ber of different existential rules that will eventually be
generated by rewrite∨. Thus, Algorithm 1 stops for
any value of k.
For other types of queries and knowledge bases there

is no certainty that the algorithm will stop. However,
we can still try to compute the rewritings up to a cer-
tain depth. Nevertheless, we should point that our al-
gorithm stops if there is a finite and complete UCQ-
rewriting of the input query with respect to the rules
and the constraints in the knowledge base.
Theorem 3.7. Let  be a set of rules and  a UCQ.
If a UCQ  has a finite and complete UCQ-rewriting
with respect to, then Algorithm 1 stops for any finite
value of k.

Proof. The completeness of the definition of rewritings
and the fact that we produce rewritings using all pos-
sible one-step rewritings ensures that if there is a finite
UCQ rewriting f , then after a finite number of steps
Algorithm 1 (with a finite value of k) will produce a
rewriting equivalent to f . Because f is complete,
any further rewriting of f using existential rules will
not produce new conjunctive queries, i.e., the condition
 = old holds for the rest of the iterations in the loop.The algorithm can still produce new (disjunctive) ex-
istential rules, but since no new CQs are generated, the
number of new rules that can be produced is finite due
to the fact that new rules are produced with strictly less
disjoint components in the head. Consequently, we will
reach an iteration of the loop in Algorithm 1 where
 = old . Therefore, Algorithm 1 terminates because
after a finite number of iterations the condition to con-
tinue iterating on the loop will no hold.
Note that a subset of the existential rules needed to

generate the finite and complete UCQ-rewriting of the
initial query in Theorem 3.7 could potentially produce
an infinite number of rewritings.
Example 3.3. To illustrate this we can consider the fol-
lowing DKB:

– Existential rules:

(r(X,W ), r(W ,Y )→ r(X, Y )),
(b(X)→ a(X)),
(c(X)→ a(X)).

– Disjunctive existential rules:

s(X)→ [b(X), c(X)].

If we try to rewrite the UCQ [a(X), (s(X), r(X, f ))]
with respect to ∃ using k = ∞ it would produce an
infinite set of CQ-rewritings of the form:

s(X), r(X,W1), r(W1,W2),… , r(Wn, f ).

However, for k = 1 (or any other finite value) the
new rules produced by the disjunctive existential rule
would eventually generate the conjunctive query s(X).
The application of the cover/1 function would then
remove the queries that can produce the infinite set
of rewritings and yield the finite and complete UCQ-
rewriting [a(X), s(X), b(X), c(X)] of the initial query.

Therefore, the expansion process in Algorithm 2
needs to have a finite depth (i.e., k ≠ ∞) in order to
avoid infinite loops.

Theorem 3.7 ensures that Algorithm 1 stops only if
there is a finite and complete UCQ-rewriting for the
input query otherwise the algorithm may never stop.
However, it does not require the fus property for the set
of existential rules in the knowledge base. On the other
hand, Theorems 3.4 and 3.6 ensure that Algorithm 1
will always terminate if the required conditions aremet.
3.4. On Queries with Answer Variables and Linear

Queries

While Theorems 3.4 and 3.6 impose rather strong re-
strictions on the disjunctive framework, they also sug-
gest the existence of finite UCQ-rewritings for very ex-
pressive types of queries with negated atoms and an-
swer variables.

A CQ Q with answer variables (CQa) is a CQ of
the form ans(X), B, where B is a CSF of atoms, called
the body of the query, and ans(X) is the answer atom
of the query. The fresh predicate ans/n is called the
answer predicate and X a tuple of variables or con-
stants such that var(X) ⊆ var(B), is called the an-
swer tuple of the query. A CQa Q is often written
as ans(X) ∶− B. Conjunctive queries without answer
variables are called Boolean CQs and for them the an-
swer tuple is the empty tuple X = (). A CQ¬ with an-
swer variables (CQa¬) is defined in the same way, but
variables that appear only in negated atoms are not al-
lowed to be part of the answer tupleX. AUCQ (UCQ¬)
with answer variables (UCQa or UCQa¬ respectively)



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

is a DSF of CQas (CQa¬s) with the same answer pre-
dicate. In general, a query with answer variables refers
to a CQa, CQa¬, UCQa or to a CQa¬.
Given a knowledge base , a tuple t of constants in

 is a certain answer of a query with answer variables
Q with respect to  iff , ans(t) ⊧ Q. The set of cer-
tain answers of a query  with respect to a knowledge
base  is denoted by cert(,). Computing the set
cert(,) is known as the query answering problem.
Example 3.4. Consider the following three CQas,
which have different sets of answer tuples:

Q1 = ans1() ∶− sibling(X, Y ),
Q2 = ans2(X) ∶− sibling(X, Y )
Q3 = ans3(X, Y ) ∶− sibling(X, Y ).

We expect the certain answers of Q1 to contain the
empty tuple if someone has a sibling or otherwise be
the empty set, the certain answers of Q2 to be the set
of people that have siblings, and the certain answers of
Q3 to be set of pairs of people that are siblings.
Consider also a knowledge base  based on Ex-

ample 2.3, with a different set of facts:

sibling(pedro, ana)
sibling(juan, Y ).

The first fact states that pedro and ana are siblings,
while the second fact that juan has a sibling.
The certain answers of the queries with respect to

are the following:

cert(Q1,) = {()}
cert(Q2,) = {pedro, ana, juan}
cert(Q3,) = {⟨pedro, ana⟩ , ⟨ana, pedro⟩}.

Thus, there are some siblings in (byQ1), pedro, ana,
and juan have siblings (by Q2) and ana is a sibling
of pedro and pedro a sibling of ana since sibling/2 is
symmetric (by Q3). Note that the sibling of juan has
no identity so it is not included in the certain answers
of Q3. The answers can be easily verified by solving
the corresponding entailment problems, e.g., pedro is
a certain answer of Q2 because

, ans2(pedro) ⊧ ans2(X), sibling(X, Y ).

For queries with answer variables we focus on the
query answering problem instead of the entailment
problem. In theory we could try all possible assign-
ments of constants in to variables in the answer tuple

X and check whether the resulting query is entailed.
However, computing a UCQ-rewriting for each pos-
sible assignment of constants would not be very ef-
ficient. We can compute the UCQ-rewritings Q′ of a
query with answer variablesQwith respect to the rules
in  and then transform the entailment problem, i.e.,

,, ans(t) ⊧ Q iff , ans(t) ⊧ Q′. (15)

The answer atoms in the elements of Q′ will be af-
fected by the mgus of the rewriting process but the an-
swer variables will never be replaced by an existential
variable because of condition 1 in the definition of gen-
eral (disjunctive) rewriting step.

The entailment of a UCQa¬ can be transformed into
the entailment of a UCQ (14). However, the presence
of answer atoms in CQa¬s will create rules with an-
swer atoms in their body that may produce rewritings
with more than one occurrence of answer atoms. Be-
cause the set of facts can only contain one answer atom,
a rewriting with more than one occurrence of answer
atoms ans(X1),… , ans(Xn), B′ can only be entailed
in case there is an mgu for {ans(X1),… , ans(Xn)}. A
UCQ-rewriting of a query with answer variables is de-
terministic if the CQs in it do not contain more than
one occurrence of answer atoms. Rewritings without
answer atoms correspond to rewritings of the negated
constraints. They allow us to check the consistency of
the data  with respect to the rules in our knowledge
base. However, the query answering problem does not
make much sense when one of these rewritings is en-
tailed by the data.

Algorithm 1 needs to be modified in order to avoid
unnecessary rewritings of queries with answer vari-
ables. In Algorithms 2 and 3 we need to modify the
functions rew/2 and rew∨/2 that compute one-step re-
writings so that they only give rewritings with no
more than one answer atom. More specifically, the
resulting CQs B (rules B → H) with more than
one answer atom (i.e, {ans(X1),… , ans(Xn)} ⊆ B) are
replaced by the CQ B� (rule B� → H�) where
� = mgu({ans(X1),… , ans(Xn)}). We call these mod-
ified functions deterministic one-step rewriting func-
tions. Algorithm 1 with deterministic one-step rewrit-
ing functions computes a deterministic UCQ-rewriting
that is complete based on the fact that the answer pre-
dicate is fresh, i.e., it is not used in the knowledge base.
Using deterministic one-step rewriting functions helps
with the termination of the rewriting process.



18 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Example 3.5. Consider a knowledge base without
rules and the following UCQa¬

Q = [(ans(X,Z), r(X, Y ), r(Y ,Z),¬r(X,Z)),
(ans(X, a), r(X, a))].

The query Q has infinitely many CQ-rewritings of the
following form:

ans(X, a), ans(X,X1),… , ans(X,Xn−1),
r(X,Xn), r(Xn, Xn−1),… , r(X1, a).

However, there is a finite and complete deterministic
UCQ-rewriting of Q:

[(ans(X, a), r(X,X2), r(X2, a), r(a, a)),
(ans(X, a), r(X,X1), r(X1, a)),
(ans(X, a), r(X, a))].

Answer variables play a different role when splitting
CSFs on connected components. The super cardinal-
ity of a CSF of atoms F with answer variables X is
the number of non-answer variables in it: card+(F ) =
|vars(F ) ⧵ vars(X)|. We say that two non-answer vari-
ables u and v in a CSF of atoms F are super connected
if they belong to the same atom, or if there is another
non-answer variable z in F that is super connected to
both u and v.
A CSF of atoms is super connected if all the atoms

in it contain non-answer variables super connected to
each other. Atoms containing only constants or answer
variables in their arguments are super connected for-
mulas with a super cardinality of zero.
A CSF F can be partitioned into a set {U1,… , Un}of super connected components such that if v ∈

vars(Ui) is super connected to u ∈ vars(Uj), then
i = j. The super connected cardinality of F is defined
as the maximum super cardinality of the super con-
nected components in the partition of F and denoted
as card∗+(F ) = maxi(card+(Ui)). The super connec-
ted cardinality of a DSF [F1,… , Fm] is the maximum
super connected cardinality of the formulas Fi, i.e.,
card∗+([F1,… , Fm]) = maxi (card∗+(Fi)).
Lemma 3.1. Let be a knowledge base and F a CSF
of atoms with answer atom ans(X) partitioned into the
super connected components {U1,… , Un}. Then,

, ans(t) ⊧ F iff , ans(t) ⊧ ans(X), Ui
for every Ui.

(16)

Proof. It follows directly from Lemma 2.1 after trans-
forming (16) into:

 ⊧ F� iff  ⊧ Ui�for every Ui ≠ ans(X), (17)

where � = mgu(ans(t), ans(X)). Note that � replaces
the answer variables by constants and the resulting con-
nected components will be the same as the super con-
nected components.
Lemma 3.2. Let k be a natural number. There are a
finite number of equivalence classes of CSFs of atoms
with super connected cardinality of at most k that can
be constructed using a finite set of predicates and a fi-
nite set of constants.

Proof. Straightforward using Lemma 3.1 and similar
arguments to the ones used in the proof of Lemma 2.2.

Given a set of ruleswithout disjunctive existential
rules (i.e., ∨ = ∅), using reduction (14) we can fo-
cus on the disjunctive rules that are obtained from the
negation of the CQa¬s:

 ⊧  iff (∃,¬¬1),¬¬# ⊧ ¬⊥,¬0, (18)
and study when Algorithm 1 with deterministic one-
step rewriting functions terminates.

If all the variables in the frontier of the CQa¬s are
also answer variables, then the corresponding disjunct-
ive existential rules will act similarly to disconnected
rules if we use deterministic one-step rewriting func-
tions on Algorithm 1.
Theorem 3.8. Let be a set of rules without disjunct-
ive existential rules and aUCQa¬. If all the variables
in the frontier of the CQa¬s in  are also answer vari-
ables and∃ is a fus, then Algorithm 1 with determin-
istic one-step rewriting functions, applied on the rules
 ∪ ¬1 ∪ ¬¬#, and UCQ ¬0, terminates for any
value of k.

Proof. The variables that appear in negated atoms of
the CQ¬s will end up being the variables in the head
of the corresponding rules in (¬¬i)i>0. However, thevariables that only appear in the negated atoms will
be translated to existential variables and only answer
variables are going to be frontier variables of the cor-
responding rules. Therefore, every new existential rule
will have the frontier variables included in the set of
answer variables.



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In the presence of deterministic one-step rewriting
functions, existential rules with all the frontier included
in the set of answer variables (a) add atoms to the
rewritings that do not share non-answer variables with
the remaining part of the query. This ensures that when
they are combined with a fus, the super connected car-
dinality of the UCQ-rewritings will be bounded. More
specifically for any UCQ Q′,

card∗+(rewrite
∃ (∃ ∪a, Q′)) ≤

max ( card∗+(rewrite
∃(∃, B)),

card∗+(rewrite
∃(∃, Q′))),

where B is the body of rules ina.Using Lemma 3.2 we can also affirm that there are
finitely many rewritings that can be obtained. There-
fore, every existential rule that is generated from the
negated CQ¬s in (¬i)i>0 together with the rules in
∃ will yield a finite and complete deterministic UCQ-
rewriting. Thus, we can ensure the termination of every
iteration of the loop in Algorithm 1 for any value of k.
Likewise, every existential rule that is generated

from the negated CQ¬s in (¬i)i>0 will have a body
with a bounded super connected cardinality. Thus, we
cannot generate infinitely many existential rules from
the CQ¬s in (¬i)i>0 (Lemma 3.2), which ensures the
termination of Algorithm 1 with deterministic one-step
rewriting functions for any value of k.

Based on Theorem 3.4, we can also define other re-
strictions on UCQa¬s that ensure that the rewriting al-
gorithm stops. As in the case of existential rules, we
say that a CQ (CQ¬) is linear if it contains only one
positive literal. Similarly, a UCQ (UCQ¬) is linear if all
the CQs (UCQ¬s) in it are also linear. A CQa (CQa¬) is
linear if it contains only one positive literal in the body.
Likewise, a UCQa (UCQa¬) is linear if all the CQas
(UCQa¬s) in it are also linear.
Theorem 3.9. Let be a set of rules without disjunct-
ive existential rules and aUCQa¬. If is a set of lin-
ear rules and a linearUCQa¬, then Algorithm 1 with
deterministic one-step rewriting functions, applied on
the rules∪¬1∪¬¬#, and UCQ¬0, stops for any
value of k.

Proof. Because is linear the corresponding disjunct-
ive rules (¬¬i)i>1 will have two atoms in the body and
one of them will be an answer atom. The CQas will
have one atom in the body and the negated constraints
will only have one atom. Therefore, the deterministic
one-step rewriting functions ensure that the new rules

generated from disjunctive rules will contain only two
atoms in the body and one of them will be an answer
atom. There is a finite number of rules than can be gen-
erated with two atoms in the body and a decreasing
number of disjoints in the head.

The deterministic CQ-rewritings produced by lin-
ear existential rules in  and the existential rules gen-
erated from (¬¬i)i>0 will have a maximum of two
atoms. Thus, there are finitely many deterministic CQ-
rewritings that can be generated.

We conclude that Algorithm 2 terminates every time
it is called in the main loop and also that the condition
to continue executing the loop at some point will not
hold because there are a finite number of rules andCQs
rewritings that can be generated. Consequently, Al-
gorithm 1 with deterministic one-step rewriting func-
tions stops for any value of k.

Finally, if there is a finite and complete determin-
istic UCQ-rewriting of a UCQa¬ with respect to a set
of rules  that does not contain disjunctive existential
rules, we can ensure that Algorithm 1 with determin-
istic one-step rewriting functions stops.
Theorem 3.10. Let  be a set rules without disjunct-
ive existential rules and  a UCQa¬. If there is a fi-
nite and complete deterministic UCQ-rewriting of 
with respect to , then Algorithm 1 with determin-
istic one-step rewriting functions, applied on the rules
 ∪ ¬1 ∪ ¬¬#, and UCQ ¬0, terminates for any
finite value of k.

Proof. Deterministic one-step rewriting functions will
only discard rewritings that are not deterministic. The
algorithm produces rewritings using all possible de-
terministic one-step rewritings and this ensures that if
there is a finite deterministic UCQ rewriting f , then
after a finite number of iterations (with a finite value
of k) a rewriting equivalent to f will be generated.
The completeness of f ensures us that any further
rewriting of f using existential rules and determin-
istic one-step rewriting functions will not produce new
deterministic CQs, i.e., the condition  = old holds
for the rest of the iterations in the loop. Consequently,
after finitely many iterations we also reach the condi-
tion  = old . Therefore, Algorithm 1 terminates be-
cause after a finite number of iterations the condition
to continue iterating on the loop will not hold.



20 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4. Implementation and Experiments

COMPLETO1 is a query rewriting system that fo-
cuses on answering UCQ¬s in the framework of exist-
ential rules. The first version of COMPLETO [22] an-
swers CQ¬ using a resolution-based approach to elim-
inate negated atoms. The algorithm proposed is com-
plete only for a very restricted type of queries.
In the second version of the system [23], queries with

only one negated atom are answered by being trans-
formed into rules. The approach is complete but ter-
mination is guaranteed only when the resulting set of
rules is a fus.
The current version of COMPLETO implements Al-

gorithm 1 with deterministic one-step rewriting func-
tions and answers queries with answer variables that
have an arbitrary number of negated atoms. Algorithm 1
can be seen as a generalization of both algorithms pro-
posed in [22, 23]. Indeed, queries with one negated
atom are transformed into rules, while the rewriting
defined for disjunctive rules is similar to what was
presented in [22] as constraint resolution. Furthermore,
we take advantage of the termination results for know-
ledge bases consisting of a fus and UCQ¬s whose fron-
tier is part of the answer variables of the query (The-
orem 3.8), as well as for knowledge bases consist-
ing only of linear elements (Theorem 3.9). Choosing
k = ∞ allows the rewriting with respect to existential
rules to be performed by an external rewriter if the are
no answer variables in the queries.
4.1. Experiments

To the best of our knowledge there is no other system
that produces UCQ-rewritings for UCQ¬s with univer-
sally quantified negation. Therefore, the experiments
were preformed in order to get a general idea of the per-
formance of COMPLETO producing UCQ-rewritings.
We used an Intel(R) Core(TM) i5-7300HQCPU at 2.50
GHz with 8 GB of RAM running 64-bit Windows 10.
For the experiments we used two ontologies that

contain negative constraints and have been used in pre-
vious research papers based on queries with negation
[22, 23]. The first is the Lehigh University Bench-
mark (LUBM) ontology [17], enriched with 70 addi-
tional disjoint classes axioms added for the atomic sib-
ling classes, i.e., for classes asserted to share the same
super-class. Secondly, we used the TRAVEL ontology2

1http://image.ntua.gr/~gardero/completo3.0/
2https://protege.stanford.edu/ontologies/travel.owl

Table 3
Rewriting experiments results for the CQa¬s from LUBM and
TRAVEL ontologies.

Ontology Info rew time mem

LUBM UCQa¬ 77 6193.12 2138
min 0 104 1129

mean 4 205.58 2069
max 55 466 2237

TRAVEL UCQa¬ 18 264.96 2043
min 0 1 123

mean 2 2.12 143
max 76 8 920

that has 10 disjoint class axioms. The OWL 2 ER [5]
fragment of both ontologies was translated into exist-
ential rules. We were not able to prove the fus property
for the set of existential rules obtained from neither of
the two ontologies we used.

We also prepared a query file with 500 CQa¬s for
each ontology which we used to let COMPLETO pro-
duce finite UCQ-rewritings of the UCQa¬ that contains
all the queries in the file and also for each separated
CQa¬. The queries contain 3 atoms and 2 of them are
negated. The queries have one variable in the fron-
tier which is also the answer variable of the query. We
generated the queries by performing Association Rule
Mining [2] on a dataset obtained from the assertions of
the ontologies. The queries and the ontologies we used
are publicly available 3.

Table 3 shows the size of the UCQ-rewriting (rew)
for the UCQa¬ containing all the CQa¬s in the file and
the minimum (min), mean and maximum (max) statist-
ics for the rewriting of each individualCQa¬ in the file.
The table also shows the time (time) in seconds and the
RAM memory (mem) in Mb used by the rewriting pro-
cess in each of the cases. The results give an idea of the
performance of the system with respect to each UCQa¬
or individual CQa¬.

For the TRAVEL ontology, the size of the UCQ-
rewriting of the UCQa¬ is smaller than the biggest
UCQ-rewriting for an individual CQa¬. The time that
it took to compute the rewriting of the UCQa¬ is the
time that it takes on average to rewrite 125 individual
CQa¬s (5 min). The RAM memory used to rewrite the
UCQa¬ is approximately the double of the RAM used
for rewriting the individual CQa¬ that consumed the
most RAM memory.

For the LUBM ontology, the size of the rewriting
of the UCQa¬ has 11 more queries than the biggest re-

3http://image.ntua.gr/~gardero/completo3.0/ontologies/

http://image.ntua.gr/~gardero/completo3.0/
https://protege.stanford.edu/ontologies/travel.owl
http://image.ntua.gr/~gardero/completo3.0/ontologies/


E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

87%

7%
6%

0
(0 − 10]
(10 − 80]

UCQ-rewriting size

Figure 3. Size of the UCQ-rewritings for the TRAVEL ontology.

85%

3%5%
7%

0
(0 − 10]
(10 − 20]
(20 − 80]

UCQ-rewriting size

Figure 4. Size of the UCQ-rewritings for the LUBM ontology.

writing for an individual CQa¬. The time that it took to
compute the rewriting of the UCQa¬ is the time that it
takes on average to rewrite 30 individual CQa¬s (less
than 2 hours). The RAM memory used to write the
UCQa¬ is less than the RAMmemory that was used for
rewriting the individual CQa¬ that consumed the most
RAM memory.
For both ontologies the RAM memory consumed to

compute the rewritings was approximately 2 GB.
Figures 3 and 4 show information about the UCQ-

rewriting size. In both ontologies at least 85% of the
queries have zero rewritings. In this cases, the CQ-
rewritings of the CQas are subsumed by the CQ-
rewritings of the negative constraints of the DKB.

Figures 5 and 6 show the cumulative distribution of
the rewriting runtime. Dashed horizontal lines repres-
ent the mean runtime. Each bar represents the number
of queries that were rewritten in or faster than the cor-
responding time. Note that in both cases the runtime
for more than 60% of the queries was smaller than the
mean runtime.
Figures 7 and 8 show the correlation matrix with

different performance parameters for the TRAVEL and
LUBM ontologies. In order to get an idea of the rewrit-
ing process we computed the RAM memory used by

Figure 5. Cumulative distribution of the time needed to compute the
UCQ-rewriting for the TRAVEL ontology.

Figure 6. Cumulative distribution of the time needed to compute the
UCQ-rewriting for the LUBM ontology.

the system (mem), the time that it takes to compute the
UCQ-rewriting (time), the size of the UCQ-rewriting
(rew), the number of generated existential rules in the
rewriting process (ger), the number of rewritten (ex-
panded) disjunctive existential rules (ecr) and also the
number of generated (gcq) and rewritten (ecq) con-
junctive queries. For the LUBM ontology we can no-
tice that the number of generated CQs and the size of
theUCQ-rewriting have a correlation coefficient of 0.9.
For the TRAVEL ontology we can see that time, ecq,
gcq andmem are all correlated with coefficients greater
than or equal to 0.94.
Example 4.1. One of the queries for the TRAVEL onto-
logy was:

ans(X) ∶− ¬Capital(X),¬Town(X),
Destination(X).

It focuses on destinations that cannot be capitals or
towns. The UCQ-rewriting produced by COMPLETO



22 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Figure 7. Correlation matrix with different performance parameters
for the TRAVEL ontology.

Figure 8. Correlation matrix with different performance parameters
for the LUBM ontology.

was the following:

[ ans(X) ∶− Farmland(X),
ans(X) ∶− NationalPark(X),
ans(X) ∶− RuralArea(X) ].

Considering the above interpretation of the query, the
answer tells us that only farmlands, national parks and
rural areas cannot be town or capital destinations.

5. Conclusions

In this paper, we studied the application of the query
rewriting approach on the framework of disjunctive
existential rules in order to produce complete UCQ-
rewritings that encode the answers of an initial query.

To ensure the completeness of our rewriting ap-
proach, we introduced a special case of first-order lo-
gic resolution (constraint resolution), where every res-
olution step involves one clause without positive liter-
als, and the subsumption theorem holds when the con-
sequence is a clause without positive literals. The resol-
ution completeness theorem also holds, allowing con-
straint resolution to be used in refutation procedures for
FOL formulas.

Based on the definition of constraint resolution we
proposed an extension of the rewriting approach for
existential rules in order to deal with disjunctive ex-
istential rules. The rewriting of a disjunctive existen-
tial rule produces disjunctive rules with less disjunc-
tions in the head, and eventually produces an existen-
tial rule or a conjunctive query. The rules generated
from disjunctive rules are then used in order to find ad-
ditional rewritings of the initial conjunctive query re-
writing. The proposed algorithm can be used for gen-
eral knowledge bases with disjunctive existential rules;
it terminates for the cases where there is a finite and
complete UCQ-rewriting of the input queries with re-
spect to the (disjunctive) existential rules and the neg-
ative constraints. However, there are rather strong con-
ditions that are able to ensure the existence of a finite
and complete UCQ-rewriting.

Moreover, we studied some of the sufficient condi-
tions that ensure that the proposed algorithm termin-
ates. One case requires atomic CQs and all elements
of the knowledge base to be linear. The other case,
requires a fus and disconnected disjunctive existential
rules without imposing restrictions on the inputCQs or
the constraints. Both cases impose very strong condi-
tions on the disjunctive existential rules. However, for
knowledge bases without disjunctive existential rules,
we were able to provide finite and complete determ-
inistic UCQ-rewritings for UCQa¬s with at most one
positive atom (with respect to linear existential rules
and linear constraints) and for UCQa¬s that include the
frontier in the answer variables (with respect to a fus).
Both types of UCQa¬s are very expressive.

Using the proposed algorithm and taking advantage
of the stopping criteria, we implemented a sound and
complete rewriting approach for unions of conjunctive
queries with negated atoms and answer variables in the



E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

COMPLETO system that specialises in query answering
for conjunctive queries with negation. The implement-
ation was evaluated on two ontologies.
The experimental results showed that the imple-

mentation is able to provide UCQ-rewritings in reas-
onable time and using a reasonable amount of RAM
memory. Also, rewriting UCQ¬s with a large number
of queries takes considerably less time than the time
required to rewrite all the CQ¬s individually.

In the future, we would like to focus on implement-
ing the proposed algorithm in a more efficient way and
also on studying other sufficient conditions that ensure
the termination of our rewriting algorithm.

Acknowledgments

We would like to thank Lida Petrou for providing
the queries for the experiments. Also, we thank Stathis
Delivorias and Michael Giazitzoglou for their support
and comments in the writing process of this paper.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases.
Addison-Wesley (1995)

[2] Agrawal, R., Imielinski, T., Swami, A.N.: Mining association
rules between sets of items in large databases. In: Buneman,
P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD
International Conference onManagement of Data,Washington,
DC, USA, May 26-28, 1993. pp. 207–216. ACM Press (1993).
, https://doi.org/10.1145/170035.170072

[3] Ahmetaj, S., Ortiz, M., Simkus, M.: Rewriting guarded ex-
istential rules into small datalog programs. In: Kimelfeld,
B., Amsterdamer, Y. (eds.) 21st International Conference on
Database Theory, ICDT 2018, March 26-29, 2018, Vienna,
Austria. LIPIcs, vol. 98, pp. 4:1–4:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018). , https://doi.org/10.
4230/LIPIcs.ICDT.2018.4

[4] Baget, J.: Improving the forward chaining algorithm for con-
ceptual graphs rules. In: Dubois, D., Welty, C.A., Williams, M.
(eds.) Principles of Knowledge Representation and Reasoning:
Proceedings of the Ninth International Conference (KR2004),
Whistler, Canada, June 2-5, 2004. pp. 407–414. AAAI Press
(2004), http://www.aaai.org/Library/KR/2004/kr04-043.php

[5] Baget, J., Gutierrez, A., Leclère, M., Mugnier, M., Rocher,
S., Sipieter, C.: Datalog+, ruleml and OWL 2: Formats and
translations for existential rules. In: Bassiliades, N., Fodor, P.,
Giurca, A., Gottlob, G., Kliegr, T., Nalepa, G.J., Palmirani,
M., Paschke, A., Proctor, M., Roman, D., Sadri, F., Stojan-
ovic, N. (eds.) Proceedings of the RuleML 2015 Challenge,
the Special Track on Rule-based Recommender Systems for
the Web of Data, the Special Industry Track and the RuleML
2015 Doctoral Consortium hosted by the 9th International Web
Rule Symposium (RuleML 2015), Berlin, Germany, August

2-5, 2015. CEUR Workshop Proceedings, vol. 1417. CEUR-
WS.org (2015), http://ceur-ws.org/Vol-1417/paper9.pdf

[6] Baget, J., Leclère, M., Mugnier, M., Salvat, E.: Extending de-
cidable cases for rules with existential variables. In: Boutilier,
C. (ed.) IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, Califor-
nia, USA, July 11-17, 2009. pp. 677–682 (2009), http://ijcai.
org/Proceedings/09/Papers/118.pdf

[7] Baget, J., Leclère, M., Mugnier, M., Salvat, E.: On rules with
existential variables:Walking the decidability line. Artif. Intell.
175(9-10), 1620–1654 (2011). , https://doi.org/10.1016/j.artint.
2011.03.002

[8] Baget, J., Mugnier, M.: Extensions of simple conceptual
graphs: the complexity of rules and constraints. J. Artif. Intell.
Res. 16, 425–465 (2002). , https://doi.org/10.1613/jair.918

[9] Bárány, V., Benedikt, M., ten Cate, B.: Rewriting guarded neg-
ation queries. In: Chatterjee, K., Sgall, J. (eds.) Mathematical
Foundations of Computer Science 2013 - 38th International
Symposium,MFCS 2013, Klosterneuburg, Austria, August 26-
30, 2013. Proceedings. Lecture Notes in Computer Science,
vol. 8087, pp. 98–110. Springer (2013). , https://doi.org/10.
1007/978-3-642-40313-2_11

[10] Bárány, V., ten Cate, B., Otto, M.: Queries with guarded neg-
ation. Proc. VLDB Endow. 5(11), 1328–1339 (2012). , http:
//vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf

[11] Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-
based data access: A study through disjunctive datalog, csp,
and MMSNP. ACM Trans. Database Syst. 39(4), 33:1–33:44
(2014). , https://doi.org/10.1145/2661643

[12] Bourhis, P., Manna, M., Morak, M., Pieris, A.: Guarded-based
disjunctive tuple-generating dependencies. ACM Trans. Data-
base Syst. 41(4), 27:1–27:45 (2016). , https://doi.org/10.1145/
2976736

[13] Carral, D., Dragoste, I., Krötzsch, M.: Tractable query an-
swering for expressive ontologies and existential rules. In:
d’Amato, C., Fernández, M., Tamma, V.A.M., Lécué, F.,
Cudré-Mauroux, P., Sequeda, J.F., Lange, C., Heflin, J. (eds.)
The Semantic Web - ISWC 2017 - 16th International Se-
manticWebConference, Vienna, Austria, October 21-25, 2017,
Proceedings, Part I. Lecture Notes in Computer Science, vol.
10587, pp. 156–172. Springer (2017). , https://doi.org/10.1007/
978-3-319-68288-4_10

[14] Du, J., Pan, J.Z.: Rewriting-based instance retrieval for neg-
ated concepts in description logic ontologies. In: Arenas, M.,
Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas,
K., Groth, P.T., Dumontier, M., Heflin, J., Thirunarayan, K.,
Staab, S. (eds.) The Semantic Web - ISWC 2015 - 14th In-
ternational Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9366, pp. 339–355. Springer (2015). ,
https://doi.org/10.1007/978-3-319-25007-6_20

[15] Gottlob, G., Manna, M., Morak, M., Pieris, A.: On the com-
plexity of ontological reasoning under disjunctive existential
rules. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Mathem-
atical Foundations of Computer Science 2012 - 37th Interna-
tional Symposium, MFCS 2012, Bratislava, Slovakia, August
27-31, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7464, pp. 1–18. Springer (2012). , https://doi.org/10.1007/
978-3-642-32589-2_1

https://doi.org/10.1145/170035.170072
https://doi.org/10.4230/LIPIcs.ICDT.2018.4
https://doi.org/10.4230/LIPIcs.ICDT.2018.4
http://www.aaai.org/Library/KR/2004/kr04-043.php
http://ceur-ws.org/Vol-1417/paper9.pdf
http://ijcai.org/Proceedings/09/Papers/118.pdf
http://ijcai.org/Proceedings/09/Papers/118.pdf
https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.1613/jair.918
https://doi.org/10.1007/978-3-642-40313-2_11
https://doi.org/10.1007/978-3-642-40313-2_11
http://vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1328_vincebarany_vldb2012.pdf
https://doi.org/10.1145/2661643
https://doi.org/10.1145/2976736
https://doi.org/10.1145/2976736
https://doi.org/10.1007/978-3-319-68288-4_10
https://doi.org/10.1007/978-3-319-68288-4_10
https://doi.org/10.1007/978-3-319-25007-6_20
https://doi.org/10.1007/978-3-642-32589-2_1
https://doi.org/10.1007/978-3-642-32589-2_1


24 E. Matos Alfonso et al. / UCQ-rewritings for Disjunctive Knowledge and Queries with Negated Atoms

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[16] Gottlob, G., Rudolph, S., Simkus, M.: Expressiveness of
guarded existential rule languages. In: Hull, R., Grohe, M.
(eds.) Proceedings of the 33rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems,
PODS’14, Snowbird, UT, USA, June 22-27, 2014. pp. 27–38.
ACM (2014). , https://doi.org/10.1145/2594538.2594556

[17] Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL
knowledge base systems. J. Web Semant. 3(2-3), 158–182
(2005). , https://doi.org/10.1016/j.websem.2005.06.005

[18] Gutiérrez-Basulto, V., Ibáñez-García, Y.A., Kontchakov, R.,
Kostylev, E.V.: Conjunctive queries with negation over dl-lite:
A closer look. In: Faber, W., Lembo, D. (eds.) Web Reason-
ing and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. Proceedings. Lecture
Notes in Computer Science, vol. 7994, pp. 109–122. Springer
(2013). , https://doi.org/10.1007/978-3-642-39666-3_9

[19] Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.:
Long rewritings, short rewritings. In: Kazakov, Y., Lembo, D.,
Wolter, F. (eds.) Proceedings of the 2012 International Work-
shop on Description Logics, DL-2012, Rome, Italy, June 7-10,
2012. CEUR Workshop Proceedings, vol. 846. CEUR-WS.org
(2012), http://ceur-ws.org/Vol-846/paper_41.pdf

[20] König, M., Leclère, M., Mugnier, M., Thomazo, M.: Sound,
complete and minimal ucq-rewriting for existential rules. Se-
mantic Web 6(5), 451–475 (2015). , https://doi.org/10.3233/
SW-140153

[21] Libkin, L.: Incomplete information and certain answers in gen-
eral data models. In: Lenzerini, M., Schwentick, T. (eds.) Pro-
ceedings of the 30th ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS 2011, June
12-16, 2011, Athens, Greece. pp. 59–70. ACM (2011). , https:
//doi.org/10.1145/1989284.1989294

[22] Matos Alfonso, E., Stamou, G.: Rewriting queries with neg-
ated atoms. In: Costantini, S., Franconi, E., Woensel, W.V.,
Kontchakov, R., Sadri, F., Roman, D. (eds.) Rules and Reas-
oning - International Joint Conference, RuleML+RR 2017,
London, UK, July 12-15, 2017, Proceedings. Lecture Notes in
Computer Science, vol. 10364, pp. 151–167. Springer (2017).
, https://doi.org/10.1007/978-3-319-61252-2_11

[23] Matos Alfonso, E., Stamou, G.: On horn conjunctive quer-
ies. In: Benzmüller, C., Ricca, F., Parent, X., Roman, D.
(eds.) Rules and Reasoning - Second International Joint Con-
ference, RuleML+RR 2018, Luxembourg, September 18-21,
2018, Proceedings. Lecture Notes in Computer Science, vol.
11092, pp. 115–130. Springer (2018). , https://doi.org/10.1007/
978-3-319-99906-7_8

[24] NCI dictionary of cancer terms: first-degree relat-
ive. https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/first-degree-relative

[25] Nienhuys-Cheng, S., de Wolf, R. (eds.): Foundations of In-
ductive Logic Programming, Lecture Notes in Computer Sci-
ence, vol. 1228. Springer (1997). , https://doi.org/10.1007/
3-540-62927-0

[26] Onet, A.: The chase procedure and its applications in data ex-
change. In: Kolaitis, P.G., Lenzerini, M., Schweikardt, N. (eds.)
Data Exchange, Integration, and Streams, Dagstuhl Follow-
Ups, vol. 5, pp. 1–37. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2013). , https://doi.org/10.4230/DFU.Vol5.10452.
1

[27] Rosati, R.: On the decidability and finite controllability of
query processing in databases with incomplete information.
In: Vansummeren, S. (ed.) Proceedings of the Twenty-Fifth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 26-28, 2006, Chicago, Illinois, USA.
pp. 356–365. ACM (2006). , https://doi.org/10.1145/1142351.
1142404

[28] Rosati, R.: The limits of querying ontologies. In: Schwentick,
T., Suciu, D. (eds.) Database Theory - ICDT 2007, 11th
International Conference, Barcelona, Spain, January 10-12,
2007, Proceedings. Lecture Notes in Computer Science,
vol. 4353, pp. 164–178. Springer (2007). , https://doi.org/10.
1007/11965893_12

[29] Tessaris, S.: Questions and answers: reasoning and querying
in Description Logic. Ph.D. thesis, University of Manchester
(2001)

https://doi.org/10.1145/2594538.2594556
https://doi.org/10.1016/j.websem.2005.06.005
https://doi.org/10.1007/978-3-642-39666-3_9
http://ceur-ws.org/Vol-846/paper_41.pdf
https://doi.org/10.3233/SW-140153
https://doi.org/10.3233/SW-140153
https://doi.org/10.1145/1989284.1989294
https://doi.org/10.1145/1989284.1989294
https://doi.org/10.1007/978-3-319-61252-2_11
https://doi.org/10.1007/978-3-319-99906-7_8
https://doi.org/10.1007/978-3-319-99906-7_8
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/first-degree-relative
https://doi.org/10.1007/3-540-62927-0
https://doi.org/10.1007/3-540-62927-0
https://doi.org/10.4230/DFU.Vol5.10452.1
https://doi.org/10.4230/DFU.Vol5.10452.1
https://doi.org/10.1145/1142351.1142404
https://doi.org/10.1145/1142351.1142404
https://doi.org/10.1007/11965893_12
https://doi.org/10.1007/11965893_12

	Introduction
	Preliminaries
	First-Order Logic Resolution
	Disjunctive Existential Rules and Conjunctive Queries with Negation Framework

	Backward Chaining with Disjunctive Knowledge
	Constraint Resolution
	Rewriting Operations and Resolution
	Rewritable Queries and Disjunctive Knowledge Bases
	On Queries with Answer Variables and Linear Queries

	Implementation and Experiments
	Experiments

	Conclusions
	Acknowledgments
	References

