
Semantic Web 0 (0) 1 1
IOS Press

Recursion in SPARQL
Juan Reutter a, Adrián Soto b,* and Domagoj Vrgoč c

a Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile and IMFD Chile, Chile
E-mail: jreutter@ing.puc.cl
b Faculty of Engineering and Sciences Universidad Adolfo Ibáñez, Data Observatory Foundation and IMFD Chile,
Chile
E-mail: adrian.soto@uai.cl
c Instituto de Ingeniería Matemática y Computacional, Pontificia Universidad Católica de Chile and IMFD Chile,
Chile
E-mail: dvrgoc@ing.puc.cl

Editor: Oscar Corcho, Universidad Politécnica de Madrid, Spain
Solicited review: Three anonymous reviewers

Abstract. The need for recursive queries in the Semantic Web setting is becoming more and more apparent with the emergence
of datasets where different pieces of information are connected by complicated patterns. This was acknowledged by the W3C
committee by the inclusion of property paths in the SPARQL standard. However, as more data becomes available, it is becoming
clear that property paths alone are not enough to capture all recursive queries that the users are interested in, and the literature
has already proposed several extensions to allow searching for more complex patterns.

We propose a rather different, but simpler approach: add a general purpose recursion operator directly to SPARQL. In this
paper we provide a formal syntax and semantics for this proposal, study its theoretical properties, and develop algorithms for
evaluating it in practical scenarios. We also show how to implement this extension as a plug-in on top of existing systems, and
test its performance on several synthetic and real world datasets, ranging from small graphs, up to the entire Wikidata database.

Keywords: SPARQL, Recursive Queries, Property Paths

1. Introduction

The Resource Description Framework (RDF) has
emerged as the standard for describing Semantic Web
data and SPARQL as the main language for querying
RDF [1]. After the initial proposal of SPARQL, and
with more data becoming available in the RDF for-
mat, users found use cases that asked for more com-
plex querying features that allow exploring the struc-
ture of the data in more detail. In particular queries that
are inherently recursive, such as traversing paths of ar-
bitrary length, have lately been in demand. This was
acknowledged by the W3C committee with the inclu-
sion of property paths in the latest SPARQL 1.1. stan-

*Corresponding author. E-mail: adrian.soto@uai.cl.

dard [2], allowing queries to navigate paths connecting
two objects in an RDF graph.

However, in terms of expressive power, several au-
thors have noted that property paths fall short when
trying to express a number of important properties re-
lated to navigating RDF documents (cf. [3–9]), and
that a more powerful form of recursion needs to be
added to SPARQL to address this issue. Consequently,
this realization has brought forward a good number of
extensions of property paths that offer more expressive
recursive functionalities (see e.g. [10, 11] for a good
overview of languages and extensions). However, none
of these extensions have yet made it to the language,
nor are they supported on any widespread SPARQL
processor.

Looking for a recursive extension of SPARQL that
can be easily implemented and adopted in practice, we

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

mailto:jreutter@ing.puc.cl
mailto:adrian.soto@uai.cl
mailto:dvrgoc@ing.puc.cl
mailto:adrian.soto@uai.cl

2 Reutter, Soto and Vrgoč / Recursion in SPARQL

72
"Edinburgh"

79
"Edinburgh"

142
"Edinburgh"

145
"Edinburgh"

317
"Edinburgh"

edit 754 edit 871 edit 873 edit 997

User1 User2

wasRevisionOf wasRevisionOf wasRevisionOf wasRevisionOf

wa
sG
en
er
at
ed
By

wa
sG
en
er
at
ed
By

wa
sG
en
er
at
ed
By

wa
sG
en
er
at
ed
Byused

used

used

used

wAssocWith

wA
ss
oc
Wi
th

w
A
s
s
o
c
W
i
t
h

wAssocWith

Fig. 1. RDF database of Wikipedia traces. The abbreviation wAssocWith is used instead of wasAssociatedWith and the prov:prefix is
omitted from all the properties in this graph.

turn to the option of adding a general recursion opera-
tor to SPARQL in a similar way to what has been done
in SQL. To illustrate the need for such an operator we
consider the case of tracking provenance of Wikipedia
articles presented by Missier and Chen in [12]. They
use the PROV standard [13] to store information about
how a certain article was edited, whom was it edited
by and what this change resulted in. Although they
store the data in a graph database, all PROV data is
easily representable as RDF using the PROV-O ontol-
ogy [14]. The most common type of information in
this RDF graph tells us when an article A1 is a revision
of an article A2. This fact is represented by adding a
triple of the form (A1, prov:wasRevisionOf, A2) to
the database. These revisions are associated to user’s
edits with the predicate prov:wasGeneratedBy and
the edits can specify that they used a particular arti-
cle with a prov:used link. Finally, there is a triple
(E, prov:wasAssociatedWith, U) if the edit E was
made by the user U. A snapshot of the data, showing
provenance of articles about Edinburgh, is depicted in
Figure 1.

A natural query to ask in this context is the history
of revisions that were made by the same user: that is all
pairs of articles (A, A′) such that A is linked to A′ by a
path of wasRevisionOf links and where all of the
revisions along the way were made by the same user.
For instance, in the graph of Figure 1 we have that the
article 145 "Edinburgh" is a revision of the article 72
"Edinburgh" and all the intermediate edits were made
by User1. Such queries abound in any version control
system (note that the PROV traces of Wikipedia ar-
ticles are the same as tracking program development
in SVN or Git) and can be used to detect which user
introduced errors or bugs, when the data is reliable,

or to find the latest stable version of the data. Since
these queries can not be expressed with property paths
[4, 15], nor by using standard SPARQL functionali-
ties (as provenance traces can contain links of arbitrary
length), the need for a general purpose recursive oper-
ator seems like a natural addition to the language.

One possible reason why recursion was not previ-
ously considered as an integral operator of SPARQL
could be the fact that in order to compute recursive
queries we need to apply the query to the result of
a previous computation. However, typical SPARQL
queries do not have this capability as their inputs are
RDF graphs but their outputs are mappings. This hin-
ders the possibility of a fixed point recursion as the
result of a SPARQL query cannot be subsequently
queried. One can avoid this by using CONSTRUCT
queries, which output RDF graphs as well, and indeed
[16] has proposed a way of defining a fixed point like
extension for SPARQL based on this idea.

In this paper we extend the recursion operator of
[16] to function over a more widely used fragment
of SPARQL and study how this operator can be im-
plemented in an efficient and non-intrusive way on
top of existing SPARQL engines. The main question
we are trying to answer here is whether general pur-
pose recursion is possible in SPARQL. We begin by
showing what the general form of recursion looks like,
what type of recursions we can support, the expres-
sive power of the language, and how to evaluate it.
We then argue that any implementation of this general
form of recursion is unlikely to perform well on real
world data, so we restrict it to the so called linear re-
cursion, which is well known in the relational context
[17, 18]. We then argue that even this restricted class
of queries can express most use cases for recursion

Reutter, Soto and Vrgoč / Recursion in SPARQL 3

found in practice. Next, we develop an elegant algo-
rithm for evaluating this class of recursive queries and
show how it can be implemented on top of an exist-
ing SPARQL system. For our implementation we use
Apache Jena (version 3.7.0) framework [19] and we
implement recursive queries as an add-on to the ARQ
SPARQL query engine. We use Jena TDB (version 1),
which allows us not to worry about queries whose in-
termediate results do not fit into main memory, thus re-
sulting in a highly reliable system. Finally, we experi-
mentally evaluate the performance of our implementa-
tion. For this, we begin by evaluating recursive queries
in the context of smaller datasets such as YAGO and
LMDB. We then compare our implementation to Jena
and Virtuoso when it comes to property paths, using
the GMark graph database benchmark [20], allowing
us to gauge the effect of dataset size and query selec-
tivity on execution times. In order to see how our solu-
tion scales, we also use the wikidata database and test
the performance of recursive queries in this setting.1

We note that our main objective is not to find an op-
timal algorithms for evaluating recursion in SPARQL,
but rather to show that recursion can be added in a non-
intrusive way to the language, while still being capable
of processing realistic workloads.

Related work. As mentioned previously the most
common type of recursion implemented in SPARQL
systems are property paths. This is not surprising as
property paths are a part of the latest language stan-
dard and there are now various systems supporting
them either in a full capacity [21, 22], or with some
limitations that ensure they can be efficiently evalu-
ated, most notable amongst them being Virtuoso [23].
The systems that support full property paths are ca-
pable of returning all pairs of nodes connected by a
property path specified by the query, while Virtuoso
needs a starting point in order to execute the query.
From our analysis of expressive power we note that re-
cursive queries we introduce are capable of express-
ing the transitive closure of any binary operator [16]
and can thus be used to express property paths and
any of their extensions [3, 7, 24–26]. Regarding at-
tempts to implement a full-fledged recursion as a part
of SPARQL, there have been none as far as we are
aware. There were some attempts to use SQL recur-
sion to implement property paths [27], or to allow re-
cursion as a programming language construct [28, 29],

1The implementation, test data, and complete formulation of all
the queries can be found at https://alanezz.github.io/RecSPARQL/.

however none of them view recursion as a part of the
language, but as an outside add-on. On the other hand,
there is a wide body of work on implementing more
powerful recursion in terms of datalog or other vari-
ants of logic programming (see e.g. [30–32]), but in
this paper we are more interested in functionalities that
can be added to SPARQL with little cost to systems in
terms of extra software development.

Remark. A preliminary version of this article was
presented at the International Semantic Web Confer-
ence in 2015 [33]. The main contributions added to this
manuscript not present in the conference version can
be summarized as follows:

– Proofs of all the results. While the conference
version of the paper provides only brief sketches
of how the main results are proved, here we give
complete proofs of all the stated theorems.

– Convergence conditions for recursion. We refine
the analysis of when the recursion converges over
RDF datasets, and fix a gap present in the confer-
ence version of the paper by introducing the no-
tion of domain preserving queries.

– Analysis of expressive power. We analyse the ex-
pressive power of our language by comparing it to
previous proposals, including Datalog [17], regu-
lar queries [26], and TriAL [15].

– Support for negation. We discuss possible exten-
sions to the semantics in order to support nega-
tion inside recursive queries, or the BIND opera-
tor, which allows creating new values.

– Extensive experimental evaluation. The confer-
ence version of the paper only showcased the
performance of our implementation over smaller
datasets. Here we do a more robust analysis us-
ing the GMark graph database benchmark and
the Wikidata dataset, in order to compare our ap-
proach to existing systems.

2. Preliminaries

Before defining our recursive operator we present
the fragment of RDF and SPARQL we support. We
first define what an RDF graph is, what operators we
support and then we define their syntax and semantics.

RDF Graphs and Datasets. RDF graphs can be seen
as edge-labeled graphs where edge labels can be nodes
themselves, and an RDF dataset is a collection of RDF
graphs. Formally, let I be an infinite set of IRIs and

https://alanezz.github.io/RecSPARQL/

4 Reutter, Soto and Vrgoč / Recursion in SPARQL

L an infinite set of Literals2. An RDF triple is a tuple
(s, p, o) from (I ∪ L) × I × (I ∪ L), where s is called
the subject, p the predicate, and o the object. We recall
the definition of IRI given in [34]. An IRI is an iden-
tifier of resources that extends the syntax of URIs to a
much wider repertoire of characters for international-
ization purposes. In the context of Semantic Web, IRIs
are used for denoting resources.

An RDF graph is a finite set of RDF triples, and
an RDF dataset is a set {G0, 〈u1,G1〉, . . . , 〈un,Gn〉},
where G0, . . . ,Gn are RDF graphs and u1, . . . , un are
distinct IRIs. The graph G0 is called the default graph,
and G1, . . . ,Gn are called named graphs with names
u1, . . . , un, respectively. For a dataset D and IRI u we
define grD(u) = G if 〈u,G〉 ∈ D and grD(u) = ∅
otherwise. We also use G and D to denote the sets of
all RDF graphs and datasets, correspondingly.

Given two datasets D and D′ with default graphs G0

and G′0, we define the union D∪D′ as the dataset with
the default graph G0 ∪ G′0 and grD∪D′(u) = grD(u) ∪
grD′(u) for any IRI u. Unions of datasets without de-
fault graphs is defined in the same way, i.e., as if the
default graph was empty. Finally, we say that a dataset
D is contained in a dataset D′, and write D ⊆ D′ if
(1) the default graph G in D is contained in the default
graph G′ in D′, and (2) for every graph 〈u,G〉 in D,
there is a graph 〈u,G′〉 in D′ such that G ⊆ G′. Now
we define the syntax and semantics of the fragment of
SPARQL we will be working on through this paper,
which is based on the one presented in [35].

SPARQL Syntax. We assume a countable infinite set
V, called the set of variables, ∅ the unbound value and
a set F, called the set of functions, that consists in func-
tions of the form f : (I ∪ L ∪ {∅})n → I ∪ L ∪ {∅}.
The prefix “?” is used to denote variables (e.g., ?x).

The set of SPARQL queries is defined recursively as
follows:

– An element of (I ∪ V) × (I ∪ V) × (I ∪ L ∪ V)
is a query. Queries of this form are called triple
patterns.

– If Q1,Q2 are queries, then:

∗ (Q1 UNION Q2) is a query called a UNION
query.
∗ (Q1 AND Q2) is a query called an AND

query.
∗ (Q1 OPTIONAL Q2) is a query called an

OPTIONAL query.

2For clarity of presentation we do not include blank nodes in our
definitions.

∗ (Q1 MINUS Q2) is a query called a MINUS
query.

– If Q is a query and g is a variable or an IRI, then
(GRAPH g Q) is a query called a GRAPH query.

– If Q is a query and X ⊂ V is a finite set of vari-
ables, then (SELECT X WHERE Q) is a query
called a SELECT query.

– If Q is a query and ϕ is a SPARQL buit-in condi-
tion (see below), then (Q FILTER ϕ) is a query
called a FILTER query.

– If Q is a query, f : (I ∪ L ∪ {∅})n → (I ∪ L ∪
{∅}) is a function in F, and ?y, ?x1, . . . , ?xn are
variables such that ?y does not occur in Q nor in
{?x1, . . . , ?xn}, then (Q BIND f (?x1, . . . , ?xn) AS
?y) is a BIND query.

– A SPARQL built-in condition (or simply a filter-
condition) is defined recursively as follows:

∗ An equality t1 = t2, where t1, t2 are ele-
ments of I ∪ L ∪ V, is a filter-condition.
∗ If ?x is a variable then bound(?x) is a filter-

condition.
∗ A Boolean combination of filter-conditions

(with operators ∧, ∨, and ¬) is a filter-
condition.

Notably, we have chosen to rule out the EXISTS
keyword. This is because of a disagreement in the se-
mantics of this operator (see the discussion in [35]).
However, once this agreement is settled, extending
all of our results for queries with EXISTS will be a
straightforward task.

Mappings and Mappings Sets. Since we have all the
syntax of the language, we have to discuss the seman-
tics, but before, we need to introduce the notion of
mappings and some operators over sets of mappings. A
SPARQL mapping is a partial function µ : V→ I ∪ L.
Abusing notation, for a triple pattern t we denote by
µ(t) the triple obtained by replacing the variables in t
according to µ. Additionally, when X is a set of vari-
ables, and µ a mapping, we denote by µX the map-
ping with the domain dom(µ) ∩ X , and such that
µX (?x) = µ(?x), for every ?x in its domain.

Two mappings µ1 and µ2 are said to be compati-
ble, denoted µ1 ∼ µ2 if and only if for every com-
mon variable X holds µ1(X) = µ2(X). Given two
compatible mappings µ1 and µ2, the join of µ1 and
µ2, denoted µ1 ` µ2, is the mapping with domain
dom(µ1)∪dom(µ2) that is compatible with µ1 and µ2.

Reutter, Soto and Vrgoč / Recursion in SPARQL 5

Let Ω1 and Ω2 be two sets of mappings. Then, the
operators on, ∪,−, and on are defined over sets of map-
pings as follows:

Ω1 on Ω2 = {µ1 ` µ2 |

µ1 ∈ Ω1, µ2 ∈ Ω2, µ1 ∼ µ2},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 − Ω2 = {µ1 | µ1 ∈ Ω1, and there does

not exist µ2 ∈ Ω2, µ1 ∼ µ2},

Ω1 on Ω2 = (Ω1 on Ω2) ∪ (Ω1 − Ω2).

Given a query Q we write var(Q) to denote the set of
variables occurring in Q. We use this notation also for
filter-conditions, i.e., var(ϕ) are the variables occurring
in the filter-condition ϕ.

SPARQL Semantics. Let D = {G0, 〈u1,G1〉, . . . , 〈un,Gn〉}
be a dataset, G a graph among G0,G1, . . . ,Gn and Q
a SPARQL query. Then, the evaluation of Q over D
with respect to G, denoted JQKD

G , is the set of mappings
recursively defined as follows:

– If t is a triple pattern, then JtKD
G is the set of

all mappings µ such that dom(µ) = dom(t) and
µ(t) ∈ G.

– If Q is (Q1 AND Q2) then JQKD
G = JQ1KD

G on
JQ2KD

G .
– If Q is (Q1 UNION Q2) then JQKD

G = JQ1KD
G ∪

JQ2KD
G .

– If Q is (Q1 MINUS Q2) then JQKD
G = JQ1KD

G −
JQ2KD

G .
– If Q is (Q1 OPTIONAL Q2) then JQKD

G = JQ1KD
Gon

JQ2KD
G .

– If Q is (GRAPH g Q′), then JQKD
G = JQ′KD

grD(g), if

g ∈ I, or JQKD
G =

⋃
u∈I

(
JQ′KD

grD(u) on {g 7→ u}
)

in case of g ∈ V.
– If Q is (SELECTX WHERE Q1) then JQKD

G =
{µX | µ ∈ JQ1KD

G}.
– If Q is (Q1 FILTERϕ) then JQKD

G is the set of map-
pings µ ∈ JQ1KG such that µ(ϕ) is true.

– If Q is (Q1 BIND f (?x1, . . . , ?xn)AS?y) then let µ
be a mapping and yµ be the value f (µ(?x1), . . . , µ(?xn)).
Then, JQKD

G is the set of SPARQL mappings

{µ ∈ JQ1KD
G | yµ = ∅} ∪

{µ ` {?y 7→ yµ} | µ ∈ JQ1KD
G and yµ 6= ∅}.

And finally, we define the semantics of built-in con-
ditions. Let µ be a finite mapping from variables to el-
ements in I ∪ L, ϕ be a SPARQL filter-condition, and
t1, t2 be elements in V ∪ I ∪ L. Let ν : V ∪ I ∪ L →
V ∪ I ∪ L be the function defined as

ν(t) =

µ(t) if t ∈ dom(µ),
∅ if t ∈ V \ dom(µ),
t if t /∈ V.

The truth value of µ(ϕ) is defined recursively as fol-
lows:

– If ϕ is an equality t1 = t2 then:

1. µ(ϕ) is error if ν(t1) = ∅ or ν(t1) = ∅.
2. µ(ϕ) is true if ν(t1) 6= ∅, ν(t1) 6= ∅, and
ν(t1) = ν(t2).

3. µ(ϕ) is false if ν(t1) 6= ∅, ν(t1) 6= ∅, and
ν(t1) 6= ν(t2).

– If ϕ is an expression of the form bound(?x) then
µ(ϕ) is true if ?x ∈ dom(µ). Otherwise, µ(ϕ) is
false.

– If ϕ is a Boolean combination of conditions us-
ing operators ∧, ∨ and ¬, then the truth value of
µ(ϕ) is the usual for 3-valued logic (where error
is interpreted as unknown).

The CONSTRUCT operator The fragment of SPARQL
graph patterns, as well as its generalisation to SELECT
queries, has drawn most of the attention in the Seman-
tic Web community. However, as the results of such
queries are set of mappings instead of graphs, we shall
use the CONSTRUCT operator in order to obtain a base
for recursion. A SPARQL CONSTRUCT query, or c-
query for short, is an expression

CONSTRUCT H WHERE Q,

where H is a set of triples from (I ∪ V) × (I ∪ V) ×
(I∪V), called a template3, and Q is a SPARQL query.

The idea behind the CONSTRUCT operator is that
the mappings resulting of evaluating Q over the dataset
are used to construct an RDF graph according to the
template H: for each such mapping µ, one replaces
each variable ?x in H for µ(?x), and add the resulting
triples to the answer. Since all the patterns in the tem-
plate are triples we will end up with an RDF graph as
desired. We illustrate how they work by means of an
example.

3For brevity we leave out FROM named constructs, and we leave
the study of blanks in templates as future work.

6 Reutter, Soto and Vrgoč / Recursion in SPARQL

User1

User2

cris@puc.cl

pbarc@uc.cl

Wikipedia

mbox

mbox

currProj

curr
Proj

(a) Graph G1

79 "Edinburgh"

142 "Edinburgh"

145 "Edinburgh"

317 "Edinburgh"

cris@puc.cl

pbarc@uc.cl

wasAttrTo

wasAttrTo

wasA
ttrT

o

wasAttrTo

(b) Result of the query in Example 2.1

Fig. 2. Graphs used for Example 2.1. The prefixes foaf: and
prov: are omitted.

Example 2.1. Let G be the graph in Figure 1, and G1

the graph in Figure 2(a). Suppose that we want to query
both graphs to obtain a new graph where each article is
linked to the email of a user who modified it. Assum-
ing that we have a dataset with the default graph G and
that the IRI identifying G1 is http://db.ing.puc.cl/mail,
this would be achieved by the following SPARQL
CONSTRUCT query q:

1 CONSTRUCT {
2 ?article prov:wasAttributedTo ?mail
3 }
4 WHERE {
5 ?article prov:wasGeneratedBy
6 ?comment .
7 ?comment prov:wasAssociatedWith
8 ?usr .
9 GRAPH <http://db.puc.cl/mail>

10 {
11 ?usr foaf:mbox ?mail
12 }
13 }

We call ans(q,D) the result of evaluating q over D.
In this case, it is depicted in Figure 2(b). Formally,
the answer ans(q,D) to a c-query of the form q =
CONSTRUCT H WHERE Q over a dataset D with de-
fault graph G0 is the RDF graph consisting of all triples
in µ(H), for each mapping µ in JQKD

G0
.

For readability, we will use Q to refer to SPARQL
queries using the SELECT form, and q for c-queries
whenever it is convenient to use this distinction. How-

ever, we often deal with queries that can be of either
form. In this case, we use the notation ans(q,D) to
speak of the answer of q over dataset D. it is defined
as above if q is a c-query, and we define ans(q,D) =
JqKD

G0
, for G0 the default graph of D, when q is a query

of the SELECT form.

3. Adding Recursion to SPARQL

The most basic example of a recursive query in the
RDF context is that of reachability: given a resource
x, compute all the resources that are reachable from x
via a path of arbitrary length. These type of queries,
amongst others, motivated the inclusion of property
paths into the SPARQL 1.1 standard [2].

However, as several authors subsequently pointed
out, property paths fall short when trying to express
queries that involve more complex ways of navigat-
ing RDF documents (cf. [3, 6, 25, 36]) and as a re-
sult several extensions have been brought forward to
combat this problem [3, 7, 15, 24, 37, 38]. Almost all
of these extensions are also based on the idea of com-
puting paths between nodes in a recursive way, and
thus share a number of practical problems with prop-
erty paths. Most importantly, these queries need to be
implemented using algorithms that are not standard in
SPARQL databases, as they are based on automata-
theoretic techniques, or clever ways of doing Breadth-
first search over RDF documents.

3.1. A Fixed Point Based Recursive Operator

We have decided to implement a different approach
and define a more expressive recursive operator that
allows us compute the fixed point of a wide range of
SPARQL queries. This is based on the recursive op-
erator that was added to SQL when considering sim-
ilar challenges. We cannot define this type of oper-
ator for SPARQL SELECT queries, since these re-
turns mappings and thus no query can be applied to
the result of a previous query, but we can do it for
CONSTRUCT queries, since these return RDF graphs.
Following [16], we now define the language of Recur-
sive Queries. Before proceeding with the formal def-
inition we illustrate the idea behind such queries by
means of an example.

Example 3.1. Recall graph G from Figure 1. In the In-
troduction we made a case for the need of a query that
could compute all pairs of articles (A, A′) such that A

Reutter, Soto and Vrgoč / Recursion in SPARQL 7

is linked to A′ by a path of wasRevisionOf links and
where all of the revisions along the way were made by
the same user. We can compute this with the recursive
query of the Figure 3.

Let us explain how this query works. The second
line specifies that a temporary graph named:

http://db.ing.puc.cl/temp

will be constructed according to the query below
which consists of a UNION of two subpatterns. The
first pattern does not use the temporary graph and it
simply extracts all triples (A,U, B) such that A was a
revision of B and U is the user generating this revi-
sion. All these triples should be added to the temporary
graph.

Then comes the recursive part: if (A,U, B) and
(B,U,C) are triples in the temporary graph, then we
also add (A,U,C) to the temporary graph.

We continue iterating until a fixed point is reached,
and finally we obtain a graph that contains all the
triples (A,U, A′) such that A is linked to A′ via a path
of revisions of arbitrary length but always generated by
the same user U. Finally, the SELECT query extracts
all such pairs of articles from the constructed graph.

As hinted in the example, the following is the syntax
for recursive queries:

Definition 3.1 (Syntax of recursive queries). A recur-
sive SPARQL query, or just recursive query, is either a
SPARQL query or an expression of the form

WITH RECURSIVE t AS {q1} q2, (1)

where t is an IRI from I, q1 is a c-query, and q2 is
a recursive query. The set of all recursive queries is
denoted rec-SPARQL.

Note that in this definition q1 is allowed to use the
temporary graph t, which leads to recursive iterations.
Furthermore, the query q2 could be recursive itself,
which allows us to compose recursive definitions.

As usual with this type of queries, semantics is given
via a fixed point iteration.

Definition 3.2 (Semantics of recursive queries). Let q
be a recursive query of the form (1) and D an RDF
dataset. If q is a non recursive query then ans(q,D)
is defined as usual. Otherwise the answer ans(q,D) is
equal to ans(q2,DLFP), where DLFP is the least fixed
point of the sequence D0,D1, . . . with D0 = D and

Di+1 = D ∪ {〈t, ans(q1,Di)〉}, for i > 0.

When DLFP exists and is a finite set, we say that the
recursive query q converges over D.

In this definition, D1 is the union of D with a tem-
porary graph t that corresponds to the evaluation of q1

over D, D2 is the union of D with a temporary graph
t that corresponds to the evaluation of q1 over D1, and
so on until Di+1 = Di. Note that the temporary graph
is completely rewritten after each iteration. This defini-
tion suggests the pseudocode of Algorithm 1 for com-
puting the answers of a recursive query q of the form
(1) over a dataset D4.

Algorithm 1 Computing the answer for recursive c-
queries of the form (1)
Input: Query q of the form (1), dataset D
Output: Evaluation ans(q,D) of q over D

1: Set Gtemp = ∅ named after the IRI t
2: loop
3: Set GTemp = ans(q1,D ∪ {〈t,GTemp〉})
4: if ans(q1,D ∪ {〈t,GTemp〉}) = GTemp then
5: break
6: end if
7: end loop
8: return ans(q2,D ∪ {〈t,GTemp〉})

To clarify Definition 3.2, we show how the tem-
porary graph <http://db.ing.puc.cl/temp>
evolves during the execution of the query from Figure
3, when evaluated the graph in Figure 1. The different
values of temporary graph are show in Figure 4. Here
we call Gi

Temp the instance of GTemp at the i − th itera-
tion of the loop presented in the Algorithm 1. We have
two things to note: (1) G0

Temp is an empty graph, and
(2) since we are working with graphs, there are no du-
plicated triples. Finally, we have G3

Temp = G4
Temp, and

thus we stop the loop at the fourth iteration.
Obviously, the semantics of recursive queries only

makes sense as long as the required fixed point exists.
Unfortunately, we show in the following section that
there are queries for which this operator indeed does
not have a fixed point. Thus, we need to restrict the
language that can be applied to such inner queries5. We

4For readability we assume that t is not a named graph in D. If
this is not the case then the pseudocode needs to be modified to meet
the definition above

5It should be noted that the recursive SQL operator has the same
problem, and indeed the SQL standard restricts which SQL features
can appear inside a recursive operator.

8 Reutter, Soto and Vrgoč / Recursion in SPARQL

1 PREFIX prov: <http://www.w3.org/ns/prov#>
2 WITH RECURSIVE http://db.ing.puc.cl/temp AS {
3 CONSTRUCT {?x ?u ?y}
4 WHERE {
5 { ?x prov:wasRevisionOf ?y .
6 ?x prov:wasGeneratedBy ?w .
7 ?w prov:used ?y .
8 ?w prov:wasAssociatedWith ?u }
9 UNION {

10 GRAPH <http://db.ing.puc.cl/temp> { ?x ?u ?z } .
11 GRAPH <http://db.ing.puc.cl/temp> { ?z ?u ?y } }
12 }
13 }
14 SELECT ?x ?y
15 WHERE {
16 GRAPH <http://db.ing.puc.cl/temp> {
17 ?x ?u ?y
18 }
19 }

Fig. 3. Example of a recursive query.

G1
Temp

s p o
:72 :user1 :79
:79 :user1 :142
:142 :user1 :145
:145 :user2 :317

G2
Temp

s p o
:72 :user1 :79
:79 :user1 :142

:142 :user1 :145
:145 :user2 :317
:72 :user2 :142
:79 :user2 :145

G3
Temp

s p o
:72 :user1 :79
:79 :user1 :142

:142 :user1 :145
:145 :user2 :317
:72 :user2 :142
:79 :user2 :145
:72 :user2 :145

Fig. 4. The step-by-step evaluation of the recursive graph <http://db.ing.puc.cl/temp>.

also discuss other possibilities to allow us using any
operator we want.

3.2. Ensuring fixed point of queries

If we want to guarantee the termination of Algo-
rithm 1, we need to impose two conditions. The first,
and most widely studied, is that query q1 must be
monotone: a c-query q is monotone if for all pair
of datasets D1, D2 where D1 ⊆ D2 it holds that
ans(q,D1) ⊆ ans(q,D2). However, we also need to
impose that the recursive c-query q1 preserves the do-
main: we say that a c-query q preserves the domain if
there is a finite set S of IRIs such that, for every dataset
D, the IRIs in q(D) either come from S or are already
present in D. Let us provide some insight about the
need for these conditions.

Monotonicity. The most typical example of a prob-
lematic non-monotonic behaviour is when we use

negation to alternate the presence of some triples in
each iteration of the recursion, and therefore come up
with recursive queries where the fixed point does not
exists.

Example 3.2. Consider the following query that con-
tains a MINUS clause.

1 WITH RECURSIVE http://db.puc.cl/temp
2 AS {
3 CONSTRUCT {?x ?y "a"}
4 WHERE {
5 { ?x ?y ?z } MINUS {
6 GRAPH <http://db.puc.cl/temp> {
7 { ?x ?y "a" }
8 }
9 }

10 }
11 }
12 SELECT * WHERE {
13 GRAPH <http://db.puc.cl/temp> {
14 ?x ?y ?z
15 }

Reutter, Soto and Vrgoč / Recursion in SPARQL 9

16 }

Also consider a instance for the default graph with
only one triple:

:s :p "b"

In the first iteration, the graph <temp>would have the
triple:

:s :p "a"

but in the next iteration the graph <temp> will
be empty because of the MINUS clause. Then, the
<temp> graph will be alternating between an empty
graph and a graph with the triple :s :p "a". Thus,
the fixed point does not exist for this query.

Similar examples can be obtained with other SPARQL
operators that can simulate negation, such as MINUS
or even arbitrary OPTIONAL [39, 40].

Preserving the domain. The BIND clause allows us
to generate new values that were not in the domain of
the database before executing a recursive query. Since
completely new values may be generated for the tem-
porary graph at each iteration, this may also imply that
a (finite) fixed point may not exists, even if the query
is monotone.

Example 3.3. Consider the following query that
makes use of the BIND clause.

1 WITH RECURSIVE http://db.puc.cl/temp
2 AS {
3 CONSTRUCT {?x :number ?b}
4 WHERE {
5 { ?x :type :person .
6 ?x :age ?a . BIND (?a AS ?b) }
7 UNION {
8 GRAPH <http://db.puc.cl/temp> {
9 ?x :number ?aux .

10 BIND(?aux + 1 AS ?b)
11 }
12 }
13 }
14 }
15 SELECT * WHERE {
16 GRAPH <http://db.puc.cl/temp>{
17 ?x ?y ?z
18 }
19 }

The base graph stores the age for all the people in the
database. In each iteration, we will increase by one all
the objects in our graph and then we will store triples
with those new values. As we mentioned, in each it-
eration the query will try to insert new triples into the
database, and will thus never terminate adding new
triples into the dataset.

On the other hand, it is easy to verify that the query
from Example 3.3 is monotone. By the Knaster-Tarski
theorem [41], a monotone query always has a fixed
point, however, such a fixed point need not be a finite
dataset. Indeed, the fixed point for the query in Exam-
ple 3.3 would have to contain triples linking each per-
son in the original dataset with all the numbers larger
than her or his initial age. This would make the fixed
point infinite and thus not be a valid RDF graph.

One way to ensure that a fixed point of a monotone
query is necessarily finite, is to make the underlying
domain over which it operates finite. For instance, in
Example 3.3, we are assuming that the domain over
which queries operate is the set of all possible triple
over I ∪ L, and not just the ones using IRIs and liter-
als from the queried dataset. On the other hand, in the
case of domain preserving queries, when considering
the sequence (Di)i from Definition 3.2, our monotone
queries can only construct triples over a finite set of
IRIs and literals (the initial dataset, plus another finite
set), thus making the fixed point necessarily finite.

Besides the BIND operator, we can also simulate the
creation of new values by means of blanks in the con-
struct templates, or even with blanks inside queries or
subqueries.

Existence of a fixed point. If we are working with
queries that are both monotone and domain preserving,
we can guarantee that the sequence (Di)i from Def-
inition 3.2 always converges to a well defined RDF
dataset. More precisely, as an immediate consequence
of the Knaster-Tarski theorem [41], we can obtain the
following:

Proposition 3.1. Let D be a dataset and q1 and q2 two
monotone queries that are domain preserving, and let
q = WITH RECURSIVE t AS {q1} q2 be a recursive
query. Then q converges over D, and we can use Algo-
rithm 1 to evaluate q.

It is important to note that the query q1 need not
be monotone over the domain of all possible RDF
datasets in order for q to converge over D. Indeed, in
order to apply the Kanster-Tarski theorem, it suffices
that q1 is monotone over the datasets that appear in the
sequence (Di)i from Definition 3.2.

Next, we study which SPARQL queries are both do-
main preserving and monotone, in order to restrict the
recursion to such queries.

10 Reutter, Soto and Vrgoč / Recursion in SPARQL

3.3. Fragments where the recursion converges

We know that monotonicity and domain preserva-
tion allows us to define a class of recursive queries
which will always have a least fixed point. The ques-
tion then is: how to define a fragment of SPARQL that
is both monotonic and domain preserving?

First, how can we guarantee that queries are mono-
tonic? An easy option here is to simply disallow all
the operators which can simulate negation such as
OPTIONAL, MINUS, or negative FILTER conditions.
Second, when it comes to guaranteeing that queries are
domain preserving, we can simply prohibit them to use
operators that can create new values such as BIND, or
to use blanks in construct templates, queries or sub-
queries. This leads us to a first subclass of SPARQL
queries for which can be used inside recursive queries.

Definition 3.3 (positive SPARQL and rec-SPARQL).
A SPARQL query is positive if it does not use any of
the following operators:

1. It does not use operators OPTIONAL, MINUS,
BIND;

2. Every construct (Q FILTER ϕ) is such that ϕ uses
only equalities and positive boolean combinations
using ∧ and ∨; and

3. In every subquery (SELECT X WHERE Q) we
have that Q is also positive.

Likewise, a positive c-query is a c-query using posi-
tive SPARQL in its definition. The language of posi-
tive rec-SPARQL comprises every positive SPARQL
query, and also queries of the form

WITH RECURSIVE t AS {q1} q2, (2)

where t is an IRI from I, q1 is a positive c-query, and
q2 is a positive rec-SPARQL query.

Given that positive SPARQL queries are both mono-
tone and domain preserving, as an easy corollary of
Proposition 3.1, we obtain the following:

Proposition 3.2. If we have a recursive query q =
WITH RECURSIVE t AS {q1} q2, where q1 a positive
query, and q2 is a positive rec-SPARQL query, then q
converges over D.

While positive queries do the trick, one might argue
that they are quite restrictive. We can therefore wonder,
whether it is possible to allow some form of negation,
or the use of OPTIONAL?

In fact, literature has pointed out some more milder
restrictions, that still do the trick. For instance, even
though we disallow OPTIONAL, we note that our frag-
ment of SPARQL is expressive enough to express
rec-SPARQL queries in which q1 is given by positive
SPARQL with well-designed optionals [3]. This is be-
cause for CONSTRUCT queries, the fragment we con-
sider has been shown to contain queries defined by
union of well designed graph patterns [16]).

The second, more expressive fragment to consider,
loosens the restrictions we put on the use of negation.
The idea is that bad behaviour of negation, such as the
one shown in Example 3.2, only occurs when negation
involves the same graph that is being constructed in the
fixed point. Therefore, we will consider a fragment of
rec-SPARQL queries which allow negation whenever
it does not involve the graph being constructed in the
recursive portion of the query.

Definition 3.4 (Stratified positive rec-SPARQL). Strat-
ified positive rec-SPARQL extends the language of
positive rec-SPARQL by allowing queries of the form
(2) above in which q1 can use constructs of the
form (Q1 MINUS Q2), as long as every expression
(GRAPH g Q) in Q2 is such that g is an IRI different
from t.

Essentially, with stratified positive rec-SPARQL we
allow some degree of negation, but we need to make
sure this negation does not involve the temporal graph
under construction.

While stratified positive rec-SPARQL need not be
monotone with respect to the domain of all possible
RDF datasets, they are monotone in the context of the
sequence (Di)i from Definition 3.2. More precisely,
any stratified positive rec-SPARQL of the form (2) is
such that q1 is monotone with respect to the named
graph t, meaning that, for datasets D and D′ that only
differ in the named graph t, if 〈t,G〉 is the graph named
t in D, 〈t,G′〉 is the graph t in D′, and G ⊆ G′, then
ans(q1,D) ⊆ ans(q1,D

′). We can then confirm that
our semantics is well-defined for positive or stratified
positive rec-SPARQL as an easy corollary of Proposi-
tion 3.1.

Proposition 3.3. Let D be a dataset and q a stratified
positive (or just positive) recursive c-query of the form
WITH RECURSIVE t AS {q1} q2. Then q converges
over D.

Reutter, Soto and Vrgoč / Recursion in SPARQL 11

3.4. Expressive Power

As a way to gauge the power of our language,
we turn to the language datalog. Datalog (and ASP)
has been used to pinpoint the expressive power of
SPARQL (see e.g. [42], [?]). For our case, it suffices
to define positive Datalog, and Datalog with negation
under stratified semantics.

A positive Datalog program Π consists of a finite
set of rules of the form S (x̄) ← R1(ȳ1), . . . ,Rm(ȳm),
where S ,R1, . . . ,Rm are predicate symbols, ȳ1, . . . , ȳm

are tuples in V ∪ I and x̄ is a tuple of variables al-
ready appearing in ȳ1, . . . , ȳm. In a rule of this form, S
is said to appear in the head of the rule, and R1, . . . ,Rm

in the body of the rule. A predicate that occurs in the
head of a rule is called intensional predicate. The rest
of the predicates are called extensional predicates. Fur-
ther, we assume that each program has a distinguished
intensional predicate called the answer of Π, and de-
noted by Ans.

Let P be an intensional predicate of a positive Dat-
alog program Π and I a set of predicates. For i > 0,
Pi

Π(I) denote the collection of facts about the inten-
sional predicate P that can be deduced from I by at
most i applications of the rules in Π. Let P∞Π (I) be⋃

i>0 Pi
Π(I). Then, the answer Π(I) of Π over I is

Ans∞Π (I).
Datalog programs with negation extend positive dat-

alog with rules of the form

S (x̄)← R1(ȳ1), . . . ,Rm(ȳm),¬P1(z̄1), . . . ,¬Pn(z̄n),

in which we require that every variable in z̄1, . . . , z̄n

is also in ȳ1, . . . , ȳm. We are interested in datalog pro-
grams with stratified negation. The dependency graph
of a program Π is a directed graph whose nodes are the
predicates of Π and whose edges can be labelled with
+ and −. There is a + edge from predicate Q to pred-
icate P, if Q occurs positively in the body of a rule ρ
of Π and P is the predicate in the head of ρ. Likewise,
there is an edge labelled with − if Q occurs negated in
the body of a rule the body of a rule ρ of Π and P is the
predicate in the head of ρ. A program Π has stratified
negation if one can partition the set of predicates into
sets C1, . . . ,C`, such that (1) for each edge from Q to
P labelled with + in the dependency graph of Π, if Q
belongs to set Ci, then P belongs to C j with j > i, and
(2) for each edge from Q to P labelled with − in the
dependency graph of Π, if Q belongs to set Ci, then P
belongs to C j with j > i.

For positive datalog programs Π with stratified
negation, we can compute the answer Π(I) of Π
over a set I of predicates as follows. Let C1, . . . ,C`

be a partition satisfying the conditions for stratified
negation. We compute sets I1, . . . , I` of predicates,
as follows. Let I = I0. For each 1 6 k 6 `, let
Πk be the set of rules mentioning a predicate in Ck

on their head. Notice that by definition of stratifica-
tion, all predicates mentioned in the head or body
of Πk must belong to some Ck′ with k′ 6 k. Then
Ik = Ik−1∪

⋃
P∈Ck

P∞Πk
(Ik−1). Finally, the answer Π(I)

is Ans∞Π`
(I).

Since we are using Datalog to query RDF databases,
we only focus on programs in which all extensional
predicates are ternary predicates of the form Tg, with
g an IRI. We can then represent each dataset D as a set
I of predicates containing one ternary relation Tg per
each graph in g. We can then treat datalog programs as
c-queries: on input D, the constructed graph of a pro-
gram Π contains all predicates in Π(I), where I is the
representation of the dataset D we have just defined.
Abusing the notation, we will write Π(D) to speak of
this RDF graph.

In order to study the expressive power of rec-SPARQL,
we first compare positive c-queries and stratified pos-
itive c-queries with datalog. It follows from Polleres
and Wallner [42] (see Table 1) that our fragment of
positive c-queries can be translated into positive dat-
alog, in the following sense: For each c-query q one
can construct a positive datalog program Π such that
ans(q,D) = Π(D) for every dataset D. Moreover, by
inspecting the construction by Polleres and Wallner,
one also gets that stratified positive c-queries can be
translated into datalog with stratified negation, in the
same terms. From these results, we further obtain that
any positive or stratified positive rec-SPARQL query
can be translated as well into positive datalog or data-
log with stratified negation, respectively.

Proposition 3.4. Let q be a positive (resp. stratified
positive) rec-SPARQL query. Then one can construct
a positive (resp. stratified positive) datalog program Π
such that ans(q,D) = Π(D) for every dataset D

Proof. The idea is to proceed inductively. For a query
q of the form WITH RECURSIVE t AS {q1} q2, let
Π1 be the translation of q1, and let Ans1 be the answer
predicate of q1. Likewise, let Π2 the translation of q2.
Our program Π for q contains all rules in Π1 and Π2,
plus the rule

Tt(x, y, z)← Ans1(x, y, z) (3)

12 Reutter, Soto and Vrgoč / Recursion in SPARQL

Where Tt is the predicate representing all triples in
graph named t. This rule is positive, and maintains
stratification. The answer predicate of Π is Ans2.

We note that the other direction is currently open:
we do not know if every stratified positive data-
log program can be translated into stratified positive
rec-SPARQL. On the surface, and given the result that
SPARQL can express all stratified positive datalog
queries (see e.g. [16], it would appear that we can.
However, rules in datalog programs may incur in all
sort of simultaneous fixed points, as the dependency
graph in programs need not be a tree. In standard dat-
alog one can always flatten these simultaneous rules
so that the resulting dependency graph is tree-shaped,
but the only constructions we are aware of must incur
in predicates with more than three positions, that we
don’t currently know how to store in the graphs con-
structed by rec-SPARQL.

On the other hand, when datalog programs disallow
all sort of simultaneous fixed points, a translation is
surely possible.

Proposition 3.5. Let Π be a positive (resp. stratified
positive) datalog program, and assume that the only
cicles on the dependency graph of Π are self loops.
Then one can build a positive (resp. stratified positive)
rec-SPARQL query q such that Π(D) = ans(q,D) for
every dataset D.

Proof. That non-recursive datalog can be expressed as
a c-query already follows from previous work [16]. By
examining that proof, we get the following result: for
each predicate S in a non-recursive program Π, if we
assume that for each rule in Π of the form

S (x̄)← R1(ȳ1), . . . ,Rm(ȳm),¬P1(z̄1), . . . ,¬Pn(z̄n),

mentioning S , we have that all collections of triples
R1
∞
Π (D), . . . ,Rm

∞
Π (D), P1

∞
Π (D), . . . , Pn

∞
Π (D) are stored

in named graphs tR1
, . . . , tRm , tP1

, . . . , tPn (and assum-
ing again for simplicity that these graphs are empty
in D), then one can construct a c-query qS such
ans(qS ,D) contains precisely S∞Π (D).

Thus, all that remains to do is to lift this result for
datalog programs when the only recursion is given by
rules of the form

Ri(x̄)← R1(ȳ1), . . . ,Rm(ȳm),¬P1(z̄1), . . . ,¬Pn(z̄n),

In this case, we let qRi
be the query constructed as

explained before, but we use the recursive c-query

WITH RECURSIVE tRi AS {qRi
} q′, with q′ the query

SELECT * WHERE GRAPH t {x y z} that sim-
ply selects every triple from the constructed graph.

While this result may sound narrow, it already gives
us a tool to compare again some other recursive lan-
guages proposed for graphs and RDF. For example,
the language of regular queries [26] is a datalog pro-
gram whose only cicles in its dependency graph are
self loops, so we immedately have that rec-SPARQL
can express any Regular Query. Another language with
a similar recursion structure is TriAL [15], and we
can also use that rec-SPARQL can express any TriAl
query. On the other hand, it does not give us much in
terms of more expressive languages such as [30], for
which the comparison would require more work.

3.5. Complexity Analysis

Since recursive queries can use either the SELECT
or the CONSTRUCT result form, there are two decision
problems we need to analyze. For SELECT queries,
we define the problem SELECTQUERYANSWERING,
that receives as an input a recursive query q using the
SELECT result form, a tuple ā of IRIs from I and a
dataset D with default graph G0, and asks whether ā is
in ans(q,D). For CONSTRUCT queries, the problem
CONSTRUCTQUERYANSWERING receives a recursive
query q using the CONSTRUCT result form, a triple
(s, p, o) over I×I×I and a dataset D, and asks whether
this triple is in ans(q,D).

Proposition 3.6. The problem SELECTQUERYAN-
SWERING is PSPACE-complete and CONSTRUCT-
QUERYANSWERING is NP-complete. The complex-
ity of SELECTQUERYANSWERING drops to Πp

2 if one
only consider SELECT queries given by unions of
well-designed graph patterns.

Proof. It was proved in [16] that the problem CON-
STRUCTQUERYANSWERING is NP-complete for non
recursive c-queries, and Pérez et al. show in [43] that
the problem SELECTQUERYANSWERING if PSPACE-
complete for non-recursive SPARQL queries, and Πp

2

for non-recursive SPARQL queries given by unions of
well-designed graph patterns. This immediately gives
us hardness for all three problems when recursion is
allowed.

To see that the upper bound is maintained, note that
for each nested query, the temporal graph can have at
most |D|3 triples. Since we are computing the least

Reutter, Soto and Vrgoč / Recursion in SPARQL 13

fixed point, this means that in every iteration we add
at least one triple, and thus the number of iterations is
polynomial. This in turn implies that the answer can
be found by composing a polynomial number of NP
problems, to construct the temporal graph correspond-
ing to the fixed point, followed by the problem of an-
swering the outer query over this fixed point database,
which is in PSPACE for SELECTQUERYANSWER-
ING, in Πp

2 for SELECTQUERYANSWERING assuming
queries given by unions of well designed patterns and
in NP for CONSTRUCTQUERYANSWERING. First two
classes are closed under composition with NP, and the
last NP bound can be obtained by just guessing all
meaningful queries, triples to be added and witnesses
for the outer query at the same time.

Thus, at least from the point of view of computa-
tional complexity, our class of recursive queries are
not more complex than standard select queries [43] or
construct queries [16]. We also note that the complex-
ity of similar recursive queries in most data models is
typically complete for exponential time; what lowers
our complexity is the fact that our temporary graphs
are RDF graphs themselves, instead of arbitrary sets of
mappings or relations.

For databases it is also common to study the
data complexity of the query answering problem,
that is, the same decision problems as above but
considering the input query to be fixed. We denote
this problems as SELECTQUERYANSWERING(q) and
CONSTRUCTQUERYANSWERING(q), for select and
result queries, respectively. The following shows that
the problem remains in polynomial time for data com-
plexity, albeit in a higher class than for non recursive
queries.

Proposition 3.7. SELECTQUERYANSWERING(q) and
CONSTRUCTQUERYANSWERING(q) are PTIME-complete.
They remain PTIME-hard even for queries without
negation or optional matching.

Proof. Following the same idea as in the proof of
Proposition 3.6, we see that the number of iterations
needed to construct the fixed point database is polyno-
mial. But, if queries are fixed, the problem of evalu-
ating SELECT and CONSTRUCT queries is always in
NLOGSPACE (see again [43] and [16]). The PTIME
upper bound then follows by composing a polynomial
number of NLOGSPACE algorithms.

We prove the lower bound by a reduction from the
path systems problem, which is a well known PTIME-

complete problem (c.f. [44]). The problem is as fol-
lows. Consider a a set of nodes V and a unary relation
C(x) ⊆ V that indicates whether a node is coloured
or not. Let R(x, y, z) ⊆ V × V × V be a relation of
reachable elements, and the following rule for colour-
ing additional elements: if there are coloured elements
a, b such that a triples (a, b, c) is coloured, then c
should also be coloured. Finally consider a target rela-
tion T ⊆ V . The problem of path systems is to decide
if some element in T is coloured by our rule.

For our reduction we construct a database instance
and a (fixed) recursive query according to the instance
of path systems such that the result of the query is
empty if and only if T ⊆ P for the path system prob-
lem. The construction is as follows.

The database instance contains the information of
which vertex is coloured, which vertex is part of the
target relation T and the elements of the R relation:

– We define the function u which maps every vertex
to a unique URI.

– For each element v ∈ C, we add the triple
(u(v),:p,"C") to a named graph gr:C of the
database instance.

– For each element v ∈ T , we add the triple
(u(v),:p,"T") to a named graph gr:T of the
database instance.

– For each element (x, y, z) ∈ R we add the
triple (u(x), u(y), u(z)) to the default graph of the
database instance.

Thus, the recursive query needs to compute all the
coloured elements in order to check if the target rela-
tion is covered. This can be done in the following way:

1 PREFIX gr: <http://example.org/graph>
2 WITH RECURSIVE http://db.puc.cl/temp
3 AS {
4 CONSTRUCT { ?z :p "C" }
5 WHERE {
6 { GRAPH gr:C { ?z :p "C" } }
7 UNION {
8 { ?x ?y ?z } .
9 GRAPH <http://db.puc.cl/temp> {

10 ?x :p "C" } .
11 GRAPH <http://db.puc.cl/temp> {
12 ?y :p "C" }
13 }
14 }
15 }
16 }
17 ASK WHERE {
18 GRAPH gr:T {
19 ?x :p "T"
20 } .
21 GRAPH <http://db.puc.cl/temp> {

14 Reutter, Soto and Vrgoč / Recursion in SPARQL

22 ?x :p "C"
23 }
24 }

It is clear that the recursive part of the query is com-
puting all the coloured nodes according to the R rela-
tion. Then in the ASK query, its result will be false iff
none of the nodes in T are reachable. Note that this re-
duction can be immediately adapted to reflect hardness
for queries using CONSTRUCT or SELECT.

From a practical point of view, and even if theoreti-
cally the problems have the same combined complex-
ity as queries without recursion and are polynomial in
data complexity, any implementation of the Algorithm
1 is likely to run excessively slow due to a high de-
mand on computational resources (computing the tem-
porary graph over and over again) and would thus not
be useful in practice. For this reason, instead of imple-
menting full-fledged recursion, we decided to support
a fragment of recursive queries based on what is com-
monly known as linear recursive queries [17, 18]. This
restriction is common when implementing recursive
operators in other database languages, most notably in
SQL [45], but also in graph databases [36], as it offers
a wider option of evaluation algorithms while main-
taining the ability of expressing almost any recursive
query that one could come up with in practice. For in-
stance, as demonstrated in the following section, linear
recursion captures all the examples we have consid-
ered thus far and it can also define any query that uses
property paths. Furthermore, it can be implemented in
an efficient way on top of any existing SPARQL en-
gine using a simple and easy to understand algorithm.
All of this is defined in the following section.

4. Realistic Recursion in SPARQL

Having defined our recursive language, the next step
is to outline a strategy for implementing it inside of
a SPARQL system. In this section we show how this
can be done by focusing on linear queries. While the
use of linear queries is well established in the SQL
context, here we show how this approach can be lifted
to SPARQL. In doing so, we will argue that not only
do linear queries allow for much faster evaluation al-
gorithms than generic recursive queries, but they also
contain many queries of practical interest. Addition-
ally, we outline some alternatives of recursion which
can support the use of negation or BIND operators.

4.1. Linear recursive queries

The concept of linear recursion is widely used as a
restriction for fixed point operators in relational query
languages, because it presents a good trade-off be-
tween the expressive power of recursive operators and
their practical applicability.

Commonly defined for logic programs, the idea of
linear queries is that each recursive construct can refer
to the recursive graph or predicate being constructed
only once. To achieve this, our queries are made from
the union of a graph pattern that does not use the tem-
porary IRI, denoted as pbase and a graph pattern prec
that does mention the temporary IRI. Formally, a lin-
ear recursive query is an expression of the form

WITH RECURSIVE t AS {

CONSTRUCT H (4)

WHERE pbase UNION prec } qout

with H is a construct template as usual, qout a lin-
ear recursive query, pbase and prec positive SPARQL
queries, possibly with property paths, and where only
prec is allowed to mention the IRI t. We further re-
quire that the recursive part prec mentions the tem-
porary IRI only once. Consequently, we define lin-
ear positive rec-SPARQL and linear stratified positive
rec-SPARQL by restricting the operators in pbase and
prec. The semantics of linear positive and stratified pos-
itive recursive queries is inherited from Definition 3.2.

Notice that we enforce a syntactic separation be-
tween base and recursive query. This is done so that we
can keep track of changes made in the temporary graph
without the need of computing the difference of two
graphs, as discussed in Subsection 4.2. This simple yet
powerful syntax resembles the design choices taken in
most SQL commercial systems supporting recursion6,
and is also present in graph databases [36].

To give an example of a linear query, we return
to the query from Figure 3. First, we notice that this
query is not linear. Nevertheless, it can be restated
as the query from Figure 5 that uses one level of
nesting (meaning that the query qout is again a lin-
ear recursive query). We note that the union in the
first query can obviously be omitted, and is there

6In SQL one cannot execute a recursive query which is not divided
by UNION into a base query (inner query) and the recursive step
(outer query) [45].

Reutter, Soto and Vrgoč / Recursion in SPARQL 15

only for clarity (our implementation supports queries
where either pbase or prec is empty). The idea of
this query is to first dump all meaningful triples
from the original dataset into a new graph named
http://db.ing.puc.cl/temp1, and then use this
graph as a basis for computing the required reachabil-
ity condition, that will be dumped into a second tem-
porary graph http://db.ing.puc.cl/temp27.

4.2. Algorithm for linear recursive queries

The main reason why linear queries are widely used
in practice is the fact that they can be computed piece
by piece, without ever invoking the complete database
being constructed. More precisely, if a query Q =
WITH RECURSIVE t AS {q1} q2 is linear, then for
every dataset D, the answer ans(Q,D) of the query can
be computed as the least fixed point of the sequence
given by

D0 = D, D−1 = ∅,

Di+1 = Di ∪ {〈t, ans(q1, (D ∪ Di \ Di−1))〉}.

In other words, in order to compute the i + 1-th
iteration of the recursion, we only need the original
dataset plus the tuples that were added to the tempo-
rary graph t in the i-th iteration. Considering that the
temporary graph t might be of size comparable to the
original dataset, linear queries save us from evaluat-
ing the query several times over an ever increasing
dataset: instead we only need to take into account what
was added in the previous iteration, which is generally
much smaller.

Unfortunately, it is undecidable to check whether
a given recursive query satisfies the property outlined
above (under usual complexity-theoretic assumptions,
see [46]), so this is why we must guarantee it with
syntactic restrictions. We also note that most of the
recursive extensions proposed for SPARLQ have the
aforementioned property: from property paths [2] to
nSPARQL [3], SPARQLeR [24], regular queries [26]
or Trial [15], as well as our example.

As for the algorithm, we have decided to imple-
ment what is known as seminaive evaluation, although
several other alternatives have been proposed for the
evaluation of these types of queries (see [18] for

7Interestingly, one can show that in this case the nesting in this
query can be avoided, and indeed an equivalent non-nested recursive
query is given in the appendix.

a good survey). In order to describe our algorithm
for evaluating a query of the shape (4), we abuse
the notation and speak of qbase to denote the query
CONSTRUCT H WHERE pbase and qrec to denote the
query CONSTRUCT H WHERE prec. Our algorithm
for query evaluation is presented in Algorithm 2.

Algorithm 2 Computing the answer for linear recur-
sive c-queries of the form (4)
Input: Query Q of the form (4), dataset D
Output: Evaluation ans(Q,D) of Q over D

1: Set Gtemp = ans(qbase,D) and Gans = Gtemp
2: Set size = |Gans|
3: loop
4: Set Gtemp = ans(qrec,D ∪ {(t,Gtemp)})
5: Set Gans = Gans ∪Gtemp
6: if size = |Gans| then
7: break
8: else
9: size = |Gans|

10: end if
11: end loop
12: return ans(qout,D ∪ {〈t,Gans〉})

So what have we gained? By looking at Algorithm
2 one realizes that in each iteration we only evaluate
the query over the union of the dataset and the inter-
mediate graph Gtemp, instead of the previous algorithm
where one needed the whole graph being constructed
(in this case Gans). Furthermore, qbase is evaluated only
once, using qrec in the rest of the iterations. Consider-
ing that the temporary graph may be large, and that no
indexing scheme could be available, this often results
in a considerable speedup for query computation.

Expressive power of linear queries. In Section 3.4
we show that all stratified positive recursive SPARQL
queries can be defined in datalog, but have no match-
ing result in the other direction. When it comes to lin-
ear queries, we can mirror the same result. The defi-
nition of linear datalog is quite straightforward: a dat-
alog rule is linear if there is at most one atom in the
body of the rule that is recursive with the head. For ex-
ample, the rule E(x, y) : −R(x), E(x, y) is linear, while
E(x, y) : −R(x), E(x, z), E(z, y) is not, since it uses the
head predicate recursively twice. A datalog program is
linear if all of its rules are linear.

With this in mind, we can again show that ev-
ery linear positive rec-SPARQL query can be trans-

16 Reutter, Soto and Vrgoč / Recursion in SPARQL

1 PREFIX prov: <http://www.w3.org/ns/prov#>
2 WITH RECURSIVE http://db.ing.puc.cl/temp1 AS {
3 CONSTRUCT { ?x ?u ?y }
4 WHERE{
5 { ?x prov:wasRevisionOf ?z .
6 ?x prov:wasGeneratedBy ?w .
7 ?w prov:used ?z .
8 ?w prov:wasAssociatedWith ?u }
9 UNION

10 {}}
11 }
12 WITH RECURSIVE http://db.ing.puc.cl/temp2 AS {
13 CONSTRUCT { ?x ?u ?y }
14 WHERE
15 { GRAPH <http://db.ing.puc.cl/temp1> { ?x ?u ?y } }
16 UNION {
17 GRAPH <http://db.ing.puc.cl/temp1> { ?x ?u ?z }.
18 GRAPH <http://db.ing.puc.cl/temp2> { ?z ?u ?y } }
19 }
20 SELECT ?x ?y WHERE {
21 GRAPH <http://db.ing.puc.cl/temp> {
22 ?x ?u ?y
23 }
24 }

Fig. 5. Example of a linear recursion.

formed into linear positive datalog, and likewise for
linear stratified positive rec-SPARQL and linear strat-
ified datalog (note that the translation outlined in the
proof of Proposition 3.4 preserves linearity). Unfortu-
nately, for the other direction we have the same prob-
lem, as we are not sure whether our recursive lan-
guages can express every linear positive or stratified
positive datalog program. Of course, we can also mir-
ror Proposition 3.5 for linear queries. Thus, linear lan-
guages such as regular queries [26] or Trial [15] can be
also translated into linear queries.

4.3. Supporting arbitrary queries in recursive clauses

Although we show in Section 3 that recursive
queries which include some form of negation can be
impossible to evaluate, there is no doubt that queries
including negation are very useful in practice. In this
section we briefly discuss how such queries can be
mixed with linear recursion.

Limiting the recursion depth. In practice it could
happen that an user may not be interested in having
all the answers for a recursive query. Instead, the user
could prefer to have only the answers until a certain
number of iterations are performed. We propose the
following syntax for to restrict the depth of recursion

to a user specified number k:

WITH RECURSIVE t AS {

CONSTRUCT H

WHERE pbase UNION prec (5)

} MAXRECURSION k qout

Here all the keywords are the same as when defining
linear recursion, and k > 1 is a natural number. The
semantics of such queries is defined using Algorithm
2, where the loop between steps 4 and 12 is executed
precisely k − 1 times.

It is easy to see that this extension is useful for han-
dling queries which include negation, or which create
values by means of blanks or a BIND clause. Namely, if
we fix the number of iterations of a recursive query, we
can ensure that these queries terminate their execution,
regardless of the existence of a fixed point.

Other ways of supporting negation. Limiting the
number of iterations can also give us a way of allow-
ing more complex c-queries inside the recursive part of
recursive queries. This is not an elegant solution, but
can be made to work: since the number of iterations is
bounded, we don’t longer need queries to ensure that
our graph has a fixed point operator.

Reutter, Soto and Vrgoč / Recursion in SPARQL 17

We also mention that there are other, more elegant
solutions, but we do not investigate them further as
they drive us out of what can be implemented on top
of SPARQL systems, and is out of the scope of this pa-
per. For example, a possible solution to support BIND
and negation is to extend the semantics by borrowing
the notion of stable models from logic programs (see
e.g. [47]). Moreover, one could redefine rec-SPARQL
to consider a partial fixed point in Definition 3.2 in-
stead of the least-fixed point. This approach simply as-
sumes a query that does not converge gives an empty
result. It is a clean theoretical solution, but it is not a
good approach for practice.

Studying these extensions to rec-SPARQL is an im-
portant topic for future work, and in particular the sta-
ble model semantics approach may require an inter-
esting combination of techniques from both databases
and logic programming.

5. Experimental Evaluation

In this section we will discuss how our implemen-
tation performs in practice and how it compares to
alternative approaches that are supported by existing
RDF Systems. Though our implementation has more
expressive power, we will see that the response time of
our approach is similar to the response time of existing
approaches, and also our implementation outperforms
the existing solutions in several use cases.

Technical details. Our implementation of linear
recursive queries was carried out using the Apache
Jena framework (version 3.7.0)[19] as an add-on to
the ARQ SPARQL query engine. It allows the user to
run queries either in main memory, or using disk stor-
age when needed. The disk storage was managed by
Jena TDB (version 1). As previously mentioned, since
the query evaluation algorithms we develop make use
of the same operations that already exist in current
SPARQL engines, we can use those as a basis for the
recursive extension to SPARQL we propose. In fact,
as we show by implementing recursion on top of Jena,
this capability can be added to an existing engine in an
elegant and non-intrusive way8.

Datasets. We test our implementation using four
different datasets. The first one is Linked Movie

8The implementation we use is available at https://alanezz.github.
io/RecSPARQL/.

Database (LMDB) [48], an RDF dataset containing in-
formation about movies and actors. The second dataset
we use is a part of the YAGO ontology [49] and con-
sists of all the facts that hold between instances. For
the experiments the version from May 2018 was used.
In order to test the performance of our implementa-
tion on synthetic data, we turn to the GMark bench-
mark [20], and generate data with different charac-
teristics using this tool. Finally, we use the Wikidata
“truthy” dump from 2018/11/15 containing over 3 bil-
lion triples, in order to test whether our implementa-
tion scales. All the datasets apart from Wikidata can be
found at https://alanezz.github.io/RecSPARQL/.

Experiments. The experiments we run are divided
into four batches:

– Common use cases. In the first round of exper-
iments we turn to YAGO and LMDB datasets,
which allow defining recursive queries rather nat-
urally. The main objective of these experiments is
to show that our implementation can handle com-
plex recursive patterns in reasonable time over
real world datasets.

– Comparison with SPARQL engines. In order to
compare with the recursive properties supported
by SPARQL, we turn to the GMark [20] property
path benchmark, and compare our implementa-
tion with pache Jena and Openlink Virtuoso, two
popular SPARQL systems.

– Performance over large datasets. To verify
whether our solution scales, we run a sequence of
recursive queries over the Wikidata dataset con-
taining over 3 billon triples, and compare our re-
sponse times with the ones provided by the Wiki-
data endpoint.

– Limiting recursion depth. Finally, we test the
solution proposed in Section 4.3, which stops the
recursive iteration after a predetermined number
of steps. Here we show that this approach is not
only useful fro dealing with recursion, but also
when evaluating repeated joins.

The experiments involving smaller datasets (LMDB,
YAGO, and GMark) were run on a MacBook Pro with
an Intel Core i5 2.6 GHz processor and 8GB of main
memory. To handle the size of Wikidata, we used a
server Devuan GNU/Linux 3 (beowulf) with an In-
tel Xeon Silver 4110 CPU @ 2.10GHz processor and
120GB of memory.

Next, we elaborate on each batch of experiments, as
specified above.

https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/
https://alanezz.github.io/RecSPARQL/

18 Reutter, Soto and Vrgoč / Recursion in SPARQL

5.1. Evaluating real use cases

The first thing we do is to test our implementation
against realistic use cases. As we have mentioned, we
do not aim to obtain the fastest possible algorithms
for these particular use cases (this is out of the scope
of this paper), but rather aim for an implementation
whose execution times are reasonable. For this, we
took the LMDB and the YAGO datasets, and built a
series of queries asking for relationships between en-
tities. Since YAGO also contains information about
movies, we have the advantage of being able to test
the same queries over different datasets (their ontol-
ogy differs). The specifications for each database can
be found in the Figure 6. Note that the size is the one
used by Jena TDB to store the datasets.

Graph Number of triples Size
LMDB 6147996 1.09 Gb
Yago 6215350 1.54 Gb

Fig. 6. Specifications for the LMDB and Yago datasets.

To the best of our knowledge, it is not possible to
compare the full scope of our approach against other
implementations. While it is true that our formalism
is similar to the recursive part of SQL, all of the RDF
systems that we checked were either running RDF na-
tively, or running on top of a relational DBMS that did
not support the recursion with common table expres-
sions functionality, that is part of the SQL standard.
OpenLink Virtuoso does have a transitive closure op-
erator that can be used with its SQL engine, but this
operator is quite limited in the sense that it can only
compute transitivity when starting in a given IRI. Our
queries were more general than this, and thus we could
not compare them directly. For this reason, in this set
of experiments we will only discuss about the practical
applicability of the results.

Our round of experiments consists of three movie-
related queries, which will be executed both on LMDB
and YAGO, and two additional queries that are only
run in YAGO, because LMDB does not contain this
information. All of these queries are similar to that
of Example 3.1 (precise queries are given in the ap-
pendix). The queries executed in both datasets are the
following:

(a) Query times on LMDB dataset

(b) Query times on YAGO dataset

QA QB QC

37349 1172 14568

(c) The number of output tuples for LMDB queries

QA QB QC QD QE

29930 85 3617 7 44

(d) The number of output tuples for Yago queries

Fig. 7. Running times and the number of output tuples for the three
datasets.

– QA: the first query returns all the actors in the
database that have a finite Bacon number9, mean-
ing that they co-starred in the same movie with
Kevin Bacon, or another actor with a finite Bacon
number. A similar notion, well known in mathe-
matics, is that of an Erdős number.

– QB: the second query returns all actors with a fi-
nite Bacon number such that all the collaborations
were done in movies with the same director.

– QC: the third query tests if an actor is connected
to Kevin Bacon through movies where the direc-
tor is also an actor (not necessarily in the same
movie).

9http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon.

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon

Reutter, Soto and Vrgoč / Recursion in SPARQL 19

The queries executed only in the YAGO dataset
where the following:

– QD: the fourth query answers with the places
where the city Berlin is located in from a tran-
sitive point of view, starting from Germany, then
Europe and so forth.

– QE: the fifth query returns all the people who
are transitively related to someone, through the
isMarriedTo relation, living in the United
States or some place located within the United
States.

Note that QA, QD and QE are also expressible as
property paths. To fully test recursive capabilities of
our implementation we use another two queries, QB
and QC, that apply various tests along the paths com-
puting the Bacon number. Recall that the structure of
queries QB and QC is similar to the query from Exam-
ple 3.1 and cannot be expressed in SPARQL 1.1 either.

The results of the evaluation can be found in Fig-
ures 7(a) and 7(b). As we can see the running times,
although high, are reasonable considering the size of
the datasets and the number of output tuples (Figures
7(c) and 7(d)). The query QE is the only query with a
small size in its output and a high time of execution.
This fact can be explained because the query is a com-
bination of 2 property paths that required to instantiate
2 recursive graphs before computing the answer.

5.2. Comparison with Property Paths using the
GMark benchmark

As mentioned previously, since to the best of our
knowledge no SPARQL engine implements general re-
cursive queries, we cannot really compare the perfor-
mance of our implementation with the existing sys-
tems. The only form of recursion mandated by the lat-
est language standard are property paths, so in this sec-
tion we show the results of comparing the execution
of property paths queries in our implementation using
our recursive language against the implementation of
property paths in popular systems.

We used the GMark benchmark [20] to measure the
running time of property paths queries using Recursive
SPARQL, and to compare such times with respect to
Apache Jena and Openlink Virtuoso.

The GMark benchmark allows generating queries
and datasets to test property paths, and one of its ad-

vantages is that the size of the datasets and the pat-
terns described by the queries are parametrized by the
user. Using the benchmark we generated three dif-
ferent graphs of increasing size, named G1,G2 and
G3. The specifications for each graph can be found
in Figure 8. We also generated 10 SPARQL queries
that could have one or more property paths of differ-
ent complexities. The queries can be found in the ap-
pendix. The run times our queries are presented in the
Figure 9 for the graph G1, in Figure 10 for G2, and in
Figure 11 for G3.

Graph Number of triples Size
G1 220564 271 mb
G2 447851 535 mb
G3 671712 605 mb

Fig. 8. Specifications for the graphs generated by GMark.

Note first that every property path query is easily ex-
pressible using linear recursion. With this observation
in mind we must also remark that we are comparing
the performance of our more general recursive engine
with property paths, which are a much less expressive
language. For this reason highly efficient systems like
Virtuoso should run property paths queries faster: they
do not need to worry about being able to compute more
recursive queries. Of course, it would also be interest-
ing to compare our engine with specific ad-hoc tech-
niques for computing property paths.

Comparison with Virtuoso. Virtuoso cannot run
queries 2, 6, 7 and 8, because the SPARQL engine
requires an starting point for property paths queries,
which was not possible to give for such queries. We
can see that Virtuoso outperforms Jena and the Recur-
sive implementation in almost all the queries that they
can run, except for Query 1, where the running time
goes beyond 25 seconds. As we will discuss later, this
can be explained because of the semantic they use to
evaluate property paths, which makes Virtuoso to have
many duplicated answers. For the remaining queries,
we can see that the execution time is almost equals.

Comparison with Jena. Apache Jena can also answer
all queries. However, our recursive implementation is
only clearly outperformed in Query 2 and Query 6.
This is mainly because those queries have patterns of
the form:

20 Reutter, Soto and Vrgoč / Recursion in SPARQL

Fig. 9. Times for G1.

?x <:p1|:p2>* ?z

and our system is not optimized for working with
unions of predicates. Remarkably, and even though all
of the generated queries are relatively simple, our im-
plementation reports a faster running time in half of
the queries we test. Note that Q7, Q8 and Q9 have an
answer time considerably worse in Jena than in our re-
cursive implementation, where the time goes beyond
the 25 seconds. We can only speculate that this is be-
cause the property paths has many paths of short length
and because Apache Jena cannot manage properly the
queries with two or more star triple patterns.

When we increase the size of the graph, the results
have the same behaviour. It is also more evident which
queries are easier and harder to evaluate for the exist-
ing systems. The result for the increased size of the
graph can be found in the Figures 10 and 11.

Number of outputs. As we said before, one interest-
ing thing that we note from the previous experiments
is the time that Virtuoso took to answer the query Q1
in the three dataset. We suspect that this could oc-
cur because Virtuoso generates many duplicate results,
thus the output should be higher with respect to rec-
SPARQL and Jena. We count the number of outputs
for the queries ran over the first graph. The results can
be seen in Figure 12.

The first thing to note is that we avoid duplicate an-
swers in our language, mainly because of the UNION
operator used in lineal recursion, which deletes the du-
plicates answers. Also we do not consider paths of
length 0, because those results do not give us any rel-
evant information about the answer. Then we can see

that Apache Jena has always more results than us, this
is mainly because they consider paths of length 0. We
did not rewrite the queries because we wanted keep
them as close as possible to the benchmark. In Virtuoso
one needs a starting point for property path queries, so
this system does not consider paths of length 0 and for
that reason in some queries they have less outputs than
Apache Jena. However, in most of the queries they give
more results than Apache Jena and RecSPARQL, be-
cause they produce many duplicate answers and thus,
the answer time becomes considerably worse. This
happen mainly in the first query, which is the simplest
one. The same effect happen for the 2 bigger graphs.
The number of outputs for the bigger graphs can be
found in the appendix (Figures 16 and 17).

5.3. Tests over large datasets

We wanted to know how our recursive opera-
tor works when the queries are executed over large
datasets. Thus, we decided to try our implementation
with queries over the graph of Wikidata, so we load
the “truthy” dump from 2018/11/15. This dump con-
tains 3,303,288,386 triples. For this set of experiments
we use a server Devuan GNU/Linux 3 (beowulf) with
an Intel Xeon Silver 4110 CPU @ 2.10GHz processor
and 120GB of memory.

We create property paths queries based on (1) the
example queries showed at the Wikidata Endpoint
and (2) the LMDB queries from Subsection 5.1. The
queries are the following:

– Q1: Sub-properties of property P276.
– Q2: All the instances of horse or a subclass of

horse.

Reutter, Soto and Vrgoč / Recursion in SPARQL 21

Fig. 10. Times for G2.

Fig. 11. Times for G3.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 24723 3964 1455 9 169 3964 2604 126 2 906

Jena 103814 90398 89128 198 802 90398 10838 94638 89523 5373
Virtuoso 1849915 - 2267 198 804 - - - 454 6345

Fig. 12. Number of outputs for the GMark queries over the graph G1.

– Q3: Parent taxon of the Blue Whale.
– Q4: Metro stations reachable from Palermo Sta-

tion in Metro de Buenos Aires.
– Q5: Actors with finite Bacon number:

Queries Q1, and Q4 are simple star * queries, while
Q3 is a star query where in each iteration only one
triple is added to the recursive graph. Q2 is a query of
the form (wdt:p1/wdt:p2*), while Q5 combines
two properties within a star.

We rewrote the property paths as WITH RECURSIVE
queries and we ran them on our server setup. We dis-

play the results in Figure 13. As a reference, we also

put the time that the queries took at the Wikidata end-

point https://query.wikidata.org/. We note that this is

not an exact comparison as the endpoint dataset might

slightly differ from the one we use, and the server run-

ning the endpoint is likely different from ours. The

values are expressed in seconds.

https://query.wikidata.org/

22 Reutter, Soto and Vrgoč / Recursion in SPARQL

Query RecSPARQL Endpoint
Q1 2.23 0.28
Q2 2.45 1.02
Q3 2.15 0.56
Q4 2.11 0.73
Q5 101.60 Timeout

Fig. 13. Time in seconds taken by the queries over the Wikidata
Graph.

As we see, the trend shown with the previous ex-
periments is repeated again with a large dataset: Re-
cursive SPARQL is competitive against existing solu-
tions. Since the dataset of Wikidata is larger than pre-
vious datasets and our solution implies to do several
joins, we expected easier queries to have better run-
ning times in the endpoint than in our implementation.
However, the running times our solution displays are
still competitive. Finally, we remark the result for Q5,
where our implementation could answer the query in a
reasonable time, and the endpoint times out.

5.4. Limiting the number of iterations

In section 4.3 we presented a way of limiting the
depth of the recursion. We argue that this functional-
ity should find good practical uses, because users are
often interested in running recursive queries only for
a predefined number of iterations. For instance, very
long paths between nodes are seldom of interest and in
a wast majority of use cases we will be interested in
using property paths only up to depth four or five.
It is straightforward to see that every query defined us-
ing recursion with predefined number of iterations can
be rewritten in SPARQL by explicitly specifying each
step of the recursion and joining them using the con-
catenation operator. The question then is, why is spec-
ifying the recursion depth beneficial?

One apparent reason is that it makes queries much
easier to write and understand (as a reference we in-
clude the rewritings of the query QA, QB and QC from
Subsection 5.1 using only SPARQL operators in the
online appendix). The second reason we would like to
argue for is that, when implemented using Algorithm
2, recursive queries with a predetermined number of
steps result in faster query evaluation times than eval-
uating an equivalent query with lots of joins. The in-
tuitive reason behind this is that computing qbase, al-
though expensive initially, acts as a sort of index to
iterate upon, resulting in fast evaluation times as the
number of iterations increases. On the other hand, for

even a moderately complex query using lots of joins,
the execution plan will seldom be optimal and will of-
ten resort to simply trying all the possible matchings to
the variables, thus recomputing the same information
several times.

We substantiate this claim by running two rounds
of experiments on LMDB and YAGO datasets, using
queries QA, QB and QC from Subsection 5.1 and run-
ning them for an increasing number of steps. We evalu-
ate each of the queries using Algorithm 2 and run it for
a fixed number of steps until the algorithm saturates.
Then we use a SPARQL rewriting of a recursive query
where the depth of recursion is fixed and evaluate it in
Jena and Virtuoso.

Figure 14 shows the results over LMDB and Figure
15 shows the results over YAGO. The time out here
is again set to two minutes. As we can see, the initial
cost is much higher if we are using recursive queries,
however as the number of steps increases we can see
that they show much better performance and in fact,
the queries that use only SPARQL operators time out
after a small number of iterations. Note that we did not
run the second query over the YAGO dataset, because
it ends in two iterations, and it would not show any
trend. We also did not run queries QD and QE. Query
QD was timing out also after two iterations on Jena and
Virtuoso, and query QE is composed of two property
paths, so there is no straightforward way to transform
it in a query with unions.

6. Conclusions and looking ahead

As illustrated by several use cases, there is a need for
recursive functionalities in SPARQL that go beyond
the scope of property paths. To tackle this issue we pro-
pose a recursive operator to be added to the language
and show how it can be implemented efficiently on top
of existing SPARQL systems. We concentrated on lin-
ear recursive queries which have been well established
in SQL practice and cover the majority of interesting
use cases and show how to implement them as an ex-
tension to Jena framework. We then test on real world
datasets to show that, although very expressive, these
queries run in reasonable time even on a machine with
limited computational resources. Additionally, we also
include the variant of the recursion operator that runs
the recursive query for a limited number of steps and
show that the proposed implementation outperforms
equivalent queries specified using only SPARQL 1.1
operators.

Reutter, Soto and Vrgoč / Recursion in SPARQL 23

(a) Query QA

(b) Query QB

(c) Query QC

Fig. 14. Limiting the number of iterations for the evaluation of QA,
QB and QC over LMDB.

Given that recursion can express many requirements
outside of the scope of SPARQL 1.1, coupled with the
fact that implementing the recursive operator on top of
existing SPARQL engines does not require to change
their core functionalities, allows us to make a strong
case for including recursion in the future iterations of
the SPARQL standard. Of course, such an expressive
recursive operator is not expected to beat specific al-
gorithms for smaller fragments such as property paths.
But nothing prevents the language to have both a syn-
tax for property paths and also for recursive queries,
with different algorithms for each operator.

There are several other areas where a recursive op-
erator should bring immediate impact. To begin with,
it has been shown that a wide fragment of recursive

(a) Query QA

(b) Query QC

Fig. 15. Limiting the number of iterations for the evaluation of QA
and QC over Yago.

SHACL constraints can be compiled into recursive
SPARQL queries [50], and a similar result should hold
for ShEx constraints [51]. Another interesting direc-
tion is managing ontological knowledge. Indeed, it was
shown that even a mild form of recursion is sufficient
to capture RDFS entailment regimes [3] or OWL2 QL
entailment [52], and it stands open to which extent can
rec-SPARQL help us capture more complex ontolo-
gies, and evaluate them efficiently. Furthermore, rec-
SPARQL may also be used for other applications such
as Graph Analytics or Business Intelligence.

Looking ahead, there are several directions we plan
to explore. We believe that the connection between
recursive SPARQL and RDF shape schemas should
be pursued further, and so is the connection with
more powerful languages for ontologies. There is also
the subject of finding the best semantics for recur-
sive SPARQL queries involving non-monotonic defi-
nitions. Stable model semantics may or may not be the
best option, and even if it is, it would be interesting to
see if one can obtain a good implementation by lever-
aging techniques developed for logic programming, or
provide tools to compile recursive SPARQL queries
into a logic program. Regarding blanks and numbers,
perhaps one can also find a reasonable fragment, or
a reasonable extension to the semantics of recursive

24 Reutter, Soto and Vrgoč / Recursion in SPARQL

queries, that can deal with numbers and blanks, but
that can still be evaluated under the good properties we
have showcase for linear recursion.

Finally, there is also the question of what is the best
way of implementing these languages. In this paper
we have explored the idea of implementing recursive
SPARQL on top of a database system, as is done in
SQL. As we discussed, this approach has numerous ad-
vantages, and it shows that recursion can be added to
SPARQL with little overhead for the companies pro-
viding SPARQL processors. However, another option
would be to use more powerful engines capable of
running full datalog or similarly powerful languages
(see e.g. [32] or [31]), which may provide better run-
ning times than our on-top-of-system implementation,
and should be able to run non-linear queries. This is
another source of questions that would require closer
work between database and logic programming com-
munities.

Acknowledgements This work was supported by the
Millennium Institute for Foundational Research on
Data (IMFD) and by CONICYT-PCHA Doctorado
Nacional 2017-21171731.

References

[1] P. Hitzler, M. Krotzsch and S. Rudolph, Foundations of seman-
tic web technologies, CRC Press, 2011.

[2] S. Harris and A. Seaborne, SPARQL 1.1 query language, W3C
Recommendation 21 (2013).

[3] J. Pérez, M. Arenas and C. Gutierrez, nSPARQL: A naviga-
tional language for RDF, J. Web Sem. 8(4) (2010), 255–270.
doi:10.1016/j.websem.2010.01.002.

[4] P. Barceló, J. Pérez and J.L. Reutter, Relative Expressiveness
of Nested Regular Expressions, in: AMW, 2012, pp. 180–195.

[5] P. Barceló, G. Fontaine and A.W. Lin, Expressive Path Queries
on Graphs with Data, in: Logic for Programming, Artifi-
cial Intelligence, and Reasoning, Springer, 2013, pp. 71–85.
doi:10.2168/LMCS-11(4:1)2015.

[6] P. Bourhis, M. Krötzsch and S. Rudolph, How to best nest reg-
ular path queries, in: Informal Proceedings of the 27th Interna-
tional Workshop on Description Logics, 2014.

[7] V. Fionda, G. Pirrò and M.P. Consens, Extended property
paths: Writing more SPARQL queries in a succinct way,
in: Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[8] V. Fionda, G. Pirrò and C. Gutierrez, NautiLod: A formal lan-
guage for the web of data graph, ACM Transactions on the Web
(TWEB) 9(1) (2015), 5. doi:10.1145/2697393.

[9] V. Fionda and G. Pirrò, Explaining graph navigational queries,
in: European Semantic Web Conference, Springer, 2017,
pp. 19–34. doi:10.1007/978-3-319-58068-5_2.

[10] A. Bonifati, G. Fletcher, H. Voigt and N. Yakovets, Querying
graphs, Synthesis Lectures on Data Management 10(3) (2018),
1–184. doi:10.2200/S00873ED1V01Y201808DTM051.

[11] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter and
D. Vrgoč, Foundations of modern query languages for graph
databases, ACM Computing Surveys (CSUR) 50(5) (2017), 1–
40. doi:10.1145/3104031.

[12] P. Missier and Z. Chen, Extracting PROV provenance
traces from Wikipedia history pages, in: Proceedings of
the Joint EDBT/ICDT 2013 Workshops, 2013, pp. 327–330.
doi:10.1145/2457317.2457375.

[13] W3C, PROV Model Primer, 2013.
[14] W3C, PROV-O: The PROV Ontology, 2013.
[15] L. Libkin, J.L. Reutter, A. Soto and D. Vrgoč, TriAL: A Navi-

gational Algebra for RDF Triplestores, ACM Trans. Database
Syst. 43(1) (2018), 5–1546. doi:10.1145/3154385.

[16] E.V. Kostylev, J.L. Reutter and M. Ugarte, CONSTRUCT
Queries in SPARQL, in: ICDT, 2015, pp. 212–229.
doi:10.4230/LIPIcs.ICDT.2015.212.

[17] S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[18] T.J. Green, S.S. Huang, B.T. Loo and W. Zhou, Datalog
and Recursive Query Processing., Foundations and Trends in
Databases 5(2) (2013), 105–195. doi:10.1561/1900000017.

[19] The Apache Jena Manual, 2015.
[20] G. Bagan, A. Bonifati, R. Ciucanu, G.H.L. Fletcher,

A. Lemay and N. Advokaat, gMark: Schema-Driven Gen-
eration of Graphs and Queries, IEEE Transactions on
Knowledge and Data Engineering 29(4) (2017), 856–869.
doi:10.1109/TKDE.2016.2633993.

[21] A. Gubichev, S.J. Bedathur and S. Seufert, Sparqling
kleene: fast property paths in RDF-3X, in: GRADES, 2013.
doi:10.1145/2484425.2484443.

[22] N. Yakovets, P. Godfrey and J. Gryz, WAVEGUIDE: Evalu-
ating SPARQL Property Path Queries, in: EDBT 2015, 2015,
pp. 525–528. doi:10.5441/002/edbt.2015.49.

[23] Open Link Virtuoso, 2015.
[24] K.J. Kochut and M. Janik, SPARQLeR: Extended SPARQL

for semantic association discovery, in: The Semantic Web: Re-
search and Applications, Springer, 2007, pp. 145–159.

[25] K. Anyanwu and A.P. Sheth, ρ-Queries: enabling querying for
semantic associations on the semantic web, in: 12th Interna-
tional World Wide Web Conference (WWW), 2003.

[26] J.L. Reutter, M. Romero and M.Y. Vardi, Regular queries on
graph databases, Theory of Computing Systems 61(1) (2017),
31–83. doi:10.1007/s00224-016-9676-2.

[27] N. Yakovets, P. Godfrey and J. Gryz, Evaluation of SPARQL
Property Paths via Recursive SQL, in: AMW, 2013.

[28] M. Atzori, Computing Recursive SPARQL Queries, in: ICSC,
2014, pp. 258–259. doi:10.1109/ICSC.2014.54.

[29] B. Motik, Y. Nenov, R. Piro, I. Horrocks and D. Olteanu, Paral-
lel Materialisation of Datalog Programs in Centralised, Main-
Memory RDF Systems, in: AAAI, 2014.

[30] M. Arenas, G. Gottlob and A. Pieris, Expressive lan-
guages for querying the semantic web, in: Proceedings
of the 33rd ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, 2014, pp. 14–26.
doi:10.1145/2594538.2594555.

Reutter, Soto and Vrgoč / Recursion in SPARQL 25

[31] L. Bellomarini, E. Sallinger and G. Gottlob, The Vadalog
system: datalog-based reasoning for knowledge graphs, Pro-
ceedings of the VLDB Endowment 11(9) (2018), 975–987.
doi:10.14778/3213880.3213888.

[32] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and
J. Banerjee, RDFox: A highly-scalable RDF store, in: Inter-
national Semantic Web Conference, Springer, 2015, pp. 3–20.
doi:10.1007/978-3-319-25010-6_1.

[33] J.L. Reutter, A. Soto and D. Vrgoč, Recursion in SPARQL, in:
The Semantic Web - ISWC 2015 - 14th International Semantic
Web Conference, Bethlehem, PA, USA, October 11-15, 2015,
Proceedings, Part I, 2015, pp. 19–35. doi:10.1007/978-3-319-
25007-6_2.

[34] M. Arenas, C. Gutierrez and J. Pérez, On the Semantics
of SPARQL, in: Semantic Web Information Management:
A Model-Based Perspective, R. de Virgilio, F. Giunchiglia
and L. Tanca, eds, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010, pp. 281–307. ISBN 978-3-642-04329-1.
doi:10.1007/978-3-642-04329-1_13.

[35] D. Hernández, A core SPARQL fragment, 2020, https://users.
dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html.

[36] M. Consens and A.O. Mendelzon, GraphLog: A visual for-
malism for real life recursion, in: 9th ACM Symposium on
Principles of Database Systems (PODS), 1990, pp. 404–416.
doi:10.1145/298514.298591.

[37] F. Alkhateeb, J.-F. Baget and J. Euzenat, Extending SPARQL
with regular expression patterns (for querying RDF), J. Web
Sem. 7(2) (2009), 57–73. doi:10.1016/j.websem.2009.02.002.

[38] M. Bienvenu, D. Calvanese, M. Ortiz and M. Simkus, Nested
Regular Path Queries in Description Logics, in: KR 2014, Vi-
enna, Austria, July 20-24, 2014, 2014.

[39] R. Angles and C. Gutierrez, The multiset semantics of
SPARQL patterns, in: International semantic web conference,
Springer, 2016, pp. 20–36. doi:10.1007/978-3-319-46523-
4_2.

[40] M. Kaminski and E.V. Kostylev, Beyond well-designed
SPARQL, in: 19th International Conference on Database The-
ory (ICDT 2016), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016. doi:10.4230/LIPIcs.ICDT.2016.5.

[41] A. Tarski, A lattice-theoretical fixpoint theorem and its appli-
cations (1955). doi:10.2307/2963937.

[42] A. Polleres and J.P. Wallner, On the relation between
SPARQL1. 1 and answer set programming, Journal of
Applied Non-Classical Logics 23(1–2) (2013), 159–212.
doi:10.1080/11663081.2013.798992.

[43] J. Pérez, M. Arenas and C. Gutierrez, Semantics and complex-
ity of SPARQL, ACM Transactions on Database Systems 34(3)
(2009). doi:10.1145/1567274.1567278.

[44] M.Y. Vardi, On the complexity of bounded-variable queries, in:
PODS, Vol. 95, 1995, pp. 266–276.

[45] PostgreSQL documentation.
[46] H. Gaifman, H. Mairson, Y. Sagiv and M.Y. Vardi, Un-

decidable optimization problems for database logic pro-
grams, Journal of the ACM (JACM) 40(3) (1993), 683–713.
doi:10.1007/BF02943528.

[47] I. Niemelä, Logic Programs with Stable Model Semantics as
a Constraint Programming Paradigm, Ann. Math. Artif. In-
tell. 25(3–4) (1999), 241–273. doi:10.1023/A:1018930122475.
https://doi.org/10.1023/A:1018930122475.

[48] Linked movie database.
[49] YAGO: A High-Quality Knowledge Base.

[50] J. Corman, F. Florenzano, J.L. Reutter and O. Savkovic, Val-
idating Shacl Constraints over a Sparql Endpoint, in: The Se-
mantic Web - ISWC 2019 - 18th International Semantic Web
Conference, Auckland, New Zealand, October 26-30, 2019,
Proceedings, Part I, Lecture Notes in Computer Science,
Vol. 11778, Springer, 2019, pp. 145–163. doi:10.1007/978-3-
030-30793-6_9. https://doi.org/10.1007/978-3-030-30793-6_
9.

[51] I. Boneva, J.E.L. Gayo and E.G. Prud’hommeaux, Seman-
tics and validation of shapes schemas for RDF, in: Interna-
tional Semantic Web Conference, Springer, 2017, pp. 104–120.
doi:10.1007/978-3-319-68288-4_7.

[52] S. Bischof, M. Krötzsch, A. Polleres and S. Rudolph, Schema-
agnostic query rewriting in SPARQL 1.1, in: International
Semantic Web Conference, Springer, 2014, pp. 584–600.
doi:10.1007/978-3-319-11964-9_37.

https://users.dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html
https://users.dcc.uchile.cl/~dhernand/reports/Ei6iutheb1.html
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1007/978-3-030-30793-6_9
https://doi.org/10.1007/978-3-030-30793-6_9

26 Reutter, Soto and Vrgoč / Recursion in SPARQL

Appendix. Appendix

Here we present some of the queries that we ran throughout this work. Note that here we declare the queries using
the clauses FROM and FROM NAMED. This is because some systems need the declaration of the graphs that are used
in GRAPH clauses.

Queries in Section 4.2

Query from Subsection 4.2 stated without nesting:
1 PREFIX prov: <http://www.w3.org/ns/prov#>
2 WITH RECURSIVE http://db.ing.puc.cl/temp AS {
3 CONSTRUCT {?x ?u ?y}
4 FROM NAMED <http://db.ing.puc.cl/temp>
5 WHERE{{
6 ?x prov:wasRevisionOf ?z .
7 ?x prov:wasGeneratedBy ?w .
8 ?w prov:used ?z .
9 ?w prov:wasAssociatedWith ?u}

10 UNION{
11 ?x prov:wasRevisionOf ?z .
12 ?x prov:wasGeneratedBy ?w .
13 ?w prov:used ?z .
14 ?w prov:wasAssociatedWith ?u .
15 GRAPH <http://db.ing.puc.cl/temp> {?z ?u ?y}}}
16 }
17 SELECT ?x ?y
18 FROM <http://db.ing.puc.cl/temp>
19 WHERE ?x ?u ?y

Queries from Subsection 5.1

The query QA is represented by the following recursive query:
1 WITH RECURSIVE http://db.ing.puc.cl/temp AS{
2 CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539>
3 <http://relationship.com/collab> ?act}
4 FROM NAMED <http://db.ing.puc.cl/temp>
5 FROM <Quad.defaultGraphIRI>
6 WHERE {
7 {?mov <http://data.linkedmdb.org/resource/movie/actor>
8 <http://data.linkedmdb.org/resource/actor/29539> .
9 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act}

10 UNION {
11 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
12 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
13 GRAPH <http://db.ing.puc.cl/temp>
14 {<http://data.linkedmdb.org/resource/actor/29539>
15 <http://relationship.com/collab> ?act1}}
16 }
17 }
18 SELECT ?z FROM NAMED <http://db.ing.puc.cl/temp>
19 WHERE {GRAPH <http://db.ing.puc.cl/temp>
20 {<http://data.linkedmdb.org/resource/actor/29539>
21 <http://relationship.com/collab> ?z}}

The following is the formulation of the query QB:
1 WITH RECURSIVE http://db.ing.puc.cl/temp AS
2 {
3 CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539> ?dir ?act}

Reutter, Soto and Vrgoč / Recursion in SPARQL 27

4 FROM NAMED <http://db.ing.puc.cl/temp>
5 FROM <Quad.defaultGraphIRI>
6 WHERE
7 {
8 {?mov <http://data.linkedmdb.org/resource/movie/actor>
9 <http://data.linkedmdb.org/resource/actor/29539> .

10 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act .
11 ?mov <http://data.linkedmdb.org/resource/movie/director> ?dir}
12 UNION
13 {{?mov <http://data.linkedmdb.org/resource/movie/director> ?dir} .
14 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
15 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
16 GRAPH <http://db.ing.puc.cl/temp>
17 {<http://data.linkedmdb.org/resource/actor/29539> ?dir ?act1}}
18 }
19 }
20 SELECT ?y ?z FROM NAMED <http://db.ing.puc.cl/temp>
21 WHERE {GRAPH <http://db.ing.puc.cl/temp>
22 {<http://data.linkedmdb.org/resource/actor/29539> ?y ?z}}

The following is the formulation of the query QC:
1 WITH RECURSIVE http://db.ing.puc.cl/temp AS
2 {
3 CONSTRUCT {<http://data.linkedmdb.org/resource/actor/29539>
4 <http://relationship.com/collab> ?act}
5 FROM NAMED <http://db.ing.puc.cl/temp>
6 FROM <Quad.defaultGraphIRI>
7 WHERE
8 {
9 {?mov <http://data.linkedmdb.org/resource/movie/actor>

10 <http://data.linkedmdb.org/resource/actor/29539> .
11 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act .
12 ?mov <http://data.linkedmdb.org/resource/movie/director> ?dir .
13 ?dir <http://data.linkedmdb.org/resource/movie/director_name> ?x .
14 ?y <http://data.linkedmdb.org/resource/movie/actor_name> ?x}
15 UNION
16 {{?mov <http://data.linkedmdb.org/resource/movie/director> ?dir} .
17 {?dir <http://data.linkedmdb.org/resource/movie/director_name> ?x} .
18 {?y <http://data.linkedmdb.org/resource/movie/actor_name> ?x} .
19 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act1} .
20 {?mov <http://data.linkedmdb.org/resource/movie/actor> ?act} .
21 GRAPH <http://db.ing.puc.cl/temp>
22 {<http://data.linkedmdb.org/resource/actor/29539>
23 <http://relationship.com/collab> ?act1}}
24 }
25 }
26 SELECT ?z FROM NAMED <http://db.ing.puc.cl/temp>
27 WHERE {GRAPH <http://db.ing.puc.cl/temp>
28 {<http://data.linkedmdb.org/resource/actor/29539>
29 <http://relationship.com/collab> ?z}}

The following is the formulation of the query QD:
1 WITH RECURSIVE http://db.ing.puc.cl/temp AS
2 {
3 CONSTRUCT {
4 <http://yago-knowledge.org/resource/Berlin>
5 <http://yago-knowledge.org/resource/isLocatedIn> ?x1
6 }
7 FROM NAMED <http://db.ing.puc.cl/temp>
8 FROM <urn:x-arq:DefaultGraph>
9 WHERE {

28 Reutter, Soto and Vrgoč / Recursion in SPARQL

10 {
11 <http://yago-knowledge.org/resource/Berlin>
12 <http://yago-knowledge.org/resource/isLocatedIn> ?x1
13 }
14 UNION
15 {
16 ?y <http://yago-knowledge.org/resource/isLocatedIn> ?x1 .
17 GRAPH <http://db.ing.puc.cl/temp> {
18 <http://yago-knowledge.org/resource/Berlin>
19 <http://yago-knowledge.org/resource/isLocatedIn> ?y
20 }
21 }
22 }
23 }
24 SELECT * FROM NAMED <http://db.ing.puc.cl/temp>
25 FROM <urn:x-arq:DefaultGraph>
26 WHERE {
27 ?z <http://yago-knowledge.org/resource/dealsWith> ?v .
28 GRAPH <http://db.ing.puc.cl/temp> {
29 ?x ?y ?z }
30 }

The following is the formulation of the query QE :
1 WITH RECURSIVE http://db.ing.puc.cl/temp AS
2 {
3 CONSTRUCT {?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?x1}
4 FROM NAMED <http://db.ing.puc.cl/temp>
5 FROM <urn:x-arq:DefaultGraph>
6 WHERE {
7 { ?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?x1 .
8 ?x1 <http://yago-knowledge.org/resource/owns> ?y }
9 UNION

10 { ?x0 <http://yago-knowledge.org/resource/isMarriedTo> ?y .
11 GRAPH <http://db.ing.puc.cl/temp> {
12 ?y <http://yago-knowledge.org/resource/isMarriedTo> ?x1
13 }
14 }
15 }
16 }
17 WITH RECURSIVE http://db.ing.puc.cl/temp2 AS
18 {
19 CONSTRUCT {
20 ?x0 <http://yago-knowledge.org/resource/isLocatedIn>
21 <http://yago-knowledge.org/resource/United_States>
22 }
23 FROM NAMED <http://db.ing.puc.cl/temp2>
24 FROM <urn:x-arq:DefaultGraph>
25 WHERE {
26 {
27 ?x0 <http://yago-knowledge.org/resource/isLocatedIn>
28 <http://yago-knowledge.org/resource/United_States>
29 }
30 UNION
31 { ?x0 <http://yago-knowledge.org/resource/isLocatedIn> ?y .
32 GRAPH <http://db.ing.puc.cl/temp2> {
33 ?y <http://yago-knowledge.org/resource/isLocatedIn>
34 <http://yago-knowledge.org/resource/United_States>
35 }
36 }
37 }
38 }

Reutter, Soto and Vrgoč / Recursion in SPARQL 29

39 SELECT *
40 FROM NAMED <http://db.ing.puc.cl/temp>
41 FROM NAMED <http://db.ing.puc.cl/temp2>
42 FROM <urn:x-arq:DefaultGraph>
43 WHERE {
44 ?z1 <http://yago-knowledge.org/resource/owns> ?x2 .
45 GRAPH <http://db.ing.puc.cl/temp> { ?x1 ?y1 ?z1 } .
46 GRAPH <http://db.ing.puc.cl/temp2> { ?x2 ?y2 ?z2 }
47 }

Queries from Subsection 5.2

The following are the queries generated by the GMark benchmark:
1 PREFIX : <http://example.org/gmark/>
2 SELECT * WHERE { ?x0 (:p16/^:p16) ?x1 . ?x1 (:p16/^:p16)* ?x2 }
3
4 PREFIX : <http://example.org/gmark/>
5 SELECT * WHERE { ?x0 ((:p23/^:p23)|(:p25/^:p23)) ?x1 .
6 ?x1 ((:p23/^:p23)|(:p25/^:p23))* ?x2 }
7
8 PREFIX : <http://example.org/gmark/>
9 SELECT * WHERE { ?x0 (:p25/^:p25) ?x1 . ?x1 (:p25/^:p25)* ?x2 }

10
11 PREFIX : <http://example.org/gmark/>
12 SELECT * WHERE { ?x0 (^:p22/:p16)* ?x1 . ?x1 (^:p19/:p20) ?x2 }
13
14 PREFIX : <http://example.org/gmark/>
15 SELECT * WHERE { ?x0 (:p0/:p22/^:p23) ?x1 . ?x1 (:p24/^:p24)* ?x2 }
16
17 PREFIX : <http://example.org/gmark/>
18 SELECT * WHERE { ?x0 ((:p23/^:p23)|(:p25/^:p23)) ?x1 .
19 ?x1 ((:p23/^:p23)|(:p25/^:p23))* ?x2 }
20
21 PREFIX : <http://example.org/gmark/>
22 SELECT * WHERE { ?x0 ((^:p15/:p18)|(^:p18/:p15))* ?x1 .
23 ?x1 ((^:p15/:p8/^:p13)|(^:p15/:p8/^:p14)) ?x2 }
24
25 PREFIX : <http://example.org/gmark/>
26 SELECT * WHERE { ?x0 ((:p21/^:p21)|(:p21/^:p22)) ?x1 .
27 ?x1 ((:p21/^:p21)|(:p21/^:p22))* ?x2 .
28 ?x2 (:p16/^:p21)* ?x3 }
29
30 PREFIX : <http://example.org/gmark/>
31 SELECT * WHERE { ?x0 (^:p23/:p24) ?x1 .
32 ?x1 (^:p23/:p24)* ?x4 .
33 ?x0 (^:p17/:p21)* ?x2 .
34 ?x0 (^:p25/:p25)* ?x3 }
35
36 PREFIX : <http://example.org/gmark/>
37 SELECT * WHERE { ?x0 (:p16/^:p23) ?x1 .
38 ?x1 (:p24/^:p24)* ?x2 .
39 ?x2 (:p23/^:p23)* ?x3 }

The same queries written in Recursive SPARQL can be found at https://alanezz.github.io/RecSPARQL.

Queries from Subsection 4.3

The following is SPARQL rewriting of the query Q1 computing Bacon number of length at most 5:
1 SELECT ?act WHERE{{?mov

https://alanezz.github.io/RecSPARQL

30 Reutter, Soto and Vrgoč / Recursion in SPARQL

2 <http://data.linkedmdb.org/resource/movie/actor>
3 <http://data.linkedmdb.org/resource/actor/29539> .
4 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act}
5
6 UNION { ?mov <http://data.linkedmdb.org/resource/movie/actor>
7 <http://data.linkedmdb.org/resource/actor/29539> .
8 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
9 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .

10 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act}
11
12 UNION {?mov <http://data.linkedmdb.org/resource/movie/actor>
13 <http://data.linkedmdb.org/resource/actor/29539> .
14 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
15 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
16 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
17 ?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
18 ?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act }
19
20 UNION {?mov <http://data.linkedmdb.org/resource/movie/actor>
21 <http://data.linkedmdb.org/resource/actor/29539> .
22 ?mov <http://data.linkedmdb.org/resource/movie/actor> ?act4 .
23 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act4 .
24 ?mov2 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
25 ?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act3 .
26 ?mov3 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
27 ?mov4 <http://data.linkedmdb.org/resource/movie/actor> ?act2 .
28 ?mov4 <http://data.linkedmdb.org/resource/movie/actor> ?act }}

Other rewritings are similar and can be found at https://alanezz.github.io/RecSPARQL.

Queries over the Wikidata Endpoint

– Q1: Sub-properties of property P276:
1 SELECT ?subProperties WHERE {
2 ?subProperties wdt:P1647* wd:P276
3 }

– Q2: Horse lineages:
1 SELECT ?horse WHERE
2 {
3 ?horse wdt:P31/wdt:P279* wd:Q726
4 }

– Q3: Parent taxon of the Blue Whale:
1 SELECT ?taxon WHERE {
2 wd:Q42196 wdt:P171* ?taxon
3 }

– Q4: Metro stations reachable from Palermo Station in Metro de Buenos Aires:
1 SELECT ?metro WHERE
2 {
3 wd:Q3296629 wdt:P197* ?metro
4 }

– Q5: Actors with finite Bacon number:
1 SELECT ?actor WHERE
2 {
3 ?actor (^wdt:P161/wdt:P161)*
4 wd:Q3454165
5 }

https://alanezz.github.io/RecSPARQL

Reutter, Soto and Vrgoč / Recursion in SPARQL 31

Number of outputs for the bigger graphs in GMark

The number of outputs for the bigger graphs can be found in Figures 16 and 17.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 50190 8153 3188 7 345 8153 6116 308 4 2134

Jena 208437 181043 178465 409 1547 181043 16730 189628 179168 11022
Virtuoso 3624482 - 5256 409 1561 - - - 968 13002

Fig. 16. Number of outputs for the GMark queries over the graph G2.

System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
RecSPARQL 74967 12015 4719 17 533 12015 16040 487 4 2942

Jena 311559 270506 266777 766 2674 270506 - - - 15951
Virtuoso - - 7743 766 2716 - - - 1384 18726

Fig. 17. Number of outputs for the GMark queries over the graph G3.

	Introduction
	Preliminaries
	Adding Recursion to SPARQL
	A Fixed Point Based Recursive Operator
	Ensuring fixed point of queries
	Fragments where the recursion converges
	Expressive Power
	Complexity Analysis

	Realistic Recursion in SPARQL
	Linear recursive queries
	Algorithm for linear recursive queries
	Supporting arbitrary queries in recursive clauses

	Experimental Evaluation
	Evaluating real use cases
	Comparison with Property Paths using the GMark benchmark
	Tests over large datasets
	Limiting the number of iterations

	Conclusions and looking ahead
	References
	Appendix. Appendix
	Queries in Section 4.2
	Queries from Subsection 5.1
	Queries from Subsection 5.2
	Queries from Subsection 4.3
	Queries over the Wikidata Endpoint
	Number of outputs for the bigger graphs in GMark

