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Abstract. The dynamicity of RDF data has motivated the development of solutions for archiving, i.e., the task of storing and
querying previous versions of an RDF dataset. Querying the history of a dataset finds applications in data maintenance and
analytics. Notwithstanding the value of RDF archiving, the state of the art in this field is under-developed: (i) most existing
systems are neither scalable nor easy to use, (ii) there is no standard way to query RDF archives, and (iii) solutions do not exploit
the evolution patterns of real RDF data. On these grounds, this paper surveys the existing works in RDF archiving in order to
characterize the gap between the state of the art and a fully-fledged solution. It also provides RDFev, a framework to study the
dynamicity of RDF data. We use RDFev to study the evolution of YAGO, DBpedia, and Wikidata, three dynamic and prominent
datasets on the Semantic Web. These insights set the ground for the sketch of a fully-fledged archiving solution for RDF data.
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1. Introduction

The amount of RDF data has steadily grown since
the conception of the Semantic Web in 2001 [7], as
more and more organizations opt for RDF [44] as the
format to publish semantic data. For example, by July
2009 the Linked Open Data (LOD) cloud counted on
a few more than 90 RDF datasets adding up to al-
most 6.7B triples [8]. By 2020, these numbers have
catapulted to 1200+ datasets1 and at least 28B triples2,
although estimates based on LODStats [15] suggest
more than 10K datasets and 150B+ triples if we con-
sider the datasets with errors omitted by the LOD
Cloud [38]. This boom does not only owe credit to the
increasing number of data providers, but also to the
constant evolution of the datasets in the LOD cloud.
This phenomenon is especially true for community-
driven initiatives such as DBpedia [5], YAGO [51], or

*Corresponding author. E-mail: olivier@cs.aau.dk.
1https://lod-cloud.net/
2http://lod-a-lot.lod.labs.vu.nl/

Wikidata [16], and also applies to automatically ever-
growing projects such as NELL [11].

Storing and querying the entire edition history of an
RDF dataset, a task we call RDF archiving, has plenty
of applications for data producers. For instance, RDF
archives can serve as a backend for fine-grained ver-
sion control in collaborative projects [4, 22, 26, 47].
They also allow data providers to study the evolution
of the data [19] and track errors for debugging pur-
poses. Likewise, they can be of use to RDF stream-
ing applications that rely on a structured history of
the data [10, 29]. But archives are also of great value
for consumer applications such as data analytics, e.g.,
mining correction patterns [40, 41] or historical trend
analysis [30].

For all the aforementioned reasons, a significant
body of literature has started to tackle the problem
of RDF archiving. The current state of the art ranges
from systems to store and query RDF archives [2–
4, 13, 24, 26, 35, 43, 47, 52, 54], to benchmarks
to evaluate such engines [19, 32], as well as tempo-
ral extensions for SPARQL [6, 20, 25, 42]. Diverse
in architecture and aim, all these works respond to
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particular use cases. Examples are solutions such as
R&Wbase [47], R43ples [26], and Quit Store [4] that
provide data maintainers with distributed version con-
trol management in the spirit of Git. Conversely, other
works [24, 42] target data consumers who need to an-
swer time-aware queries such as “obtain the list of
house members who sponsored a bill from 2008”. In
this case the metadata associated to the actual triples is
used to answer domain-specific requirements.

Despite this plethora of work, there is currently no
available fully-fledged solution for the management of
large and dynamic RDF datasets. This situation origi-
nates from multiple factors such as (i) the performance
and functionality limitations of RDF engines to han-
dle metadata, (ii) the absence of a standard for query-
ing RDF archives, and (iii) a disregard of the actual
evolution of real RDF data. This paper elaborates on
factors (i) and (ii) through a survey of the state of the
art that sheds light on what aspects have not been ex-
plored. Factor (iii) is addressed by means of a frame-
work to study the evolution of RDF data applied to
three large and ever-changing RDF datasets, namely
DBpedia, YAGO, and Wikidata. The idea is to identify
the most challenging settings and derive a set of design
lessons for fully-fledged RDF archive management.
We therefore summarize our contributions as follows:

1. RDFev, a metric-based framework to analyze the
evolution of RDF datasets

2. A study of the evolution of DBpedia, YAGO, and
Wikidata using RDFev

3. A detailed survey of existing work on RDF archive
management systems and SPARQL temporal exten-
sions

4. An evaluation of Ostrich [52] on the history of
DBpedia, YAGO, and Wikidata. This was the only
system that could be tested on the experimental
datasets.

5. The sketch of a fully-fledged RDF archiving system
that can satisfy the needs not addressed in the liter-
ature, as well as a discussion about the challenges
in the design and implementation of such a system

This paper is organized as follows. In Section 2 we in-
troduce preliminary concepts. Then, Section 3 presents
RDFev, addressing contribution (1). Contribution (2) is
elaborated in Section 4. In the light of the evolution of
real-world RDF data, we then survey the strengths and
weaknesses of the different state-of-the-art solutions in
Section 5 (contribution 3). Section 6 addresses contri-
bution (4). The insights from the previous sections are

〈s, p, o, ρ, ζ〉 a 5-tuple subject, predicate, object,
graph revision, and dataset revision

G an RDF graph

g a graph label

Gi the i-th version or revision of graph G

A = {G0,G1, . . . } an RDF graph archive

u = {u+, u−} an update or changeset with sets of
added and deleted triples.

ui, j = {u+
i, j, u
−
i, j} the changeset between graph revisions i

and j ( j > i)

D = {G0,G1, . . . } an RDF dataset

A = {D0,D1, . . . } an RDF dataset archive

D j the j-th version or revision of dataset D

Gk
i the i-th revision of the k-th graph in a

dataset archive

û = {û+, û−} a graph changeset with sets of added and
deleted graphs

U = {û, u0, u1, . . . } a dataset update or changeset consisting
of a graph changeset û and changesets ui

associated to graphs Gi

U+, U− the addition/deletion changes of U:
U+ = {û+, u0+, u1+, . . . } , U− =
{û−, u0−, u1−, . . . }

Ui, j the dataset changeset between dataset
revisions i and j ( j > i)

rv(ρ), rv(ζ) revision numbers of graph and dataset
revisions ρ, ζ

ts(ρ), ts(ζ) commit times of graph and dataset revi-
sions ρ, ζ

l(ρ), l(G) graph labels of graph revision ρ and
graph G

Υ(·) the set of terms (IRIs, literals, and blank
nodes) present in a graph G, dataset D,
changeset u, and dataset changeset U.

Table 1
Basic notation used in the paper.

then used to drive the sketch of an optimal RDF archiv-
ing system in Section 7, which addresses contribution
(5). Section 8 concludes the paper.

2. Preliminaries

This section introduces the basic concepts in RDF
archive storage and querying, and proposes some for-
malizations for the design of RDF archives. Table 1 of-
fers a summary of the notation that is used throughout
the paper.

2.1. RDF Graphs

We define an RDF graph G as a set of triples t =
〈s, p, o〉, where s ∈ I ∪ B, p ∈ I, and o ∈ I ∪ L ∪ B
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are the subject, predicate, and object of t, respectively.
Here, I,L, and B are sets of IRIs (entity identifiers),
literal values (e.g., strings, integers, dates), and blank
nodes (anonymous entities) [44]. The notion of a graph
is based on the fact that G can be modeled as a directed
labeled graph where the predicate p of a triple denotes
a directed labeled edge from node s to node o. The
RDF W3C standard [44] defines a named graph as an
RDF graph that has been associated to a label l(G) =
g ∈ I ∪ B. As defined in Table 1, the function l(·)
returns the associated label of an RDF graph, if any.

2.2. RDF Graph Archives

Intuitively, an RDF graph archive is a temporally-
ordered collection of all the states an RDF graph has
gone through since its creation. More formally, a graph
archive A = {Gs,Gs+i, . . . ,Gs+n−1} is an ordered set
of RDF graphs, where each Gi is a revision or ver-
sion with revision number i ∈ N , and Gs (s > 0) is
the graph archive’s initial revision. A non-initial revi-
sion Gi (i > s) is obtained by applying an update or
changeset ui = 〈u+

i , u
−
i 〉 to revision Gi−1. The sets

u+
i , u−i consist of triples that should be added and

deleted respectively to and from revision Gi−1 such
that u+

i ∩ u−i = ∅. In other words, Gi = ui(Gi−1) =
(Gi−1 ∪ u+

i ) \ u−i . Figure 1 provides a toy RDF graph
archive A that models the evolution of the information
about the country members of the United Nations (UN)
and their diplomatic relationships (:dr). The archive
stores triples such as 〈 :USA, a, :Country 〉 or 〈 :USA,
:dr, :Cuba 〉, and consists of two revisions {G0,G1}.
G1 is obtained by applying update u1 to the initial re-
vision G0. We extend the notion of changesets to arbi-
trary pairs of revisions i, j with i < j, and denote by
ui, j = 〈u+

i, j, u
−
i, j〉 the changeset such that G j = ui, j(Gi).

We remark that a graph archive can also be mod-
eled as a collection of 4-tuples 〈s, p, o, ρ〉, where ρ ∈
I is the RDF identifier of revision i = rv(ρ) and
rv ⊂ I × N is a function that maps revision iden-
tifiers to natural numbers. We also define the func-
tion ts ⊂ I × N that associates a revision identifier
ρ to its commit time, i.e., the timestamp of applica-
tion of changeset ui. Some solutions for RDF archiv-
ing [4, 24, 26, 35, 47, 52] implement this logical model
in different ways and to different extents. For example,
R43ples [26], R&WBase [47] and Quit Store [4] store
changesets and/or their associated metadata in addi-
tional named graphs using PROV-O [14]. In contrast,
x-RDF-3X [35] stores the temporal metadata in spe-
cial indexes that optimize for concurrent updates at the

expense of temporal consistency, i.e., revision num-
bers may not always be in concordance with the time-
stamps.

2.3. RDF Dataset Archives

In contrast to an RDF graph archive, an RDF dataset
is a set D = {G0,G1, . . . ,Gm} of named graphs. Dif-
ferently from revisions in a graph archive, we use the
notation Gk for the k-th graph in a dataset, whereas Gk

i
denotes the i-th revision of Gk (Table 1). Each graph
Gk ∈ D has a label l(Gk) = gk ∈ I ∪ B. The excep-
tion to this rule is G0, known as the default graph [44],
which is unlabeled.

The existing solutions for RDF archiving can han-
dle the history of a single graph. However, scenar-
ios such as data warehousing [23, 33] may require to
keep track of the common evolution of an RDF dataset,
for example, by storing the addition and removal ti-
mestamps of the different RDF graphs in the dataset.
Analogously to the definition of graph archives, we de-
fine a dataset archive A = {D0,D1, . . . ,Dl−1} as a
temporally ordered collection of RDF datasets. The j-
th revision of A ( j > 1) can be obtained by applying
a dataset update U j = {û j, u0

j , u
1
j , . . . u

m
j } to revision

D j−1 = {G0
j−1,G

1
j−1, . . .G

m
j−1}. U j consists of an up-

date per graph plus a special changeset û j = 〈û+
j , û
−
j 〉

that we call the graph changeset (û+
j ∩ û−j = ∅). The

sets û+
j , û
−
j store the labels of the graphs that should be

added and deleted in revision j respectively. If a graph
Gk is in û−j (i.e., it is scheduled for removal), then Gk

as well as its corresponding changeset uk
j ∈ U j must be

empty. It follows that we can obtain revision D j by (i)
applying the individual changesets uk

j(Gk
j−1) for each

0 6 k 6 m, (ii) removing the graphs in û−j , and (iii)
adding the graphs in û+

j .
Figure 2 illustrates an example of a dataset archive

with two revisions D0 and D1. D0 is a dataset with
graphs {G0

0,G
1
0} both at local revision 0. The dataset

update U1 generates a new global dataset revision D1.
U1 consists of three changesets: u0

1 that modifies the
default graph G0, u1

1 that leaves G1 untouched, and the
graph update û2 that adds graph G2 to the dataset and
initializes it at revision s = 1 (denoted by G2

1).
As proposed by some RDF engines [21, 50], we

define the master graph GM ∈ D (with label M) as
the RDF graph that stores the metadata about all the
graphs in an RDF dataset D. If we associate the cre-
ation of a graph Gk with label gk to a triple of the form
〈gk, rdf:type, η:Graph〉 in GM for some namespace η,
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G0 u1 G1 = u1(G0)

〈:USA, a, :Country〉

〈:Cuba, a, :Country〉

〈:USA, :dr, :Cuba〉

u+
1 = {〈:France, a, :Country〉}

u−1 = {〈:USA, :dr, :Cuba〉}}

〈:USA, a, :Country〉

〈:Cuba, a, :Country〉

〈:France, : a, :Country〉

Fig. 1. Two revisions G0,G1 and a changeset u1 of an RDF graph archive A

then we can model a dataset archive as a set of 5-tuples
〈s, p, o, ρ, ζ〉. Here, ρ ∈ I is the RDF identifier of the
local revision of the triple in an RDF graph with la-
bel g = l(ρ) (Table 1). Conversely, ζ ∈ I identifies
a (global) dataset revision j = rv(ζ). Likewise, we
overload the function ts(ζ) in Table 1 so that it returns
the timestamp associated to the dataset revision identi-
fier ζ. Last, we notice that the addition of a non-empty
graph to a dataset archive generates two revisions: one
for creating the graph, and one for populating it. A sim-
ilar logic applies to graph deletion.

2.4. SPARQL

SPARQL 1.1 is the W3C standard language to query
RDF data [48]. For the sake of brevity, we do not pro-
vide a rigorous definition of the syntax and seman-
tics of SPARQL queries; instead we briefly introduce
the syntax of a subset of SELECT queries and refer
the reader to the official specification [48]. SPARQL
is a graph-based language whose building blocks are
triple patterns. A triple pattern t̂ is a triple 〈ŝ, p̂, ô〉 ∈
(I∪B∪V)×(I∪V)×(I∪B∪L∪V), where V is a set
of variables such that (I ∪ B ∪ L) ∩ V = ∅ (variables
are always prefixed with ? or $). A basic graph pattern
(BGP) Ĝ is the conjunction of a set of triple patterns {
t̂1 . t̂2 . . . . t̂m }, e.g.,

{ ?s a :Person . ?s :nationality :France }

When no named graph is specified, the SPARQL stan-
dard assumes that the BGP is matched against the de-
fault graph in the RDF dataset. Otherwise, for matches
against specific graphs, SPARQL supports the syntax
GRAPH ḡ {Ĝ}, where ḡ ∈ I ∪ B ∪ V . In this paper
we call this, a named BGP denoted by Ĝḡ. A SPARQL
select query Q on an RDF dataset has the basic form
“SELECT V (FROM NAMED ḡ1 FROM NAMED
ḡ2 . . . ) WHERE {Ĝ′ Ĝ′′ . . . Ĝḡ1 Ĝḡ2 . . . }, with pro-
jection variables V ⊂ V . SPARQL supports named
BGPs Ĝḡ with variables ḡ ∈ V . In some implementa-
tions [21, 50] the bindings for those variables originate
from the master graph GM . The BGPs in the expres-

sion can contain FILTER conditions, be surrounded by
OPTIONAL clauses, and be combined by means of
UNION clauses.

2.5. Queries on Archives

Queries on graph/dataset archives may combine re-
sults coming from different revisions in the history of
the data collection in order to answer an information
need. The literature defines five types of queries on
RDF archives [19, 52]. We illustrate them by means of
our example graph archive from Figure 1.

– Version Materialization. VM queries are standard
queries run against a single revision, such as what
was the list of countries according to the UN at re-
vision j?

– Delta Materialization. DM queries are standard
queries defined on a changeset u j = 〈u+

j , u
−
j 〉, e.g.,

which countries were added to the list at revision j?
– Version. V queries ask for the revisions where a

particular query yields results. An example of a V
query is: in which revisions j did USA and Cuba
have diplomatic relationships?

– Cross-version. CV queries result from the combi-
nation (e.g., via joins, unions, aggregations, differ-
ences, etc.) of the information from multiple revi-
sions, e.g., which of the current countries was not in
the original list of UN members?

– Cross-delta. CD queries result from the combi-
nation of the information from multiple sets of
changes, e.g., what are the revisions j with the
largest number of UN member adhesions?

Existing solutions differ in the types of queries they
support. For example, Ostrich [52] provides native
support for queries of types VM, DM, and V on single
triple patterns, and can handle multiple triple patterns
via integration with external query engines. Dydra [3],
in contrast, has native support for all types of queries
on BGPs of any size. Even though our examples use
the revision number rv(ρ) to identify a revision, some
solutions may directly use the revision identifier ρ or
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D0 U1 D1 = U1(D0)

G0
0 = {〈:USA, a, :Country〉,

〈:Cuba, a, :Country〉,

〈:USA, :dr, :Cuba〉}

G1
0 = {〈x:JFK, a, x:Airport〉}

û2 = {û+
2 = {G2}, û−2 = ∅}

u0
1 = {u0+

1 = {〈:France, a, :Country〉},

u0−
1 = {〈: USA, :dr, :Cuba〉}}

u1
1 = {∅, ∅}

G0
1 = {〈:USA, a, :Country〉

〈:Cuba, a, :Country〉

〈:France, a, :Country〉}

G1
1 = {〈x:JFK, a, x:Airport〉}

G2
1 = ∅

Fig. 2. A dataset archive A with two revisions D0, D1. The first revision contains two graphs, the default graph G0 and G1. The dataset update
Û1 (i) modifies G0, (ii) leaves G1 untouched, and (iii) and creates a new graph G2, all with local revision 1.

the revision’s commit time ts(ρ). This depends on the
system’s data model.

3. Framework for the Evolution of RDF Data

This section proposes RDFev, a framework to under-
stand the evolution of RDF data. The framework con-
sists of a set of metrics and a software tool to calculate
those metrics throughout the history of the data. The
metrics quantify the changes between two revisions of
an RDF graph or dataset and can be categorized into
two families: metrics for low-level changes, and met-
rics for high-level changes. Existing benchmarks, such
as BEAR [19], focus on low-level changes, that is, ad-
ditions and deletions of triples. This, however, may be
of limited use to data maintainers, who may need to
know the semantics of those changes, for instance, to
understand whether additions are creating new entities
or editing existing ones. On these grounds, we propose
to quantify changes at the level of entities and object
values, which we call high-level.

RDFev takes each version of an RDF dataset as an
RDF dump in N-triples format (our implementation
does not support multi-graph datasets and quads for the
time being). The files must be provided in chronolog-
ical order. RDFev then computes the different metrics
for each consecutive pair of revisions. The tool is im-
plemented in C++ and Python and uses the RocksBD3

key-value store as storage and indexing backend. All
metrics are originally defined for RDF graphs in the
state of the art [19], and have been ported to RDF
datasets in this paper. RDFev’s source code is available
at https://relweb.cs.aau.dk/rdfev.

3http://rocksdb.org

3.1. Low-level Changes

Low-level changes are changes at the triple level. In-
dicators for low-level changes focus on additions and
deletions of triples and vocabulary elements. The vo-
cabulary Υ(D) ⊂ I∪L∪B of an RDF dataset D is the
set of all the terms occurring in triples of the dataset.
Tracking changes in the number of triples rather than
in the raw size of the RDF dumps is more informative
for data analytics, as the latter option is sensitive to the
chosen serialization format. Moreover an increase in
the vocabulary of a dataset can provide hints about the
nature of the changes and the novelty of the data in-
corporated in a new revision. All metrics are defined
by Fernández et al. [19] for pairs of revisions i, j with
j > i.

Change ratio. The authors of BEAR [19] define the
change ratio between two revisions i and j of an RDF
graph G as

δi, j(G) =
|u+

i, j|+ |u
−
i, j|

|Gi ∪G j|
. (1)

δi, j compares the size of the changes between two re-
visions w.r.t. the revisions’ joint size. Large values for
δi, j denote important changes in between the revisions.
For a more fine-grained analysis, Fernández et al. [19]
also proposes the insertion and deletion ratios:

δ+
i, j =

|u+
i, j|
|Gi|

(2) δ−i, j =
|u−i, j|
|Gi|

. (3)

We now adapt these metrics for RDF datasets. For
this purpose, we define the size of a dataset D as
sz(D) =

∑
G∈D |G| and the size of a dataset change-

set U as sz(U) = sz(U+) + sz(U−) with sz(U+) =∑
u∈U |u+| and sz−(U) =

∑
u∈U |u−|. With these def-

https://relweb.cs.aau.dk/rdfev
http://rocksdb.org
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initions, the previous formulas can be ported to RDF
datasets as follows:

δi, j(D) = sz(U)∑
G∈Di∩D j

|Gi ∪G j|+
∑

G∈Di4D j
|G|

(4)

δ+
i, j(D) = sz(U+)

sz(Di)
(5) δ−i, j(D) = sz(U−)

sz(Di)
(6)

Here, Di 4 D j denotes the symmetric difference be-
tween the sets of RDF graphs in revisions i and j.

Vocabulary dynamicity. The vocabulary dynamicity
for two revisions i and j of an RDF graph is defined
as [19]:

vdyni, j(G) =
|Υ(ui, j)|

|Υ(Gi) ∪Υ(G j)|
(7)

Υ(ui, j) is the set of vocabulary terms – IRIs, literals,
or blank nodes – in the changeset ui, j (Table 1). The
literature also defines the vocabulary dynamicity for
insertions (vdyn+i, j) and deletions (vdyn-i, j):

vdyn+i, j(G) =
|Υ(u+

i, j)|
|Υ(Gi) ∪Υ(G j)|

(8)

vdyn-i, j(G) =
|Υ(u−i, j)|

|Υ(Gi) ∪Υ(G j)|
. (9)

The formulas are analogous for RDF datasets if we re-
place G by D and ui, j by Ui, j.

Growth ratio. The grow ratio is the ratio between the
number of triples in two revisions i, j. It is calculated
as follows for graphs and datasets:

Γi, j(G) = |G j|
|Gi|

(10) Γi, j(D) = sz(D j)
sz(Di)

. (11)

3.2. High-level Changes

A high-level change confers semantics to a change-
set. For example, if an update consists of the addition
of triples about an unseen subject, we can interpret the
triples as the addition of an entity to the dataset. High-
level changes provide deeper insights about the de-
velopment of an RDF dataset than low-level changes.
In addition, they can be domain-dependent. Some ap-

proaches [39, 46] have proposed vocabularies to de-
scribe changesets in RDF data as high-level changes.
Since our approach is oblivious to the domain of the
data, we propose a set of metrics on domain-agnostic
high-level changes.

Entity changes. RDF datasets describe real-world
entities s by means of triples 〈s, p, o〉. Hence, an entity
is a subject for the sake of this analysis. We define the
metric entity changes between revisions i, j in an RDF
graph as:

eci, j(G) = |σi, j(G)| = |σ+
i, j(G) ∪ σ−i, j(G)| (12)

In the formula, σ+
i, j is the set of added entities, i.e.,

the subjects present in Υ(G j) but not in Υ(Gi) (anal-
ogously the set of deleted entities σ−i, j is defined by
swapping the roles of i and j). This metric can easily be
adapted to an RDF dataset D if we define ec(G) (with
no subscripts) as the number of different subjects in a
graph G. It follows that,

eci, j(D) =
∑

G∈Di∩D j

eci, j(G) +
∑

G∈Di4D j

ec(G). (13)

We also propose the triple-to-entity-change score,
that is, the average number of triples that constitute a
single entity change. It can be calculated as follows for
RDF graphs:

ecti, j(G) =
|〈s, p, o〉 ∈ u+

i, j ∪ u−i, j : s ∈ σi, j(G)|
eci, j(G)

(14)

We port this metric to RDF datasets by first defining
U+ =

⋃
u∈U+ u and U− =

⋃
u∈U− u and plugging

them into the formula for ecti, j:

ecti, j(D) =
|〈s, p, o〉 ∈ U+

i, j ∪ U−i, j : s ∈ σi, j(D)|
eci, j(D)

(15)

Object Updates and Orphan Object Additions/Deletions.
An object update in a changeset ui, j is defined by the
deletion of a triple 〈s, p, o〉 and the addition of a triple
〈s, p, o′〉 with o 6= o′. Once a triple in a changeset has
been assigned to a high-level change, the triple is con-
sumed and cannot be assigned to any other high-level
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Low-level changes

Change ratio
Insertion and deletion ratios
Vocabulary dynamicity
Growth ratio

High-level changes

Entity changes
Triple-to-entity-change score
Object updates
Orphan object additions and deletions

Table 2
RDFev’s metrics

change. We define orphan object additions and dele-
tions respectively as those triples 〈s+, p+, o+〉 ∈ u+

i, j

and 〈s−, p−, o−〉 ∈ u−i, j that have not been consumed
by any of the previous high-level changes. The dataset
counterparts of these metrics for two revisions i, j can
be calculated by summing the values for each of the
graphs in Di ∩ D j.

Table 2 summarizes all the metrics defined by
RDFev.

4. Evolution Analysis of RDF Datasets

Having introduced RDFev, we use it to conduct an
analysis of the revision history of three large and pub-
licly available RDF knowledge bases, namely YAGO,
DBpedia, and Wikidata. The analysis resorts to the
metrics defined in Sections 3.1 and 3.2 for every pair
of consecutive revisions.

4.1. Data

We chose the YAGO [51], DBpedia [5], and Wiki-
data [16] knowledge bases for our analysis, because
of their large size, dynamicity, and central role in the
Linked Open Data initiative. We build an RDF graph
archive by considering each release of the knowledge
base as a revision. None of the datasets is provided as
a monolithic file, instead they are divided into themes.
These are subsets of triples of the same nature, e.g.,
triples with literal objects extracted with certain ex-
traction methods. We thus focus on the most popu-
lar themes. For DBpedia we use the mapping-based
objects and mapping-based literals themes, which are
available from version 3.5 (2015) onwards. Addition-
ally, we include the instance-types theme as well as
the ontology. For YAGO, we use the knowledge base’s
core, namely, the themes facts, meta facts, literal facts,
date facts, and labels available from version 2 (v.1.0

was not published in RDF). As for Wikidata, we use
the simple-statements of the RDF Exports [1] in the pe-
riod from 2014-05 to 2016-08. These dumps provide a
clean subset of the dataset useful for applications that
rely mainly on Wikidata’s encyclopedic knowledge.
All datasets are available for download in the RDFev’s
website https://relweb.cs.aau.dk/rdfev. Table 3 maps
revision numbers to releases for the sake of concise-
ness in the evolution analysis.

Revision DBpedia YAGO Wikidata
0 3.5 2s 2014-05-26
1 3.5.1 3.0.0 2014-08-04
2 3.6 3.0.1 2014-11-10
3 3.7 3.0.2 2015-02-23
4 3.8 3.1 2015-06-01
5 3.9 2015-08-17
6 2015-04 2015-10-12
7 2015-10 2015-12-28
8 2016-04 2016-03-28
9 2016-10 2016-06-21

10 2019-08 2016-08-01
Table 3

Datasets revision mapping

4.2. Low-level Evolution Analysis

Change ratio. Figures 3a, 3d and 3g depict the evo-
lution of the change, insertion, and deletion ratios for
our experimental datasets. Up to the release 3.9 (rev.
5), DBpedia exhibits a steady growth with significantly
more insertions than deletions. Minor releases such as
3.5.1 (rev. 1) are indeed minor in terms of low-level
changes. Release 2015-04 (rev. 6) is an inflexion point
not only in terms of naming scheme (see Table 3): the
deletion rate exceeds the insertion rate and subsequent
revisions exhibit a tight difference between the rates.
This suggests a major design shift in the construction
of DBpedia from revision 6.

As for YAGO, the evolution reflects a different re-
lease cycle. There is a clear distinction between major
releases (3.0.0 and 3.1, i.e., rev. 1 and 4) and minor re-
leases (3.0.1 and 3.0.2, i.e., rev. 2 and 3). The magni-
tude of the changes in major releases is significantly
higher for YAGO than for any DBpedia release. Mi-
nor versions seem to be mostly focused on corrections,
with a low number of changes.

Contrary to the other datasets, Wikidata shows a
slowly decreasing change ratio that fluctuates between

https://relweb.cs.aau.dk/rdfev
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(g) Entity changes in Wikidata
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(h) Wikidata’s vocabulary dynamicity
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(i) Growth ratio for Wikidata

Fig. 3. Change ratio, vocabulary dynamicity, and growth ratio

5% (rev. 10) and 33% (rev. 3) within the studied period
of 2 years.

Vocabulary dynamicity. As shown in Figures 3b, 3e,
and 3h, the vocabulary dynamicity is, not surprisingly,
correlated with the change ratio. Nevertheless, the vo-
cabulary dynamicity between releases 3.9 and 2015-
14 (rev. 5 and 6) in DBpedia did not decrease. This
means that DBpedia 2015-14 contained more entities,
but fewer – potentially noisy – triples about those enti-
ties. The major releases of YAGO (rev. 1 and 4) show a
notably higher vocabulary dynamicity than the minor
releases. As for Wikidata, slight spikes in dynamicity
can be observed at revisions 4 and 9, however this met-

ric remains relatively low in Wikidata compared to the
others bases.

Growth ratio. Figures 3c, 3f, and 3i depict the growth
ratio of our experimental datasets. In all cases, this
metric is mainly positive with low values for mi-
nor revisions. As pointed out by the change ratio,
the 2015-04 release in DBpedia is remarkable as the
dataset shrank and was succeeded by more conserva-
tive growth ratios. This may suggest that recent DBpe-
dia releases are more curated. We observe that YAGO’s
growth ratio is significantly larger for major versions.
This is especially true for the 3.0.0 (rev. 1) release that
doubled the size of the knowledge base.
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4.3. High-level Evolution Analysis

4.3.1. Entity changes
Figures 4a, 4d, and 4g illustrate the evolution of

the entity changes, additions, and deletions for DBpe-
dia, YAGO and Wikidata. We also show the number of
triples used to define these high-level changes (labeled
as affected triples). We observe a stable behavior for
these metrics in DBpedia except for the minor release
3.5.1 (rev. 1). Entity changes in Wikidata also display
a monotonic behavior, even though the deletion rate
tends to decrease from rev. 4. In YAGO, the number
of entity changes peaks for the major revisions (rev. 1
and 4), and is one order of magnitude larger than for
minor revisions. The minor release 3.0.2 (rev. 3) shows
the lowest number of additions, whereas deletions re-
main stable w.r.t release 3.0.1 (rev. 2). This suggests
that these two minor revisions focused on improving
the information extraction process, which removed a
large number of noisy entities.

Figure 4b shows the triple-to-entity-change score in
DBpedia. Before the 2015-14 release, this metric fluc-
tuates between 2 and 12 triples without any appar-
ent pattern. Conversely subsequent releases show a de-
cline, which suggests a change in the extraction strate-
gies for the descriptions of entities. The same cannot
be said about YAGO and Wikidata (Figures 4e and
4h), where values for this metric are significantly lower
than for DBpedia, and remain almost constant. This
shows that minor releases in YAGO improved the strat-
egy to extract entities, but did not change much the
amount of extracted triples per entity.

4.3.2. Object Updates and Orphan Object
Additions/Deletions

We present the evolution of the number of object up-
dates for our experimental datasets in Figures 4c, 4f,
and 4i. For DBpedia, the curve is consistent with the
change ratio (Figure 3a). In addition to a drop in size,
the 2015-04 release also shows the highest number of
object updates, which corroborates the presence of a
drastic redesign of the dataset. The results for YAGO
are depicted in Figure 4f, where we see larger numbers
of object updates compared to major releases in DB-
pedia. This is consistent with the previous results that
show that YAGO goes through bigger changes between
releases. The same trends are observed for the number
of orphan object additions and deletions in Figures 5a
and 5b. Compared to the other two datasets, Wikidata’s
number of object updates, shown in Figure 4i, is much
lower and constant throughout the stream of revisions.

Finally, we remark that in YAGO and DBpedia, ob-
ject updates are 4.8 and 1.8 times more frequent than
orphan additions and deletions. This entails that the
bulk of editions in these knowledge bases aims at up-
dating existing object values. This behavior contrasts
with Wikidata, where orphan object updates are 3.7
times more common than proper object updates. As
depicted in Figure 5c, Wikidata exhibits many more
orphan object updates than the other knowledge bases.
Moreover, orphan object additions are 19 times more
common than orphan object deletions.

4.4. Conclusion

In this section we have conducted a study of the
evolution of three large RDF knowledge bases using
our proposed framework RDFev, which resorts to a
domain-agnostic analysis from two perspectives: At
the low-level it studies the dynamics of triples and vo-
cabulary terms across different versions of an RDF
dataset, whereas at the high-level it measures how
those low-level changes translate into updates to the
entities described in the experimental datasets. All in
all, we have identified two patterns of evolution. On
the one hand, Wikidata exhibits a stable release cy-
cle in the studied period as our metrics did not exhibit
big fluctuations from release to release. On the other
hand, YAGO and DBpedia have a release cycle that
distinguishes between minor and major releases. Ma-
jor releases are characterized by a large number of up-
dates in the knowledge base and may not necessarily
increase its size. Conversely, minor releases incur in at
least one order of magnitude fewer changes than major
releases and seem to focus on improving the quality of
the knowledge base, for instance, by being more con-
servative in the number of triple and entity additions.
We argue that an effective solution for large-scale RDF
archiving should be able to adapt to at least these two
patterns of evolution.

5. Survey of RDF Archiving Solutions

We structure this section in three parts. Section 5.1
surveys the existing engines for RDF archiving and
discusses their strengths and weaknesses. Section 5.2
presents the languages and SPARQL extensions to ex-
press queries on RDF archives. Finally, Section 5.3
introduces various endeavors on analysis and bench-
marking of RDF archives.



10 Pelgrin et al. / Towards Fully-fledged Archiving for RDF Datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 2 3 4 5 6 7 8 9 10
Revisions

103

104

105

106

107

108

Nu
m

be
r o

f c
ha

ng
es

Entity changes
Entity additions
Entity deletions
Affected triples

(a) Entity changes for DBpedia

1 2 3 4 5 6 7 8 9 10
Revisions

0
2
4
6
8

10
12
14

Av
g 

tri
pl

es
/c

ha
ng

e

(b) Triple-to-entity changes in DBpedia
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(c) Dbpedia object updates
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(d) Entity changes for YAGO
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(e) Triple-to-entity changes in YAGO
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(f) YAGO object updates
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(g) Entity changes for Wikidata
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(h) Triple-to-entity changes in Wikidata
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(i) Wikidata object updates

Fig. 4. Entity changes and object updates
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Fig. 5. Orphan object additions and deletions
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5.1. RDF Archiving Systems

There are plenty of systems to store and query
the history of an RDF dataset. Except for a few ap-
proaches [3, 4, 26, 54], most available systems sup-
port archiving of a single RDF graph. Ostrich [52], for
instance, manages quads of the form 〈s, p, o, rv(ρ)〉.
Other solutions do not support revision numbers and
use the ρ-component ρ ∈ I to model temporal meta-
data such as insertion, deletion, and validity time-
stamps for triples [24]. In this paper we make a distinc-
tion between insertion/deletion timestamps for triples
and validity intervals. While the former are unlikely
to change, the latter are subject to modifications be-
cause they constitute domain information, e.g., the va-
lidity of a marriage statement. This is why the general
data model introduced in Section 2 only associates re-
vision numbers and commit timestamps to the fourth
component ρ, whereas other types of metadata are still
attached to the graph label g = l(ρ). We summarize
the architectural spectrum of RDF archiving systems
in Table 4 where we characterize the state-of-the-art
approaches according to the following criteria:

– Storage paradigm. The storage architecture is
probably the most important feature as it shapes
the system’s architecture. We identify three main
storage paradigms in the literature [19], namely
independent copies (IC), change-based (CB), and
timestamp-based (TB). Some systems [52] may fall
within multiple categories, whereas Quit Store [4]
implements a fragment-based (FB) paradigm.

– Data model. It can be quads or 5-tuples with differ-
ent semantics for the fourth and fifth component.

– Full BGPs. This feature determines whether the sys-
tem supports BGPs with a single triple pattern or full
BGPs with an unbounded number of triple patterns
and filter conditions.

– Query types. This criterion lists the types of queries
on RDF archives (see Section 2.5) natively sup-
ported by the solution.

– Branch & tags. It defines whether the system sup-
ports branching and tagging as in classical version
control systems.

– Multi-graph. This feature determines if the sys-
tem supports archiving of the history of multi-graph
RDF datasets.

– Concurrent updates. This criterion determines
whether the system supports concurrent updates.
This is defined regardless of whether conflict man-
agement is done manually or automatically.

– Source available. We also specify whether the sys-
tem’s source code is available for download and is
usable, that is, whether it can be compiled and run in
modern platforms.

In the following, we discuss further details of the
state-of-the-art systems, grouped by their storage
paradigms.

5.1.1. Independent Copies Systems
In an IC-like approach, each revision Di of a dataset

archive A = {D1,D2, . . . ,Dn} is fully stored as an
independent RDF dataset. IC approaches shine at the
execution of VM and CV queries as they do not in-
cur any materialization cost for such types of queries.
Conversely, IC systems are inefficient in terms of disk
usage. For this reason they have mainly been proposed
for small datasets or schema version control [37, 54].
SemVersion [54], for instance, is a system that of-
fers similar functionalities as classical version control
systems (e.g., CVS or SVN), with support for mul-
tiple RDF graphs and branching. Logically, SemVer-
sion supports 5-tuples of the form 〈s, p, o, l(ρ), rv(ρ)〉,
in other words, revision numbers are local to each
RDF graph. This makes it difficult to track the ad-
dition or deletion of named graphs in the history of
the dataset. Lastly, SemVersion provides an HTTP in-
terface to submit updates either as RDF graphs or as
changesets. Despite this flexibility, new revisions are
always stored as independent copies. This makes its
disk-space consumption prohibitive for large datasets
like the ones studied in this paper.

5.1.2. Change-based Systems
Solutions based on the CB paradigm store a subset

Â ⊂ A of the revisions of a dataset archive as inde-
pendent copies or snapshots. On the contrary, all the
intermediate revisions D j (p < j < q) between two
snapshots Dp and Dq, are stored as deltas or change-
sets U j. The sequence of revisions stored as changesets
between two snapshots is called a delta chain. CB sys-
tems are convenient for DM and CD queries. Besides,
they are obviously considerably more storage-efficient
than IC solutions. Their weakness lies in the high ma-
terialization cost for VM and CV queries, particularly
for long delta chains.

R&WBase [47] is an archiving system that provides
Git-like distributed version control with support for
merging, branching, tagging, and concurrent updates
with manual conflict resolution on top of a classical
SPARQL endpoint. R&WBase supports all types of
archive queries on full BGPs. The system uses the
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Storage
paradigm

Data
model

Full
BGPs Queries Branch

& tags
Multi-
graph

Concurrent
Updates

Source
available

Dydra [3] TB 5-tuples + all - + - -

Ostrich [52] IC/CB/TB quads +d VM, DM, V - - - +

QuitStore [4] FB 5-tuples + all + + + +

RDF-TX [24] TB quads + all - - - -

R43ples [26] CB 5-tuplesc + all + - + +a

R&WBase [47] CB quads + all + - + +

RBDMS [31] CB quads + all + - + -

SemVersion [54] IC 5-tuplesc - VM, DM + - + -

Stardog [2] CB 5-tuples + all tags + - -

v-RDFCSA [13] TB quads - VM, DM, V - - - -

x-RDF-3X [35] TB quads + VM, V - - - +b

a It needs modifications to have the console client running and working b Old source code c Graph local revisions
d Full BGP support is possible via integration with the Comunica query engine

Table 4
Existing RDF archiving systems

PROV-Ontology (PROV-O) [14] to model the meta-
data (e.g., timestamps, parent branches) about the up-
dates of a single RDF graph. An update ui generates
two new named graphs Gi+

g , Gi−
g containing the added

and deleted triples at revision i. Revisions can be ma-
terialized by processing the delta chain back to the ini-
tial snapshot, and they can be referenced via aliases
called virtual named graphs. In the same spirit, tags
and branches are implemented as aliases of a particular
revision. R&WBase has inspired the design of R43ples
[26]. Unlike the former, R43ples can version multiple
graphs, although revision numbers are not defined at
the dataset level, i.e., each graph manages its own his-
tory. Moreover, the system extends SPARQL with the
clause REVISION j ( j ∈ N ) used in conjunction with
the GRAPH clause to match a BGP against a specific
revision of a graph. Last, the approach presented by
Dong-hyuk et al. [31] relies on an RDBMS to store
snapshots and deltas of an RDF graph archive with
support for branching and tagging. Its major drawback
is the lack of support for SPARQL queries: while it
supports all the types of queries introduced in Sec-
tion 2.5, they must be formulated in SQL, which can
be very tedious for complex queries.

Stardog [2] is a commercial RDF data store with
support for dataset snapshots, tags, and full SPARQL
support. Unlike R43ples, Stardog keeps track of the
global history of a dataset, hence its logical model con-
sists of 5-tuples of the form 〈s, p, o, l(ρ), ζ〉 (i.e., meta-
data is stored at the dataset level). While the details of
Stardog’s internal architecture are not public, the doc-

umentation4 suggests a CB paradigm with a relational
database backend.

5.1.3. Timestamp-based Systems
TB solutions store triples with their temporal meta-

data, such as domain temporal validity intervals or in-
sertion/deletion timestamps. Like in CB solutions, re-
visions must be materialized at a high cost for VM
and CV queries. V queries are usually better supported,
whereas the efficiency of materializing deltas depends
on the system’s indexing strategies.

x-RDF-3X [35] is a system based on the RDF-3X
[34] engine. Logically x-RDF-3X supports quads of
the form 〈s, p, o, ρ〉 where ρ ∈ I is associated to all
the revisions where the triple was present as well as
to all addition and deletion timestamps. The system
is a fully-fledged query engine optimized for highly
concurrent updates with support for snapshot isolation
in transactions. However, x-RDF-3X does not support
versioning for multiple graphs, neither branching nor
tagging.

Dydra [3] is a TB archiving system that supports
archiving of multi-graph datasets. Logically, Dydra
stores 5-tuples of the form 〈s, p, o, l(ρ), ζ〉, that is, re-
vision metadata lies at the dataset level. In its physi-
cal design, Dydra indexes quads 〈s, p, o, l(ρ)〉 and as-
sociates them to visibility maps and creation/deletion
timestamps that determine the revisions and points in
time where the quad was present. The system relies

4https://github.com/stardog-union/stardog-examples/tree/
d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/
versioning

https://github.com/stardog-union/stardog-examples/tree/d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning
https://github.com/stardog-union/stardog-examples/tree/d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning
https://github.com/stardog-union/stardog-examples/tree/d7ac8b562ecd0346306a266d9cc28063fde7edf2/examples/cli/versioning
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on six indexes – gspo, gpos, gosp, spog, posg, and
ospg implemented as B+ trees – to support arbitrary
SPARQL queries (g = l(ρ) is the graph label). More-
over, Dydra extends the query language with the clause
REVISION x, where x can be a variable or a con-
stant. This clause instructs the query engine to match
a BGP against the contents of the data sources bound
to x, namely a single database revision ζ, or a dataset
changeset U j,k. A revision can be identified by its IRI ζ,
its revision number rv(ζ) or by a timestamp τ′. The lat-
ter case matches the revision ζ with the largest times-
tamp τ = ts(ζ) such that τ 6 τ′. Alas, Dydra’s source
is not available for download and use.

RDF-TX [24] supports single RDF graphs and
uses a multiversion B-tree (MVBT) to index triples
and their time metadata (insertion and deletion time-
stamps). An MVBT is actually a forest where each
tree stores the triples that were inserted within a time
interval. RDF-TX implements an efficient compres-
sion scheme for MVBTs, and proposes SPARQL-T, a
SPARQL extension that adds a fourth component ĝ to
BGPs. This component can match only time objects τ
of type timestamp or time interval. The attributes of
such objects can be queried via built-in functions, e.g.,
year(τ). While RDF-TX offers interval semantics at
the query level, it stores only timestamps.

v-RDFCSA [13] is a lightweight and storage-efficient
TB approach that relies on suffix-array encoding [9]
for efficient storage with basic retrieval capabilities
(much in the spirit of HDT [17]). Each triple is asso-
ciated to a bitsequence of length equals the number of
revisions in the archive. That is, v-RDFCSA logically
stores quads of the form 〈s, p, o, rv(ρ)〉. Its query func-
tionalities are limited since it supports only VM, DM,
and V queries on single triple patterns.

5.1.4. Hybrid and Fragment-based Systems
Some approaches can combine the strengths of the

different storage paradigms. One example is Ostrich
[52], which borrows inspirations from IC, CB, and
TB systems. Logically, Ostrich supports quads of the
form 〈s, p, o, rv(ρ)〉. Physically, it stores snapshots of
an RDF graph using HDT [17] as serialization format.
Delta chains are stored as B+ trees time-stamped with
revision numbers in a TB-fashion. These delta chains
are redundant, i.e., each revision in the chain is stored
as a changeset containing the changes w.r.t. the latest
snapshot – and not the previous revision as proposed
by Dong-hyuk et al. [31]. Ostrich alleviates the cost of
redundancy using compression. All these design fea-
tures make Ostrich query and space efficient, however

its functionalities are limited. Its current implementa-
tion does not support more than one (initial) snapshot
and a single delta chain, i.e., all revisions except for
revision 0 are stored as changesets of the form u0,i.
Multi-graph archiving as well as branching/tagging are
not possible. Moreover, the system’s querying capabil-
ities are restricted to VM, DM, and V queries on single
triple patterns. Support for full BGPs is possible via
integration with the Comunica query engine5.

Like R43ples [26], Quit Store [4] provides collab-
orative Git-like version control for multi-graph RDF
datasets, and uses PROV-O for metadata management.
Unlike R43ples, Quit Store provides a global view of
the evolution of a dataset, i.e., each commit to a graph
generates a new dataset revision. The latest revision is
always materialized in an in-memory quad store. Quit-
Store is implemented in Python with RDFlib and pro-
vides full support for SPARQL 1.1. The dataset history
(RDF graphs, commit tree, etc.) is physically stored
in text files (e.g. N-quads files) and is accessible via a
SPARQL endpoint on a set of virtual graphs. However,
the system only stores snapshots of the modified files
in the spirit of fragment-based storage. Quit Store is
tailored for collaborative construction of RDF datasets,
but its high memory requirements make it unsuitable
as an archiving backend. As discussed in Section 7,
fully-fledged RDF archiving can provide a backend for
this type of applications.

5.2. Languages to Query RDF Archives

Multiple research endeavors have proposed alterna-
tives to succinctly formulate queries on RDF archives.
The BEAR benchmark [19] uses AnQL to express the
query types described in Section 2.5. AnQL [55] is a
SPARQL extension based on quad patterns 〈ŝ, p̂, ô, ĝ〉.
AnQL is more general than SPARQL-T (proposed by
RDF-TX [24]) because the ĝ-component can be bound
to any term u ∈ I ∪ L (not only time objects). For in-
stance, a DM query asking for the countries added at
revision 1 to our example RDF dataset from Figure 1
could be written as follows:

SELECT * WHERE {

{ (?x a :Country): [1] } MINUS

{ (?x a :Country) :[0] }

}

T-SPARQL [25] is a SPARQL extension inspired
by the query language TSQL2 [49]. T-SPARQL al-

5https://github.com/rdfostrich/comunica-actor-init-sparql-ostrich

https://github.com/rdfostrich/comunica-actor-init-sparql-ostrich
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lows for the annotation of groups of triple patterns
with constraints on temporal validity and commit time,
i.e., it supports both time-intervals and timestamps as
time objects. T-SPARQL defines several comparison
operators between time objects, namely equality, pre-
cedes, overlaps, meets, and contains. Similar exten-
sions [6, 42] also offer support for geo-spatial data.

SPARQ-LTL [20] is a SPARQL extension that
makes two assumptions, namely that (i) triples are
annotated with revision numbers, and (ii) revisions
are accessible as named graphs. When no revision is
specified, BGPs are iteratively matched against every
revision. A set of clauses on BGPs can instruct the
SPARQL engine to match a BGP against other revi-
sions at each iteration. For instance the clause PAST in
the expression PAST{ q } MINUS { q } with q = 〈?x
a :Country〉 will bind variable ?x to all the countries
that were ever deleted from the RDF dataset, even if
they were later added.

5.3. Benchmarks and Tools for RDF Archives

BEAR [19] is the state-of-the-art benchmark for
RDF archive solutions. The benchmark provides three
real-world RDF graphs (called BEAR-A, BEAR-B,
and BEAR-C) with their corresponding history, as well
as a set of VM, DM, and V queries on those histories.
In addition, BEAR allows system designers to com-
pare their solutions with baseline systems based on
different storage strategies (IC, CB, TB, and hybrids
TB/CB, IC/CB) and platforms (Jena TDB and HDT).
Despite its multiple functionalities and its dominant
position in the domain, BEAR has some limitations: (i)
It assumes single-graph RDF datasets; (ii) it does not
support CV and CD queries, moreover VM, DM, and
V queries are defined on single triple patterns; and (iii)
it cannot simulate datasets of arbitrary size and query
workloads.

EvoGen [32] tackles the latter limitation by extend-
ing the Lehigh University Benchmark (LUBM) [27] to
a setting where both the schema and the data evolve.
Users can not only control the size and frequency of
that evolution, but can also define customized query
workloads. EvoGen supports all the types of queries
on archives presented in Section 2.5 on multiple triple
patterns.

A recent approach [53] proposes to use FCA (For-
mal Concept Analysis) and several data fusion tech-
niques to produce summaries of the evolution of en-
tities across different revisions of an RDF archive. A
summary can, for instance, describe groups of subjects

with common properties that change over time. Such
summaries are of great interest for data maintainers as
they convey edition patterns in RDF data through time.

6. Evaluation of Related Work

In this section, we conduct an evaluation of the state-
of-the-art RDF archiving engines. We first provide a
global analysis of the systems’ functionalities in Sec-
tion 6.1. Section 6.2 then provides a performance eval-
uation of Ostrich (the only testable solution) on our
experimental RDF archives from Table 3. This evalu-
ation is complementary to the Ostrich’s evaluation on
BEAR (available at [52]), as it shows the performance
of the system in three real-world large RDF datasets.

6.1. Functionality Analysis

As depicted in Table 4, existing RDF archiving so-
lutions differ greatly in design and functionality. The
first works [12, 35, 54] offered mostly storage of old
revisions and support for basic VM queries. Conse-
quently, subsequent efforts focused on extending the
query capabilities and allowing for concurrent updates
as in standard version control systems [4, 26, 31, 47].
Such solutions are attractive for data maintainers in
collaborative projects, however they still lack scalabil-
ity, e.g., they cannot handle large datasets and change-
sets, besides conflict management is still delegated
to users. More recent works [13, 52] have therefore
focused on improving storage and querying perfor-
mance, alas, at the expense of features. For example,
Ostrich [52] is limited to a single snapshot and delta
chain. In addition to the limitations in functionality,
Table 4 shows that most of the existing systems are
not available because their source code is not pub-
lished. While this still leaves us with Ostrich [52], Quit
Store [4], R&WBase [47], R43ples [26] and x-RDF-
3X as testable solutions, only [52] was able to run on
our experimental datasets. To carry out a fair compar-
ison with the other systems, we tried Quit Store in the
persistence mode, which ingests the data graphs into
main memory at startup – allowing us to measure in-
gestion times. Unfortunately, the system crashes for all
our experimental datasets6. We also tested Quit Store
in its default lazy loading mode, which loads the data
into main memory at query time. This option throws a
Python MemoryError for our experimental queries. In

6The Python interpreter reports a UnboundLocalError.
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Fig. 6. Ostrich’s performance with DBpedia and YAGO

regards to R43ples, we had to modify its source code
to handle large files7. Despite this change, the sys-
tem could not ingest a single revision of DBpedia after
four days of execution. R&WBase, on the other hand,
accepts updates only through a SPARQL endpoint,
which cannot handle the millions of update statements
required to ingest the changesets. Finally, x-RDF-3X’s
source code does not compile out of the box in modern
platforms, and even after successful compilation, it is
unable to ingest one DBpedia changeset.

6.2. Performance Analysis

We evaluate the performance of Ostrich on our ex-
perimental datasets in terms of storage space, inges-
tion time – the time to generate a new revision from
an input changeset – and query response time. The
changesets were computed with RDFev from the dif-
ferent versions of DBpedia, YAGO, and Wikidata (Ta-
ble 3). All the experiments were run on a server with
a 4-core CPU (Intel Xeon E5-2680 v3@2.50GHz) and
64 GB of RAM.

Storage space. Figure 6a shows the amount of stor-
age space (in GB) used by Ostrich for the selected re-
visions of our experimental datasets. We provide the
raw sizes of the RDF dumps of each revision for ref-
erence. Storing each version of YAGO separately re-
quires 36 GB, while Ostrich uses only 4.84 GB. For
DBpedia compression goes from 39 GB to 5.96 GB.
As for Wikidata, it takes 131 GB to stores the raw files,
but only 7.88 GB with Ostrich. This yields a compres-
sion rate of 87% for YAGO, 84% for DBpedia and
94% for Wikidata. This space efficiency is the result of
using HDT [17] for snapshot storage, as well as com-
pression for the delta chains.

7The code creates an array that exceeds the maximal array size in
Java.

Ingestion time. Figure 6b shows Ostrich’s ingestion
times. We also provide the number of triples of each
revision as reference. The results suggest that this mea-
sure depends both on the changeset size, and the length
of the delta chain. However, the latter factor becomes
more prominent as the length of the delta chain in-
creases. For example, we can observe that Ostrich
requires ∼22 hours to ingest revision 9 of DBpedia
(2.43M added and 2.46M deleted triples) while it takes
only∼14 hours to ingest revision 5 (12.85M added and
5.95M deleted triples). This confirms the trends ob-
served in [52] where ingestion time increases linearly
with the number of revisions. This is explained by the
fact that Ostrich stores the i-th revision of an archive as
a changeset of the form u0,i. In consequence, Ostrich’s
changesets are constructed from the triples in all pre-
vious revisions, and can only grow in size. This fact
makes it unsuitable for very long histories.

Query runtime. We run Ostrich on 100 randomly
generated VM, V, and DM queries on our experimental
datasets. Ostrich does not support queries on full BGPs
natively, hence the queries consisted of single triple
patterns of the most common forms, namely 〈 ?, p, ?
〉, 〈 s, p, ? 〉, and 〈 ?, p, o 〉 in equal numbers. We also
considered queries of the form 〈 ?, <top p>, o 〉, where
<top p> corresponds to the top 5 most common pred-
icates in the dataset. Revision numbers for all queries
were also randomly generated. Table 5 shows Ostrich’s
average runtime in seconds for the different types of
queries. We set a timeout of 1 hour for each query,
and show the number of timeouts in parentheses next
to the runtime – which excludes queries that timed out.
We observe that Ostrich is roughly one order of mag-
nitude faster on YAGO than on DBpedia and Wikidata.
To further understand the factors that impact Ostrich’s
runtime, we computed the Spearman correlation score
between Ostrich’s query runtime and a set of features
relevant to query execution. These features include the
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DBpedia YAGO Wikidata
Triple Patterns VM V DM VM V DM VM V DM

? p ? 92.81(0) 118.64(0) 91.78(0) 2.9(3) - (5) 1.82(3) 281.41(0) 302.26(0) 303.73(0)
? <top p> o 112.81(0) 283.59(0) 130.88(0) 35.08(2) 69.65(4) 137.16(4) 347.06(0) 499.77(0) 285.02(0)

? p o 96.74(0) 92.04(0) 91.93(0) 2.38(4) 2.35(4) 2.35(2) 282.12(0) 281.63(0) 281.45(0)
s p ? 94.99(0) 91.67(0) 92.81(0) 2.42(2) 2.36(3) 2.41(1) 284.74(0) 281.4(0) 281.2(0)

Table 5
Ostrich’s Query Performance in seconds

length of the delta chain, the average size of the rele-
vant changesets, the standard deviation of the change-
set size, the size of the initial revision, the average
number of deleted and added triples in the changesets,
and the number of query results. The results show that
the most correlated features are the length of the delta
chain, the standard deviation of the changeset size, and
the average number of deleted triples. This suggests
that Ostrich’s runtime performance will degrade as the
history of the archive grows and that massive deletions
actually aggravate that phenomenon. Finally, we ob-
serve some timeouts in YAGO in contrast to DBpe-
dia and Wikidata. We believe this is mainly caused by
the sizes of the changesets, which are on average of
3.72GB for YAGO, versus 2.09GB for DBpedia and
1.86GB for Wikidata. YAGO’s changesets at revisions
1 and 4 are very large as shown in Section 4.

7. Towards Fully-fledged RDF Archiving

In this section we use the insights from previous
sections to derive a set of lessons towards the design
of a fully-fledged solution for archiving of large RDF
datasets.

Global and local history. Our survey in Section 5.1
shows that Quit Store [4] is the only available solu-
tion that supports both archiving of the local and joint
(global) history of multiple RDF graphs. We argue that
such a feature is vital for proper RDF archiving: It is
not only of great value for distributed version control
in collaborative projects, but can also be useful for the
users and maintainers of data warehouses. Conversely,
Quit Store is strictly focused on distributed version
control and its architecture based on Git makes it un-
suitable to archive the releases of large datasets such
as YAGO, DBpedia, or Wikidata as explained in Sec-
tion 6.

Temporal domain-specific vs. revision metadata. Sys-
tems and language extensions for queries with time
constraints [24, 25], treat both domain-specific meta-

data (e.g., triple validity intervals) and revision-related
annotations (e.g., revision numbers) in the same way.
We highlight, however, that revision metadata is im-
mutable and should therefore be logically placed at a
different level. In this line of thought we propose to as-
sociate revision metadata for graphs and datasets, e.g.,
commit time, revision numbers, or branching & tag-
ging information, to the local and global revision iden-
tifiers ρ and ζ, whereas depending on the application,
domain-specific time objects could be modeled ei-
ther as statements about the revisions or as statements
about the graph labels g = l(ρ). The former alternative
enforces the same temporal domain-specific metadata
to all the triples added in a changeset, whereas the lat-
ter option makes sense if all the triples with the same
graph label are supposed to share the same domain-
specific information – which can still be edited by an-
other changeset on the master graph. We depict both
alternatives in Figure 7. We remark that such associa-
tions are only defined at the logical level.

Provenance. Revision metadata is part of the history
of a triple within a dataset. Instead, its complete his-
tory is given by its workflow provenance. The W3C
offers the PROV-O ontology [14] to model the his-
tory of a triple from its sources to its current state in
an RDF dataset. Pretty much like temporal domain-
specific metadata, provenance metadata can be log-
ically linked to either the (local or global) revision
identifiers or to the graph labels (Figure 7). This de-
pends on whether we want to define provenance for
changesets because the triples added to an RDF graph
may have different provenance workflows. A hybrid
approach could associate a default provenance history
to a graph and use the revision identifiers to override
or extend that default history for new triples. More-
over, the global revision identifier ζ provides an ad-
ditional level of metadata that allow us to model the
provenance of a dataset changeset.

Concurrent updates & modularity. We can group the
existing state-of-the-art solutions in three categories
regarding their support for concurrent updates, namely
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(a) Revision identifiers hold revision-related metadata.
Provenance as well as temporal domain-specific metadata
are in green.

(b) Revision identifiers hold all the metadata.

Fig. 7. Two logical models to handle metadata in RDF archives. The namespace prov: corresponds to the PROV-O namespace.

(i) solutions with limited or no support for concurrent
updates [3, 13, 24, 43, 52], (ii) solutions inspired by
version control systems such as Git [4, 26, 31, 47, 54],
and (iii) approaches with full support for highly con-
current updates [35]. Git-like solutions are particu-
larly interesting for collaborative efforts such as DB-
pedia, because it is feasible to delegate users the task
of conflict management. Conversely, fully automati-
cally constructed KBs such as NELL [11] or data-
intensive (e.g., streaming) applications may need the
features of solutions such as x-RDF-3X [35]. Conse-
quently, we propose a modular design that separates
the concurrency layer from the storage backend. Such
a middleware could take care of enforcing a consis-
tency model for concurrent commits either automati-
cally or via user-based conflict management. The layer
could also manage the additional metadata for features
such as branching and tagging. In that light, collabo-
rative version control systems for RDF [4, 26, 47] be-
come an application of fully-fledged RDF archiving.

Storage paradigm. RDF archiving differs from stan-
dard RDF management in an even more imperative
need for storage efficiency. As shown by Taelman et
al. [52], the existing storage paradigms shine at dif-
ferent types of queries. Hence, supporting arbitrary
queries while being storage-efficient requires the best
from the IC, CB, FB, and TB philosophies. A hybrid
approach, however, will inevitably be more complex
and will introduce further parameters and trade-offs.
For example, CB solutions must define a policy to de-
cide when to store a revision as a snapshot or as a
delta, trading disk space for lower response time for
VM queries. Likewise, TB solutions must build further
indexes to efficiently answer V queries. Since CV and
CD queries require further query planning, their per-
formance depends on an efficient support for VM and
DM queries and the capabilities of the query engine.

Depending on the host available main memory, a ro-
bust archiving system could materialize the latest revi-
sion of a dataset (or parts of it) in memory as done by
some solutions [4].

Accounting for evolution patterns. As our study
in Section 4 shows, the evolution patterns of RDF
archives can change throughout time leading even, to
decreases in dataset size. With that in mind, we envi-
sion an adaptive data-oriented system that relies on the
metrics proposed in Section 3 and adjusts its param-
eters according to the archive’s evolution. For exam-
ple, we saw in Section 6 that a large number of dele-
tions can negatively impact Ostrich’s query runtime,
hence, such an event could trigger the construction of
a complete snapshot of the dataset in order to speed-up
VM queries. In the same spirit and assuming some sort
of dictionary encoding, an increase in the vocabulary
dynamicity could increase the number of bits used to
encode the identifiers of RDF terms in the dictionary.
Those changes could be automatically carried out by
the archiving engine, but could also be manually set
up by the system administrator after an analysis with
RDFev. A design philosophy that we envision to ex-
plore divides the history of each graph in the dataset
in intervals such that each interval is associated to a
block file. This file contains a full snapshot plus all the
changesets in the interval. It follows that the applica-
tion of a new changeset may update the latest block
file or create a new one. This action could be automati-
cally executed by the engine or triggered by the system
administrator. For instance, if the archive is the back-
end of a version control system, new branches may al-
ways trigger the creation of snapshots. This base ar-
chitecture should be enhanced with additional indexes
to speed up V queries and adapted compression for the
dictionary and the triples. Finally as we expect long
dataset histories, it is vital for solutions to improve
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their ingestion time complexity, which should depend
more on the size of the changesets rather than in the
history size, contrary to what we observed in Section 6
for Ostrich.

Internal serialization. Archiving multi-graph datasets
requires the serialization of 5-tuples. Classical solu-
tions for metadata in RDF include reification [45], sin-
gleton properties [36], and named graphs [44]. Reifi-
cation assigns each RDF statement (triple or quad) an
identifier t ∈ I that can be then used to link the triple
to its ρ and ζ components in the 5-tuples data model
introduced in Section 2.3. While simple and fully com-
patible with the existing RDF standards, reification is
well-known to incur serious performance issues for
storage and query efficiency, e.g., it would quintuple
the number of triple patterns in SPARQL queries. On
those grounds, Nguyen et al. [36] proposes single-
ton properties to piggyback the metadata in the predi-
cate component. In this vibe, predicates take the form
p#m ∈ I for some m ∈ N and every triple with p in
the dataset. This scheme gives p#m the role of ρ in the
aforementioned data model reducing the overhead of
reification. However, singleton properties would still
require an additional level of reification for the fifth
component ζ. The same is true for a solution based on
named graphs. A more recent solution is HDTQ [18],
which extends HDT with support for quads. An addi-
tional extension could account for a fifth component.
Systems such as Dydra [3] or v-RDFCSA [13] resort
to bit vectors and visibility maps for triples and quads.
We argue that vector and matrix representations may
be suitable for scalable RDF archiving as they allow
for good compression: If we assume a binary matrix
from triples (rows) to graph revisions (columns) where
a one denotes the presence of a triple in a revision,
we would expect rows and columns to contain many
contiguous ones – the logic is analogous for removed
triples.

Formats for publication and querying. A fully func-
tional archiving solution should support the most po-
pular RDF serialization formats for data ingestion and
dumping. For metadata enhanced RDF, this should in-
clude support for N-quads, singleton properties, and
RDF*. Among those, RDF* [28] is the only one that
can natively support multiple levels of metadata (still
in a very verbose fashion). For example RDF* could
serialize the tuple 〈:USA, :dr, :Cuba, ρ, ζ〉 with graph
label (:gl) l(ρ) = :UN and global timestamp (:ts)
ts(ζ) =2020-07-09 as follows:

<<<:USA :dr :Cuba> :gl :UN> :ts “2020-07-09”ˆˆxsd:date>

The authors of [28] propose this serialization as part of
the Turtle* format. Moreover, they propose SPARQL*
that allows for nested triple patterns. While SPARQL*
enables the definition of metadata constraints at dif-
ferent levels, a fully archive-compliant language could
offer further syntactic sugar such as the clauses RE-
VISION [3, 26] or DELTA to bind the variables of a
BGP to the data in particular revisions or deltas. We
propose to build such an archive-compliant language
upon SPARQL*.

8. Conclusions

In this paper we have argued the importance of RDF
archiving for both maintainers and consumers of RDF
data. Besides, we have argued the importance of evo-
lution patterns in the design of a fully-fledged RDF
archiving solution. On those grounds, we have pro-
posed a metric-based framework to characterize the
evolution of RDF data, and we have applied our frame-
work to study the history of three challenging RDF
datasets, namely DBpedia, YAGO, and Wikidata. This
study has allowed us to characterize the history of
those datasets in terms of changes at the level of triples,
vocabulary terms, and entities. It has also allowed us
to identify design shifts in their release history. Those
insights can be used to optimize the allocation of re-
sources for archiving, for example, by triggering the
creation of a new snapshot as a response to a large
changeset.

In other matters, our survey and study of the exist-
ing solutions and benchmarks for RDF archiving has
shown that only a few solutions are available for down-
load and use, and that among those, only Ostrich can
store the release history of very large RDF datasets.
Nonetheless, its design still does not scale to long his-
tories and does not exploit the data evolution patterns.
R4triples [26], R&WBase [47], Quit Store [4], and x-
RDF-3X [35] are also available, however they are still
far from tackling the major challenges of this task,
mainly because, they are conceived for collaborative
version control, which is an application of RDF archiv-
ing in itself. Our survey also reveals that the state of
the art lacks a standard to query RDF archives. We
think that a promising solution is to use SPARQL*
combined with additional syntatic sugar as proposed
by some approaches [3, 20, 26]
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Finally, we have used all these observations to de-
rive a set of design lessons in order to overcome the
gap between the literature and a fully functional so-
lution for large RDF archives. All in all, we believe
that such a solution should (i) support global histories
for RDF datasets, (i) resort to a modular architecture
that decouples the storage from the application lay-
ers, (iii) handle provenance and domain-specific tem-
poral metadata, (iv) implement a SPARQL extension
to query archives, (v) use a metric-based approach to
monitor the data evolution and adapt resource con-
sumption accordingly, and (vi) provide a performance
that does not depend on the length of the history. With
this detailed study and the derived guidelines, we aim
at paving the way towards a ultimate solution for this
problem.

Acknowledgements

This research was partially funded by the Danish
Council for Independent Research (DFF) under grant
agreement no. DFF-8048-00051B and the Poul Due
Jensen Foundation.

References

[1] RDF Exports from Wikidata. Available at tools.wmflabs.org/
wikidata-exports/rdf/index.html.

[2] Stardog. http://stardog.com. Accessed: 2020-06-09.
[3] James Anderson and Arto Bendiken. Transaction-Time

Queries in Dydra. In MEPDaW/LDQ@ESWC, volume 1585 of
CEUR Workshop Proceedings, pages 11–19. CEUR-WS.org,
2016.

[4] Natanael Arndt and Michael Martin. Decentralized Collabora-
tive Knowledge Management Using Git. In Companion Pro-
ceedings of The 2019 World Wide Web Conference, pages 952–
953, 2019. doi:10.1145/3308560.3316523.

[5] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. DBpedia: A Nucleus for
a Web of Open Data. In The Semantic Web, pages 722–735.
2007. doi:10.1007/978-3-540-76298-0_52.

[6] Konstantina Bereta, Panayiotis Smeros, and Manolis
Koubarakis. Representation and Querying of Valid
Time of Triples in Linked Geospatial Data. In Ex-
tended Semantic Web Conference, pages 259–274, 2013.
doi:10.1007/978-3-642-38288-8_18.

[7] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The Se-
mantic Web. Scientific American, 284(5):28–37, 2001. doi:
10.1007/978-0-387-30440-3_478.

[8] Christian Bizer. The Emerging Web of Linked Data. IEEE In-
telligent Systems, 24(5):87–92, 2009. doi:10.1109/MIS.
2009.102.

[9] Nieves R. Brisaboa, Ana Cerdeira-Pena, Antonio Fariña, and
Gonzalo Navarro. A Compact RDF Store Using Suffix Arrays.
In String Processing and Information Retrieval, pages 103–
115, 2015. doi:10.1007/978-3-319-23826-5_11.

[10] Jörg Brunsmann. Archiving Pushed Inferences from Sensor
Data Streams. In Proceedings of the International Workshop
on Semantic Sensor Web, pages 38–46. INSTICC, 2010. doi:
10.5220/0003116000380046.

[11] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles,
Estevam R. Hruschka Jr., and Tom M. Mitchell. Toward an Ar-
chitecture for Never-Ending Language Learning. In Proceed-
ings of the Twenty-Fourth Conference on Artificial Intelligence,
2010. doi:10.5555/2898607.2898816.

[12] Steve Cassidy and James Ballantine. Version Control for
RDF Triple Stores. ICSOFT (ISDM/EHST/DC), 7:5–12, 2007.
doi:10.1142/S0218194012500040.

[13] Ana Cerdeira-Pena, Antonio Fariña, Javier D. Fernández, and
Miguel A. Martínez-Prieto. Self-Indexing RDF Archives. In
DCC, pages 526–535. IEEE, 2016. doi:10.1109/DCC.
2016.40.

[14] The World Wide Web Consortium. PROV-O: The PROV On-
tology. http://www.w3.org/TR/prov-o, 2013.

[15] Ivan Ermilov, Jens Lehmann, Michael Martin, and Sören Auer.
LODStats: The Data Web Census Dataset. In Proceedings
of 15th International Semantic Web Conference - Resources
Track, 2016. URL: http://svn.aksw.org/papers/2016/ISWC_
LODStats_Resource_Description/public.pdf.

[16] Fredo Erxleben, Michael Günther, Markus Krötzsch, Ju-
lian Mendez, and Denny Vrandečić. Introducing Wiki-
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