
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Rediscovering alignment relations with Graph
Convolutional Networks
Pierre Monnin a,*, Chedy Raïssi a,b, Amedeo Napoli a and Adrien Coulet a,c

a Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
E-mails: pierre.monnin@loria.fr, chedy.raissi@inria.fr, amedeo.napoli@loria.fr, adrien.coulet@inria.fr
b Ubisoft, Singapore
E-mail: chedy.raissi@inria.fr
c Université de Paris, Inria Paris, Inserm UMR1138, F-75012 Paris, France
E-mail: adrien.coulet@inria.fr

Abstract. Knowledge graphs are concurrently published and edited in the Web of data. Hence they may overlap, which makes
key the task that consists in matching their content. This task encompasses the identification, within and across knowledge graphs,
of nodes that are equivalent, more specific, or weakly related. In this article, we propose to match nodes of a knowledge graph by
(i) learning node embeddings with Graph Convolutional Networks such that similar nodes have low distances in the embedding
space, and (ii) clustering nodes based on their embeddings. We experimented this approach on a biomedical knowledge graph
and particularly investigated the interplay between formal semantics and GCN models with the two following main focuses.
Firstly, we applied various inference rules associated with domain knowledge, independently or combined, before learning node
embeddings, and we measured the improvements in matching results. Secondly, while our GCN model is agnostic to the exact
alignment relations (e.g., equivalence, weak similarity), we observed that distances in the embedding space are coherent with the
“strength” of these different relations (e.g., smaller distances for equivalences), somehow corresponding to their rediscovery by
the model.

Keywords: Knowledge Graph, matching, embedding, Graph Convolutional Network, ontology, clustering

1. Introduction

In the Semantic Web paradigms [1], knowledge
graphs offer both human and software agents the abil-
ity to publish, edit, access, and interpret data and
knowledge. In such paradigms, agents work concur-
rently, which leads to different knowledge graphs de-
scribing similar units. The combined use of these
knowledge graphs allows access to the full extent of
the available knowledge, which is beneficial to many
applications, such as fact-checking or query answer-
ing. For this conjoint use to be possible, one crucial
task lies in matching units within and across knowl-
edge graphs, i.e., finding alignments or correspon-
dences between, e.g., nodes, edges, or subgraphs [2].
This task is well-studied in the Ontology Matching re-

*Corresponding author. E-mail: pierre.monnin@loria.fr.

search field [2] and is challenging since knowledge
graphs differ in quality, completeness, vocabularies,
and languages. Consequently, different alignment rela-
tions may hold between units: some may indicate that
two units are equivalent, weakly related, or that one is
more specific than the other.

In the present work, we focus on matching nodes of
a knowledge graph represented within Semantic Web
standards [1]. We view such a knowledge graph as a
directed and labeled multigraph in which nodes rep-
resent entities of a world (e.g., places, drugs), literals
(e.g., dates, integers), or classes of individuals (e.g.,
Person, Drug). Nodes are linked together through
edges defined as triples ⟨subject, predicate,
object⟩ in the Resource Description Format lan-
guage, where the predicate qualifies the relation-
ship holding between the subject and the object
(e.g., has-side-effect, has-name). Entities,

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:pierre.monnin@loria.fr
mailto:chedy.raissi@inria.fr
mailto:amedeo.napoli@loria.fr
mailto:adrien.coulet@inria.fr
mailto:chedy.raissi@inria.fr
mailto:adrien.coulet@inria.fr
mailto:pierre.monnin@loria.fr

2 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

classes, and predicates are identified by Uniform Re-
source Identifiers (URIs). Knowledge graphs can be
associated with ontologies, i.e., formal representations
of a domain [3], in which predicates and classes are
organized into two hierarchies by a subsumption rela-
tion.

We propose to match nodes that represent entities
through the approach outlined in Figure 1. This ap-
proach uses graph embeddings, i.e., low-dimensional
vectors that represent graph substructures (e.g., nodes,
edges, subgraphs) while preserving as much as possi-
ble the properties of the graph [4]. More precisely, we
learn node embeddings with Graph Convolution Net-
works (GCNs) [5, 6] such that similar nodes have a
low distance between their embeddings. We employ
graph embeddings since their continuous nature may
provide the needed flexibility to cope with the hetero-
geneous representations of nodes to match [7]. Ad-
ditionally, GCNs compute the embedding of a node
by considering the embeddings of its neighbors in the
graph. Hence, nodes with similar neighborhoods will
have similar embeddings, which is well-adapted to a
structural and relational matching approach [8, 9].

To match nodes, we apply a clustering algorithm on
the embedding space and consider nodes that belong
to the same cluster as similar. These resulting clus-
ters are evaluated by being compared with gold clus-
ters, which we define as groups of nodes linked di-
rectly or indirectly through similarity links existing in
the knowledge graph. Similarity links connect similar
nodes and their predicate represent the alignment re-
lation that holds between them. For example, nodes
may be identical (owl:sameAs links), weakly sim-
ilar (skos:related links), or one may be more
specific than the other (skos:broadMatch links).
Hence, our approach is supervised and requires the
preexistence of such similarity links. Here, we use the
results of a rule-based method [10] in a “knowledge
graph as silver standard” perspective [11].

Within our approach, we particularly investigated
the two following aspects. Firstly, we applied vari-
ous inference rules associated with domain knowledge
(e.g., class and predicate hierarchies, symmetry of
predicates), independently or combined, before learn-
ing node embeddings, and we measured the improve-
ments in matching results. Secondly, as aforemen-
tioned, similarity links may represent different align-
ment relations. We made our GCN model agnostic to
these exact relations during learning. However, we ob-
served that distances between the embeddings of simi-
lar nodes are different and coherent with the “strength”

of each alignment relation (e.g., smaller distances for
equivalences, larger distances for weak similarities).
Such results allow us to think that the model is able
to rediscover these alignment relations. To the best of
our knowledge, our approach is the first one to investi-
gate these aspects in a matching task using GCNs and
clustering.

We experimented our work within the biomedical
domain of pharmacogenomics (PGx), which studies
the influence of genetic factors on drug response phe-
notypes. For example, Figure 2 depicts the relation-
ship pgr_1, which states that patients treated with
warfarin may experience vascular disorders because of
variations in the CYP2C9 gene. PGx knowledge orig-
inates from distinct sources: reference databases such
as PharmGKB [12], biomedical literature, or the min-
ing of Electronic Health Records of hospitals. Conse-
quently, there is an interest in matching these sources
to obtain a consolidated view of the PGx knowledge.
Such a view would certainly be beneficial to precision
medicine, which aims at tailoring drug treatments to
patients to reduce adverse effects and maximize drug
efficacy [13, 14].

Additionally, PGx knowledge is well adapted to
our matching approach based on GCNs. Indeed, PGx
knowledge consists of n-ary relationships between
drugs, genomic variations, and phenotypes. Only bi-
nary relations exist in Semantic Web standards. Thus,
PGx relationships are reified as nodes whose neighbors
are the involved drugs, genetic factors, and phenotypes
(see Figure 2) [15]. In this context, matching PGx rela-
tionships reduces to matching the nodes resulting from
their reification. By using GCNs, nodes representing
PGx relationships that involve similar drugs, genetic
factors, and phenotypes will have similar embeddings
since they have similar neighborhoods.

The remainder of this paper is organized as follows.
In Section 2, we outline some works related to node
matching in knowledge graphs and graph embeddings.
We detail the core of our matching approach (node em-
beddings and clustering) in Section 3, and how infer-
ence rules associated with domain knowledge are con-
sidered in Section 4. In Section 5, we experiment this
approach on PGxLOD, a large knowledge graph we
built that contains 50,435 PGx relationships [16]. Fi-
nally, we discuss our results and conclude in Section 6
and 7.

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Embedding space

Distance analysis
sameAs broadMatch related

sameAs

broadMatch

related

Knowledge graph

Computation of gold clusters
+ Application of inference rules

GCNs
+ SNN LossClustering + Evaluation

Clusters
+ Evaluation metrics

+ Gold cluster labels
Transformed knowledge graph

Distributions of distances between similar nodes
by alignment relation

Fig. 1. Outline of our approach. Gold clusters are computed from existing similarity links in the knowledge graph (e.g., owl:sameAs,
skos:broadMatch, skos:related, etc.). These similarity links are then removed and various inferences rules associated with domain
knowledge are applied on the knowledge graph. Embeddings of nodes are learned with Graph Convolutional Networks (GCNs) and the Soft
Nearest Neighbor (SNN) loss. Clustering algorithms are then applied on the embedding space and the resulting clusters are evaluated with regard
to the gold clusters. A distance analysis is also performed for each alignment relation.

CYP2C9

warfarin

vascular_disorderspgr_1

causes

caus
es

causes

Fig. 2. Representation of a PGx relationship between gene CYP2C9,
drug warfarin and phenotype vascular_disorders. This
relationship is reified through the individual pgr_1, connecting its
components through the causes predicate.

2. Related work

Numerous papers exist about knowledge graph and
ontology matching. The interested reader could refer
to the book of Euzenat and Shvaiko [2] for a formal-
ization of the matching task, and a detailed presen-
tation of the main methods. In the following, we fo-
cus on graph embedding techniques. Such techniques
have been successfully applied on knowledge graphs
for various tasks such as node classification, link pre-
diction, or node clustering [4, 17]. Interestingly, the
task of matching nodes can be alternatively tackled as a
link prediction task (i.e., predicting similarity links be-
tween nodes) or as a node clustering task (i.e., group-
ing similar nodes into clusters). Here, we choose the
node clustering approach.

Existing papers about graph embedding differ in the
considered type of graphs (e.g., homogeneous graphs,
heterogeneous graphs such as knowledge graphs) or
in the graph embedding techniques used (e.g., ma-
trix factorization, deep learning with or without ran-
dom walk), as listed in the taxonomies of problems
and techniques in the survey of Cai et al. [4]. Here-
after, a few specific examples are detailed but a more
thorough overview can be found in the following sur-
veys [4, 17, 18]. Some approaches are translational.
For example, TransE [19] computes for each triple
⟨s, p, o⟩ of a knowledge graph, embeddings hs, hp, ho,
such that hs + hp ≈ ho, i.e., the translation vector from
the subject to the object of a triple corresponds to the
embedding of the predicate. This approach is adapted
for link prediction but, according to the authors, it is
unclear if it can adequately model relations of distinct
arities, such as 1-to-Many, or Many-to-Many. Other
approaches use random walks in the knowledge graph.
For example, RDF2Vec [20] first extracts, for each
node, a set of sequences of graph sub-structures start-
ing from this node. Elements in these sequences can
be edges, nodes, or subtrees. Then, sequences feed the
word2vec model that compute embeddings for each el-
ement in a sequence by either maximizing the prob-

4 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ability of an element given the other elements of the
sequence (Continuous Bag of World architecture) or
maximizing the probability of the other elements given
the considered element (Skip-gram architecture).

The approach adopted in this article is based on
Graph Convolutional Networks (GCNs). GCNs have
been introduced for semi-supervised classification
over graphs [5] and extended for entity classification
and link prediction in knowledge graphs [6]. Contrast-
ing TransE and RDF2Vec that work at the triple and
sequence levels, GCNs compute the embedding of a
node by considering its neighborhood in the graph.
Hence, as aforementioned, we believe GCNs are well-
suited for our application of matching reified n-ary
relationships since similar relationships have similar
neighborhoods. Other existing works rely on this as-
sumption that similar nodes have similar neighbor-
hoods and use GCNs for their matching. For example,
Wang et al. [9] propose to align cross-lingual knowl-
edge graphs by using GCNs to learn node embed-
dings such that nodes representing the same entity in
different languages have close embeddings. Pang et
al. [8] use the same approach to align two knowledge
graphs, but introduce an iterative aspect. Some newly-
aligned entities are selected and used when learning
embeddings in the next iteration. To avoid introducing
false positive alignments, the newly-aligned entities
are selected with a distance-based criteria proposed by
the authors. Interestingly, the two previous approaches
take into account literals during the embedding process
and use the triplet loss, also used by TransE. On the
contrary, in our work, we discard literals and use the
Soft Nearest Neighbor loss [21] to consider all positive
and negative examples instead of sampling1.

However, previous methods do not consider infer-
ence rules associated with domain knowledge repre-
sented in knowledge graphs on the contrary of recent
papers [22]. For example, Logic Tensor Networks [23]
learn groundings of logical terms and logical clauses.
The grounding of a logical term consists in a vector
of real numbers (i.e., an embedding) and the ground-
ing of a logical clause is a real number in the interval
[0, 1] (i.e., the confidence in the truth of the clause).
The learning process aims at minimizing the satisfia-
bility error of a set of clauses, while ensuring the log-
ical reasoning. This work can interestingly be com-
pared to graph embeddings if knowledge graphs are

1GCNs and the Soft Nearest Neighbor loss are further detailed in
Subsection 3.2

considered in their logical form, i.e., considering nodes
as logical terms and edges linking two nodes as log-
ical formulae. Alternatively, Wang et al. [24] propose
an hybrid attention mechanism named “Logic Atten-
tion Network” (LAN) to use in embedding approaches
for link prediction. LAN combines a mechanism based
on logical rules and a neural network mechanism. The
rule-based mechanism weights neighbors by promot-
ing those linked by a predicate that has been found to
strongly imply the predicate of the link to predict. Be-
sides implications between predicates, more complex
logical rules can be associated with knowledge graphs
through ontologies. That is why Gutiérrez-Basulto and
Schockaert [25] investigate how to ensure logical con-
sistency through geometrical constraints on embed-
ding spaces and if classical embedding techniques re-
spect such constraints.

These related works and our preliminary results [26]
inspired the present work where we investigate how (i)
inference rules associated with domain knowledge can
improve the performances in node matching and (ii)
the distributions of distances in the embedding space
can correspond to a “rediscovery” of the alignment re-
lations.

3. Matching nodes with Graph Convolutional
Networks and clustering

3.1. Approach outline

Our approach is outlined in Figure 1. It takes as
input a knowledge graph K and a set S of nodes to
match, where S is a subset of the nodes of K. To illus-
trate, in our biomedical application, we only intend to
match nodes that represent reified PGx relationships.
We discard literals and edges incident to literals from
K and S . Hence, a node is either an entity or a class.
We consider that we have at our disposal gold clusters,
i.e., sets of nodes from S that are already labeled as
similar. These gold clusters can have uneven sizes. We
propose to match nodes in S as follows:

1. Learn embeddings for all nodes in K such that
nodes in S labeled as similar (i.e., belonging to
the same gold cluster) have smaller distances be-
tween their embeddings (Subsection 3.2).

2. Apply a clustering algorithm on the embedding
space and consider nodes belonging to the same
cluster as similar (Subsection 3.3).

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

It should be noted that gold clusters can result from
another automatic matching method or a manual align-
ment by an expert. For example, in Section 5, our
gold clusters are computed from similarity links semi-
automatically obtained with rules manually written by
experts [10]. As aforementioned, these similarity links
can represent different alignment relations (e.g., equiv-
alence, weak similarity). We further detail in Subsec-
tion 5.1 how these different relations are taken into ac-
count in our experiments.

3.2. Learning node embeddings with Graph
Convolutional Networks and the Soft Nearest
Neighbor loss

To learn embeddings for all nodes in K, we propose
to use Graph Convolutional Networks (GCNs) and the
Soft Nearest Neighbor loss. In the following, we adopt
the notations and definitions of Schlichtkrull et al. [6].
As such, R denotes the set of predicates in the consid-
ered knowledge graph K. Given a node i and a predi-
cate r ∈ R, we denote by N r

i the set of nodes reach-
able from i by an edge labeled by r.

Graph Convolutional Networks (GCNs) can be seen
as a message-passing framework of multiple layers, in
which the embedding h(l+1)

i of a node i at layer (l+1)
depends on the embeddings of its neighbors at level
(l), as stated in Eq. (1).

h(l+1)
i = σ

(∑
r∈R

∑
j∈N r

i

1

ci,r
W(l)

r h(l)
j + W(l)

0 h(l)
i

)
(1)

This convolution over the neighboring nodes j of i is
computed with a specific weight matrix W(l)

r for each
predicate r ∈ R and each layer (l). The convolution is
regularized by a constant ci,r, that can be set for each
node and each predicate. Similarly to Schlichtkrull et
al. [6], we use ci,r = |N r

i |. The weight matrix W(l)
0

enables a self-connection, i.e., the embedding of i at
layer (l+1) also depends on its embedding at layer (l).
σ is a non-linear function such as ReLU or tanh.

The number of predicates in K can lead to a high
number of parameters W(l)

r to optimize. That is why we
use the basis-decomposition proposed by Schlichtkrull
et al. [6]. Hence, each W(l)

r is decomposed as follows:

W(l)
r =

B∑
b=1

a(l)
rb V(l)

b (2)

For each level (l), B matrices V(l)
b ∈ Rd(l+1)×d(l)

and
|R| × B coefficients a(l)

rb ∈ R are learned, where d(l)

and d(l+1) denote the dimension of embeddings at
level (l) and level (l+1) respectively. Then, each W(l)

r

is computed as a linear combination of matrices V(l)
b

and coefficients a(l)
rb . As only these coefficients depend

on predicates r, the number of parameters to learn is
reduced.

In our objective of clustering similar nodes, we pro-
pose to train GCNs by minimizing the Soft Nearest
Neighbor (SNN) loss defined by Frosst et al. [21] and
presented in Eq. (3).

LSNN = −
1

|N|
∑
i∈N

log

∑
j∈N
j≠i

Yi=Y j

e−
||hi−h j||

2

T

∑
k∈N
k ̸=i

e−
||hi−hk||2

T

(3)

The input of the SNN loss consists of:

– A set N of nodes belonging to the gold clusters
(see Subsection 5.2).

– A set Y of labels for nodes in N. These labels cor-
responds to the assignments of nodes in N to the
gold clusters.

– A temperature T .
– Embeddings h of nodes. These embeddings are

the output of the last layer of the GCN model.

Minimizing the SNN loss corresponds to minimizing
intra-cluster distances and maximizing inter-cluster
distances for the gold clusters of nodes in N. The
temperature T determines how distances influence
the loss. Indeed, distances between widely separated
embeddings are taken into account when T is large
whereas only distances between close embeddings are
taken into account when T is small. To avoid T as an
hyperparameter of the model, we adopt the same learn-
ing procedure as Frosst et al. [21]: T is initialized to a
predefined value and is optimized by learning 1

T as a
model parameter.

The computation of LSNN (Eq. (3)) considers all
positive and negative examples from N. Indeed, dis-
tances between nodes with the same label are mini-
mized (i.e., positive examples) whereas distances be-
tween nodes with different labels are maximized (i.e.,
negative examples). However, it is noteworthy that
K is based on the Open World Assumption. Hence,

6 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nodes with different labels are regarded as dissimi-
lar (i.e., negative examples) while their (dis)similarity
may only be unknown.

3.3. Matching nodes by clustering their embeddings

After embeddings of all nodes in the graph have
been learned and output by the last layer of GCNs, we
perform a clustering on embeddings hi for all nodes
i ∈ S , i.e., all nodes to match. Nodes that belong to the
same predicted cluster are considered as similar and
these predicted clusters are compared and evaluated
with regard to gold clusters.

Here, we experiment with the three distinct cluster-
ing algorithms presented in Table 1. Their choice was
motivated by their availability in scikit-learn [27]. In-
terestingly, these algorithms differ in their parameters:
they take either the number of clusters to find or the
minimum size of clusters. This difference allows us
to evaluate the influence of inference rules associated
with domain knowledge in different settings (see Sec-
tion 4). To compare predicted clusters with gold clus-
ters, we use the three usual metrics presented in Ta-
ble 2.

4. Evaluating the influence of applying inference
rules associated with domain knowledge

Semantic Web knowledge graphs are represented
within formalims such as Description Logics [29] that
are equipped with inference rules. Hence, we propose
to evaluate the improvements in the results of our
matching approach (detailed in Section 3) when con-
sidering such inference rules, independently or com-
bined. Here, we only consider the following logic ax-
ioms: class and predicate assertions, equivalence ax-
ioms between entities or classes, subsumption axioms
between classes or predicates, and axioms defining
predicate inverses. Accordingly, we generate six dif-
ferent graphs by running over K the inference rules as-
sociated with these different axioms until saturation.
Then, we test our approach on each of these six graphs.
These graphs are summarized in Table 3 and further
described below.
G0 constitutes the baseline in which no inference

rules are run and with the systematic addition of ab-
stract inverses. Indeed, Schlichtkrull et al. [6] consider
that for every predicate r ∈ R, there exists an inverse
rinv ∈ R. Thus, for every r ∈ R, we add an abstract
inverse rinv ∈ R such that its adjacency matrix rep-

resents the inverse of r. This addition of abstract in-
verses is performed in all other graphs, except when
explicitly stated otherwise. G1 results from the con-
traction of owl:sameAs edges. Indeed, in K, sev-
eral nodes representing the same entity can co-exist. In
this case, they may be linked (directly or indirectly) by
owl:sameAs edges and should be considered as one,
which is enabled by this contraction. In G2, we do not
always add abstract inverses but consider definitions of
inverses and symmetry of predicates instead. That is to
say:

(i) For a predicate r1 defined as symmetric (i.e.,
r1 ≡ r−1

1), we do not add an abstract inverse r1 inv
and complete its adjacency matrix to ensure its
symmetry.

(ii) For a predicate r2 that has a defined inverse r3
(i.e., r3 ≡ r−1

2), we do not add an abstract in-
verse r2 inv and complete their adjacency matrices
to ensure they represent inverse predicates.

(iii) Otherwise, for a predicate r4 that neither is
symmetric nor have a defined inverse, we add an
abstract inverse r4 inv such that its adjacency ma-
trix represents the inverse of r4.

G3 takes into account the hierarchy of predicates. In-
deed, if a predicate r1 is a subpredicate of r2 (i.e.,
r1 ⊑ r2) and a triple ⟨i, r1, j⟩ exists, then we make sure
the triple ⟨i, r2, j⟩ also exists in the graph. This com-
pletion is performed by considering the transitive clo-
sure of the subsumption relation ⊑. That is to say, if
r1 ⊑ r2 and r2 ⊑ r3, we also consider r1 ⊑ r3. Simi-
larly, G4 completes type edges based on the hierarchy
of ontology classes defined by subClassOf edges.
Hence, if ⟨i,type, j⟩ and ⟨ j,subClassOf, k⟩ exist
in the graph, then we ensure that ⟨i,type, k⟩ is also in
the graph. Here again, subClassOf edges are con-
sidered by computing their transitive closure. Finally,
G5 is the graph resulting from all transformations from
G1 to G4.

5. Experiments

We experimented with PGxLOD2, a large knowl-
edge graph about pharmacogenomics (PGx) that we
previously built [16]. Our approach is implemented in
Python, using PyTorch and the Deep Graph Library for
learning embeddings, and scikit-learn for clustering.
Our code is available on GitHub3.

2https://pgxlod.loria.fr
3https://github.com/pmonnin/gcn-matching

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Clustering algorithms applied on the embeddings of nodes in S . Nodes that belong to the same predicted cluster are considered as similar.

Algorithm Parameter Description

Ward Number of clusters to find
Hierarchical clustering algorithm that successively merges clusters by minimizing the vari-
ance of merged clusters

Single Number of clusters to find
Hierarchical clustering algorithm that successively merges clusters whose distance between
their closest observations is minimal

OPTICS [28] Minimum size of clusters Algorithm that finds zones of high density and expand clusters from them

Table 2
Performance metrics used to compare the clusters predicted by the algorithms presented in Table 1 with gold clusters.

Metric Abbr. Domain Description

Unsupervised Clus-
tering Accuracy

ACC [0, 1]
Counts nodes whose predicted cluster label is the same as their gold cluster label divided by
the total number of nodes. As labels may be permuted between predicted and gold clusters,
the mapping with the best ACC is used.

Adjusted Rand Index ARI [−1, 1]
Considers all pairs of nodes and counts those whose nodes are assigned to the same or differ-
ent clusters both in predicted and gold clusters. ARI is equal to 0 for a random labeling, and
equal to 1 for a perfect labeling (up to a permutation). ARI is adjusted for chance.

Normalized Mutual
Information

NMI [0, 1]
Measures the mutual information between the predicted and gold clusters, normalized by the
entropy of both types of clusters. NMI is equal to 1 for a perfect labeling (up to a permuta-
tion).

Table 3
Visual summary of the transformations of K to evaluate the influence of the application of inference rules associated with domain knowledge on
node matching. G0 is the baseline that corresponds to no inference rules being run and the systematic addition of abstract inverses.

Graph Before After

G0 i j
r

i j
r

rinv

G1

i jk
r1 l

r2

sameAs
ijk

r1 r2 l

i j
r1

r1 ≡ r1-1 i j
r1

r1

G2 k l
r2

r3 ≡ r2-1 k l
r2

r3

i j
r4 i j

r4

r4 inv

G3 i j
r1

r1 ⊑ r2
i j

r1

r2

G4 i kj
type subClassOf i kj

type subClassOf

type

G5 All transformations from G1 to G4

8 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

5.1. Knowledge graph and gold clusters of similar
nodes

We chose to use PGxLOD as the input knowledge
graph of our approach since it presents several needed
characteristics. First, PGxLOD contains nodes whose
matching is well-adapted to a structure-based approach
such as ours. Additionally, alignments are expected to
be found between these nodes. Indeed, PGxLOD con-
tains 50,435 PGx relationships resulting from:

– an automatic extraction from the reference data-
base PharmGKB;

– an automatic extraction from the biomedical liter-
ature;

– a manual representation of 10 studies made from
Electronic Health Records of hospitals.

Alignments are expected to be found between such re-
lationships since, for example, PharmGKB is manually
curated by experts after a literature review. Recall that
PGx relationships are n-ary, and thus they are reified as
nodes, as illustrated in Figure 2 [15]. Hence, nodes rep-
resenting these relationships form our set S of nodes to
match. The reification process entails that neighbors of
such nodes are the drugs, genetic factors, and pheno-
types involved in the relationships. Consequently, sim-
ilar relationships have similar neighborhoods, which
makes a structure-based approach such as ours well-
adapted for their matching.

Second, PGxLOD contains owl:sameAs edges
(or equivalence axioms), which makes possible the
transformation represented in G1. Indeed, PGxLOD in-
tegrates several Linked Open Data sets: ClinVar, Drug-
Bank, SIDER, DisGeNET, PharmGKB, and CTD.
These LOD sets contain facts describing components
of PGx relationships (i.e., drugs, phenotypes, and ge-
netic factors). Several LOD sets may describe the
same entities and we know it explicitly, i.e., some
nodes belonging to different LOD sets are linked with
owl:sameAs edges. For example, this could be the
case of a drug represented both in PharmGKB and
DrugBank. Thus, we can apply the owl:sameAs
identification.

Third, PGxLOD contains subsumption axioms be-
tween classes and between predicates, which makes
possible the transformations represented in G3 and G4.
Indeed, PGxLOD includes the ATC, MeSH, PGxO,
and ChEBI ontologies.

Fourth, some PGx relationships in S are already la-
beled as similar through similarity links. These links
use the five following alignment relations: owl:-

sameAs, skos:closeMatch, skos:related-
Match, skos:related, and skos:broadMatch.
Links using owl:sameAs and skos:closeMatch
indicate strong similarities, whereas skos:rela-
tedMatch and skos:related indicate weaker
similarities. Links using skos:broadMatch indi-
cate that a PGx relationship is more specific than an-
other. These links result from the application of five
matching rules [10] and are removed before running
inference rules over K, learning embeddings, and clus-
tering. However, they allow to compute gold clusters,
i.e., sets of nodes that are considered as similar since
they are directly or indirectly connected through sim-
ilarity links. These gold clusters are used to evaluate
our approach in a “knowledge graph as silver standard”
perspective [11]. We propose the different gold clus-
terings detailed in Table 4. They variously consider
the five alignment relations to evaluate our approach in
different settings (e.g., all the different alignment rela-
tions in C0, only symmetric relations in C1, only equiv-
alences in C2). For each gold clustering, gold clusters
correspond to the connected components computed by
only considering the (undirected) similarity links of
the selected alignment relations between nodes in S .
Hence, all alignment relations are regarded as symmet-
ric (undirected links) and transitive (connected com-
ponents), which is coherent with the majority of align-
ment relations (see Table 4). Figure 3 presents the sizes
of the resulting gold clusters. We notice that many gold
clusters have a size lower or equal to 10, and that con-
sidering skos:related or skos:broadMatch
links increases the maximal size of gold clusters. The
availability of all these different alignment relations
also allows to perform the distance analysis described
in Subsection 5.4 and indicated in Figure 1.

5.2. Learning node embeddings

We experimented our approach with different pairs
(Ci,G j) that were selected for their experimental in-
terest. All gold clusterings were experimented with
graphs G0 and G5 to have a global view of the im-
pact on performance of applying inference rules asso-
ciated with domain knowledge. All graphs were exper-
imented with C0 to have a finer evaluation of each in-
ference rule on the most heterogeneous gold cluster-
ing. For each experimented pair (Ci,G j), a 5-fold cross-
validation was performed as follows. For each Ci, S is
split into five sets S i

k (k ∈ {1, 2, 3, 4, 5}). All S i
k con-

tain the same number of nodes for each gold cluster
of Ci larger than 5 nodes. Each set S i

k is successively

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Alignment relations considered in each gold clustering to compute the gold clusters used in our experiments. We indicate whether a relation is
transitive (T or ¬ T) and symmetric (S or ¬ S).

owl:sameAs skos:closeMatch skos:relatedMatch skos:related skos:broadMatch

T, S T, S T, S ¬ T, S T, ¬ S
C0 × × × × ×
C1 × × × ×
C2 ×
C3 ×
C4 ×
C5 ×
C6 ×

10 20 50

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
4

3
8

4
1

4
2

4
3

4
4

4
5

4
7

4
8

5
1

5
5

5
9

6
7

6
8

7
4

7
7

8
2

8
5

9
3

9
4

1
0
0

1
0
7

1
4
1

1
4
6

1
7
3

1
8
7

2
2
0

2
9
1

2
6
5
3

1
7
5
6
8

104

103

102

101

100

(a) C0 (max = 17, 568)

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
7

3
8

4
1

4
3

4
4

4
7

5
1

5
2

5
5

5
6

5
9

6
2

6
8

7
3

7
4

7
7

8
5

9
2

9
3

9
4

1
0
7

1
0
9

1
3
5

1
4
1

1
4
6

1
7
3

1
8
3

2
9
1

5
2
5

8
9
2

1
6
9
6
1

10 20 50104

103

102

101

100

(b) C1 (max = 16, 961)

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
9

3
3

3
7

3
8

3
9

4
4

4
8

5
6

7
3

7
4

9
2

1
0
9

1
3
5

1
8
3

10 20 50
104

103

102

101

100

(c) C2 (max = 183)

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
1

2
3

2
5

2
7

2
9

3
3

3
5

3
8

4
1

6
2

6
9

10 20 50

104

103

102

101

100

(d) C3 (max = 69)

1 2 3 4 5 6 7 8

1
1

5
2

8
9
2

10 50

104

103

102

101

100

(e) C4 (max = 892)

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
9

2
0

2
1

2
3

2
4

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
4

3
8

4
1

4
3

4
4

4
7

5
1

5
5

5
9

6
8

7
4

7
7

8
5

9
3

9
4

1
0
7

1
4
1

1
4
6

1
7
3

1
8
2

2
9
1

5
1
8

1
6
9
4
2

10 20 50
104

103

102

101

100

(f) C5 (max = 16, 942)

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
6

2
7

2
8

2
9

3
0

3
2

3
5

3
7

3
8

3
9

4
2

4
3

4
5

4
8

6
7

8
2

9
2

1
0
0

1
0
6

1
3
8

2
2
0

2
5
0
1

10 20 50
104

103

102

101

100

(g) C6 (max = 2, 501)

Fig. 3. Number of gold clusters (y-axis) by size (x-axis) for each gold clustering. The max value is the maximum size of gold clusters (in terms
of number of nodes). The minimum size is 1 for every gold clustering. Only gold clusters larger than 10, 20, and 50 nodes are later used to
compute performance metrics. Gold clusterings are defined in Table 4.

10 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

used as the test set S test, while set S i
(k+1) is used as the

validation set S val
4. Remaining sets form the train set

S train.
An architecture formed by 3 GCN layers is used to

learn node embeddings. The input layer consists in a
featureless approach as in [5, 6], i.e., the input is just
a one-hot vector for each node of the graph. All three
layers have an output dimension of 16. Therefore, out-
put embeddings for all nodes in the knowledge graph
are in R16. The activation function used on the input
and hidden layers is tanh while the output layer uses
a linear function. We use a basis-decomposition of 10
bases and set ci,r = |N r

i | for all i and all r. In such a
3-layer architecture, it follows from Eq. (1) that only
neighboring nodes up to 3 hops5 of nodes in S will
have an impact on their embeddings, output at layer 3.
Thus, to save memory, we reduce graphs to such 3-hop
neighborhoods. Statistics about these reduced graphs
are available in Table 5.

Only the embeddings of nodes in S (here, the PGx
relationships) are considered in our clustering task.
Hence, only these embeddings are constrained in the
SNN loss. However, in LSNN (Eq. (3)), each node
needs at least one other node assigned to the same
gold cluster (i.e., having the same label). Thus, only
gold clusters of size greater or equal to 10 are used
in the learning process since each S i

k contains at least
2 nodes of these clusters. This is particularly needed
for the validation and test losses but we chose to use
the same constraint for the train loss for homogeneity.
We use the Adam optimizer [30] with a starting learn-
ing rate of 0.01. T is initialized to 1. We learn dur-
ing 200 epochs with an early-stopping mechanism: if
the validation loss does not decrease of 0.0001 after 10
epochs, the learning process is stopped.

5.3. Clustering

Clustering algorithms are only applied on the em-
beddings of nodes in S test since they are the nodes we
aim to match. Recall that the learning process only
considers nodes belonging to gold clusters whose size
is greater or equal to 10. Accordingly, we apply the
three clustering algorithms introduced in Table 1 and
evaluate their performance on embeddings of nodes in
S test that belong to gold clusters whose size is greater

4S i
1 is the validation set when S test = S i

5.
5The 3-hop neighborhood of a node n consists of all the nodes

that can be reached with a breadth-first traversal that starts at n and
traverses at most 3 edges.

Table 5
Statistics of PGxLOD and its transformations as described in Sec-
tion 4. Statistics for PGxLOD discard literals and edges incident to
literals. As we use a 3-layer architecture, statistics for all Gi only
consider neighboring nodes up to 3 hops of nodes in S (i.e., PGx
relationships to match). # denotes “number of”.

nodes # edges # predicates

PGxLOD 11,808,396 43,341,712 416
G0 3,758,814 39,956,844 689
G1 3,879,081 46,960,365 733
G2 3,758,814 22,085,701 347
G3 3,758,814 41,048,190 697
G4 3,758,928 42,691,984 701
G5 3,882,945 27,277,789 375

or equal to 50, 20, and 10. These different sizes allow
to evaluate the influence of inference rules in the per-
formance of our matching approach when considering
only large or all gold clusters.

Results on all gold clusterings and graphs G0 and G5

are displayed in Table 6, Table 7 and Table 8. In these
tables, gray cells indicate the best results among clus-
tering algorithms given a gold clustering, a graph, and
a metric. For example, in Table 6, considering C0 and
G0, the best ACC is obtained with the Single cluster-
ing algorithm. Underlined values indicate the best re-
sult between G0 and G5 given a gold clustering and a
metric. For example, in Table 6, given C1, the best NMI
for Ward is obtained with G0 whereas the best ACC is
obtained with G5. We notice that applying all inference
rules (i.e., G5) generally increases performance for C0
and C1 whereas results for the other gold clusterings do
not show such an homogeneous and important increase
in performance.

Results on C0 and all graphs are displayed in Ta-
ble 9, Table 10, and Table 11. In these tables, gray cells
indicate the best result among clustering algorithms
and underlined values indicate the best result between
graphs. For example, in Table 9, given G0, the best
ACC is obtained with the Single clustering algorithm.
Given the Single algorithm, the best ARI is obtained
with G3 and G5. Here again, we notice that applying all
inference rules (i.e., G5) leads to the best results. How-
ever, computing all instantiations based on the transi-
tive closure of the subsumption (i.e., G4) seems to de-
grade clustering performance.

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 50 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5.

G0 G5

ACC ARI NMI ACC ARI NMI

C0

Ward 0.24 ± 0.02 0.07 ± 0.01 0.37 ± 0.01 0.25 ± 0.02 0.07 ± 0.01 0.35 ± 0.01

Single 0.84 ± 0.08 0.66 ± 0.13 0.59 ± 0.05 0.90 ± 0.00 0.75 ± 0.01 0.64 ± 0.02

OPTICS 0.61 ± 0.05 0.21 ± 0.08 0.25 ± 0.04 0.68 ± 0.02 0.27 ± 0.05 0.27 ± 0.02

C1

Ward 0.19 ± 0.02 0.05 ± 0.00 0.33 ± 0.01 0.20 ± 0.03 0.05 ± 0.01 0.31 ± 0.01

Single 0.85 ± 0.01 0.55 ± 0.04 0.51 ± 0.03 0.85 ± 0.01 0.57 ± 0.03 0.51 ± 0.03

OPTICS 0.64 ± 0.03 0.19 ± 0.03 0.28 ± 0.01 0.71 ± 0.04 0.26 ± 0.06 0.30 ± 0.02

C2

Ward 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01

Single 0.88 ± 0.03 0.84 ± 0.03 0.94 ± 0.01 0.86 ± 0.04 0.81 ± 0.07 0.93 ± 0.02

OPTICS 0.94 ± 0.06 0.92 ± 0.07 0.97 ± 0.03 0.91 ± 0.06 0.88 ± 0.08 0.95 ± 0.04

C3

Ward 0.52 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

Single 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.01 0.00 ± 0.00 0.00 ± 0.00

OPTICS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

C4

Ward 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Single 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OPTICS 0.45 ± 0.14 −0.02 ± 0.06 0.08 ± 0.08 0.38 ± 0.11 0.01 ± 0.05 0.11 ± 0.08

C5

Ward 0.20 ± 0.02 0.04 ± 0.00 0.24 ± 0.01 0.15 ± 0.02 0.03 ± 0.00 0.20 ± 0.01

Single 0.88 ± 0.00 0.31 ± 0.03 0.29 ± 0.03 0.89 ± 0.00 0.30 ± 0.03 0.27 ± 0.02

OPTICS 0.71 ± 0.03 0.18 ± 0.07 0.18 ± 0.04 0.68 ± 0.06 0.07 ± 0.07 0.11 ± 0.04

C6

Ward 0.69 ± 0.02 0.48 ± 0.03 0.64 ± 0.03 0.76 ± 0.12 0.58 ± 0.22 0.67 ± 0.12

Single 0.86 ± 0.02 0.60 ± 0.09 0.63 ± 0.08 0.82 ± 0.02 0.46 ± 0.12 0.52 ± 0.11

OPTICS 0.59 ± 0.07 0.21 ± 0.09 0.44 ± 0.06 0.58 ± 0.05 0.19 ± 0.06 0.45 ± 0.04

Table 7
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 20 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5.

G0 G5

ACC ARI NMI ACC ARI NMI

C0

Ward 0.17 ± 0.01 0.04 ± 0.00 0.32 ± 0.01 0.17 ± 0.02 0.04 ± 0.00 0.31 ± 0.01

Single 0.79 ± 0.08 0.64 ± 0.11 0.54 ± 0.05 0.86 ± 0.01 0.69 ± 0.01 0.57 ± 0.01

OPTICS 0.45 ± 0.03 0.09 ± 0.02 0.17 ± 0.01 0.50 ± 0.01 0.13 ± 0.01 0.19 ± 0.01

C1

Ward 0.15 ± 0.01 0.03 ± 0.00 0.31 ± 0.01 0.15 ± 0.01 0.03 ± 0.00 0.30 ± 0.00

Single 0.64 ± 0.22 0.38 ± 0.19 0.45 ± 0.06 0.82 ± 0.01 0.58 ± 0.03 0.52 ± 0.03

OPTICS 0.47 ± 0.02 0.08 ± 0.01 0.20 ± 0.01 0.51 ± 0.02 0.11 ± 0.03 0.20 ± 0.01

C2

Ward 0.98 ± 0.00 0.98 ± 0.02 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.01 0.99 ± 0.00

Single 0.97 ± 0.03 0.95 ± 0.05 0.98 ± 0.01 0.98 ± 0.00 0.98 ± 0.01 0.99 ± 0.00

OPTICS 0.69 ± 0.01 0.44 ± 0.04 0.78 ± 0.01 0.73 ± 0.03 0.48 ± 0.04 0.81 ± 0.02

C3

Ward 0.92 ± 0.06 0.89 ± 0.08 0.95 ± 0.03 0.89 ± 0.05 0.84 ± 0.08 0.93 ± 0.03

Single 0.91 ± 0.05 0.87 ± 0.06 0.95 ± 0.03 0.88 ± 0.07 0.84 ± 0.09 0.93 ± 0.04

OPTICS 0.89 ± 0.07 0.87 ± 0.08 0.94 ± 0.08 0.92 ± 0.06 0.90 ± 0.09 0.95 ± 0.04

C4

Ward 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Single 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.94 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

OPTICS 0.29 ± 0.05 0.01 ± 0.01 0.09 ± 0.02 0.34 ± 0.05 0.03 ± 0.01 0.11 ± 0.02

C5

Ward 0.12 ± 0.01 0.02 ± 0.00 0.21 ± 0.01 0.10 ± 0.00 0.01 ± 0.00 0.17 ± 0.00

Single 0.85 ± 0.01 0.32 ± 0.09 0.28 ± 0.06 0.86 ± 0.00 0.20 ± 0.03 0.27 ± 0.02

OPTICS 0.48 ± 0.02 0.05 ± 0.01 0.10 ± 0.01 0.52 ± 0.02 0.05 ± 0.02 0.09 ± 0.01

C6

Ward 0.56 ± 0.05 0.39 ± 0.10 0.67 ± 0.02 0.50 ± 0.06 0.29 ± 0.08 0.65 ± 0.03

Single 0.64 ± 0.07 0.43 ± 0.13 0.62 ± 0.05 0.78 ± 0.01 0.67 ± 0.06 0.71 ± 0.03

OPTICS 0.44 ± 0.03 0.08 ± 0.03 0.38 ± 0.02 0.47 ± 0.05 0.08 ± 0.08 0.37 ± 0.05

12 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 8
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 10 for graphs G0 and G5. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Given a gold clustering, gray cells indicate the best results among
clustering algorithms and underlined values indicate the best result between G0 and G5.

G0 G5

ACC ARI NMI ACC ARI NMI

C0

Ward 0.14 ± 0.01 0.02 ± 0.00 0.29 ± 0.01 0.13 ± 0.01 0.02 ± 0.00 0.28 ± 0.02

Single 0.66 ± 0.17 0.53 ± 0.22 0.52 ± 0.06 0.74 ± 0.15 0.61 ± 0.16 0.54 ± 0.06

OPTICS 0.25 ± 0.02 0.02 ± 0.01 0.12 ± 0.01 0.27 ± 0.01 0.03 ± 0.01 0.11 ± 0.01

C1

Ward 0.13 ± 0.01 0.01 ± 0.00 0.28 ± 0.01 0.14 ± 0.01 0.01 ± 0.00 0.27 ± 0.01

Single 0.41 ± 0.12 0.18 ± 0.07 0.41 ± 0.02 0.72 ± 0.15 0.53 ± 0.14 0.52 ± 0.04

OPTICS 0.28 ± 0.01 0.02 ± 0.00 0.13 ± 0.01 0.28 ± 0.00 0.02 ± 0.00 0.13 ± 0.01

C2

Ward 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Single 0.99 ± 0.01 0.99 ± 0.02 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

OPTICS 0.63 ± 0.01 0.31 ± 0.01 0.67 ± 0.01 0.62 ± 0.01 0.29 ± 0.01 0.66 ± 0.01

C3

Ward 0.92 ± 0.00 0.90 ± 0.10 0.94 ± 0.05 0.86 ± 0.04 0.81 ± 0.05 0.89 ± 0.02

Single 0.90 ± 0.07 0.88 ± 0.12 0.93 ± 0.05 0.83 ± 0.05 0.77 ± 0.08 0.88 ± 0.04

OPTICS 0.75 ± 0.02 0.58 ± 0.03 0.78 ± 0.02 0.72 ± 0.03 0.49 ± 0.07 0.73 ± 0.05

C4

Ward 0.99 ± 0.00 0.90 ± 0.07 0.86 ± 0.08 0.99 ± 0.00 0.91 ± 0.05 0.88 ± 0.04

Single 0.98 ± 0.01 0.83 ± 0.10 0.78 ± 0.15 0.99 ± 0.00 0.88 ± 0.05 0.85 ± 0.07

OPTICS 0.18 ± 0.03 0.01 ± 0.01 0.06 ± 0.01 0.18 ± 0.01 0.00 ± 0.00 0.06 ± 0.01

C5

Ward 0.09 ± 0.01 0.01 ± 0.00 0.18 ± 0.01 0.07 ± 0.00 0.01 ± 0.00 0.14 ± 0.01

Single 0.81 ± 0.01 0.31 ± 0.12 0.25 ± 0.08 0.82 ± 0.01 0.32 ± 0.08 0.26 ± 0.05

OPTICS 0.27 ± 0.01 0.01 ± 0.00 0.06 ± 0.01 0.28 ± 0.01 0.01 ± 0.01 0.05 ± 0.01

C6

Ward 0.48 ± 0.03 0.24 ± 0.05 0.64 ± 0.01 0.44 ± 0.02 0.16 ± 0.03 0.60 ± 0.02

Single 0.63 ± 0.07 0.56 ± 0.14 0.70 ± 0.04 0.74 ± 0.02 0.76 ± 0.05 0.76 ± 0.03

OPTICS 0.37 ± 0.02 0.02 ± 0.01 0.29 ± 0.02 0.37 ± 0.02 0.03 ± 0.01 0.29 ± 0.01

Table 9
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 50 for C0 and all graphs. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Gray cells indicate the best result among clustering algorithms.
Underlined values indicate the best result between graphs. ↓ indicates a lower value with regard to G0.

Ward Single OPTICS

G0

ACC 0.24 ± 0.02 0.84 ± 0.08 0.61 ± 0.05

ARI 0.07 ± 0.01 0.66 ± 0.13 0.21 ± 0.08

NMI 0.37 ± 0.01 0.59 ± 0.05 0.25 ± 0.04

G1

ACC 0.24 ± 0.02 0.86 ± 0.00 ↓ 0.58 ± 0.03

ARI 0.07 ± 0.01 0.70 ± 0.02 ↓ 0.16 ± 0.03

NMI ↓ 0.35 ± 0.02 ↓ 0.58 ± 0.02 ↓ 0.23 ± 0.01

G2

ACC 0.24 ± 0.01 0.89 ± 0.02 0.70 ± 0.01

ARI 0.07 ± 0.00 0.72 ± 0.03 0.32 ± 0.03

NMI ↓ 0.34 ± 0.01 0.61 ± 0.04 0.28 ± 0.01

G3

ACC ↓ 0.22 ± 0.03 0.89 ± 0.02 0.63 ± 0.03

ARI 0.07 ± 0.01 0.75 ± 0.02 0.29 ± 0.04

NMI ↓ 0.36 ± 0.01 0.63 ± 0.03 0.28 ± 0.02

G4

ACC ↓ 0.23 ± 0.02 ↓ 0.80 ± 0.16 0.62 ± 0.02

ARI 0.07 ± 0.01 ↓ 0.63 ± 0.21 ↓ 0.20 ± 0.03

NMI ↓ 0.36 ± 0.01 ↓ 0.58 ± 0.08 ↓ 0.24 ± 0.01

G5

ACC 0.25 ± 0.02 0.90 ± 0.00 0.68 ± 0.02

ARI 0.07 ± 0.01 0.75 ± 0.01 0.27 ± 0.05

NMI ↓ 0.35 ± 0.01 0.64 ± 0.02 0.27 ± 0.02

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 10
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 20 for C0 and all graphs. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Gray cells indicate the best result among clustering algorithms.
Underlined values indicate the best result between graphs. ↓ indicates a lower value with regard to G0.

Ward Single OPTICS

G0

ACC 0.17 ± 0.01 0.79 ± 0.08 0.45 ± 0.03

ARI 0.04 ± 0.00 0.64 ± 0.11 0.09 ± 0.02

NMI 0.32 ± 0.01 0.54 ± 0.05 0.17 ± 0.01

G1

ACC 0.19 ± 0.01 0.81 ± 0.01 ↓ 0.43 ± 0.02

ARI 0.04 ± 0.00 0.64 ± 0.02 ↓ 0.07 ± 0.03

NMI 0.32 ± 0.01 ↓ 0.52 ± 0.01 ↓ 0.16 ± 0.02

G2

ACC 0.17 ± 0.01 0.81 ± 0.08 0.48 ± 0.01

ARI 0.04 ± 0.00 ↓ 0.63 ± 0.09 0.11 ± 0.02

NMI ↓ 0.30 ± 0.01 0.54 ± 0.05 0.17 ± 0.01

G3

ACC ↓ 0.15 ± 0.01 0.81 ± 0.06 0.46 ± 0.01

ARI ↓ 0.03 ± 0.00 0.64 ± 0.12 0.12 ± 0.02

NMI 0.32 ± 0.01 0.55 ± 0.05 0.18 ± 0.01

G4

ACC 0.17 ± 0.01 ↓ 0.69 ± 0.22 ↓ 0.43 ± 0.02

ARI ↓ 0.03 ± 0.00 ↓ 0.54 ± 0.24 ↓ 0.08 ± 0.02

NMI 0.32 ± 0.01 ↓ 0.52 ± 0.08 0.17 ± 0.01

G5

ACC 0.17 ± 0.02 0.86 ± 0.01 0.50 ± 0.01

ARI 0.04 ± 0.00 0.69 ± 0.01 0.13 ± 0.01

NMI ↓ 0.31 ± 0.01 0.57 ± 0.01 0.19 ± 0.01

Table 11
Results of clustering nodes that belong to gold clusters whose size is greater or equal to 10 for C0 and all graphs. Average and standard deviation
for each metric are computed on test folds during a 5-fold cross validation. Gray cells indicate the best result among clustering algorithms.
Underlined values indicate the best result between graphs. ↓ indicates a lower value with regard to G0.

Ward Single OPTICS

G0

ACC 0.14 ± 0.01 0.66 ± 0.17 0.25 ± 0.02

ARI 0.02 ± 0.00 0.53 ± 0.22 0.02 ± 0.01

NMI 0.29 ± 0.01 0.52 ± 0.06 0.12 ± 0.01

G1

ACC 0.15 ± 0.01 0.73 ± 0.10 0.25 ± 0.01

ARI 0.02 ± 0.00 0.58 ± 0.13 0.02 ± 0.01

NMI 0.30 ± 0.01 ↓ 0.51 ± 0.03 0.12 ± 0.01

G2

ACC ↓ 0.12 ± 0.01 ↓ 0.62 ± 0.16 0.27 ± 0.01

ARI 0.02 ± 0.00 ↓ 0.47 ± 0.19 0.03 ± 0.01

NMI ↓ 0.26 ± 0.01 ↓ 0.48 ± 0.05 ↓ 0.11 ± 0.00

G3

ACC ↓ 0.12 ± 0.00 0.70 ± 0.18 0.26 ± 0.01

ARI 0.02 ± 0.00 0.58 ± 0.23 0.03 ± 0.01

NMI ↓ 0.28 ± 0.01 0.52 ± 0.06 0.12 ± 0.01

G4

ACC 0.14 ± 0.01 ↓ 0.56 ± 0.18 0.25 ± 0.01

ARI 0.02 ± 0.00 ↓ 0.42 ± 0.20 0.02 ± 0.00

NMI 0.29 ± 0.01 ↓ 0.50 ± 0.06 0.12 ± 0.00

G5

ACC ↓ 0.13 ± 0.01 0.74 ± 0.15 0.27 ± 0.01

ARI 0.02 ± 0.00 0.61 ± 0.16 0.03 ± 0.01

NMI ↓ 0.28 ± 0.02 0.54 ± 0.06 ↓ 0.11 ± 0.01

5.4. Distance analysis

During learning and clustering, our model is un-
aware of the different alignment relations holding be-
tween similar nodes. Indeed, the SNN loss only con-
siders labels of gold clusters that do not indicate the
alignment relations used to compute these clusters.
This is particularly relevant for gold clusterings C0 and
C1 that mix different alignment relations to compute
the gold clusters. However, inspired by our prelimi-
nary results [26], we display in Figure 4 the distribu-

tions of distances between similar nodes in the test set
by alignment relation. This analysis is presented for C0
and graphs G0 and G5. Interestingly, similarly to our
preliminary results [26], such distributions of distances
are coherent with the “strength” of the alignment rela-
tions. Indeed, for example, nodes that are weakly simi-
lar tend to be further apart than equivalent nodes. Only
the skos:broadMatch relation presents different
distance distributions with regard to the distance dis-
tributions of the other relations across the different test

14 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sets. This could be explained since this is the only non-
symmetric relation (see Table 4).

6. Discussion

Table 6, Table 7, and Table 8 show that performance
of clustering are generally better for gold clusterings
C2 to C6 than C0 and C1. Recall that these two gold clus-
terings mix different alignment relations when com-
puting gold clusters, and thus their matching task is ex-
pected to be more difficult. It can also be noticed that
performance tends to decrease when considering addi-
tional gold clusters (i.e., when decreasing their mini-
mum size). Here again, such a task is more difficult.
Indeed, clustering algorithms need to find more clus-
ters (for Ward and Single), or clusters with a reduced
minimum size (for OPTICS). However, this is not the
case of C2, C3, and C4. This can be explained because,
for such gold clusterings, only few gold clusters have a
size greater or equal to 50 or 20 (see Figure 3), and thus
only few training examples are available. Hence, re-
ducing the minimum size leads to consider more train-
ing examples, and, despite the task being more diffi-
cult, improves performance.

Among the considered clustering algorithms, Single
generally performs better than the others. For C0 and
C1, OPTICS is the second best algorithm. For the other
gold clusterings, Single and Ward give the best per-
formance. In particular, we notice that OPTICS tends
to have a decent ACC but reduced ARI and NMI. As
this algorithm is unaware of the number of clusters
to find and only knows their minimum size, low ARI
and NMI may indicate a different clustering output in
terms of both number and size of clusters. Indeed, ARI
counts the pairs of nodes that have similar of different
assignments both in predicted and gold clusters while
NMI measures the mutual information between two
different clusterings. On the contrary, ACC counts the
number of nodes correctly assigned. Hence, big gold
clusters (partially) correctly assigned may increase the
ACC value even between different clusterings. Such a
situation arises here since some of our gold clusterings
lead to gold clusters with numerous nodes. For exam-
ple, Figure 3 shows that a gold cluster in C0 contains
17,568 nodes.

Table 6, Table 7, and Table 8 allow to compare
results between G0, i.e., no inference rules, and G5,
i.e., all inference rules. It appears that G5 generally
increases performance for C0 and C1. Results for the
other gold clusterings do not show such an homoge-

neous and important increase in performance between
G0 and G5. As aforementioned, C0 and C1 mix differ-
ent alignment relations, which leads to a more diffi-
cult matching task. Hence, our results indicate that in-
ference rules associated with domain knowledge pro-
vide useful improvements when dealing with heteroge-
neous similarities and clusters. It is frequent in match-
ing task to consider different alignment relations or
“levels” of similarity. Hence, matching approaches
could benefit from taking into account inference rules
to improve matching results.

Results for C0 in Table 9, Table 10, and Table 11
detail the clustering performance for each graph trans-
formation. Performances for Ward do not present no-
ticeable modifications. For Single and OPTICS, infer-
ence rules seem to mostly improve results, except for
G4. This graph contains all the instantiation links that
can be inferred. Consequently, “general” classes are
directly linked to entities that instantiate them instead
of indirectly. For example, in Table 3, k is directly
linked to i instead of indirectly. Hence, when comput-
ing the embeddings of such entities, embeddings of
both general and specific classes are directly consid-
ered through the same predicate type, which makes
difficult for GCNs to weight these classes differently.
As specific classes are more important than general
classes to discriminate similar and dissimilar nodes,
their undifferentiated influence in embeddings may ex-
plain the decrease in performance. We notice that G5

performs best, which advocates for considering all in-
ference rules together. However, based on the degraded
performance of G4 with regard to G0, one may want
to solely focus on inference rules represented by G1,
G2, and G3. As expected from the first three tables, Ta-
ble 9, Table 10, and Table 11 also confirm that Single
is the best performing clustering algorithm for C0, even
across the different graph transformations.

Regarding the distance analysis of node embed-
dings, Figure 4 shows that distances between simi-
lar nodes are different depending on the alignment
relation holding between them. Recall that our GCN
model is agnostic to these alignment relations when
computing the SNN loss. Interestingly, distances re-
flect the “strength” of the alignment relations: strong
similarities (i.e., owl:sameAs and skos:close-
Match links) have smaller distances than weaker ones
(i.e., skos:relatedMatch and skos:related
links). The skos:broadMatch relation appears
more difficult to position with regard to others. This
can be explained as it is the only alignment relation
that is not symmetric. Such coherent distributions of

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

35

(a) G0 – Fold 1

sameAs closeMatch relatedMatch related broadMatch

0

10

20

30

40

50

(b) G0 – Fold 2

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

35

(c) G0 – Fold 3

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

(d) G0 – Fold 4

sameAs closeMatch relatedMatch related broadMatch

0

10

20

30

40

(e) G0 – Fold 5

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

(f) G5 – Fold 1

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

35

(g) G5 – Fold 2

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

35

(h) G5 – Fold 3

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

(i) G5 – Fold 4

sameAs closeMatch relatedMatch related broadMatch

0

5

10

15

20

25

30

(j) G5 – Fold 5

Fig. 4. Distributions of distances between similar nodes by alignment relation for each test set, the C0 gold clustering and the two graphs G0

and G5. In each subpicture, links are from left to right: owl:sameAs, skos:closeMatch, skos:relatedMatch, skos:related, and
skos:broadMatch.

distances seem to indicate the “rediscovery” of align-
ment relations by GCNs and encourage to consider the
distance between embeddings of nodes in a “semantic”
way, i.e., smaller distances indicate stronger similari-
ties. Additionally, such different distances also seem to
confirm that the neighborhood aggregation of embed-
dings in GCNs makes them well-suited to a structural
and relational matching.

Our results highlight the interest of considering for-
mal semantics associated with knowledge graphs in
embedding approaches and seem to advocate for a fur-
ther integration of formal semantics within embed-
ding models. Future works may investigate the same
targets with different embedding techniques, whether
based on graph neural networks [31] or others (e.g.,
translational approaches such as TransE). Addition-
ally, we did not use attention mechanisms, which could
also consider formal semantics as in Logic Attention
Network [24]. Here, inference rules associated with
domain knowledge are used to transform the knowl-
edge graph as a pre-processing operation. However,
we could envision to consider such mechanisms di-
rectly in the model (e.g., weight sharing between pred-
icates and their super-predicates). Literals could also
be taken into account [9]. In a larger perspective, one
major future work lies in investigating if and how other
semantics than types of similarity links can emerge in
the output embedding space.

7. Conclusion

In this paper, we proposed to match entities of a
knowledge graph by learning node embeddings with
Graph Convolutional Networks (GCNs) and clustering
nodes based on their embeddings. We particularly in-
vestigated the interplay between formal semantics as-
sociated with knowledge graphs and GCN models. Our
results showed that considering inference rules asso-
ciated with domain knowledge tends to improve per-
formance. Additionally, even if our GCN model was
agnostic to the exact alignment relations holding be-
tween entities (e.g., equivalence, weak similarity), dis-
tances in the embedding space are coherent with the
“strength” of the alignment relations. These results
seem to advocate for a further integration of formal se-
mantics within embedding models.

Acknowledgements

This work was supported by the PractiKPharma
project, founded by the French National Research
Agency (ANR) under Grant ANR15-CE23-0028, and
by the Snowball Inria Associate Team.

References

[1] T. Berners-Lee, J. Hendler, O. Lassila et al., The Semantic
Web, Scientific american 284(5) (2001), 28–37.

[2] J. Euzenat and P. Shvaiko, Ontology Matching, Second Edition,
Springer, 2013. ISBN 978-3-642-38720-3.

16 P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[3] T.R. Gruber, A translation approach to portable ontology spec-
ifications, Knowledge acquisition 5(2) (1993), 199–220.

[4] H. Cai, V.W. Zheng and K.C. Chang, A Comprehensive Sur-
vey of Graph Embedding: Problems, Techniques, and Applica-
tions, IEEE Trans. Knowl. Data Eng. 30(9) (2018), 1616–1637.
doi:10.1109/TKDE.2018.2807452.

[5] T.N. Kipf and M. Welling, Semi-Supervised Classification with
Graph Convolutional Networks, in: 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings, OpenRe-
view.net, 2017.

[6] M.S. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg,
I. Titov and M. Welling, Modeling Relational Data with
Graph Convolutional Networks, in: The Semantic Web -
15th International Conference, ESWC 2018, Heraklion, Crete,
Greece, June 3-7, 2018, Proceedings, Lecture Notes in Com-
puter Science, Vol. 10843, Springer, 2018, pp. 593–607.
doi:10.1007/978-3-319-93417-4_38.

[7] R.V. Guha, Towards A Model Theory for Distributed Rep-
resentations, in: 2015 AAAI Spring Symposia, Stanford Uni-
versity, Palo Alto, California, USA, March 22-25, 2015,
AAAI Press, 2015. http://www.aaai.org/ocs/index.php/SSS/
SSS15/paper/view/10220.

[8] N. Pang, W. Zeng, J. Tang, Z. Tan and X. Zhao, Iterative En-
tity Alignment with Improved Neural Attribute Embedding, in:
Proceedings of the Workshop on Deep Learning for Knowledge
Graphs (DL4KG2019) Co-located with the 16th Extended Se-
mantic Web Conference 2019 (ESWC 2019), Portoroz, Slove-
nia, June 2, 2019, CEUR Workshop Proceedings, Vol. 2377,
CEUR-WS.org, 2019, pp. 41–46.

[9] Z. Wang, Q. Lv, X. Lan and Y. Zhang, Cross-lingual Knowl-
edge Graph Alignment via Graph Convolutional Networks, in:
Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, October 31 -
November 4, 2018, Association for Computational Linguistics,
2018, pp. 349–357. doi:10.18653/v1/d18-1032.

[10] P. Monnin, M. Couceiro, A. Napoli and A. Coulet, Knowledge-
Based Matching of n-ary Tuples, in: Ontologies and Concepts
in Mind and Machine - 25th International Conference on Con-
ceptual Structures, ICCS 2020, Bolzano, Italy, September 18-
20, 2020, Proceedings, M. Alam, T. Braun and B. Yun, eds,
Lecture Notes in Computer Science, Vol. 12277, Springer,
2020, pp. 48–56. doi:10.1007/978-3-030-57855-8_4.

[11] H. Paulheim, Knowledge graph refinement: A survey of ap-
proaches and evaluation methods, Semantic Web 8(3) (2017),
489–508. doi:10.3233/SW-160218.

[12] M. Whirl-Carrillo, E.M. McDonagh, J.M. Hebert, L. Gong,
K. Sangkuhl, C.F. Thorn, R.B. Altman and T.E. Klein, Phar-
macogenomics knowledge for personalized medicine, Clinical
pharmacology and therapeutics 92(4) (2012), 414.

[13] K.E. Caudle et al., Incorporation of Pharmacogenomics into
Routine Clinical Practice: the Clinical Pharmacogenetics Im-
plementation Consortium (CPIC) Guideline Development Pro-
cess, Current Drug Metabolism 15(2) (2014), 209–217.

[14] A. Coulet and M. Smaïl-Tabbone, Mining Electronic Health
Records to Validate Knowledge in Pharmacogenomics,
ERCIM News 2016(104) (2016).

[15] N. Noy, A. Rector, P. Hayes and C. Welty, Defining N-ary Re-
lations on the Semantic Web, W3C working group note 12(4)
(2006).

[16] P. Monnin, J. Legrand, G. Husson, P. Ringot, A. Tchechmed-
jiev, C. Jonquet, A. Napoli and A. Coulet, PGxO and PGxLOD:
a reconciliation of pharmacogenomic knowledge of various
provenances, enabling further comparison, BMC Bioinformat-
ics 20-S(4) (2019), 139:1–139:16. doi:10.1186/s12859-019-
2693-9.

[17] Q. Wang, Z. Mao, B. Wang and L. Guo, Knowledge Graph
Embedding: A Survey of Approaches and Applications,
IEEE Trans. Knowl. Data Eng. 29(12) (2017), 2724–2743.
doi:10.1109/TKDE.2017.2754499.

[18] M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich, A
Review of Relational Machine Learning for Knowledge
Graphs, Proceedings of the IEEE 104(1) (2016), 11–33.
doi:10.1109/JPROC.2015.2483592.

[19] A. Bordes, N. Usunier, A. García-Durán, J. Weston and
O. Yakhnenko, Translating Embeddings for Modeling Multi-
relational Data, in: Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held De-
cember 5-8, 2013, Lake Tahoe, Nevada, United States, 2013,
pp. 2787–2795.

[20] P. Ristoski and H. Paulheim, RDF2Vec: RDF Graph Em-
beddings for Data Mining, in: The Semantic Web - ISWC
2016 - 15th International Semantic Web Conference, Kobe,
Japan, October 17-21, 2016, Proceedings, Part I, Lecture
Notes in Computer Science, Vol. 9981, 2016, pp. 498–514.
doi:10.1007/978-3-319-46523-4_30.

[21] N. Frosst, N. Papernot and G.E. Hinton, Analyzing and Im-
proving Representations with the Soft Nearest Neighbor Loss,
in: Proceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, Proceedings of Machine Learning Research,
Vol. 97, PMLR, 2019, pp. 2012–2020.

[22] H. Paulheim, Make Embeddings Semantic Again!, in: Pro-
ceedings of the ISWC 2018 Posters & Demonstrations, Indus-
try and Blue Sky Ideas Tracks co-located with 17th Interna-
tional Semantic Web Conference (ISWC 2018), Monterey, USA,
October 8th - to - 12th, 2018, CEUR Workshop Proceedings,
Vol. 2180, CEUR-WS.org, 2018.

[23] L. Serafini and A.S. d’Avila Garcez, Logic Tensor Networks:
Deep Learning and Logical Reasoning from Data and Knowl-
edge, in: Proceedings of the 11th International Workshop
on Neural-Symbolic Learning and Reasoning (NeSy’16) co-
located with the Joint Multi-Conference on Human-Level Arti-
ficial Intelligence (HLAI 2016), New York City, NY, USA, July
16-17, 2016, CEUR Workshop Proceedings, Vol. 1768, CEUR-
WS.org, 2016.

[24] P. Wang, J. Han, C. Li and R. Pan, Logic Attention Based
Neighborhood Aggregation for Inductive Knowledge Graph
Embedding, in: The Thirty-Third AAAI Conference on Artifi-
cial Intelligence, AAAI 2019, The Thirty-First Innovative Ap-
plications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January
27 - February 1, 2019, AAAI Press, 2019, pp. 7152–7159.
doi:10.1609/aaai.v33i01.33017152.

[25] V. Gutiérrez-Basulto and S. Schockaert, From Knowledge
Graph Embedding to Ontology Embedding? An Analysis of
the Compatibility between Vector Space Representations and
Rules, in: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Sixteenth International Conference,

P. Monnin et al. / Rediscovering alignment relations with Graph Convolutional Networks 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

KR 2018, Tempe, Arizona, 30 October - 2 November 2018,
AAAI Press, 2018, pp. 379–388.

[26] P. Monnin, C. Raïssi, A. Napoli and A. Coulet, Knowledge
Reconciliation with Graph Convolutional Networks: Prelimi-
nary Results, in: Proceedings of the Workshop on Deep Learn-
ing for Knowledge Graphs (DL4KG2019) Co-located with the
16th Extended Semantic Web Conference 2019 (ESWC 2019),
Portoroz, Slovenia, June 2, 2019, CEUR Workshop Proceed-
ings, Vol. 2377, CEUR-WS.org, 2019, pp. 47–56.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Ma-
chine Learning in Python, Journal of Machine Learning Re-
search 12 (2011), 2825–2830.

[28] M. Ankerst, M.M. Breunig, H. Kriegel and J. Sander, OP-
TICS: Ordering Points To Identify the Clustering Structure,

in: SIGMOD 1999, Proceedings ACM SIGMOD Interna-
tional Conference on Management of Data, June 1-3, 1999,
Philadelphia, Pennsylvania, USA, ACM Press, 1999, pp. 49–
60. doi:10.1145/304182.304187.

[29] F. Baader et al.(eds), The Description Logic Handbook: The-
ory, Implementation, and Applications, Cambridge University
Press, 2003.

[30] D.P. Kingma and J. Ba, Adam: A Method for Stochastic Opti-
mization, in: 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[31] V.P. Dwivedi, C.K. Joshi, T. Laurent, Y. Bengio and
X. Bresson, Benchmarking Graph Neural Networks, CoRR
abs/2003.00982 (2020).

	Introduction
	Related work
	Matching nodes with Graph Convolutional Networks and clustering
	Approach outline
	Learning node embeddings with Graph Convolutional Networks and the Soft Nearest Neighbor loss
	Matching nodes by clustering their embeddings

	Evaluating the influence of applying inference rules associated with domain knowledge
	Experiments
	Knowledge graph and gold clusters of similar nodes
	Learning node embeddings
	Clustering
	Distance analysis

	Discussion
	Conclusion
	Acknowledgements
	References

