
Creating Restful APIs over SPARQL
endpoints with RAMOSE
Editor(s): -
Solicited review(s): -
Open review(s): -

Marilena Daquinoa,b, Ivan Heibia,b, Silvio Peronia,b,*, David Shottona,c

a Research Centre for Open Scholarly Metadata, Department of Classical Philology and Italian Studies,
University of Bologna, Bologna, Italy
b Digital Humanities Advanced Research Centre, Department of Classical Philology and Italian Studies,
University of Bologna, Bologna, Italy
c Oxford e-Research Centre, University of Oxford, Oxford, United Kingdom

Abstract. Semantic Web technologies are widely used for storing RDF data and making them available on the Web through
SPARQL endpoints, queryable using the SPARQL query language. While the use of SPARQL endpoints is strongly supported
by Semantic Web experts, it hinders broader use of these data by common Web users, engineers and developers unfamiliar with
Semantic Web technologies, who normally rely on Web RESTful APIs for querying Web-available data and creating applications
with them. To solve this problem, we have developed RAMOSE, a generic tool developed in Python to create REST APIs over
SPARQL endpoints, through the creation of textual configuration files which enable the querying of SPARQL endpoints via
simple Web RESTful API calls that return either JSON or CSV-formatted data, thus hiding all the intrinsic complexities of
SPARQL from common Web users. We provide evidence for the use of RAMOSE to provide REST API access to RDF data
within OpenCitations triplestores, and we show the benefits of RAMOSE in terms of the number of queries made by external
users to such RDF data compared with the direct access via the SPARQL endpoint. Our findings prove the importance for
suppliers of RDF data of having an alternative API access service, which enables its use by users with no (or little) experience
in Semantic Web technologies and the SPARQL query language. Because RAMOSE is generic and can be used with any
SPARQL endpoint, it represents an easy technical solution for service providers who wish to create an API service to access
Linked Data stored as RDF in a conventional triplestore.

Keywords: REST API, OpenCitations, citation data, SPARQL endpoint, RDF, Linked Data, triplestore, RAMOSE, data access,
query language

1. Introduction

Application Programming Interfaces (APIs) are
powerful means of automating communication be-
tween application programs and data services. The
aim of an API is to expose service functions and data
so as to facilitate the interaction with users or (partic-
ularly) machines. In particular, Representational State
Transfer (REST) APIs expose on the Web a set of
stateless operations which enhance performance,

*Corresponding author. E-mail: silvio.peroni@unibo.it.

reliability, and extensive reuse of the Web data re-
sources [1].

Within the Semantic Web domain, the SPARQL 1.1
specifications include a Recommendation for “an ap-
plication protocol for the distributed updating and
fetching of RDF graph content in a Graph Store via the
mechanics of the Hypertext Transfer Protocol (HTTP)”
[2]. Such REST-based access to SPARQL endpoints
has been a common ground used by several Semantic
Web developers to query RDF data available on the
Web [3]. Indeed, several institutions that have adopted

Semantic Web technologies to manage their data –
such as the British Library (http://bnb.data.bl.uk/), US
government (https://www.data.gov/developers/se-
mantic-web), and Wikidata (https://www.wiki-
data.org/) – usually employ such a REST-based ap-
proach to serve their RDF data to users (e.g. Web de-
velopers) and application programs via bespoke spe-
cialised Web interfaces that mediate the interaction
with their SPARQL endpoints.

While SPARQL has widespread adoption among
Semantic Web practitioners [4], it is not popular
within the community of ordinary Web developers and
scholars due to its complexity. The use of SPARQL is
characterised by a very steep learning curve that pre-
vents its widespread adoption in common Web pro-
jects, which usually leverage Web REST APIs to ac-
cess and query data. Thus, the exclusive use of
SPARQL endpoints to expose RDF data prevents easy
access to such data by a large number of stakeholders
with legacy technologies. Indeed, several projects (in-
cluding those of the institutions mentioned above) ac-
company their SPARQL endpoints with ad-hoc Web
REST APIs. Such Web REST APIs are usually hard-
coded, and are difficult to maintain since they require
expertise in both Web and Semantic Web technologies.

There is, thus, an increasing implicit demand for a
generic mechanism that:

1. enables a broader Web audience (Web de-
velopers and scholars) to query RDF data
available in triplestores behind SPARQL
endpoint interfaces without having to use
the SPARQL query language; and

2. allows Semantic Web developers easily
and quickly to provide REST API access
to their RDF data, a situation that we di-
rectly experienced in the context of
OpenCitations [5] (https://opencita-
tions.net/).

OpenCitations is an independent infrastructure or-
ganization for open scholarship dedicated to the pub-
lication of open bibliographic and citation data by the
use of Semantic Web technologies, and engaged in ad-
vocacy for open citations. Initially, the data within the
OpenCitations Corpus [6] were queryable only by us-
ing our SPARQL endpoint. However, we received
several suggestions from people working in different
scholarly disciplines for a more holistic approach for
data querying, to enable users with no skills in Seman-
tic Web technologies to access these data and to reuse
them for building Web applications. In addition to
providing a standard Web REST API for access to our
Corpus data, we also needed a method whereby we
could quickly and easily create new Web REST APIs

to extend such access to new RDF datasets that we
ourselves might publish, while at the same time
providing a generic tool for adoption by the Semantic
Web community as a whole.

To address such needs, we developed RAMOSE,
the Restful API Manager Over SPARQL Endpoints
(https://github.com/opencitations/ramose), which was
explicitly created to foster reusability of RDF data
across common Web applications. While developed to
solve the specific problem of providing REST APIs
for OpenCitations data, RAMOSE has been developed
in a way which permits it to interact with any
SPARQL endpoint, following the rationale we adopt
for all our software development (available at
https://github.com/opencitations), namely: while ad-
dressing the problem at hand, do this in a manner that
provides a generic, open and public tool which can be
reused by others with similar requirements.

RAMOSE is an open source Python software tool
released under an ISC license. It allows one to create
a Web REST API, with the related documentation,
which acts as an interface to one or more SPARQL
endpoints, regardless of the kinds of data hosted in a
RDF triplestore. The creation of an API only requires
the creation of a configuration file in a specific textual
Markdown-like format which includes the SPARQL
queries used by the API to retrieve RDF data. At
OpenCitations, we now use RAMOSE to implement
all the REST APIs introduced at http://opencita-
tions.net/querying.

In this article, we provide a quick introduction to
the context in which we have made this development
(Section 2), followed in Section 3 by a description of
RAMOSE, its architectural model, and how to config-
ure and deploy it. In Section 4, we document how Web
users engaged with OpenCitations data both before
RAMOSE was developed and after we started using it
to provide Web REST API access to OpenCitations
datasets. After a discussion on past works concerning
other software that addresses similar scenarios (Sec-
tion 5), we conclude the article (Section 6) by sketch-
ing out some planned future developments.

2. Background: OpenCitations and its data

OpenCitations formally started in 2010 as a one-
year project funded by JISC (with a subsequent exten-
sion). The project was global in scope, and was de-
signed to change the face of scientific publishing and
scholarly communication, since it aimed to publish
open bibliographic citation information in RDF [3]
and to make citation links as easy to traverse as Web

links. The main deliverable of the project, among sev-
eral outcomes, was the release of an open repository
of scholarly citation data described using the SPAR
(Semantic Publishing and Referencing) Ontologies [7],
and named the OpenCitations Corpus (OCC,
http://opencitations.net/corpus), which was initially
populated with the citations from journal articles
within the Open Access Subset of PubMed Central
(https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/).

At the end of 2015, we set up a new instantiation of
the OpenCitations Corpus [6] based on a new
metadata schema and employing several new technol-
ogies to automate the ingestion of fresh citation
metadata from authoritative sources. From the begin-
ning of July 2016, OCC started ingesting, processing
and publishing reference lists of scholarly papers
available in Europe PubMed Central. Additional
metadata for these citations were obtained from Cross-
ref (https://crossref.org) [8] and (for authors) from
ORCID (https://orcid.org) [9]. Routine ingestion of
new data into OCC from Europe PubMed Central
ceased in December 2017, when it contained
12,652,601 citation links. Since then OCC has been
used as a publication platform for citations derived
from the ExCITE Project (http://excite.west.uni-ko-
blenz.de/website/), the Venice Scholar Project
(https://venicescholar.dhlab.epfl.ch/about) and other
sources, and now contains 13,964,148 bibliographic
citations to 7,565,367 cited publications.

Following our development in 2018 of Open Cita-
tion Identifiers (globally unique PIDs for citations
treated as first-class data entities in their own right
[10]), and using open references supplied by Crossref,
we switched OpenCitations’ bulk publication of cita-
tion links from OCC to COCI, the OpenCitations In-
dex of Crossref open DOI-to-DOI citations [11],
which was first released in July 2018 and currently
contains 721,655,392 bibliographic citations between
58,876,621 DOI-identified publications. Also in July
2018, as a consequence of the development of COCI,
we released the first version of RAMOSE and started
to expose all OpenCitations data via Web REST APIs.

3. RAMOSE: a technical introduction

RAMOSE, the Restful API Manager Over
SPARQL Endpoints, is an open-source application
written in Python which allows the agile development
and publication of documented REST APIs for query-
ing against any SPARQL endpoint. In particular, it is
possible to customize RAMOSE to generate a Web

REST API for the URL of a given SPARQL endpoint
simply by creating an appropriate textual configura-
tion file.

The modularity of RAMOSE allows a complete
definition and customization of API operations and
their input parameters. In addition, it enables one to
apply pre-processing and post-processing steps by us-
ing external Python libraries that can be easily im-
ported, and automatically generates HTML documen-
tation of the API.

RAMOSE has been designed to be consistent with
the following principles:

1. It must work with any legacy RDF triple-
store providing a public SPARQL end-
point.

2. A Semantic Web expert should only be re-
quired initially, to define the SPARQL
queries hidden behind the API operations,
while all the other aspects of the REST
API configuration and use should not re-
quire Semantic Web skills.

3. API operations and their input parameters
must be fully customizable according to
the particular needs of the infrastructure
exposing the data.

4. The configuration file of a RAMOSE-
based API must be easy to write and must
avoid technicalities as much as possible.

5. Pre-processing and post-processing steps,
developed as pure Python functions, must
be specified in any operation, so as to bet-
ter customise the interpretation of the in-
put parameters and call outputs.

6. Basic built-in filters and refinement mech-
anisms must be provided by default.

7. It must be possible to use the REST API
within another Python application, to run
it as a command line application, and to
make it available as a proper service
within a web server.

The source code of RAMOSE, its documentation,
and examples of its use are all available on GitHub at
https://github.com/opencitations/ramose. RAMOSE is
licensed under the ISC License.

3.1. Architecture overview

RAMOSE is a middleware interface between the
data consumer and one or more SPARQL endpoints.
Figure 1 shows an overview of the application. It con-
sists of the application file (i.e. the file ramose.py)

and one or more configuration documents (one for
each Web REST API service that is created by means
of RAMOSE).

The RAMOSE application file handles the follow-
ing aspects: service builder for running API operations,
definition of built-in filters and refinement mecha-
nisms, SPARQL query dispatcher, results format con-
verter (either in CSV or JSON), generation of HTML
documentation, setting up of a web server for testing
purposes.

Each RAMOSE configuration document contains
metadata of the REST API service (name, contacts, li-
cense, description, etc.), the URL of the SPARQL
endpoint to use, the optional specification of a Python
file containing functions that can be used to pre-pro-
cess the API call input parameters and/or to post-pro-
cess the result of the execution of the SPARQL query,
and the definition of all the operations. Each operation
must specify the SPARQL query to run against the
SPARQL endpoint, the URL to call the operation
which includes also the name and shape of its input
parameters, the HTTP method to use for the request,
optional pre-processing/post-processing functions to
execute before/after the execution of the SPARQL
query, the types of all the fields returned by the oper-
ation, and additional documentation text (description
of the operation, example of use, and an exemplar out-
put in JSON).

As shown in Figure 2, every time someone executes
an operation, the related URL of the call is parsed and
the values of the input parameters are retrieved accord-
ing to the shape (i.e. data type and textual form) spec-
ified in the configuration file. The preprocessing func-
tions are executed on the specified input parameters.

Following this preprocessing, any input parameter
included in the SPARQL query of the operation be-
tween [[...]] is replaced with its current value,
and finally the SPARQL query is performed against
the SPARQL endpoint according to the HTTP method
specified. When the SPARQL endpoint returns a re-
sult, RAMOSE runs the post-processing functions on
it, applies filters and refinements if specified in the call
URL, and converts the results either into CSV or into
JSON according to what has been specified in the re-
quest. Where JSON is chosen as the output format, it
is possible to ask RAMOSE, via a particular refine-
ment parameter included in the call URL, to transform
the default JSON outcome into a more structured one.
An example of the whole process is presented in Fig-
ure 2.

3.2. Configuration document

The configuration of the REST API is specified us-
ing a hash-format file (extension: .hf). The hash-for-
mat syntax, shown in Listing 1, is based on Markdown.
An hash-format document includes several key-values
introduced by an hashtag, where the token attached to
the hashtag defines the name of a field and the rest of
the text after the hashtag is a Markdown content acting
as a value associated with that field.

A RAMOSE configuration document includes two
main conceptual sections, as shown in Listing 2. The
first one contains general metadata and mandatory in-
formation about the REST API, and the other one in-
cludes a description of all the operations exposed by

Figure 1. An overview of the main components of RAMOSE.

the REST API. As examples, the RAMOSE configu-
ration documents we use in OpenCitations are availa-
ble at https://github.com/opencitations/api.

Table 1 lists all the fields used in the first section of
the configuration document to describe the REST API,
while Table 2 lists all the fields used to define all the
operations included in the second section of the con-
figuration file. In both sections, #url must be always
the first field of each block.

3.3. Filters and refinements

RAMOSE implements optional filters and refine-
ment mechanisms that can be used to control the re-
sults returned by the API. These can be specified as
HTTP parameters (i.e.
“?<param1>=<value1>&<param2>=<value2
>&...”) in the API call URL.

These filters and refinement mechanisms work in-
dependently from the configuration file, the SPARQL
endpoint specified in it, and the scope of the RDF data
available. They provide common and advanced filter-
ing, sorting, and manipulative functionalities that can
be used with any result set returned by the API. The
operations that can be used are described as follows.

3.3.1. Excluding rows with empty data

Parameter: exclude=<field>. All the rows that
have an empty value in the field <field> specified
as the value of the parameter are removed from the re-
sult set. E.g. exclude=creation removes all the
rows that do not have a value specified in the field
creation.

Figure 2. The workflow implemented by RAMOSE to handle an API call specified via a URL, accompanied by a running example. The yel-
low dotted rectangles are optionally executed since they depend on the call URL (apply filters & refinements, transform JSON) and on the

specification of the executed operations (preprocess, postprocess) contained in the configuration document.

3.3.2. Filtering rows

Parameter: filter=<field>:<opera-
tor><value>. Only the rows compliant with the fil-
ter specified (i.e. <field>:<opera-
tor><value>) are considered in the result returned
by the API call. The term <operator> is not man-
datory.

If <operator> is not specified, <value> is in-
terpreted as a regular expression – e.g. fil-
ter=creation:^20.+ returns the row in which
the value specified in the field creation starts with “20”
and it is followed by one or more characters. Other-
wise, if <operator> is specified, the value of
<field> of each row is compared with <value>
by means of the specified <operator>, that may as-
sume the following values: “=”, “<”, and “>”. The
comparison will be done according to the particular
type associated to the field in consideration, as speci-
fied in #field_type (see Table 2). For instance,
supposing that filter=creation:>2016-05
returns all the rows that have a date greater than 1 May
2016.

3.3.3. Sorting rows

Parameter: sort=<order>(<field>). Sort in
ascending (<order> set to “asc”) or descending
(<order> set to “desc”) order the rows in the result
set according to the values in <field>. For instance,
sort=asc(citing) sorts all the rows according to
the value specified in the field citing in ascending
order.

3.3.4. Formatting results

Parameter: format=<type>. The final table is re-
turned in the format specified in <type> that can be
either “csv” (see Listing 3) or “json” (see Listing 4).
For instance, format=csv returns the final table in
CSV format. It is worth noting that this parameter
takes priority over the format type specified in the
“Accept” header of the HTTP request. Thus, if the
header of a request to the API specifies Accept:
text/csv and the URL of such request includes
format=json, the final table is returned in JSON.

Table 1. The key-value pairs containing general information about
the API.

#<field> <value> Description
#url <api_base> The base URL of the API (e.g.

“/api/v1”)
#type api The section type – only “api” is al-

lowed
#base <base_url> The base URL of the webpage from

which the API is available (e.g.
“https://w3id.org/oc/in-
dex”)

#method <get|post> The HTTP methods supported, that can
be “get”, “post”, or both

#title
<api_title>

The title or name of the API

#description
<api_description>

A textual description of the API

#version
<version_number>

The textual string defining the version
of the API

#license
<license>

The textual string defining information
about the licenses associated to the API,
the data it returns, etc.

#contacts
<contact_url>

The contact information for the API.

#endpoint
<endpoint_url>

The SPARQL endpoint URL to query

#addon
<addon_file_name>

The path of a Python file implementing
functions that can be called in the pre-
processing and postprocessing steps of
each operation

#<field_name_1> <field_value_1>
#<field_name_1> <field_value_2>
#<field_name_3> <field_value_3>
...
#<field_name_n> <field_value_n>

Listing 1. The hash-format syntax.

#url <api_base>
#type api
#title <api_title>
#description <api_description>
#version <version_number>
#endpoint <sparql_endpoint_url>
…

#url <operation_url_1>
#type operation
#sparql <sparql_query_1>
…

#url <operation_url_2>
#type operation
#sparql <sparql_query_2>
…

Listing 2. An excerpt of the structure of a RAMOSE configu-

ration document, organised in two conceptual sections: the
one with information about the API (in italic in the listing),
and the other describing all the operations that the API ex-

poses.

3.3.5. Transforming JSON results

Parameter: json=<op>("<sep>",<field>,
<new_field_1>,<new_field_2>,...). When the
JSON format is requested in the data return (see pre-
vious subsection), it is possible to transform each row
of the final JSON table according to the rule specified.
Two possible operations <op> can be specified: “ar-
ray” and “dict”.

If <op> is set to “array”, the string value associated
with the field <field> is converted into an array by
splitting the various textual parts at locations identi-
fied by means of the separator <sep>. For instance,
considering the JSON shown in Listing 4, the execu-
tion of array("/",cited) returns the JSON
shown in Listing 5.

Instead, if <op> is set to “dict”, the value associ-
ated with <field> is converted into a JSON object
by splitting the various textual parts using the separa-
tor <sep> by associating each of these split strings ac-
cording to the new fields specified <new_field_1>,

<new_field_2>, etc. For instance, considering the
JSON shown in Listing 5, the execution of
dict("/",citing,prefix,suffix) returns
the JSON shown in Listing 6.

It is worth mentioning that, in cases where the value
of the field has already been converted to a list of
strings, the “dict” operation still works, and will be ap-
plied to all the strings contained in such a list. For in-
stance, considering the JSON shown in Listing 6, the
execution of dict("0",cited,one,two) re-
turns the JSON shown in Listing 7.

3.3.6. Application of the filters and refinement
mechanisms

In an API call, it is possible to specify one or more
parameters of the same kind if you want to run the
same filter and/or refinement multiple times. For in-
stance, exclude=citing&exclude=cited ex-
cludes from the result all the rows that have unspeci-
fied the value of either the field citing or the field
cited.

Table 2. The key-value pairs defining each operation of the API. All the fields accompanied with an “[O]” are optional in the configuration
file.

#<field> <value> Description
#url
<operation_url>

The URL of the operation. It may contain zero or more parameters name between {…} (e.g. “/cita-
tions/{doi}”)

#type operation The section type – only “operation” is allowed
#<param>
<type>(<regex>) [O]

The shape (type and textual form) an input parameter of the operation must have (e.g. “str(10\..+)”). Possible
types are strings (“str”, which is the default value), integers (“int”), floating numbers (“float”), durations
(“duration”), and date times (“datetime”). The regular expression is used to catch the value of the parameter
from the URL.

#preprocess
<functions> [O]

The Python functions used to preprocess the input parameters. One can specify one or more functions separated by
“-->” which must take in input the name of one or more parameters (separated by a comma) between curly brackets,
(e.g. “lower(doi) --> encode(doi)”)

#postprocess
<functions> [O]

The Python functions used to postprocess the results returned after the execution of the SPARQL query. One can
specify one or more functions separated by “-->” which must take in input the name of zero or more variables
(separated by a comma) returned by the SPARQL query between curly brackets (e.g. “decode_doi(citing,
cited)”)

#method <get|post> The HTTP method used to send the request to the SPARQL endpoint for this operation, that can be either “get” or
“post”

#description
<op_description>

A textual description of the operation

#field_type
<var_type_list>

A list of types of the variables that will be returned by executing the operation, split by a space
(“<type1>(<var1>) <type2>(<var2>) …”) accompanied by their type – e.g. “str(oci)
datetime(creation) duration(timespan)”. Possible types are strings (“str”, which is the default
value), integers (“int”), floating numbers (“float”), durations (“duration”), and date times (“datetime”)

#call
<ex_request_call>

The URL of an example of an API call (e.g. “/citations/10.1108/jd-12-2013-0166”)

#output_json
<ex_response>

An example in JSON format of the results expected by the execution of the example call

#sparql
<sparql_query>

The SPARQL query to perform on the specified SPARQL endpoint. The query may include any input parameter of
the operation between “[[...]]” (e.g. “[[doi]]”) which is replaced with its current value before calling the
SPARQL endpoint

The order in which each parameter of the same type
of a filter/refinement is run by RAMOSE depends on
the order in which it is specified in the URL. However,
the order of execution of the particular types of fil-
ter/refinement do not follow the actual order in the
URL of the API call. Rather, RAMOSE first processes
exclude, then filter, which is followed by sort.
Then it applies format and, if the requested format
is JSON, it finally executes json.

3.4. Run and deploy RAMOSE

There are three ways to run RAMOSE. First, one
can use its command line interface (CLI) to execute it.
Second, it can be executed directly within a web server.
Finally, it can be used directly within a Python code
by using its main class, i.e. APIManager. These pos-
sibilities are described in the following subsections.

3.4.1. Command line interface (CLI)

RAMOSE can be run via CLI by specifying one or

more configuration documents (parameter -s) and the
operation to call (parameter -c), composed by concat-
enation of the API base URL with the operation URL,
plus the wanted parameters for filtering and refining if
needed. Also, it can take as input additional optional
parameters (a) to specify the format of the output (pa-
rameter -f, JSON being the default), (b) to specify the

[
 {
 "citing":"10.3233/ds-190019",
 "cited":"10.1108/jd-12-2013-0166"
 },
 {
 "citing":"10.3233/sw-160224",
 "cited":"10.1108/jd-12-2013-0166"
 },
 …
]

Listing 4. The same result set returned by RAMOSE shown

in Listing 3, but in JSON format.

[
 {
 "citing":"10.3233/ds-190019",
 "cited":["10.1108","jd-12-2013-0166"]
 },
 {
 "citing":"10.3233/sw-160224",
 "cited":["10.1108","jd-12-2013-0166"]
 },
 …
]

Listing 5. The same result in JSON shown in Listing 4, trans-
formed according to the rule array("/",cited), which

splits the string value of the field cited according to the
separator / and organises the resulting strings into a list.

[
 {
 "citing":{"prefix":"10.3233",
 "suffix":"ds-190019"},
 "cited":["10.1108","jd-12-2013-0166"]
 },
 {
 "citing":{"prefix":"10.3233",
 "suffix": "sw-160224"},
 "cited":["10.1108","jd-12-2013-0166"]
 },
 …
]

Listing 6. The same result in JSON shown in Listing 5, trans-
formed according to the rule dict("/",citing,pre-
fix,suffix), which splits the string value of the field
citing according to the separator / and organises the re-
sulting strings into a JSON object with the new field labels

prefix and suffix.

[
 {
 "citing":{"prefix":"10.3233",
 "suffix": "ds-190019"},
 "cited":[
 {"one":"1","two":".1108"},
 {"one":"jd-12-2","two": "13-0166"}
]
 },
 {
 "citing":{"prefix":"10.3233",
 "suffix": "sw-160224"},
 "cited":[
 {"one":"1","two":".1108"},
 {"one":"jd-12-2","two": "13-0166"}
],
 },
 …
]

Listing 7. The same result in JSON shown in Listing 6,
transformed according to the rule

dict("0",cited,one,two), which splits each string
value of the list in the field cited according to the separator
0 and organises the resulting strings into a JSON object ac-

cording to the new fields one and two.

citing,cited
10.3233/ds-190019,10.1108/jd-12-2013-0166
10.3233/sw-160224,10.1108/jd-12-2013-0166
…

Listing 3. A result set returned by RAMOSE in CSV format.

name of the file in which to store the output (parameter
-o, (the output is printed in the shell output stream if
a filename is not specified), and (c) to specify the
method to use for the API request (parameter -m, GET
being the default). The template of a CLI call of RA-
MOSE is shown as follows:

python ramose.py
 -s <conf_files>
 -c <api_base><operation_url>?<params>
 -f <csv|json>
 -o <output_name>
 -m <get|post>

RAMOSE can also create an HTML documentation

of the API described in a configuration file. Specifi-
cally, the HTML documentation is requested by using
the -d parameter, the HTML document returned by
RAMOSE can be stored in a file (parameter -o, as
shown before) and, if needed, an additional CSS file
can be specified to customise the layout of the docu-
ment (parameter -css). The template of a CLI call of
RAMOSE to generate the documentation is shown as
follows:

python ramose.py
 -s <conf_file>
 -d
 -o <output_name>
 -css <css_file_path>

3.4.2. Web server

RAMOSE can also be used within a web server

which is instantiated by using the parameter -w spec-
ifying the IP address of the host and the related port
separated by “:” (e.g. 127.0.0.1:8080). RA-
MOSE uses Flask to run the web server on the speci-
fied host machine. To deploy the REST API in lo-
calhost (i.e. 127.0.0.1), one can use the following
command:

python ramose.py
 -s <conf_files>
 -w <host:port>
 -css <css_file_path>

The web API application raised by the web server

can be open by using a browser at the host and port
specified (e.g. http://127.0.0.1:8080) and
includes a basic dashboard for tracking API calls
(available at http://<host>:<port>), and a
documentation of the REST API (available at
http://<host>:<port>/<api_base>).

3.4.3. Python class

RAMOSE The Python class APIManager imple-

ments all the functionalities made available by RA-
MOSE. The signature of the class is as follows:

APIManager(conf_files)

The constructor of the class takes as input a list of

API configuration files defined according to the hash
format, and makes all the operations they define avail-
able to call using the following method:

exec_op(op_complete_url,method,content_type)

This method takes as input a string containing the

complete URL of the operation to execute, i.e.
<api_base> plus <operation_url> such as
"/api/v1/citations/10.1108/JD-12-
2013-0166", the string describing the method to use
to call the SPARQL endpoint (either "get" or
"post"), and the content type (i.e. the format) of the
result returned by the call (either "csv" or "json").
The method returns a tuple of two items. The first item
contains the status code of the HTTP response, while
the second item contains the string of the results in the
requested format.

4. Use of REST APIs in OpenCitations

In order to understand the effects that the introduc-
tion of RAMOSE can bring for access to and reuse of
data stored in RDF and usually queryable by a
SPARQL endpoint, we analysed the logs of the re-
quests to OpenCitations services between January
2018 and March 2020. This period is particularly
meaningful, since the first REST API made available
by OpenCitations was released in June 2018, before
which our data was available only through SPARQL
endpoints. The logs thus allowed us to understand the
extent to which introduction of the REST API, imple-
mented with RAMOSE, changed the way users inter-
act with OpenCitations data.

We compared the number of total SPARQL queries
made against the OpenCitations SPARQL endpoints –
via HTTP calls, the Opencitations SPARQL GUI edi-
tor, and the search/browse interfaces available on the
website (excluding those coming from RAMOSE)
with the number of all the REST API calls received in
the same period. The results, split by trimester for the
sake of readability, are shown in Figure 3.

In this Figure, the blue bars show usage employing
the OpenCitations SPARQL endpoints directly or us-
ing the other available non-API services, while the
yellow bars show access using the APIs created with
RAMOSE. The increase in overall usage of OpenCi-
tations datasets following the introduction of the APIs
may be attributed both to the increased ease of access
to OpenCitations data that these APIs make possible,
thus attracting use by people unfamiliar with SPARQL,
and also to the launch in June 2018 of COCI (Heibi et
al., 2019a), which for the first time made available
through OpenCitations the hundreds of millions of ci-
tations derived from open references at Crossref.

While there is some fluctuation in the quarterly fig-
ures, there has been a significant increase in the aver-
age number of API calls since T3-2018, and a signifi-
cant declining trend in the interaction with the other
SPARQL services. That trimester could be considered
the turning point, since at that time several developers
with no or limited expertise with Semantic Web tech-
nologies started to build prototype applications using
the OpenCitations data newly available via the REST
API. In that trimester, the total number of accesses to
the REST API was 138% of the number of accesses to
the other SPARQL services. In subsequent trimesters,
the use of the original SPARQL services decreased
substantially to become stable at about 30,000 re-
quests per month, while the number of REST API calls
increased dramatically, reaching a total number of
4,394,093 calls in T1-2020. These figures point to sub-
stantial benefits from the adoption of RAMOSE with
regards to increasing user interaction with

OpenCitations data. All the data shown in Figure 3 are
available on Zenodo [12].

The flexibility of RAMOSE enabled the simple cre-
ation of additional REST APIs for each of the new da-
tasets released by OpenCitations. Since the first REST
API was released in June 2018, three other REST APIs
have been released, as described at http://opencita-
tions.net/querying, with all the configuration docu-
ments being available at https://github.com/opencita-
tions/api.

Other REST APIs based on RAMOSE, for services
external to OpenCitations, have been developed to ad-
dress specific tasks. For instance, during the Hack Day
of the 2018 Workshop on Open Citations
(https://workshop-oc.github.io/2018/), we developed
an exemplar REST API service (still available at
http://opencitations.net/wikidata/api/v1) to extract
scholarly metadata from the Wikidata SPARQL end-
point (https://query.wikidata.org). This REST API has
been used by the citation network visualisation tool
VOSviewer [13] (https://www.vosviewer.com) to dis-
play the citation network within more than 5,000 pa-
pers in the Wikidata Zika Corpus (https://twit-
ter.com/ReaderMeter/status/1037349669335126016).

In addition to VOSviewer, the REST APIs devel-
oped by OpenCitations using RAMOSE have been ex-
tensively used in several other software and data ser-
vices. Those of which we are aware are Citation Gecko
(https://citationgecko.com), OpenAccess Helper
(https://www.oahelper.org), DBLP (https://dblp.uni-
trier.de), CiteCorp (https://github.com/ropenscil-
abs/citecorp), and Zotero

Figure 3. The number of requests received by the OpenCitations SPARQL endpoints vs. the calls to the OpenCitations REST APIs between
January 2018 and March 2020 – listed by trimester. The orange line represents the moving average of the number of Web REST API calls.

Note that the vertical axis has a logarithmic scale.

(https://github.com/zuphilip/zotero-open-citations).
Our interactions with the developers of those services
have been instrumental in guiding the development of
the facilities that RAMOSE makes available, includ-
ing the filters and refinement mechanisms that have
demonstrated their usefulness is several scenarios, and
have led, for example, to the adoption of JSON as the
default data format returned by RAMOSE, to meet to
the input requirements of VOSviewer.

5. Related works

In the past, several tools, in particular REST APIs
on top of SPARQL endpoints, have been developed to
leverage RDF data served through SPARQL query in-
terfaces, often employing bespoke solutions tailored to
their data, such as the DBpedia REST APIs
(https://wiki.dbpedia.org/rest-api) and the Europeana
Search API (https://pro.europeana.eu/page/search).
Among works that are closer to what RAMOSE pro-
vides, the following deserve specific mention.

BASIL [14] is a cloud platform that supports shar-
ing and reusing of SPARQL queries, and automati-
cally generates Web APIs from those, which can be
easily embedded into users' applications. Moreover, it
allows one to reuse results as HTML snippets, called
“views”. While pre-processing operations are possible,
the only way to undertake post-processing operations
is separately to implement ad-hoc procedures on the
returned results. BASIL runs using Java and requires
the installation and configuration of a MySQL server
on the running machine.

Another important tool in this category is grlc
(http://grlc.io/) [15], a lightweight server that trans-
lates on the fly to Linked Data API calls SPARQL
queries stored in a GitHub repository, in a local
filesystem, or listed at a URL. The idea behind grlc is
to implement an API mapping along with the use of
SPARQL decorators which extends the original que-
ries with other generated metadata which add extra
functionalities to the APIs. In order to make this hap-
pen, the specified archive must contain a collection of
SPARQL queries as .rq files and include the decora-
tors as comments inside each .rq file. With grlc the
pre-/post-processing operations are defined as decora-
tors, and each API call can point to a different
SPARQL endpoint by specifying the decorator “end-
point” before the SPARQL query.

A useful add-on to integrate with the grlc, suggested
by its authors, is SPARQL Transformer [16]. This tool
allows one to simplify the JSON outputs of a SPARQL

query by re-shaping and simplifying the final JSON
schema. SPARQL Transformer relies on a single
JSON object to define which data should be extracted
from the endpoint and what shape should they assume.
Although this approach refines the final output, using
it alone does not allow one to perform custom opera-
tions on the returned results (e.g. data normalisation or
cleansing), which are delegated to separated post-pro-
cessing operations, e.g. using the grlc features, or ad-
hoc functions. SPARQL Transformer is written in Ja-
vaScript and can be imported and integrated in an
HTML module.

In [17], Schröder et al. present a generic approach
to convert any given SPARQL endpoint into a path-
based JSON REST API. This work focused mostly on
simple CRUD (create, retrieve, update, delete) work-
flows. The idea behind this approach is to build API
paths that follow RDF triple patterns, e.g. the call
/class/dbo:Country/dbr:Germany returns
a JSON object for the specified entity (i.e. the DBpe-
dia resource representing Germany). Despite being
very intuitive for Semantic Web practitioners, it is not
of immediate usage for adopters that are not ac-
quainted both with RDF knowledge organisation and
the scope of the dataset at hand.

In [18], Hopkinson et al. propose a set of parame-
terized SPARQL queries to access the RDF data
stored in the KnowledgeStore system, along with
other calls to the dataset CRUD (create, retrieve, up-
date, delete) endpoint. This work has been tested by
means of a user study and revealed positive reactions
from users unfamiliar with Semantic Web technolo-
gies. However, operations are tailored on legacy data,
and customisation requires the development of spe-
cific code for each application.

SpectQL (http://docs.thedatatank.com/4.3/spectql)
is an ad-hoc query language based on the API calls
style, created by datatank for querying its RDF da-
tasets. It is bound to legacy technologies (datatank),
only allows one to perform a restricted number of op-
erations, and does not support RDF data query (for
which SPARQL queries have to be specified instead).

In addition to the tools mentioned above, other
SPARQL editor interfaces have been published in the
past, with the aim of assisting users in querying
against SPARQL endpoints by means of a user-
friendly GUI, e.g. YASGUI [19]. Such tools are meant
to allow users to perform exploratory queries, but do
not offer means to programmatically access data.
Moreover, these are usually hard to use by users with
no knowledge of SPARQL.

Another class of tools include WYSIWYG web ap-
plications for searching and browsing RDF data by
hiding the complexity of SPARQL. Such tools include
general-purpose RDF search engines and GUI inter-
faces, such as Pubby (http://wifo5-03.informatik.uni-
mannheim.de/pubby/), LodView [20], our own search
interface OSCAR [21], Scholia [22], Elda
(http://www.epimorphics.com/web/tools/elda.html),
and BioCarian [23].

6. Conclusions

In this article, we have introduced RAMOSE, the
Restful API Manager Over SPARQL Endpoints. RA-
MOSE is an open source Python software develop-
ment that allows one to create Web REST API inter-
faces to one or more SPARQL endpoints by editing a
configuration file in Markdown-like syntax, automat-
ically generating documentation and a web server for
testing and monitoring purposes. This generic soft-
ware can be used over any SPARQL endpoint simply
by creating the appropriate configuration text file. We
have illustrated all the features that RAMOSE imple-
ments and we have presented the analysis of our mo-
tivating scenario, namely the dramatic increase in us-
age of OpenCitations data demonstrated by our access
logs, so as to demonstrate the benefit that such a tool
has brought to OpenCitations in terms of user interac-
tion with its data. We commend the use of RAMOSE
to others wishing to expose their own RDF data via a
REST API.

In the future, we aim at extending RAMOSE with
missing CRUD (Create, Read, Update, Delete) opera-
tions so as to fully support Semantic Web developers
when interacting with the triplestores they own. Sec-
ondly, we want to enhance RAMOSE capabilities and
support web developers in interacting with other types
of data sources, such as JSON, XML, CSV data dumps
and relational databases, so that it will be possible to
leverage the same software solution over different data
sources.

References

[1] R. T. Fielding, ‘REST APIs must be hypertext-driven’, Untan-
gled musings of Roy T. Fielding, Oct. 20, 2008.
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hyper-
text-driven.

[2] C. Ogbuji, ‘SPARQL 1.1 Graph Store HTTP Protocol’, World
Wide Web Consortium, W3C Recommendation, Mar. 2013.
[Online]. Available: https://www.w3.org/TR/sparql11-http-
rdf-update/.

[3] R. Cyganiak, D. Wood, and M. Krötzsch, ‘RDF 1.1 Concepts
and Abstract Syntax’, World Wide Web Consortium, W3C
Recommendation, Feb. 2014. Accessed: Jun. 21, 2019.
[Online]. Available: https://www.w3.org/TR/rdf11-concepts/.

[4] S. Harris and A. Seaborne, ‘SPARQL 1.1 Query Language’,
World Wide Web Consortium, W3C Recommendation, Mar.
2013. Accessed: Jun. 21, 2019. [Online]. Available:
https://www.w3.org/TR/sparql11-query/.

[5] S. Peroni and D. Shotton, ‘OpenCitations, an infrastructure or-
ganization for open scholarship’, Quantitative Science Studies,
vol. 1, no. 1, pp. 428–444, Jan. 2020, doi: 10.1162/qss_a_00023.

[6] S. Peroni, D. Shotton, and F. Vitali, ‘One Year of the OpenCi-
tations Corpus’, in The Semantic Web – ISWC 2017, Cham,
Switzerland, 2017, vol. 10588, pp. 184–192, doi: 10.1007/978-
3-319-68204-4_19.

[7] S. Peroni and D. Shotton, ‘The SPAR Ontologies’, in The Se-
mantic Web – ISWC 2018, Cham, Switzerland, 2018, vol.
10842, pp. 119–136, doi: 10.1007/978-3-030-00668-6_8.

[8] G. Hendricks, D. Tkaczyk, J. Lin, and P. Feeney, ‘Crossref: The
sustainable source of community-owned scholarly metadata’,
Quantitative Science Studies, vol. 1, no. 1, pp. 414–427, Feb.
2020, doi: 10.1162/qss_a_00022.

[9] L. L. Haak, M. Fenner, L. Paglione, E. Pentz, and H. Ratner,
‘ORCID: a system to uniquely identify researchers’, Learned
Publishing, vol. 25, no. 4, pp. 259–264, Oct. 2012, doi:
10.1087/20120404.

[10] S. Peroni and D. Shotton, ‘Open Citation Identifier: Definition’.
Figshare, Jan. 23, 2019, Accessed: Jun. 21, 2019. [Online].
Available: https://doi.org/10.6084/m9.figshare.7127816.

[11] I. Heibi, S. Peroni, e D. Shotton, ‘Software review: COCI, the
OpenCitations Index of Crossref open DOI-to-DOI citations’,
Scientometrics, vol. 121, n. 2, pagg. 1213–1228, set. 2019, doi:
10.1007/s11192-019-03217-6

[12] M. Daquino, I. Heibi, S. Peroni, and D. Shotton, ‘OpenCitations
2018-2020 requests: SPARQL endpoints vs REST APIs v2’.
Zenodo, Jul. 13, 2020, doi: 10.5281/ZENODO.3953068.

[13] N. J. van Eck and L. Waltman, ‘Software survey: VOSviewer,
a computer program for bibliometric mapping’, Scientometrics,
vol. 84, no. 2, pp. 523–538, Aug. 2010, doi: 10.1007/s11192-
009-0146-3.

[14] E. Daga, L. Panziera, and C. Pedrinaci, ‘BASIL: A Cloud Plat-
form for Sharing andReusing SPARQL Queries as Web APIs’,
in ISWC-P&D 2015 - ISWC 2015 Posters & Demonstrations
Track, Aachen, Germany, 2015, vol. 1486, [Online]. Available:
http://ceur-ws.org/Vol-1486/paper_41.pdf.

[15] A. Meroño-Peñuela and R. Hoekstra, ‘grlc Makes GitHub Taste
Like Linked Data APIs’, in The Semantic Web, vol. 9989, H.
Sack, G. Rizzo, N. Steinmetz, D. Mladenić, S. Auer, and C.
Lange, Eds. Cham: Springer International Publishing, 2016, pp.
342–353.

[16] P. Lisena, A. Meroño-Peñuela, T. Kuhn, and R. Troncy, ‘Easy
Web API Development with SPARQL Transformer’, in The Se-
mantic Web – ISWC 2019, vol. 11779, C. Ghidini, O. Hartig, M.
Maleshkova, V. Svátek, I. Cruz, A. Hogan, J. Song, M.
Lefrançois, and F. Gandon, Eds. Cham: Springer International
Publishing, 2019, pp. 454–470.

[17] M. Schröder, J. Hees, A. Bernardi, D. Ewert, P. Klotz, and S.
Stadtmüller, ‘Simplified SPARQL REST API: CRUD on JSON
Object Graphs via URI Paths’, in The Semantic Web: ESWC
2018 Satellite Events, vol. 11155, A. Gangemi, A. L. Gentile,
A. G. Nuzzolese, S. Rudolph, M. Maleshkova, H. Paulheim, J.
Z. Pan, and M. Alam, Eds. Cham: Springer International Pub-
lishing, 2018, pp. 40–45.

[18] I. Hopkinson, S. Maude, and M. Rospocher, ‘A Simple API to
the KnowledgeStore’, in ISWC-DEV 2014 - ISWC Developers

Workshop 2014, Aachen, Germany, 2014, vol. 1268, [Online].
Available: http://ceur-ws.org/Vol-1268/paper2.pdf.

[19] L. Rietveld and R. Hoekstra, ‘The YASGUI family of SPARQL
clients’, Semantic Web, vol. 8, no. 3, pp. 373–383, Dec. 2016,
doi: 10.3233/SW-150197.

[20] D. V. Camarda, S. Mazzini, and A. Antonuccio, ‘LodLive, ex-
ploring the web of data’, in Proceedings of the 8th International
Conference on Semantic Systems - I-SEMANTICS ’12, Graz,
Austria, 2012, p. 197, doi: 10.1145/2362499.2362532.

[21] I. Heibi, S. Peroni, and D. Shotton, ‘Enabling text search on
SPARQL endpoints through OSCAR’, Data Science, vol. 2, no.
1–2, pp. 205–227, Nov. 2019, doi: 10.3233/DS-190016.

[22] F. Å. Nielsen, D. Mietchen, and E. L. Willighagen, ‘Scholia,
Scientometrics and Wikidata’, in The Semantic Web: ESWC
2017 Satellite Events, vol. 10577, Cham, Switzerland: Springer
International Publishing, 2017, pp. 237–259.

[23] N. Zaki and C. Tennakoon, ‘BioCarian: search engine for ex-
ploratory searches in heterogeneous biological databases’,
BMC Bioinformatics, vol. 18, no. 1, Dec. 2017, doi:
10.1186/s12859-017-1840-4.

