
 1

 G-OWL: A Complete Visual Syntax for OWL 2 Ontology
Modeling and Communication

Michel Héon a [0000-0001-7515-6382] and Gilbert Paquette b [0000-0002-2898-3462]
a Cotechnoe Inc and UQAM Université du Québec à Montréal, Montréal, Canada, heon@cotechnoe.com

b LICEF Research Institute, Université TELUQ, Montréal, Canada, gilbert.paquette@licef.ca

Abstract. Semantic web ontologies are usually modeled using standard text-based syntaxes such as OWL/XML, Functional,
Manchester or Turtle. Over recent years, there has been an increasing need for representing ontologies visually to help
ontological engineers or modelers represent elicited knowledge from domain expert, big data, model data structures or simply
present data schemas and metadata to general users. We believe a visual representation is an essential way for understanding
knowledge and to help elaborate formal ontologies for their communication and their use by humans. In this paper, we present
the Graphical Ontology Web Language (G-OWL), a visual syntax for the graphical modeling and visualization of OWL 2 or
RDFS ontologies. In line with previous research in cognitive science, G-OWL uses syntactic and semantic principles that
simplify both its use and its interpretation. Indeed, the use of typology and polymorphism makes it possible to minimize the
number of visual signs in a grammar, thus reducing the cognitive load on users, while preserving the formal character of the
ontology. This G-OWL visual syntax is integrated in a software tool called OntoCASE4G-OWL to support the elaboration of
ontologies and their translation to standard text-based syntaxes such as Turtle. This paper aims to present the definition of the
G-OWL visual syntax and to demonstrate its highly readable character through an objective assessment of criteria such as:
semiotic clarity, semantic transparency and graphic complexity. The G-OWL visual syntax will also be compared with other
visual syntaxes and will be evaluated in order to measure its highly human-readability in reading activities, modeling or new
knowledge deduction by novice, intermediate and expert in ontology modeling.

Keywords: Semantic web, ontology modleing, ontology engineering, visual ontology, visual ontology modeling theory, visual knowledge
representation, visual notation evaluation, web ontology language

1. Intrroduction

The Semantic Web has witnessed huge
developments since its inception at the beginning of
the century. Ontologies are now in use in many fields
such as medicine, science, e-commerce, as well as in
library and educational applications, to name but a
few, and it addresses both organizational needs [1] for
knowledge representation and knowledge
computation. The rapid growth of the Web of Linked
Data, and the necessity of knowledge representation
requires new skills and tools from users to visualize
the structure of an ontology and for modelers to assure
its inception and evolution.

In this paper, we present a human-readable visual
concrete syntax, the Graphical Web Ontology

Language (G-OWL), which has the following
characteristics: 1) its syntax is completely visual; 2) its
semantic is easily interpretable by humans from the
visual representation; 3) its symbols have semantic
correspondents in W3C recommended semantic web
syntax and the visual graph can be exported to W3C
standard text-based machine-readable representations,
while being more readily interpretable; 4) compared to
semantic web ontology language its syntax contains a
limited number of visual symbols to be easily
manageable for modeling and communication to
human readers and designers.

 The OWL 2 Standard Textual Syntaxes

Recommended by the World Wide Web
Consortium (W3C), the Web Ontology Language

 2

(OWL) [2, 3] has now become the “lingua franca” for
the definition of ontologies and for software
engineering based on ontologies. According to
section 2 of the OWL 2 Document Overview [2], an
ontology contains two layers: the semantic layer that
retains its meaning and the syntactic layer that captures
the concrete notation enabling its serialization.

From the beginning, despite its RDF [4] and
RDFS [5] graph basis, the main preoccupation of the
W3C has focused on enabling machine readability and
securing its use in software applications. Thus far, the
formal concrete syntax for OWL [2, 3, 6]
recommended by the W3C, such as OWL/XML [7],
Turtle [8], Functional syntax [9], or Manchester
Syntax [10] are all text-based syntaxes readable only
by skilled computer scientists (Table 1).

Table 1

Purpose of W3C Semantic Web Concrete Syntax Specifications

The linear textual descriptions involved in these
standards blur the structure of the ontology and makes
it difficult to design new ontologies. Alternatively,
ontologies are sometimes represented using limited
graphs for explanation purposes, but there is yet no
W3C recommendation for a formal visual concrete
syntax for OWL 2 ontology edition, modeling or
visualization.

 Ontology Visual Syntaxes

It is usually agreed upon that a visual notation is
more easily readable and understandable than a text-
based representation. In the case of formal
representations [11] that can be processed by
computers such as Unified Modeling Language

1 This study entitled Designing and Communicating
Ontologies Visually is being evaluated for publication in
the IOS Semantic Web Journal.

(UML) [12] or the Business Process Modeling
Notation (BPMN) [13], their interpretation seems
more difficult for novice users, as shown by some
experiments [14, 15]. Contrary to semi-formal visual
languages, formal representations require that each
visual symbol has a unique non ambiguous meaning
that must be respected.

For these reasons, there is currently a renewed
interest in visual notations for ontologies. Actually,
popular ontology engineering tools, such as
Protégé [16], NeOn toolkit [17] or TopBraid
Composer [18] offer many visualization
functionalities, but do not support a complete or easy-
to-use visual ontology modeling that would facilitate
ontology design, development and use. Also, various
proposals have been made such as ODM [19, 20],
VOWL [21], OWLGrEd [22, 23], GrOWL [24],
Graffoo [25], Eddy/Graphol [26, 27], and our own
MOT-OWL[28, 29]. To date, no visual notation has
clearly emerged or has achieved wide usage.

In his study of visual notations such as UML and
BPMN, Moody [30] states some design principles for
a Physics of Notation Theory (PoNT) that are
particularly useful for the present research. In a
previous study1, we have applied these principles to
evaluate and compare the various proposals for an
Ontology Visual Language. This preliminary study
has helped us uncover guidelines for the G-OWL
language to be presented here.

 A Solution Inspired by Semi-Formal Notations

Some field studies show that design and
interpretation efficiency of visual notations is
increased when the visual notation is more flexible,
such as in semi-formal visual notations [11], such as
Mind Mapping [31], Concept Mapping [32] or
Modeling using Object Types (MOT) [33, 34]. These
notations have proven their cognitive efficiency [35-
37] and a high level of human readability for Visual
Knowledge Modeling. They can be used at the early
stages of ontology design to promote knowledge
transfer [38] from content experts to computer

 3

scientist in organizations or to support learning
design [35] for education and training. Afterwards, the
semiformal graphs provide a basis for the more formal
design that is needed for an ontology.

Some common properties of semi-formal visual
notation (e.g. polysemy) might explain their
efficiency. They provide a minimal number of visual
symbols. According to Miller [39] a limited number of
symbols decreases the cognitive load [40] involved in
their processing. As a consequence, polysemic semi-
formal notations increase the semantic content of each
symbol in the mind of their users, helping them accept
some syntactic ambiguity that they can disambiguate.

For example, in the MOT language, there is a total
of 8 visual symbols for entities and 6 kinds of links
between them. Various geometric forms represent
types of knowledge such as facts, concepts, procedures
or principles and their instances. Oriented arrows
represent various types of links between them. The
same symbol for specialization links is used between
concepts, procedures or principles. The different
meanings involved are disambiguated by the context.
Also, the input/product link between a concept and a
procedure is interpreted differently according to its
direction, as “input” from concept to procedure, or as
“product” from procedure to concept.

Our goal in this paper is to apply similar principles
to represent visually the OWL 2 languages.

 Previous Work on Visual Language and Tools

Our multidisciplinary research in the field of visual
modeling started at the end of the nineties [41], leading
to a set of visual knowledge modeling languages and
editing tools: MOT [34, 41, 42], MOTplus [43] and G-
MOT [44, 45] based on typed knowledge entities and
links. During the earliest phase of our research
program, the goal was to synthesize various visual
formalisms such as conceptual maps, flowcharts, or
decision trees into a unified visual language that could
be accessible to non-computer scientists such as
educators or managers in organizations. To achieve
this task, we based our research on the visual systems
created for the analysis and design of information
systems, such as Chen's Entity-Relationship
model [46], Sowa’s Conceptual Graphs [47], the
Object Modeling Technique (OMT) [12, 48],
KADS [49] and the UML [12].

In our search for a user-friendly visual syntax, we
uncovered a consensus for knowledge categories in
educational science [50, 51], despite slightly different
terminologies, based on four basic types of knowledge
entities: facts, concepts, procedures, and principles.
All four types of knowledge were also clearly
identified within the framework of schema
theory [52], which plays a central role in Artificial
Intelligence (AI) and Cognitive Science in general.
This typing of knowledge entities is the basis for our
MOT visual representation syntax [53].

With these primitives in the MOT visual syntax, we
have been able to build, in various projects and fields,
complex models such as conceptual maps, decision
trees, workflows, methods, and theories. An
instructional design methods such as MISA [54], was
entirely described graphically using the MOT
modeler, leading to the construction of an instructional
design workbench for learning environments.

Another interesting category of models built with
MOT modelers are “laws and theories,” of which a
particular case is an ontology. So, when the W3C
published the first OWL-DL [55] document in 2004,
we were ready to start specialize the MOT language as
a Visual Ontology Language: MOTplus/OWL editing
tool in 2008, and, the GMOT/OWL modeler, in 2012.
The later served to build an executable model of
TELOS a semantic web based system [56].

The MOT visual syntax and the G-MOT/OWL
modeler are the direct ancestors of the G-OWL [57-
59] visual syntax and of OntoCASE4G-OWL
modeling tool [60] presented here. G-OWL is thus
deeply rooted in cognitive science, artificial
intelligence, and software engineering research.

In section 2 and 3, we will present the metamodel
and the visual syntax and semantics of the Graphical-
Ontology Web Language G-OWL. Section 4 will
summarize the visual theory principles that will serve
to evaluate the G-OWL language proposal in
section 5, comparing it with two other visual notation
proposals. Section 6 will extend this discussion further
and prepare the conclusions in section 7.

 4

 Fig. 1: G-OWL Metamodel in the MDA Framework

2. Metamodeling the G-OWL Language

We now presents the process followed for the
definition of the G-OWL visual notation for the
OWL 2 ontology web language. Fig. 1 (above)
positions the G-OWL language in the MDA Modeling
Development Architecture framework [61].

 The G-OWL position in the MDA framework

At the top meta-metamodel level (M3), we have
used the Eclipse Modeling Framework (EMF) [62], an
UML-like modeling language to define G-OWL’s
metamodel. This language is based on Chen’s entity-
relation meta-metamodel that envision the world as
composed of entities linked together by relations. This
meta-metamodel is materialized by the creation of the
g-owl.ecore file [62].

As shown in the M3 part of Fig. 1, a UML-EMF
language is composed of a set of entities and relations.
Each relation has exactly one entity as its source and

one entity as its target. An entity can be the source of
many relations and also the target of many relations.

Interface, generalization and association are sort of
UML-EMF relations between entities. Class and
Package are examples of entities that compose a UML-
EMF language.

At the metamodel level (M2), EMF has been used,
to define the G-OWL modeling language using UML-
EMF constructs. Since UML-EMF is the language of
the Eclipse Development System, a visual modeler for
the language entitled OntoCASE4G-OWL [60] has
been developed on this basis using Eclipse and other
tools. The UML-EMF graphs shown on the second
level of Fig. 1 (M2) will be explained in the following
sub-sections.

At the model level (M1), G-OWL ontologies are
created as visual models using the G-OWL language
defined in M2 to express a visual conceptualization of
a discourse domain. An example of G-OWL visual
model is shown on this part of Fig. 1, together with a
corresponding serialization in the Turtle OWL 2

 5

textual notation. Thanks to the G-OWL metamodel,
serialization and deserialization to and from Turtle
OWL concrete syntax can be performed.

The factual data model level (M0) group assertions
about the world that can also be presented using the G-
OWL language that covers both OWL 2
conceptualization and assertions in RDF. A small RDF
graph in G-OWL visual syntax is presented at this M0
level, together with its equivalent in the Turtle
notation. At this level, there a two-representation
possible. If the M1 ontology is imported, the
OntoCASE4G-OWL modeler can associate an RDF
resource to any individual, class or property present in
the ontology. If the ontology is not imported, the
modeler considers the resources and the predicate as a
simple IRI to serve in an RDF triple.

 G-OWL High Level Metamodel

We now present the components of the M1
metamodel for the G-OWL language and some generic
visual symbols of the visual language.

The G-OWL Metamodel contains Constructors
which serve to represent the visual notation semantics
into G-OWL visual syntax.

Fig. 2. G-OWL Meta-metamodel

As an UML-EMF type of language, the G-OWL
notation is composed of two abstract classes:
G_Entity and G_Relation (Erreur ! Source du
renvoi introuvable.. Each member of these classes
has an IRI address on the Web, a type and a lable.

Each G_Relation has a G_Entity source and a
g_entity target. From this simple abstract definition,
it is possible to define the set of basic visual symbol of
G-OWL).

Part a) of Fig. 3 shows that a visual entity symbol
(G_Entity) has two attributes: g_type and g_label
that will be included in the visual form representing

the entity (not necessarily a rectangle). The g_type
indicates the type of objects that is represented; for
example, a “F” in the polygon of an ObjectProperty
indicates the type functional for that property, while a
“ " ” in a container represents a universal restriction
property.

A g_label in a visual form assigns to the entity a
term chosen by the user, that will be serialized as a
rdfs:label.

Fig. 3. Label and Type attributes for G-OWL Symbols

Part b) of Fig.3 presents the case of a G_Relation
link. The tag on the link can either be a g_type relation
such as “S” (that represents a sort-of link) or a g_label
if the link represents a predicate (Plink) in an RDF
triple.

The third graph shows two different contexts for a
relation: in the first, at the conceptual level, two
functional object properties are linked by a “S”
G_Relation; in the second, the factual level, ovals
denote two resources linked by a G_Relation. where
the user-chosen string “has wife” is the g_label of the
relation.

 G-OWL Detailed Metamodel

The G-OWL metamodel include the primitives of
the language derived from the G_Entity and
G_Relation abstract classes of the high-level
metamodel that are presented in the following graph
using the UML language. We also present here
informally their OWL 2 set-theoretic interpretation as
defined in the W3C Direct Semantic document [6].

c

 6

2.3.1. Detailed Entity Metamodel

Fig.4 presents the main components of the
G_entity metamodel. The G_entity is divided into
four abstract subclasses: G_SingleObject,
G_Collection, G_Property, and G_Container, which
are further divided. Each abstract class encompasses
the concrete G-OWL’s constructors that are associated
with one or more visual symbols of the language

Fig. 4. Entity metamodel in UML notation

• Classes (G_Class) are interpreted semantically as
sets grouping a number of member Individuals
(definition by extension) or defined by some
Properties that describe their attributes (definition
by comprehension).

• Individuals (G_Individual) can be interpreted in
OWL 2 as set members when they are declared as
such.

• Literals (G_Literal) are members of a standard
G_Datatype defined by W3C, such as strings, URI
or IRI, integers or real numbers, or are more
precisely defined G_DataRange that can serve as
values of a Data Property.

• Object properties (G_ObjectProperty) are binary
set relations between two classes, defined as a set
grouping couples of individuals, the first taken in
a first class (the domain) and the second in a
second class (the range).

• Data properties (G_DataProperty) are also
binary set relations grouping couples of two

elements, the first taken in a class and the second
in a class of literals of the same Datatype or
Datarange.

• Annotation Properties (G_AnnotationProperty)
are not part of the ontology but serve to describe
the ontology or some of its components using
reserved terms such as owl:versionInfo,
rdfs:label; rdfs:comment, rdfs:seeAlso and
rdfs:isDefineBy.

Containers are used in three different abstract ways:
• Multiple Assertions Containers group assertions

of multiple relationships of equality/ equivalence
or disjointness/differentiation about a list of
individuals, classes, object or data properties.

• Class Containers construct new classes of
the ontology. Enumerations construct a class
by listing its individual members.
BooleanExpressions construct classes composed
by union, intersection or complement of already
declared classes. ClassRestrictions construct new
classes using an object property and its range.
Cardinality Restrictions construct classes defined
by the cardinality of their values given by an
object or data property.

• Property Containers construct a new object
property a functional composition of an ordered
list of other object properties.

2.3.2. Detailed Relation Metamodel

As shown in Fig. , the derivatives of G_Relation in
the G-OWL vocabulary allow the symbolization of
notions of subsumption, equivalence, typology, etc.
that assert relations between entities of Fig. 4.

The G-OWL visual syntax uses six relations or
links, some using polysemy, in order to symbolize all
of the axiomatic predicates of the OWL 2. It also uses
two untyped relations to represent a predicate (or its
negation) between a subject and an object resources in
an RDF triple.
• The instantiation link (ILink) symbolizes the

concept of typology used in the definition of RDF.
The ILink is thus used to symbolise class
membership of an individual (rdf:type).

• The attribute link (ALink) associates a Property
with a Class. It is a typed link that is polysemic and
polymorphic. From a class to a data or object
property, it identifies the class as the (rdfs:domain)

 7

of the property. From a property to a class or literal,
it represents the (rdfs:range) of the property. The
disambiguation of the link is built according to the
orientation of the link, from the class to the property
or from the property to the class. This use of
polysemy on the A link represents better the
semantics of a relation between classes, from
domain to range.

• The sort-of link (SLink) symbolizes the ontological
concept of Class or Property generalization. The
link typed SLink is polymorphic, and the
disambiguation of the link is evaluated according to
whether the SLink is placed between two Classes,
two ObjectProperties or two DataProperties.

• The equivalence (ELink) symbolizes the
ontological concept of equivalence or equality. This
link is also polymorphic, and its disambiguation is
done according to whether it is placed between two
Classes, ObjectProperties, DataProperties or
Individuals. In the first three cases it represents an
equivalence relation. In the last one, it represents an
equality between two Individuals.

• The inverse property (InvLink) symbolizes the
relation between an ObjectProperty and its inverse.

Fig. 5. Relations metamodel in UML notation

3. The G-OWL Visual Ontology Language

Based on the previous section, we will now present
the concrete G-OWL visual ontology language as a
representational system [63, 64]. Similarly to
Sowa [65], we will use the Peirce’s meaning triangle
(Fig. 6) to define the semiotic notions of Object,
Symbol, Concepts, and the relations between these
notions.

Fig. 6. Pierce Semiotic Triangle

 The G-OWL Semiotic Model

In the semiotic model, the Object designates an
observable and tangible world entity, or an abstract
entity, delimited by a field of interest called the
domain of discourse. The object of a domain of
discourse may be material (e.g., an automobile, a
house, etc.) or imaginary (e.g. a color, a process,
another language etc.). The Symbol represents the
Object. For example, the symbol "car" is a word of
English that may represent the object () of the
reality.

The vocabulary grouping the symbols and the rules
of arrangement of the symbols (the grammar) compose
the notation [66] of the representational system (or
language).

In the upper part of the semiotic triangle shown in
Fig. 6, the Concept designates an idea, a notion, an
abstraction that a human has made about an object, in
this case the concept of a car. The Object denotes
this object of a car while the Symbol symbolizes the
concept and represents the object.

 8

In our case, the objects being represented are
immaterial, since they are defined in W3C documents
that describe OWL 2 concrete syntax (Fig. 7). These
objects are the components of an ontology, the terms
(T-box), the relations (R-box) and the assertions or
axioms (A-Box) about any domain of discourse.

Since OWL 2 is a subset of the First Order Logic,
these objects denotes set-theoretic concepts that are
described in the W3C Direct Semantics document [6].
The semantics of the G-OWL symbols will use the
same set-theoretic interpretation of the corresponding
OWL 2 concrete syntax.

Fig. 7. G-OWL Semiotic Triangle

The objects of the OWL 2 concrete syntax can be
expressed in several equivalent ways: RDF-XML,
Turtle, Functional or Manchester Syntaxes. In this
section we will use the Turtle concrete syntax to
identify the objects that are to be represented using the
G-OWL visual symbols which is another OWL 2
concrete visual notation.

These visual symbols are represented using the
constructors that compose the G-OWL Metamodel of
the language presented in section 2, Fig. 1-5.

 The G-OWL Visual Concrete Notation.

In the following subsections, we present a number
of concrete visual expressions of these constructors
and of their combination that express the various
components of an OWL 2 ontology.

Some of these concrete visual symbols will be
presented together with their OWL 2 Turtle code
equivalent and with the set-theoretic semantics they
symbolize.

3.2.1. Basic G-OWL Concrete Visual Symbols

We start here by showing in Fig. 8 the basic entity
and relation visual symbols available in the G-OWL
visual language.

Fig. 8. G-OWL Basic Visual Symbols

In the first part of figure 8, the visual entities are
built with the entity constructors presented in Fig. 4.
The basic vocabulary of an ontology, classes,
datatypes, individuals, literals, object and data
properties is represented by corresponding visual

 9

objects such as rectangles, ovals, hexagons with solid
or dotted borders.

For example, an owl:dataProperty can be
declared using a dotted hexagon with a string label
such as “hasNumberOfChildren”. According to the
Direct Semantic interpretation mentioned earlier, an
owl:dataProperty such as this one is interpreted as a
set of couples in the cartesian product D x L where D
is a class like “Persons”, the domain of the property,
and L is its range of values from a certain dataRange
class like “Integers from 0 to 15”.

In the second part of Fig. 8, the visual relations are
built with the relation constructors presented in Fig. 5.
In combination with entities, they will enable the
construction of the more complex declarations,
assertions or axioms that constitute an OWL ontology.

3.2.2. Axioms About Entity Relationships

The relations in Fig. 8 serve to establish the
relationships between entities shown on Fig. 9. The “I”
link serves to assert that an individual is a member in
a class. The polymorphic S sort-of link asserts a “sort-
of” relation between two classes, object or data
property. The polymorphic E link asserts equivalence
that two classes, object or data property are equivalent,
or two individuals are identical. The polymorphic
D link asserts that the entities are different or disjoint.

Fig. 9. Relationship assertions between basic visual entities.

Fig. 9 also displays the use of the “A” link to
declare classes that are the domain and range of an
object or a data property. According to the Direct
Semantic interpretation, an owl:ObjectProperty is

interpreted as a set of couples in the cartesian product
D x R where D is a class, the domain of the property,
and R is its range of values from another or the same
class.

In Turtle concrete notation, an example with the
object property hasWife would be expressed as:

:hasWife rdfs:domain :Man ;

 rdfs:range :Woman .

The containers on Fig. 10 express in a condensed
way multiple assertion about entity relationships of
equivalence/identity, or disjointness/difference.

Fig. 10. Multiple an assertions about relations between entities

These containers have a type (“=” or “oo”) but no label
because they are not ontology basic components like
individuals, literals, classes or properties. They are not
meant to be linked with other entities.

These entities are abbreviation of multiple
assertions. For example, the second container in the
right column express that the enclosed classes are
pairwise disjoints. In set-theoretic semantics, it means
that: Class i Ç Class j = { }for all i and j.

In the Turtle OWL 2 concrete syntax, such a
container is translated as:
[] rdf:type owl:AllDisjointClasses ;

 owl:members(Class_1,Class_2,…,Class_N)

 10

In the second part of Fig. 10, one or more data
or object properties can be declared as a key to
identify uniquely the members of a certain
localization class

3.2.3. Assertions About Property Type

Precise property types can be declared by adding a
type symbol in the upper left part of an object and data
property as shown on the first part Fig. 11.

 Fig. 11. Assertions about Property Types.

The corresponding Turtle concrete syntax for the
first and last assertions are:
ObjProp rdf:type owl:TransitiveProperty .
DataProp rdf:type owl:FunctionalProperty .

and their set-theoretic semantic interpretation are
respectively:

(x , y) ∈ ObjProp & (y , z) ∈ ObjProp implies (x , z)
(x , y) ∈ DataProp & (x , z) ∈ DataProp implies y = z

For object properties, these subtypes can be

combined with some exceptions. A transitive property
can be also symmetric or asymmetric, and also
reflexive or irreflexive. A symmetric property cannot
be asymmetric. A reflexive property cannot be
irreflexive.

3.2.4. Classes Constructed by Boolean Operations
or Enumeration

Unlike the examples of Fig. 10, container symbols
are used most of the time to build new classes from
individuals or other classes as shown on Fig. 12. The
first container constructs a new class by enumerating
its owl:Individual members. The other containers

combine already declared Classes by using Boolean
intersection, complement, union or disjoint union.

The last container for disjoint Union declares that
a new class, named ClassLabel, groups all the
individuals that are in at least one of the Class 1 to
Class N but not in their pairwise intersection.

All these containers are classes that can be linked
with other classes in the same way as simple classes,
for examples with S or E links. They can also be linked
with individuals by I links or with properties by A
links as their domain and range.

Fig. 12. Class Containers by Enumeration or Boolean Operations

3.2.5. Classes Defined by Property Restrictions

Besides enumerations and Boolean constructs,
containers are also used to define new classes using
property restrictions shown on Fig. 13. In the first two
containers, the class named “ClassLabel” groups all
the individuals that that have at least one (or all) of
their values in the “ValueClass”, of the property.

For Data properties, more than one property can be
used to group all individual having at least one (or all)
of their values in their combined DataRange.

 Fig. 13. Class Containers by property restrictions

 11

The Self Class container groups all the members of
the domain of the ObjectProperty that have a value in
its range identical to this member.

In the two other two containers, the constructed
class groups all the individuals that have a certain
“Individual” or a certain “Literal” as their value by the
“Object Property” or by the “Data Property”.

The first two left-side containers have a set-
theoretic meaning as sets of individuals (I).

{x ∈	I | ∃ (x,y) ∈ ObjectProperty ∧ y ∈ ValueClass}
{x ∈	I | (x,y) ∈ ObjectProperty implies y ∈ ValueClass}

The second left-side container has the following
Turtle equivalent for a definition of parenthood:

:Parent owl:equivalentClass [
 rdf:type owl:Restriction ;
 owl:onProperty :hasChild ;
 owl:someValuesFrom :Person] .

3.2.6. Classes Defined by Cardinality Restrictions

Another way to define new classes by a property is
to use containers for cardinality restriction such as the
ones displayed in Fig. 14. Similar ones not displayed
are possible using a data property for their definition.

These containers require the specification of an
integer N, and also a class in the case of qualified
cardinality, together the object property. The qualified
cardinality containers construct the class named
“ClassLabel” grouping all the individuals that have
exactly, at least or at most N values in the class
“aClass”.

 Fig. 14. Class containers by cardinality restrictions

With an integer value of N, the qualified cardinality
have the following set-theoretic meaning:

{x ∈ I | card({y ∈ aClass : (x ,y) ∈ ObjectProperty}) = N}
{x ∈ I | card({y ∈ aClass: (x ,y) ∈ ObjectProperty }) ≤ N}
{x ∈ I | card({y ∈ aClass: (x ,y) ∈ ObjectProperty }) ≥ N}

In the Turtle concrete syntax, a container with a
definition of child would be translated as:
:Child rdf:type [rdf:type owl:Restriction ;

 owl:minQualifiedCardinality 2^^xsd:nonNegativeInteger;

 owl:onProperty:hasParent; owl:onClass:Persons] .

3.2.7. Object Property Composition

A third kind of container is displayed in Fig. 15. It
is used to construct a new object property by the
functional composition of an ordered list of already
defined object properties.

 Fig. 15. Container Constructing a Composed Object Property

In a set-theoretic interpretation, the meaning of this
container grouping three properties is as follows

{(x1,x4) ∈ ChainedProp | (x1,x2) ∈ ObjProp1 and
(x2,x3) ∈ ObjProp2 and (x3,x4) ∈ ObjProp3 }

3.2.8. DataRange and Datatypes

The G-OWL language provides visuals ways
(Fig. 16) to define precisely the available set of values
used, for example, in the range of a dataProperty.

The simplest kind of a dataRange is any standard
dataType from the following list:

• owl:real
• owl:rational
• xsd:decimal
• xsd:integer
• xsd:nonNegativeInteger
• xsd:nonPositiveInteger
• xsd:positiveInteger
• xsd:negativeInteger
• xsd:long

 12

• xsd:int
• xsd:short
• xsd:byte
• xsd:unsignedLong
• xsd:unsignedInt
• xsd:unsignedShort
• xsd:unsignedByte

Fig. 16. Datatypes and DataRange composition

A dataRange can also be defined by enumerating a
list of literal values from a dataType or by Boolean
intersection, union or complement from already
defined dataRanges.

A dataRange can also be defined by a data type
restriction composed of any number of Facet
restrictions. A Facet restriction is a couple of a
(defined by a Resource IRI) together with its literal
value of a certain data type. For example, the
following functional description of a dataRange
defined by a data type restriction on the Integer
dataType contains exactly the integers 5 to 9.

DatatypeRestriction (xsd:integer
xsd:minInclusive "5"^^xsd:integer
xsd:maxExclusive "10"^^xsd:integer)

3.2.9. Annotation properties

Annotation properties are provided in OWL 2 to
add additional information about ontologies, entities,
assertions or axioms. Even though they do not

contribute to the semantics of the ontology, they are
essential in practical Semantic Web projects.

G-OWL provides visual ways to define annotations
properties that can be applied to any annotation subject
with any kind of resource as its A domain, identified
by its IRI. The annotation value of the property is
another resource serving as its A range, identified as
its IRI. Annotations properties can also be organized
using the sub-property S link.

Fig. 17. Annotation properties

A user can declare its own named annotation (with
a user-defined label and a blank stereotype) or use one
of the standard stereotypes <<AnnoType>> listed in the
right part of Fig.17.

3.2.10. Resource Description Triples.

4. Fig. 18. RDF Assertions in G-OWL visual form.

G- OWL provides a visual way (Fig. 18) to assert
facts in the form of RDF triples that can be processed
by inference engines. RDF assertions can be made
about any subject-object couple using a Plink with an
untyped predicate label, or the Plink label of one of the
typed object or data property label defined in the
ontology. A predicate can also be negated by adding a
¬ symbol to its label, meaning the subject is not linked
to the object by the predicate.

 13

 Example of a G-OWL Ontology

Fig. 19 – Part of an Ontology Expressed in the G-OWL Visual Language with the OntoCASE4G-OWL Modeler

We now complete the description of the G-OWL
visual language by presenting part of a small ontology
built with a prototype version of the OntoCase4G-
OWL visual modeler for the G-OWL language2.

Fig. 19 defines the concept of a Real Italian Pizzas
(RIP), which is part of a larger ontology where various
kind of pizzas from different countries are defined.
The upper part of the model first defines the set of
pizzas with a Margherita topping, as the intersection

2 This visual modeler for the G-OWL language is actually in
development. The colors used in the previous sections are not

of pizzas that contain some kind of tomato topping and
those with mozzarella topping.

This definition is reused in an OWL universal
restriction container to assert that all RIP must contain
a Margherita topping.

An OWL existential restriction asserts that some
RIP can contain a thin crispy base. Another hasValue
container asserts that a RIP has Italy as its country of
origin. Two individual pizzas are declared being RIP
pizzas using an instantiation (I) link.

implemented. Also, the double Slink of figure 19 corresponds to
the “E” equivalence or “same as” link of Fig. 8.

 14

5. Visual Modeling Theory.

We now present in this section some of the
theoretical background that has oriented the definition
of the G-OWL language and that actually guides the
development of its OntoCase4G-OWL modeler. It will
also serve to evaluate the language in section 5.

 Communication Model

Moody [66] presents a specialized version of
Shannon's theory [67] of information communication
that is relevant for the design of any language
(Fig. 20). The process of transmitting information
between a transmitter and a receiver starts with the
encoding of a message in a certain notation by the
transmitter.

In this model, noise represents a quality
degradation of the information transmitted, resulting
in misunderstandings the message by the receiver or in
cognitive difficulty in coding the message by the
sender.

Fig. 20. Adaptation of Shannon’s communication theory for visual
communication (extracted from Moody [64])

In our case, the encoding is carried out using the
visual notation of the G-OWL language, making it
possible to create a diagram such as the one on Fig 19.
The receiver uses her comprehension of the notation to
decode the message.

We propose that a diagram created with a visual
representation system can reduce the noise between
the transmitter and the receiver compared to a text-
based notation.

 Visual vs Textual Notation

Larkin [68] notes that the fundamental difference
between a "graphic" or visual notation and a textual
notation is that a visual notation explicitly preserves
the information of topological and geometric
relationships between the components of a model. The
visual notation also differs from the textual notation by
the nature of the symbols [66] that composes its
vocabulary as well as by the rules governing the
interpretation of the symbols.

In a textual notation the symbols are displayed
following a one-dimensional (linear) layout [68],
sequentially aligned to form words. Words are also
ruled by unidimensional and linear arrangements
(grammatical rules) to form statements. The
unidimensional linearity and the sequential layout
rules are the two important notions that characterize a
textual notation such as Turtle, RDF-XML, OWL-
XML or the Functional and the Manchester syntaxes.

A visual notation uses visual symbols (geometric
shape, icon, pictogram, etc.) includes in a visual
vocabulary using color, size and position of geometric
shapes together with rules for their visual
arrangement [68, 69]. These rules are in our case
surface rules for a 2D representation.

Hybrid notation (visual and textual) uses a
vocabulary composed of both textual symbols and
visual symbols that are governed by rules of textual
and visual arrangement.

Although G-OWL contains some semantic aspects
denoted by textual elements on the figures
representing its entities or relations, there are no
semantic aspects that are represented textually.
Moreover, the G-OWL semantics is particularly
sensitive to the shape, spatial position and arrangement
of its visual symbols. This is why G-OWL is totally a
visual notation.

 Moody’s Physic of Notation Theory

Moody’s Physics of Notations Theory (PoNT) [66]
is a systemic framework that has been used to evaluate,
compare, improve and design visual notations in a
wide variety of fields, including the Unified Modeling
Language (UML) or the Business Process Modeling
Notation (BPMN) [30, 70-72].

 15

PoNT proposes nine principles as guidelines to
design cognitively effective visual notations for
human communication, in order to reduce information
transmission noise. These principles were synthesized
from theory and empirical evidence in a wide range of
fields. They rest on an explicit theory of visual
communication.

We will now present these nine principles: semiotic
clarity, perceptual discriminability, semantic
transparency, complexity management, cognitive
integration, visual expressiveness, non-dual coding,
graphic economy or parsimony, and cognitive fit. We
intent to use these principles as a basis for the
evaluation of a visual ontology language like G-OWL.

5.3.1. Principle of Semiotic Clarity and
completeness

According to Goodman's theory of symbols [19], to
achieve Semiotic Clarity and Completeness, a notation
must have a one-to-one correspondence between each
symbol and its referent concept.

Fig. 21. Schematic View of the Principle on Semiotic Clarity and
Completeness.

According to G-OWL Semiotic Triangle Fig. 7
adapted from Moody’s definition [30], Fig. 18 relates
three sets: the ontological concepts categories and
notions of the Ontological Theory, the metamodel
constructs of the notation’s semantics, and the visual
or textual symbols in the visual language or notation.

In our case, the first set groups the concept of
OWL 2, the second contains the entities of Fig. 4 and
the relations of Fig. 5 in the G-OWL metamodel, and

the third contains the visual symbols contained in the
G-OWL language presented on Fig. 8 to Fig. 18.

This figure illustrates a number of important
features for a visual representation:

Deficit: construct deficit occurs when there are no
constructors in the metamodel to symbolize a given
ontological concept; symbol deficit occurs when there
is no symbol to corresponds to a constructor in the
metamodel.

Redundancy: construct redundancy occurs when
there is more than one metamodel constructor to
symbolize an ontological concept; symbol redundancy
occurs when there is more than one symbol
corresponds to a metamodel constructor.

Overload: construct overload occurs when a
constructor is used to symbolize more than one
ontological concept; symbol overload occurs when a
symbol corresponds more than one metamodel
constructor.

Excess: construct excess is a situation where there
exists a constructor that is not associated with any
ontological concept; symbol excess occurs when there
are symbols that do not correspond to any of the
semantic constructors.

The principle of Semiotic Clarity and
Completeness ensures first’ completeness of the
notation so that each concept of the ontological theory
has a symbol or a symbol pattern to represent it.
Conversely, it assures that each symbol in the
language serves to represent a concept of the
ontological theory, in other words, has a meaning.

The principle of Semiotic Clarity and
Completeness ensures maximum readability,
eliminating the risk of ambiguity in the interpretation
of symbols by a careful management of the deficit,
redundancy, overload and excess of semiotic features.

5.3.2. Principles of Perceptual Discriminability and
Visual Expressiveness

PoNT proposes here two principles. Perceptual
Discriminability states that “Symbols should be
clearly distinguishable from one another”. Visual
Expressiveness states that “Visual notations should
use the full range of the 7 visual variables: position,
size, value, texture, color, orientation and shape”.

 16

By increasing the visual distance between symbols,
measured as the number of these visual variables, we
favor a rapid understanding of the objects at stake in a
visual model of an ontology and the relations between
them, thus reducing the transmission noise.

5.3.3. Principle of Semantic Transparency

Semantic transparency [30] is the visual
characteristic associated with a symbol to infer its
meaning from its appearance. Semantic transparency
is a measure bounded on one side by “semantic
immediacy”, that enables a novice reader to infer
rapidly the meaning of a symbol, and on the other side,
by the “semantic negativity”, which intuitively
induces an opposite meaning to that designated by the
symbol.

5.3.4. Principle of Graphic Parsimony

The principle of Graphic parsimony defined by
Miller [39] limits the number of distinct symbols used
in a notation, for example by grouping them by
categories or types.

Several empirical studies for the development of
semi-formal notations (see sections 1.3 and 1.4), or in
the interpretation of complex diagrams [73], show that
there is a direct relationship between the number of
symbols in a notation and the cognitive load associated
with its use in activities such as diagram reading,
notation learning or modeling with the notation. The
risk of cognitive overload [40] increases if the number
of symbols reaches or exceeds the channel
capacity [39] of the person using the visual notation.
Generally, a limit of seven (7) different symbols of
each type should be a maximum.

5.3.5. Principle of Non-dual or Total Visual Coding

The principle of Non-dual coding states that
“Notations should use text to complement (not
replace) graphics”. Textual annotations should be used
as notes (to facilitate understanding) alongside
graphics so that the ontology remains totally visual.
This is a principle we apply in the OntoCase4G-OWL
modeler for the G-OWL language.

In a previous study (in press), we examined eight
different visual notations for OWL 2. We found out

that most of them were not totally visual. For example
OWLGrEd [22, 23] is a tool that provides good a UML
style graphical notation for OWL 2, but where object
and data properties are Manchester OWL 2 textual
notations put on links between UML classes to
represent properties, or as attributes within classes.
Another example is WebVOWL [21] that covers
visually many of OWL 2 notions but where
restrictions or Boolean constructs are not displayed
visually.

5.3.6. Principles of Complexity Management and
Cognitive Integration.

Here PoNT provides again two principles.
Complexity Management states that “Notations should
include explicit mechanisms for dealing with
complexity, such as modularization and hierarchy
(abstraction)”. Cognitive Integration states that
“Notations should integrate information between
separate diagrams”.

Modularization of a large ontology can be achieved
by dividing large ontologies into cognitively and
perceptually manageable parts. Cognitive integration
mechanisms refer to conceptual integration
(summarization and visual momentum) and perceptual
integration (signposting, orientation and navigation
map). This principle is respected in the OntoCASE4G-
OWL [60] modeler by the multiple canvas facility
provided by the Eclipse IDE.

5.3.7. Principle of Cognitive Fit

The principle of Cognitive Fit states that “Different
visual dialects should be used for different tasks and
audiences”. Notations should use different dialects for
communicating with experts vs. novices. Visual
notations for OWL 2 should be addressed primarily to
content experts and ontology modelers. Computer
scientists will in general rely mostly on XML textual
representation of ontology constructs, using a visual
representation for overviews. A notation that deserves
the first group will also be a Cognitive Fit for the
second if an interactives translation between the visual
and a textual translation is made available at all times.

 17

6. G-OWL’S Comparative Evaluation

In this section, we provide a systematic evaluation
of the G-OWL language through a comparison
(Fig. 22) with a popular visual language provided by
Top Braid Composer [18]. Its two versions, the
Diagram Editor (TBC-Diagram) and the Visual Graph
Editor (TBC-Graph), are representatives of two kinds
of visual representation notations. TBC-Diagram is an
example of a UML-like notation, while TBC-Graph
aims at a totally visual ontology representation.

Fig. 22. An ontology in G-OWL, TBC-Diagram and TBC-Graph

 Global comparison and Semiotic Clarity

Fig. 22 presents an overview of the same ontology
respectively in TBC-Diagram, TBC-Graph and G-
OWL notations.

The TBC-Diagram (a UML-like language) model is
very compact, the entities are distinctly represented,
the properties are treated as class attributes represented
as texts within the classes, and the number of
relationship types is minimal. We can also distinguish
domain predicates very well versus ontological
predicates (hierarchy and equivalence).

The TBC-Graph (a partially visual language)
presents the elements of the A-BOX, the T-BOX and
the R-BOX in the same diagram. We notice that the
visual aspect of this graph-oriented symbolization
makes it difficult to distinguish the different types of
entities and relations.

The two TBC visualization syntax do not respect
the Semiotic Clarity and Completeness principles
totally. In TBC-Diagram, the ontological concepts of
restriction, Boolean expression or grouping of
individuals are not symbolized. Moreover, no element
of the A-BOX is included in the model. In TBC-
Graph, there is only one kind of link and all the kinds
of properties are covered by putting OWL 2 textual
expression directly on the links, making the
representation dual, only partially visual, also making
it difficult to distinguish visually between predicates
from the domain and ontological relations.

The G-OWL visual syntax is on the contrary totally
visual using 7 entity constructors and 7 relation
constructors: ILink, SLink, ALink, Elink, Dlink,
InvLink and Plink (asserted or negated).

Table 2: Entity Constructors and their Use in G-OWL

rectangle literal, dataType and dataRange
rounded rectangle class and classContainer
hexagon objectProperty and

chainPropertyContainer
dotted hexagon dataProperty and annotationProperty
dotted rounded
rectangle

multipleAssertionContainer

oval individual
dotted oval resource

 18

The G-OWL Model is a totally visual language that
allows the symbolization of elements of the T-BOX,
R-BOX and A-BOX in the same model. It achieves
Semiotic clarity and a complete visual symbolization
of OWL by using two techniques called Typology and
Polymorphism. These techniques have been widely
used previously in the definition of the MOT language
and modeling tools [43], G-OWL’s predecessor,
where their effectiveness in semi-formal
communication processes have been widely
demonstrated in a large number of projects in a variety
of situations and uses. [28, 34, 36, 74, 75].
• Typology is the notion of assigning a predefined

type to a symbol according to a categorization of
constructors. The type is symbolized visually by a
figure, an icon or a combination of characters. The
disambiguation of the visual symbol is obtained by the
interpretation of the type symbol as shown in the lower
part of Fig. 23.

For example, in G-OWL, a property is represented
by a hexagon. The addition of the symbol “F” to the
hexagon type will identify a Functional Property,
while the addition of the type “T” signifies that it is a
Transitive Property. Here, the reduction of the number
of symbols is achieved by applying Symbolic
redundancy where one metamodel constructor (here
the hexagon) corresponds in the language to many
symbols of a same type.

Fig. 23 Typology and Topology disambiguation for Semiotic
Clarity

• Polymorphism assigns to a given constructor
several forms with very little semantic opacity. The
disambiguation is assumed by the application of

topological rules that takes into account the context of
use of the symbol, as shown in the upper part of
Fig. 23.

In G-OWL, polymorphism is used in particular for
the notion of “specialization” or “subsumption” which
is represented by the sort-of link “S” that can be placed
between two Classes, two Object Properties, two Data
Properties or two Annotation properties. Topological
disambiguation is achieved by looking at the context
of the link so that we do not need three different links.
Here, the decrease in the number of symbols is
achieved by the application of Construct Overload
where one constructor (here link “S”) serves to
represent more than one ontological notion in OWL 2.

The use of these two techniques must assure the
semiotic clarity and the completeness. Through
typological or topologic disambiguation, a one-t-one
correspondence is achieved between the first and the
third spaces of Fig. 23, between the OWL 2 notions
and the G-OWL entity and relation set of symbols.

 Graphic Parsimony

The number constructors for entities and
relationships respects the principle of Graphic
Parsimony. Moreover, as mentioned in section 4, for
each category of constructors, the number of sub-
categories is also always less than 7, as prescribed by
Miller’s maximal channel capacity. The largest
number, 7, is for the types of object properties:
functional, inverse functional, transitive, symmetric,
asymmetric, reflexive and antireflexive.

At first glance, the TBC-Graph syntax seems to be
the most parsimonious since it contains only one
entity, a rectangle and one relationship. All the nodes
look almost the same (Fig. 24), but they are
distinguished by 17 icons corresponding to those in the
Manchester syntax [10] used in Protégé and four kinds
of links. It does not respect the principle of parsimony,
since the number of different nodes far exceeds the
number of 7. Also, there is no polysemy of links that
would facilitate the distinction between a
specialization link between classes or properties, an
instantiation link between an individual and a class or
other kind of links.

The TBC-Diagram metamodel also consists of two
generic symbols, the rectangle and the link. The
rectangle encapsulates the properties similarly to class

 19

attributes in UML notation. Similarly, to TBC-Graph,
the TBC-Diagram has a list of 16 rectangles
distinguished by an icon presented in Fig. 24. There
are also four types of relationships that serve to
connect rectangles with each other. Some of these
links are not related directly to ontology components.

Fig. 24 TopBraid Composer Icons Legend of Graph and Diagram

 Perceptual Discriminability and Visual
Expressiveness

We have also retained the idea of using icons in the
design of the G-OWL language, to help distinguish the
four kind of restriction containers (Fig. 13), the five
kinds of Boolean containers (Fig. 12), the Chain
Property container (Fig. 15) and the various kinds of
multiple assertion containers (Fig. 10).

But we have added visual expressiveness using
different forms: rounded rectangles for class
containers, hexagons for property contains and dotted
rouned rectangles for multiple relationship containers.
We have added also different colours to distinguish
basic OWL 2 elements: green for individuals and
literals, orange for classes, blue for object properties
and grey for data properties.

In TBC-diagram and TBC-graph, as in many
proposals for a visual ontology language, all the nodes
look the same (rectangles). The addition of icons is
useful but insufficient to help users grasp rapidly the
structure and the main components of an ontology.
This is evident in the graphs of Fig. 22.

 Semantic Transparency

In the following sections, we will particularly
consider to what extent do the three visual
representations respect the important principle of
Semantic Transparency prescribing that the

appearance of visual symbols should help infer their
meaning.

6.4.1. Taxonomy and Equivalence

In the first diagram of Fig. 25, we present a
comparison of the three representations for a
taxonomy of Classes and of for Object Properties. The
second diagram compares these representations for the
equivalence of Classes and Object Properties, and for
the identity of Individuals.

For G-OWL, the hierarchy of ontological concepts
is symbolized by a single symbol (Slink) regardless of
whether it is used to bind two classes, two Object
Properties, or two data Properties. The polymorphism
of the Slink thus makes it possible to save three
symbols while maintaining semantic transparency by

the choice of the label “S” to recall the semantic notion
of the “sort of” or “subsumption” relationship.

Fig. 25 Taxonomy and Equivalence Comparison

 20

For the TBC-Diagram, the class subsumption link
has a high semantic transparency for UML users due
to the reuse of the generalization relation commonly
used in UML modeling. Property subsumption is not
directly represented in this representation, and it must
be deduced from the abstract rule that a subclass
inherits properties of the superclass. Here, semantic
transparency is notably lacking, especially for a
beginner in ontological modeling or a non-UML user.

In the TBC-Graph, the distinction between class
and object property subsumption is clearly identifiable
by the typology of icons applied to each node, but still
requires two different texts expressions on the link,
which requires the use of two symbols to represent two
concepts, at the expense of graphic parsimony.

In the case of equivalence, the semantic
transparency analysis is largely the same. In the TBC-
Diagram, the visual syntax suffers from a constructor
deficit for the expression of identity of individuals,
while in the TBC-Graph, an additional symbol for the
symbolization of the sameAs relation is necessary. G-
OWL introduces the double-arrow symbol “S” for all
three cases symbolizing the semantic of a double
subsumption, corresponding to the semantic of the
equivalence relationship.

6.4.2. Semantic Transparency for Signature,
Instantiation and Domain Predicate

The semantic transparency associated with the
signature (object and range) of an Object Property is
presented in the first diagram of Fig. 26. In G-OWL,
the polymorphic use of the ALink refers to the notion
of attributes of a property. The direction of the arrows
refers to the idea of the origin class (the domain) and
the target class (the range) of a property, semantically
seen as a directed relation between two sets, from the
domain to the range. Therefore, in G-OWL, a single
typed symbol is used to represent two ontological
concepts, the domain and the range of property,
simplifying the graphic complexity of the signature
representation to a single symbol.

In the TBC-Diagram, the semantic transparency of
the property is similar to that used in UML, thus
facilitating reading for the UML expert. The
representation still has symbolic redundancy since the
“hasBase” property is found in two places and in two
distinct visual contexts (in the Pizza class entity and in

the relation between “Pizza” and “Pizza base”), thus
inducing a certain semantic opacity since it is not
trivial to deduce which of this representation refers to
the range or domain of the property.

TBC-Graph centers the representation on the
definition of the property since the links leave the
property to go to the classes, without referring to a
semantic of direction from domain to range. This
representation has a greater graphic complexity than
G-OWL since it requires two different links
reproducing the textual notation.

Fig. 26 Domain/Range and Instantiation Comparisons

In the case of instantiation, the second diagram of
Fig. 26 shows that G-OWL, uses the ILink relation
with the “I” symbol, referring to the predicate 'is-a' and
the semantic of an “instanceOf” relationship.

Another strong semantic transparency is offered by
the visual discrimination between the typed link that
uses a standardized symbol like “I” and the untyped
link “located in” that uses a domain specific symbol
seen as a non-normalized string. This distinction
facilitates the visual distinction between domain

 21

predicates and ontological predicates like “I”, “S” or
“A”.

Like UML, the TBC-Diagram suffers from a deficit
of constructors for the representation of the domain
predicate and the predicate of instantiation.

The semantic transparency of TBC-Graph is again
assured by its semiotic clarity using the “type” textual
symbol. On the other hand, the semantic transparency
is not helped by the fact that no visual clue facilitates
the discrimination between the ontological predicate
“type” and the domain predicate “located in”, both
being represented by natural language strings.

6.4.3. Semantic Transparency for Restriction and
Boolean Expression

 Fig. 27 Existential Restrictions and Boolean Expressions
Comparisons

As shown by the two diagrams on Fig. 27, the
semantic transparency of the restrictions or Boolean
expressions differs considerably between the syntaxes.

For G-OWL, in both cases, the g_container visual
symbol revisits the idea of grouping objects to
compose a new visual object. In the case of existential,

universal, has value restrictions (Fig. 13), Boolean
expressions (Fig. 12) or cardinality restrictions
(Fig. 14), the container represents a class that can be
manipulated as a new singular visual entity. This
semantic transparency allows the representation of
complex ontological concepts and at the same time
reduces graphic complexity avoiding the use of many
links as in other representations.

The symbolic structure of the TBC-Diagram,
inspired by the UML notation is handicapped by the
fact that there is no UML notion or symbol that refers
to the concept of restrictions or Boolean expressions.
This lack of constructors requires the introduction of
unconventional symbols to the UML standard which
reduces the semantic transparency that might benefit
users familiar with the UML notation. This add-on
increases the graphic complexity by the introduction
of a large number of symbols (relations and entities) to
try to fit in OWL into the UML notation.

In the TBC-Graph, the concept of restriction and
Boolean expression is also symbolized by the use of
several links and several nodes. Nodes with complex
labels (e.g. 'Hot or Medium or Mild') are also
introduced that results in increasing the number of
symbols necessary to represent the ontological
concept. e.g.: five different typed symbols with four
links to represent a simple Boolean expression.

 22

7. Discussion

This section discusses general features of the
G-OWL language based on three point of view:

1- comparative analysis of the diagrams on
Fig. 22 to Fig. 27, and also of a previous study
of eight visual ontology languages 3;

2- laboratory experiment on ontology modeling
with 17 participants;

3- some preliminary functional software testing
based on a version of the OntoCase4G-OWL
modeler.

 Comparative Analysis of Visual Ontology
Notations

Based on the observations of the diagrams in the
previous sections, some general observations can be
made, both on UML-like notations like TBC-Diagram
and Visual notations like TBC-Graph.

Gasevic et al. [61] provide an extensive summary
of incompatibilities between UML and ontology
languages. UML is based upon an object-oriented
paradigm that provides many limitations for ontology
visualization. For example, Ontology languages have
the ability to construct classes using Boolean
operations and quantifiers in property or cardinality
restrictions. In UML, there is no corresponding
primitives for these notions.

These and other differences between UML and
Ontology languages enforce too many unnatural
constructions. A good example is given by the graphs
on Fig. 27. The first one is an example of an Ontology
Definition Metamodel (ODM) complex model
extracted from the Object Modeling Group OMG-
ODM document [20, 76] based on the UML profile
notation

This graph presents three OWL restrictions and one
Boolean construction defining two types of “flowering
plants”, “azaleas” and “single colored azaleas”. This
last concept is particularly hard to decrypt since it is
the intersection of two restrictions, one that uses a
cardinality restriction to assert that these flowers have
exactly one color, and the other that uses an hasValue

3 This study, “Designing and Communicating Ontologies Visually”,
is submitted for publication in the Semantic Web Journal.

restriction to assert it has a solid color pattern. A third
existential restriction defines Azalea as flowers that
have one of the “ASAColor pattern” as their bloom
color pattern.

 Fig. 28 An ODM and G-OWL Visual Comparison.

The G-OWL graph below is more human readable
and semantically transparent, displaying clearly the
restrictions and intersection operations as containers.

We have also added an instantiation link, not in the
ODM graph, to assert that the individual “Solid: color
pattern” in one of the ASA color patterns. Also, it is
not necessary to use the links “onProperty”,
“hasValue”, or “intersectionOf, since they are declared
by their position in the containers. In ODM, these

 23

terms are in fact copies from the syntax of the RDF-
XML textual serialization, instead of referring to the
OWL semantics. Also, the declaration of entities in
stereotypes as being individuals, classes, object or data
properties is unnecessary since they are given by their
visual form and color.

 Semantic Transparency is key since our goal is to
facilitate the design of ontologies, especially at the
initial inception stages, and also their understanding
and use at every further stage of the ontology life
cycle. We believe that the differences between UML
and Ontology languages enforce too many unnatural
constructions.

Our study of four other visual syntaxes besides
TBC-Graph, such as GrOWL [24], Graffoo [25]
VOWL [21] or Graphol [26, 27] shows that they
present, similarly to UML-like notations, some reuse
of the textual syntax of OWL serializations, instead of
symbolizing visually the OWL concept semantics,
thus presenting a lower level of semantic transparency
and a higher level of graphical complexity, especially
when it comes to representing OWL restrictions or
Boolean operations.

For example, in Graffoo, properties are identified
by formulas on links. They are not visual objects by
themselves, which precludes putting links between
them to represent sub-properties or inverse properties.
Textual axioms written in OWL 2 must then be added
for those constructs not directly supported by any
particular graphical element. Therefore, the notation is
not Totally Visual.

VOWL proposes that information like disjointness,
or types of properties like transitivity or symmetry
should be listed textually in a sidebar instead of being
presented visually. VOWL is not a Totally Visual
Modeling editing tool. Some editing functionalities are
introduced for OWL restriction or Boolean constructs,
but these are not part of the VOWL visualization and
must be displayed in a textual way in another window.

Graphol is based on the OWL 2 functional syntax
and allows drawing ontologies in a completely visual
way, including complex restriction or Boolean
axioms. But the language uses similar visual symbols
for basic ontology entities (classes, properties,
individuals, datatypes), as well as for constructing
operators such as restrictions or Boolean expressions.
This defies the Semantic Transparency principle by
having part of the visual symbols that are do not

correspond to the language but to model construction
operations.

 Laboratory Experiment Findings

We have conducted a small laboratory experiment
in order to evaluate the G-OWL language with users.
It consisted in comparing the G-OWL language with
other syntaxes commonly used in ontological
engineering. A classification of the participants from
companies and academia grouped them in three groups
with different levels of expertise: 4 participants were
classified at the novice level, 9 participating at the
intermediate level and 4 participants at the expert level
of ontology modeling

Inspired by the Cognitive walkthrough
method [77], the G-OWL's degree of user-friendliness
was measured for readability of an ontology. At this
stage of the procedure, we presented a story text to the
participant as well as six ontologies representing the
story case in different syntaxes (G-OWL, TBC-Graph,
OWL / XML, Turtle, Manchester, Functional).
Subsequently, the participants gave their appreciation
of the syntaxes by answering a questionnaire, setting a
value between 1 (completely disagree) and 5
(completely agree) for each case:

1. I think the case is easy to read;
2. In a text, or a communication, I choose this case

syntax to express my idea in an ontology;
3. I find that the case represents well the story text;
4. I consider that this case offers an intuitive reading;
5. I like reading the model of this case.

Table 3 summarizes the compiled results. Each cell
has the percentage average of the persons who rated
more than 3 for a question. The third column presents
the best value of the textual syntaxes combined sets.

Even though this experiment will have to be
extended in future work, we can conclude that for the
interpretation of the ontology corresponding to the
story text, the visual notations are more appreciated
than the textual notations and that the G-OWL is
slightly preferred to the representation in TBC-graph.

 24

Table 3:
Readability Compiled Results

Question
Numbers G-OWL

TBC-
Graph

Better
Textual

1 easy to read 100% 76% 29%

2 in communication 94% 82% 19%

3 best for representation 100% 94% 69%

4 intuitive 100% 88% 30%

5 like reading 94% 76% 41%

Other uses of ontology language such has
modeling, or deduction of new knowledge were also
tested, giving us encouraging results. In after-
experiment sharing, participants have indicated that
for the deduction of new knowledge from a textual
representation they usually pass through some kind of
schematic visual representation step before making the
inference of new knowledge. This is, for us, quite
significant.

 Editing Software Functionalities Tested

Several studies in visualization of ontologies mix
the design of the syntax with the software tool that
implements its use. In this research, we have presented
the G-OWL visual language without its
OntoCASE4G-OWL modeler. The main purpose was
to assure the interoperability of the visual syntax by
making it independent from a particular software
implementation. Thus, the G-OWL language could
support different software contexts such as Protégé.

The implementation of the actual OntoCASE4G-
OWL software was an essential formal exercise
aiming to validate the G-OWL metamodel. It made it
possible to test a functional use of most of the OWL
language for the production of ontologies that allowed
comparisons with other visual syntaxes.

OntoCASE4G-OWL is an elaborated Eclipse-
based application that operates the Sirius [78, 79]
Framework for domain-specific graphical modeling
language specification and implementation, the
Eclipse Modeling Framework (EMF) [62] for data
management of the models, and Apache Jena [79] for
the Turtle - G-OWL serialisation and deserialization.

Many views are presented to the user by this
modeler. A first one presents the entire ontology in a
tree structure representation where components can be

transferred to one or more model view (canvas), each
accompanied by a palette to create ontological
elements in G-OWL visual language. Each canvas
presents a partial view of the ontology, either visual in
G-OWL or textual in Turtle syntax, thus allowing the
representation of a specific aspect of the ontology
without changing its contents. Another view presents
the properties associated with a selected item, which
makes it possible to automatically generate graphic
elements in the canvas.

The actual OntoCASE4G-OWL modeler covers
almost all the OWL 2 semantics and of G-OWL
language presented in this paper, but some specific
elements (such as “hasKey” or cardinality restriction)
have not yet been implemented as well as the colour
code presented in section 3. However, given the wide
range of OWL 2 semantics already covered, we
believe that the extension of the modeler to the overall
semantics of the OWL 2 will be straightforward.

8. Conclusion

In this paper, we presented the Graphical Web
Ontology Language (G-OWL), a visual syntax that
favors human readability and software modeling
support for building semantic web ontologies.

The underlying hypothesis are that the use of
polymorphism, typology, and polysemy, as well as the
introduction of containers for central ontology-
building operations, make it possible to reduce the
number of symbols of the language while preserving
the formal character and completeness of the language.

We have use Moody’s Physics of Notations Theory
(PoNT) principles to assert the following conclusions
that the G-OWL visual representation system:
• is more human-readable than other OWL 2

concrete syntax, either textual or visual because it
focuses on the set-theoretic semantics of OWL
(semantic transparency) instead of the syntax of
any textual serialization;

• contains a limited number of visual symbols to
limit the cognitive load on the users (graphic
parsimony) while covering all the semantic
notions in the OWL 2 language;

• retains the formal character of OWL by the use of
typology and topology disambiguation; for all
G-OWL symbols or combinations of G-OWL
symbols, there is only one ontological object of

 25

OWL 2, and conversely, for each OWL 2
ontological object has a corresponding G-OWL
symbol or combination of G-OWL symbols.
(semiotic clarity preservation);

A distinctive characteristic of G-OWL is that its
design principle aims to symbolize the semantics of
OWL ontological concepts rather than the syntactic
elements of a serialization notation as is the case for
many other existing graphical syntaxes. Higher
semantic transparency makes G-OWL a tool that
guides the mind towards the representation of the
meaning of elements of the domain of discourse rather
than towards eventual codification issues pertaining to
the syntax of the ontology.

In this sense, G-OWL is in line with the knowledge
modeling tools that have been produced and validated
during numerous previous researches on the MOT,
MOTplus and G-MOT semi-formal modelers [33, 34,
41-43].

For the future, a scaling-up laboratory evaluation
with a larger set of users is envisaged for G-OWL and
for the on-going development of the OntoCASE4G-
OWL modeler, in order to provide a mature tool for
knowledge-intensive modeling projects.

At its origin, the G-OWL language was conceived
with the aim of providing the knowledge engineer with
a tool for eliciting and modeling ontologies for the
semantic web. In the context of the evolution of Data
Science and AI applications, we suggest that G-OWL
will find its effectiveness in representing the
vocabularies and schemas (R-BOX, T-BOX) that
structure the Web of linked open data, while enabling
assertions (A-BOX) to fuel the inference engines used
in the Semantic Web applications.

Finally, it is hoped that the G-OWL language will
serve as a basis for a future W3C recommendation for
a concrete visual syntax for ontology modeling, well
aligned with the supported textual concrete syntaxes.

Acknowledgments

This research project was conducted partly with the
financial support of MITACS, the Canadian Industrial
Research Grant Program and Hydro-Québec, a large
hydro-electric company.

References

[1] G. Guizzardi, "On ontology, ontologies, conceptualizations,
modeling languages, and (meta) models," Frontiers in
artificial intelligence and applications, vol. 155, p. 18,
2007.

[2] W3C. (2012). OWL 2 Web Ontology Language Primer
(Second Edition). Available: http://www.w3.org/TR/owl2-
primer/

[3] W3C. (2012). OWL 2 web ontology language document
overview. Available: https://www.w3.org/TR/owl2-
overview/

[4] W3C. (2014). RDF 1.1 Concepts and Abstract Syntax.
Available: http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/Overview.html

[5] W3C. (2014). RDF Schema 1.1. Available:
http://www.w3.org/TR/2014/REC-rdf-schema-
20140225/Overview.html

[6] I. Horrocks, B. Parsia, and U. Sattler. (2012, 2013-10-23).
OWL 2 Web Ontology Language Direct Semantics (Second
Edition). Available: http://www.w3.org/TR/owl2-direct-
semantics/

[7] W3C. (2012). OWL 2 Web Ontology Language XML
Serialization (Second Edition). Available:
http://www.w3.org/TR/2012/REC-owl2-xml-serialization-
20121211/

[8] W3C. (2014). RDF 1.1 Turtle: Terse RDF Triple Language.
Available: http://www.w3.org/TR/2014/REC-turtle-
20140225/Overview.html

[9] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A.
Fokoue, P. Haase, et al., "OWL 2 web ontology language:
Structural specification and functional-style syntax," W3C
recommendation, vol. 27, p. 159, 2009.

[10] M. Horridge and P. F. Patel-Schneider, "OWL 2 web
ontology language manchester syntax," W3C Working
Group Note, 2009.

[11] M. Uschold and M. Gruninger, "Ontologies: Principles,
Methods and Applications," Knowledge Engineering
Review, vol. 11, pp. 93-136, June 1996 1996.

[12] J. Rumbaugh, I. Jacobson, and G. Booch, Unified modeling
language reference manual, the: Pearson Higher Education,
2004.

[13] O. F. A. Specification, "Business Process Modeling
Notation Specification," ed: février, 2006.

[14] A. Ottensooser, A. Fekete, H. A. Reijers, J. Mendling, and
C. Menictas, "Making sense of business process
descriptions: An experimental comparison of graphical and
textual notations," Journal of Systems and Software, vol. 85,
pp. 596-606, 2012.

[15] R. Razali, C. F. Snook, M. R. Poppleton, P. W. Garratt, and
R. J. Walters, "Experimental Comparison of the
Comprehensibility of a UML-based Formal Specification
versus a Textual One," 2007.

[16] Protégé Home Site. (2009, 2009-10-13). Welcome to
protégé. Available: http://protege.stanford.edu/

 26

[17] NeOn Project. (2009, 16 mars 2009). Ontology design
patterns. Available:
http://ontologydesignpatterns.org/wiki/Main_Page

[18] TopQuadrant. (2017, 26-09- 2017). TopBraid Composer
(TM). Available:
https://www.topquadrant.com/tools/modeling-topbraid-
composer-standard-edition/

[19] N. Goodman, Languages of art: An approach to a theory of
symbols: Hackett publishing, 1968.

[20] OMG ODM. (2007, 26/05/2008). Ontology Definition
Metamodel: OMG Adopted Specification. Available:
http://www.omg.org/spec/ODM/1.0/Beta2/PDF/

[21] S. Lohmann, S. Negru, F. Haag, and T. Ertl, "Visualizing
ontologies with VOWL," Semantic Web, vol. 7, pp. 399-
419, 2016.

[22] R. Liepinš, M. Grasmanis, and U. Bojars, "OWLGrEd
ontology visualizer," in Proceedings of the 2014
International Conference on Developers-Volume 1268,
2014, pp. 37-42.

[23] J. Ovčiņņikova and K. Čerāns, "Advanced UML Style
Visualization of OWL Ontologies."

[24] S. Krivov, R. Williams, and F. Villa, "GrOWL: A tool for
visualization and editing of OWL ontologies," Web
Semantics: Science, Services and Agents on the World Wide
Web, vol. 5, pp. 54-57, 2007.

[25] R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali,
"Modelling OWL Ontologies with Graffoo," in The
Semantic Web: ESWC 2014 Satellite Events. vol. 8798, V.
Presutti, E. Blomqvist, R. Troncy, H. Sack, I. Papadakis,
and A. Tordai, Eds., ed: Springer International Publishing,
2014, pp. 320-325.

[26] M. Console, D. Lembo, V. Santarelli, and D. F. Savo,
"Graphical representation of OWL 2 ontologies through
graphol," presented at the Proceedings of the 2014
International Conference on Posters & Demonstrations
Track - Volume 1272, Riva del Garda, Italy, 2014.

[27] D. Lembo, D. Pantaleone, V. Santarelli, and D. F. Savo,
"Eddy: A Graphical Editor for OWL 2 Ontologies," in
IJCAI, 2016, pp. 4252-4253.

[28] G. Paquette, "Graphical Ontology Modeling Language for
Learning Environments," Technology, Instruction,
Cognition & Learning, vol. 5, p. 36, 2007.

[29] G. Paquette and D. Rogozan, "Correspondance avec le
langage graphique MOT-OWL et le langage des prédicats
du premier ordre," LICEF, Montréal18 mars 2004, révision
22 mai 2006 2006.

[30] D. Moody and J. van Hillegersberg, "Evaluating the visual
syntax of UML: An analysis of the cognitive effectiveness
of the UML family of diagrams," in International
Conference on Software Language Engineering, 2008, pp.
16-34.

[31] T. Buzan and B. Buzan, The Mind Map Book: How to Use
Radiant Thinking to Maximize Your Brain's Untapped
Potential: E P Dutton, 1994.

[32] J. D. Novak, D. B. Gowin, and J. B. Kahle, Learning How to
Learn: Cambridge University Press, 1984.

[33] G. Paquette, Modélisation des connaissances et des
compétences : un langage graphique pour concevoir et
apprendre. Sainte-Foy: Presses de l'UQ, 2002.

[34] G. Paquette, Visual Knowledge and Competency Modeling -
From Informal Learning Models to Semantic Web
Ontologies. Hershey, PA: IGI Global, 2010.

[35] A. J. Cañas and J. D. Novak, "Concept Mapping Using
CmapTools to Enhance Meaningful Learning," in
Knowledge Cartography: Software Tools and Mapping
Techniques, A. Okada, S. B. Shum, and T. Sherborne, Eds.,
ed London: Springer London, 2008, pp. 25-46.

[36] J. Basque and B. Pudelko, "Modeling for Learning," in
Visual Knowledge and Competency Modeling - From
Informal Learning Models to Semantic Web Ontologies, G.
Paquette, Ed., ed Hershey, New York: IGI Global, 2010.

[37] B. M. Moon, R. R. Hoffman, and J. Novak, Applied
Concept Mapping: Capturing, Analyzing, and Organizing
Knowledge: CRC Press, 2011.

[38] J. Basque, G. Paquette, B. Pudelko, and M. Léonard,
"Collaborative Knowledge Modelling with a Graphical
Knowledge Representation Tool: A Strategy to Support the
Transfer of Expertise in Organisations," in Knowledge
Cartography: Software Tools and Mapping Techniques, A.
Okada, S. B. Shum, and T. Sherborne, Eds., ed London:
Springer London, 2008, pp. 491-517.

[39] G. A. Miller, "The magical number seven, plus or minus
two: some limits on our capacity for processing
information," Psychological review, vol. 63, p. 81, 1956.

[40] P. Chandler and J. Sweller, "Cognitive load theory and the
format of instruction," Cognition and instruction, vol. 8, pp.
293-332, 1991.

[41] G. Paquette, "La modélisation par objets typés - une
méthode de représentation pour les systèmes d'apprentissage
et d'aide à la tâche -," Revue Sciences et techniques
éducatives vol. 3, pp. 9-42, 1996.

[42] M. Héon and G. Paquette. (2012). Modélisation par objets
typés. Available:
https://fr.wikipedia.org/wiki/Modélisation_par_objets_typés

[43] G. Paquette, M. Léonard, and K. Lundgren-Cayrol, "The
MOT+ Visual Language For Knowledge-Based
Instructional Design," LICEF-CIRTA Research Center and
CICE Research Chair, Montréal2007.

[44] M. Héon, "Document de vision, Projet G-MOT,
Composante B du projet PRIOWS," LICEF-TELUQ2010.

[45] G. Paquette and D. Rogozan, "Un processus de construction
et d’évolution d’un système dirigé par ontologies," Télé-
université Montréal, 2011.

[46] P. Chen, "Entity-Relationship Modeling: Historical Events,
Future Trends, and Lessons Learned," in Software Pioneers:
Contributions to Software Engineering, ed: Springer, 2002,
pp. 297-310.

[47] J. F. Sowa, "Conceptual Graph," in Handbook on
Architectures of Information Systems, P. Bernus, G.
Schmidt, and K. Mertins, Eds., ed: Springer-Verlag New
York, Inc., 1999, p. 834.

 27

[48] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-Oriented Modelling and Design. . New
Jersey, : Prentice Hall, 1991.

[49] G. T. Schreiber and H. Akkermans, Knowledge engineering
and management: the CommonKADS methodology.
Cambridge, MA, USA: MIT Press, 2000.

[50] C. K. West, J. A. Farmer, and P. M. Wolff, Instructional
Design, Implications from Cognitive Science. . Boston:
Allyn and Bacon, 1991.

[51] M. D. Merrill, Ed., Principles of Instructional Design. New
Jersey: Educational Technology Publications, 1994, p.^pp.
Pages.

[52] B. Inhelder and J. Piaget., The growth of logical thinking
from childhood to adolescence. New York: Basic Books
1958.

[53] G. Paquette, Instructional Engineering for Network-Based
Learning.: Pfeiffer/Wiley Publishing Co, 2003.

[54] G. Paquette, M. Léonard, I. de la Teja, and M. P. Dessaint,
"Méthode d’ingénierie d’un système d’apprentissage MISA
4.0 Présentation de la méthode," Une, 2001.

[55] W3C. (2004). OWL Web Ontology Language Reference.
Available: https://www.w3.org/TR/2004/REC-owl-ref-
20040210/

[56] G. Paquette, I. Rosca, S. Mihaila, and A. Masmoudi,
"TELOS: A service-oriented framework to support learning
and knowledge management," in E-Learning Networked
Environments and Architectures, ed: Springer, 2007, pp. 79-
109.

[57] M. Héon and R. Nkambou, "G-OWL : Un langage de
modélisation semi-formelle graphique pour la construction
d’une ontologie dans la notation OWL," presented at the IC
2013: 24es Journées francophones d''Ingénierie des
Connaissances, Cité Scientifique, Université Lille 1,
Villeneuve d'Ascq, , 2013.

[58] M. Héon, Web sémantique et modélisation ontologique
(avec G-OWL): Guide du développeur Java sous Eclipse,
Collection Epsilon ed.: Editions ENI, 2014.

[59] M. Héon, R. Nkambou, and C. Langheit, "Toward G-OWL:
A Graphical, Polymorphic And Typed Syntax For Building
Formal OWL2 Ontologies," presented at the Proceedings of
the 25th International Conference Companion on World
Wide Web, Montréal, Québec, Canada, 2016.

[60] M. Héon, R. Nkambou, and M. Gaha, "OntoCASE4G-
OWL: Towards an modeling tool for G-OWL a visual
syntax for RDF/RDFS/OWL2," in The 15 th International
Semantic Web Conference DEMO-Session, Kobe, Japan,
2016.

[61] D. Gašević, D. Djurić, and V. Devedžić, Model Driven
Architecture and Ontology Development. New York, Inc.:
Springer-Verlag, 2006.

[62] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMF: Eclipse Modeling Framework, Second EditionEMF:
Eclipse Modeling Framework, Second edition ed.: Addison
Wesley Professional, 2008.

[63] V. Gérard, "A comprehensive theory of representation for
mathematics education," The Journal of Mathematical
Behavior, vol. 17, pp. 167-181, 1998.

[64] G. A. Goldin, "Representational systems, learning, and
problem solving in mathematics," The Journal of
Mathematical Behavior, vol. 17, pp. 137-165, 1998.

[65] J. F. Sowa, "Ontology, Metadata, and Semiotics," in
ICCS'2000, Darmstadt, Germany, 2000, pp. 55-81.

[66] D. Moody, "The “physics” of notations: toward a scientific
basis for constructing visual notations in software
engineering," IEEE Transactions on Software Engineering,
vol. 35, pp. 756-779, 2009.

[67] C. E. Shannon and W. Weaver, The mathematical theory of
communication: University of Illinois press, 1998.

[68] J. H. Larkin and H. A. Simon, "Why a diagram is
(sometimes) worth ten thousand words," Cognitive science,
vol. 11, pp. 65-100, 1987.

[69] P. Irani, M. Tingley, and C. Ware, "Using perceptual syntax
to enhance semantic content in diagrams," IEEE Computer
Graphics and Applications, vol. 21, pp. 76-84, 2001.

[70] D. L. Moody, P. Heymans, and R. Matulevicius, "Improving
the Effectiveness of Visual Representations in Requirements
Engineering: An Evaluation of i* Visual Syntax," in 2009
17th IEEE International Requirements Engineering
Conference, 2009, pp. 171-180.

[71] G. Popescu and A. Wegmann, "Using the physics of
notations theory to evaluate the visual notation of seam," in
2014 IEEE 16th Conference on Business Informatics, 2014,
pp. 166-173.

[72] N. Genon, P. Heymans, and D. Amyot, "Analysing the
cognitive effectiveness of the BPMN 2.0 visual notation," in
International conference on software language engineering,
2010, pp. 377-396.

[73] J. C. Nordbotten and M. E. Crosby, "The effect of graphic
style on data model interpretation," Information Systems
Journal, vol. 9, pp. 139-155, 1999.

[74] J. Basque, C. Imbeault, B. Pudelko, and M. Léonard,
"Collaborative knowledge modeling between experts and
novices: A strategy to support transfer of expertise in a
organization," in Conference on Concept Mapping, 2004,
pp. pp. 75-81.

[75] G. Paquette, M. Léonard, J. Basque, and B. Pudelko,
"Modeling for Knowledge Management in Organizations,"
in Visual Knowledge Modeling for Semantic Web
Technologies: Models and Ontologies, ed: IGI Global, 2010,
pp. 393-413.

[76] D. Gašević, D. Djurić, and V. Devedžić, "The Ontology
Definition Metamodel (ODM)," in Model Driven
Architecture and Ontology Development, ed, 2006, pp. 181.

[77] C. Wharton, J. Rieman, C. Lewis, and P. Polson, "The
cognitive walkthrough method: a practitioner's guide," in
Usability inspection methods, N. Jakob and L. M. Robert,
Eds., ed: John Wiley & Sons, Inc., 1994, pp. 105-140.

[78] Obeo. (2016, 2016-07-04). Eclipse Sirius: The easiest way
to get your own Modeling Tool. Available:
https://www.eclipse.org/sirius/doc/

[79] V. Viyović, M. Maksimović, and B. Perisić, "Sirius: A rapid
development of DSM graphical editor," in IEEE 18th
International Conference on Intelligent Engineering Systems
INES 2014, 2014, pp. 233-238.

