o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 0 (0) 1 1
10S Press

Visual Notations for Viewing and Editing
RDF Constraints with UnSHACLed

Sven Lieber *, Ben De Meester, Pieter Heyvaert, Femke Briickmann, Ruben Wambacq, Erik Mannens,
Ruben Verborgh, and Anastasia Dimou
IDLab, Department of Electronics and Information Systems, Ghent University—imec, Belgium

Abstract. The quality of knowledge graphs can be assessed by a validation against specified constraints, typically use-case spe-
cific and modeled by human users in a manual fashion. Visualizations can improve the modeling process as they are specifically
designed for human information processing, possibly leading to more accurate constraints, and in turn higher quality knowledge
graphs. However, it is currently unknown how such visualizations support users when viewing RDF constraints as no scien-
tific evidence for the visualizations’ effectiveness is provided. Furthermore, some of the existing tools are likely suboptimal, as
they lack support for edit operations or common constraints types. To establish a baseline, we have defined visual notations to
view and edit RDF constraints, and implemented them in UnSHACLed, a tool that is independent of a concrete RDF constraint
language. In this paper, we (i) present two visual notations that support all SHACL core constraints, built upon the commonly
used visualizations VOWL and UML, (ii) analyze both notations based on cognitive effective design principles, (iii) perform
a comparative user study between both visual notations, and (iv) present our open source tool UnSHACLed incorporating our
efforts. Users were presented RDF constraints in both visual notations and had to answer questions about it. Although no statis-
tical significant difference in mean error rates was observed, a majority of participants made less errors with ShapeVOWL and
all preferred ShapeVOWL in a self-assessment to answer RDF constraint-related questions. Study participants argued that the in-
creased visual features of Shape VOWL made it easier to spot constraints, but a list of constraints — as in ShapeUML — is easier to
read. However, also that more deviations from the strict UML specification and introduction of more visual features can improve
ShapeUML. From these findings, we conclude that Shape VOWL has the potential for more user acceptance, but also that the clear
and efficient text encoding of ShapeUML can be improved with visual features. A one-size-fits-all approach to RDF constraint
visualization and editing will be insufficient. Therefore, to support different audiences and use cases, user interfaces of RDF
constraint editors need to support different visual notations. In the future, we plan to incorporate different editing approaches
and non-linear workflows into UnSHACLed to improve its editing capabilities. Further research can built upon our findings and
evaluate a ShapeUML variant with more visual features or investigate a mapping from both visual notations to ShEx constraints.

Keywords: Visual Notation, Data Shapes, Constraints, SHACL, UML, VOWL

1. Introduction

Data interoperability is one of the biggest challenges
of the current era and the Resource Description Frame-
work (RDF) offers a solution as it is compositional:
RDF graphs from different sources can be merged au-
tomatically which facilitates the integration of hetero-
geneous data [1]. However, advantages such as RDF’s
flexibility also result in challenges such as the pro-
duction/consumption dilemma [1] in which the struc-
ture of data needs to be de described such that pro-

*Corresponding author. E-mail: sven.lieber@ugent.be.

ducers and consumers can validate transmitted data for
reasons such as security or performance [1]. In 2017,
the W3C RDF Data Shapes Working Group published
a recommendation to define structural constraints of
RDF data [2] which can address such needs.

Quality is defined as "fitness for use" [3] implying
that constraints for validation are use-case specific; hu-
man users usually define these constraints in a manual
fashion and need support. Users can use any text editor
to create such constraints, but need to be familiar with
the textual syntax of the underlying data shape lan-
guage. User evaluations of visualizations for different
Linked Data concepts, such as ontology modeling [4]

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:sven.lieber@ugent.be

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

2 S. Lieber et al. / Visual Notations for RDF Constraints

or Linked Data generation [5], suggest that such vi-
sualizations support users to perform respective tasks
more intuitively. However, the degree of actual support
offered by existing visualizations for RDF constraints
is currently unknown, given the lack of scientific evi-
dence for their effectiveness. Furthermore, some of the
existing tools are likely suboptimal, as they lack sup-
port for edit operations or common constraints types.

Clearly specified visualizations — already used for
some Semantic Web concepts [4—7] — provide a design
rationale and can be designed with the human infor-
mation processing system in mind [8], but are not yet
taken into account for RDF constraints which makes
the effectiveness of existing tools questionable. A vi-
sual notation [8] is defined as a set of graphical sym-
bols, a set of compositional rules, as well as the def-
initions and meaning of each symbol, and provides
an explicit design rationale. UnSHACLed [9], a tool
built on top of SHACL [2], lists features for a visual
data shape editor. However, important details regard-
ing the used visual notation are not provided, for in-
stance, the meaning of arrows or the selection of colors
are not clearly specified. Similarly, RDFShape which
uses “UML-like class diagrams” [10] to statically vi-
sualize ShEx [11] constraints does not provide a clear
specification of its visual notation and neither do other
recently developed tools' 2.

Existing tools only provide limited or no editing ca-
pabilities, if editing capabilities are provided they are
not always in line with real-life constraint use. The
first version of UnSHACLed supports constraints edit-
ing. However, it does not support all constraint types,
for instance, logical constraints are not yet visualized.
RDFShape does not support constraints editing at all
as it only visualizes constraints, thus users need to use
and understand the underlying textual syntax. Simi-
lar to the initial version of UnSHACLed, the imple-
mentation of RDFShape does not yet support logi-
cal relationships such as (exclusive) disjunction; recent
statistics show that disjunction constraints are broadly
used [12] and thus users probably have the need to cre-
ate and edit such constraints.

1.1. Research question and approach

The aforementioned motivate our high-level re-
search question: How can we support users familiar

1OntoPad: https://web.archive.org/web/20201104091304/https://
github.com/AKSW/OntoPad/
2shaclEditor: https://web.archive.org/web/20201104091927/

with Linked Data in viewing and editing RDF con-
straints? To address this research question, we inves-
tigated visual notations supporting users when view-
ing RDF constraints and present a new version of our
tool UnSHACLed that implements visual notations and
allows users to create and edit RDF constraints.

A few visual notations already exist, but are not
formally defined or do not cover all SHACL core
constraints which also prevents a fair comparison.
Thus, we defined two visual notations to represent
all SHACL core constraints and related concepts by
reusing existing notations. Different candidates to
reuse exist, i.e. commonly used visual notations al-
ready familiar to users. Both the Unified Modeling
Language (UML) [13] and the Visual Notation for
OWL Ontologies (VOWL) [4] can be considered for a
visual notation for RDF constraints as they are com-
monly used for RDF constraints or related Semantic
Web concepts [4-6, 9, 10, 14, 15].

1.2. Hypothesis

We defined the two visual notations ShapeUML and
ShapeVOWL both representing all SHACL core con-
straints and related concepts. Since VOWL, the under-
lying notation of ShapeVOWL aims to be intuitive and
comprehensible [4] and visualizes the tangible graph
structure of RDF, we investigate in this paper the fol-
lowing hypothesis: users familiar with Linked Data
can answer questions about visually represented
RDF constraints more effective with ShapeVOWL
than with ShapeUML.

1.3. Contributions

We compare the notations with respect to design
principles for visual notations [8] and evaluate them
in a comparative user study. We implemented both vi-
sual notations in UnSHACLed to allow creating and
editing constraints in a constraint language indepen-
dent way. Users can switch between visual notations
and use the created RDF constraints to validate input
data from within the same editor.

Our contributions in this paper are:

1. introduction of two alternative visual notations:
ShapeUML and ShapeVOWL,;

2. analysis of both visual notations with respect to
cognitive effective design principles;

https://github.com/firmao/shaclEditor

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://web.archive.org/web/20201104091304/https://github.com/AKSW/OntoPad/
https://web.archive.org/web/20201104091304/https://github.com/AKSW/OntoPad/
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor
https://web.archive.org/web/20201104091927/https://github.com/firmao/shaclEditor

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

S. Lieber et al. / Visual Notations for RDF Constraints 3

3. comparative evaluation between ShapeVOWL
and ShapeUML with a user study; and

4. presentation of our open source UnSHACLed ed-
itor implementing both visual notations.

The comparative analysis based on cognitive effec-
tive design principles [8] reveals that ShapeVOWL ad-
heres to more principles, thus in theory is more cog-
nitive effective. An additional comparative user study
shows that there is no significant mean error difference
when answering questions about RDF constraints with
both notations, however, also that in a self-assessment
users prefer ShapeVOWL. We implemented both visual
notations in our tool UnSHACLed to also allow editing
of RDF constraints in a visual fashion.

The remainder of the paper is structured as follows.
We provide background knowledge on data shape lan-
guages and visual notations in Section 2 and present
two visual notations in Section 3. In Section 4 we
compare both presented visual notations based on de-
sign principles for cognitive effective visualizations. In
Section 5 we present our visual editor UnSHACLed. In
Section 6 we present the comparative user evaluation
and its results. We discuss and conclude in Section 7.

2. State of the Art

In this section, we discuss (i) existing RDF con-
straint languages (ii) the use of different constraint
types suggesting visualizations for manual creation,
(iii) existing RDF constraint visualization tools, and
(iv) closely related Semantic Web visualizations pro-
viding possible visualizations to extend.

2.1. RDF constraint languages

Several RDF constraint languages were proposed
in the past, we describe how they are related. In
this work we consider the Shapes Constraint Lan-
guage (SHACL) because it (i) is a W3C recommen-
dation, (ii) clearly defines constraint types in its core
specification, and (iii) has a significant intersection
with the Shape Expressions Language (ShEx) [1], a
widely used RDF constraint language.

SPARQL Inference Notation (SPIN) [16] was the
earliest W3C member submission (2011). A syntax
and a vocabulary were defined to describe constraints
and inference rules based on SPARQL.

A few years later in 2014 another two W3C mem-
ber submission were submitted: the Resource Shape

(ReSh) [17, 18] which defines a high-level RDF vo-
cabulary to specify the shape of RDF resources and
the grammar-based Shape Expressions Language
(ShEx) [19]. ShEx was inspired by ReSh yet provides
more expressivity [11].

The Shapes Constraint Language (SHACL) [2]
became a W3C recommendation in 2017 and is seen
as the legitimate successor of SPIN [20]. SHACL is a
constraint language for describing and validating RDF
graphs. It defines a RDF vocabulary to define con-
straints and a specified validation process to validate
RDF data based on described constraints: data graph
nodes are validated with data shape graph constraints
and a validation report in RDF following the SHACL
vocabulary is generated. Furthermore, SHACL pro-
vides 31 core constraint types and other concepts re-
lated to validation both defined using the aforemen-
tioned vocabulary. These other concepts comprise (i)
a targeting mechanism to assign data graph nodes to
data shape graph constraints, (ii) property paths to fur-
ther specify on which reachable node properties con-
straints apply, (iii) severity of data shapes as annota-
tion to indicate the severity of a constraint violation in
the validation report, (iv) deactivation of data shapes
to exclude them from the validation process, and (v)
non-validating characteristics to annotate data shapes.

2.2. Constraint Types

More than eighty constraint types were identified
[21] from which a subset is used as axioms in on-
tologies [22] and a subset motivated the creation of
SHACL [23]. Existing approaches to generate RDF
constraints use UML diagrams or ontologies as source
but usually cover only a limited subset of SHACL core
constraint types due to an incomplete mapping. We
count SHACL core constraint types based on the “Core
Constraint Components” of SHACL specification [2].

The Open Standards for Linking Organizations
(OSLO) initiative of Flanders, Belgium generates
SHACL constraints annotated UML models [24] rep-
resenting RDF classes and properties. The generated
SHACL constraints are limited to a subset of constraint
types, i.e. cardinality, class, and datatype, i.e. only sup-
port 3 out of 31 SHACL core constraint types.

Automatic Generation of SHACL Shapes from
Ontologies (Astrea) [25] is based on a mapping of
conceptual restrictions between patterns of OWL ax-
ioms and SHACL constraints. These patterns only
contain 20 out of the 31 SHACL core constraint
types when counting the core constraint types of

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4 S. Lieber et al. / Visual Notations for RDF Constraints

the SHACL specification and not their parameteri-
zations. For instance, we count the constraint type
sh:nodeKind once and we do not count its parame-
terizations, such as "sh:nodeKind sh:Literal"
or"sh:nodeKind sh:BlankNode". Besides these
core constraints, Astrea also covers other concepts of
the SHACL specification, namely property paths and
terms related to fargeting which applies elements of
the shapes graph to elements of the data graph; we also
support these concepts and additionally the concepts
of deactivation and severity of data shapes.

TopQuadrant generated SHACL constraints from
the RDFa of the schema.org vocabulary?. These con-
straints consist of the constraint types class, datatype
and disjunction, i.e. only 3 out of 31 constraint types.

Manually created RDF constraints are theoretically
not limited by any mapping as a user potentially can
use all constraint types of a specification. However,
similar to ontology axioms [22] only a subset seems
to find common use. In our previous work [12] and
later updated and extended statistics*, we investigated
the use of constraint types in SHACL shapes. We
found that 30 out of 31 constraint types were used, but
only a few are used in more than 60 percent of sur-
veyed GitHub repositories: value type (class, datatype,
nodekind), cardinality and disjunction constraints.
Thus, RDF constraint visualizations and editors should
at least cover these commonly used constraint types;
however, to avoid a self-fulfilling prophecy where such
a limitation reinforces the use of already commonly
used constraint types, editors should not be limited to
only these constraint types either.

2.3. RDF Constraint Editors

Tools to edit RDF constraints already exist but are
either based on a specific textual syntax or have no for-
mally defined visual notation.

Fajar et al. [26] implemented a SHACL editor as
plugin for Protégé. However, their plugin is text-
based and does not use a visualization for RDF con-
straints, therefore users are required to learn a spe-
cific RDF constraint language. Similarly, the tool Sha-
peDesigner from Boneva et al. [27] provides a text-
based interface in which users are confronted with
ShEx and SHACL representations of RDF constraints.

3http://datashapes.org/schema
“https://zenodo.org/record/4154456

The tool TopBraid Composer from TopQuadrant
can be considered as a SHACL editor’. It uses forms
as a graphical interface for users, but, given it is com-
mercial, no detailed specifications are available.

De Meester et al. [9] list features for a visual data
shape editor implemented in an early version of the vi-
sual editor UnSHACLed. Although a few comments
regarding the visualization were made, important de-
tails are not specified. For instance, the meaning of ar-
rows or the selection of colors is not clearly specified,
preventing developers of other tools from effectively
implementing the visual notation. As a result, the origi-
nal visualization of UnSHACLed is coupled to the tool
hampering the accessibility for users across tools.

RDFShape [10] considers UML-like class dia-
grams. However, it does not cover all commonly used
constraint types and, similarly to UnSHACLed, does
not specify all details of how RDF constraints are vi-
sualized. The tool only statically visualizes RDF con-
straints and, currently, does not support logical rela-
tionships, e.g. (exclusive) disjunction®, — commonly
used according to preliminary statistics [12]. Even
though support for additional constraint types can be
implemented, it is not specified how it should be visu-
alized, leaving room for different interpretations.

OntoPad’ and shaclEditor® are visually editors for
RDF providing a way to visually interact with SHACL
shapes. Both editors are built on the QuitStoreg, a col-
laborative workspace for RDF datasets and use differ-
ent visualizations which are not specified.

2.4. Semantic Web Visualizations

We look into the visualization of other Semantic
Web concepts because they might be relevant for the
visualization of RDF constraints.

UML is often used for modeling ontologies. The
creation of constraints on RDF data from a concep-
tual point of view shows similarities to the creation
of axioms in an ontology. Thus, visualizations for on-
tologies would be expected to be applicable to RDF
constraints as well. A simple version of UML is used
within the structural specification of OWL [28] to vi-

Shttps://www.topquadrant.com/technology/shacl/tutorial/
Shttps://github.com/weso/umlShaclex/blob/
06230fc568d0d91d443bb9ae819b9ale65c6ecde/sre/main/scalales/
weso/uml/ShEx2UML.scala#L.112
7https://aksw.github.io/OntoPad/
8https://github.com/firmao/shaclEditor
9https://github.com/AKSW/QuitStore

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://datashapes.org/schema
https://zenodo.org/record/4154456
https://www.topquadrant.com/technology/shacl/tutorial/
https://github.com/weso/umlShaclex/blob/06230fc568d0d91d443bb9ae819b9a1e65c6cc4e/src/main/scala/es/weso/uml/ShEx2UML.scala#L112
https://github.com/weso/umlShaclex/blob/06230fc568d0d91d443bb9ae819b9a1e65c6cc4e/src/main/scala/es/weso/uml/ShEx2UML.scala#L112
https://github.com/weso/umlShaclex/blob/06230fc568d0d91d443bb9ae819b9a1e65c6cc4e/src/main/scala/es/weso/uml/ShEx2UML.scala#L112
https://aksw.github.io/OntoPad/
https://github.com/firmao/shaclEditor
https://github.com/AKSW/QuitStore

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

S. Lieber et al. / Visual Notations for RDF Constraints 5

sualize the definition of conceptual restrictions in the
form of axioms. Cranefield and Purvis [14] demon-
strate how a subset of UML and the associated Object
Constraint Language (OCL) [29] is used to model on-
tologies. Even the Object Management Group (OMG)
— which maintains the UML specification — defined a
specific UML profile for OWL and RDF, the Ontology
Definition Metamodel (ODM) [15].

A plethora of ontology visualizations exists, but
VOWL appears to be the most prominent visualiza-
tion with respect to practical use and user familiarity
for several concepts related to RDF constraints. Com-
bining findings of several surveys [30-35] and two
works [36, 37] presenting visualization tools, 84 ontol-
ogy visualization tools were identified. Widoco [38],
a widely used tool to create ontology documentations,
uses WebVOWL [39] to visualize ontologies. Web-
VOWL implements the Visual Notation for OWL On-
tologies (VOWL) [4]. VOWL is also implemented as a
plugin for the commonly used modeling tool Protégé
in Protégé VOWL [40]. This suggests that users who
use ontologies and read their documentations have at
least encountered a VOWL-based visualization. Be-
sides ontologies, VOWL-based visualizations also ex-
ist for queries [6], Linked Data visualization [7] and
generation [5], all closely related to RDF constraints.

3. Visual Notations

We introduce two visual notations for RDF con-
straints to establish a baseline for a fair comparison,
we provide general design considerations for both no-
tations, ShapeUML (based on UML) and ShapeVOWL
(based on VOWL). Both visualize fundamental con-
structs of RDF constraint languages: constraints and
the context in which they are applied, i.e. data shapes.
We describe which visual variables are used as graphi-
cal primitives for both notations, following Moody [8]
and thus make design decisions transparent. Cogni-
tive effective design principles [8] where taken into
account where applicable, a detailed comparison be-
tween both notations based on these principles can be
found in the next section (Section 4).

Both notations have different visual features and
represent all SHACL core constraints and additionally
concepts related to targeting, property paths, sever-
ity and deactivation; although both notations are built
based on SHACL, they are constraint language inde-
pendent and semantic constructs of other constraint
languages can be mapped to it. Thus, both notations

represent the same semantic constructs and their only
difference are their visual features, enabling a fair
comparison. Currently the visual notations visualize
all SHACL core constraints, where necessary with (ad-
ditional) constraint-language-independent text labels;
Figs. 1, 2, 5 and 6 list all SHACL core core constraints
and the other supported concepts together with a corre-
sponding terminology mapping used by our notations
ShapeUML and ShapeVOWL.

3.1. ShapeUML

The ShapeUML is based on the Ontology Definition
Metamodel (ODM) [15] in which both nodes and prop-
erties are first-class UML constructs and, thus, graph-
ically represented as class diagram boxes (rectangle).
Therefore, constraints on both nodes and properties
can be expressed and logical relationships between dif-
ferent types of data shapes can be visualized.

The graphical primitives of ShapeUML are the fol-
lowing visual variables [8]: shape, edge, text, border
and position. The full specification is available at https:

/Iw3id.org/imec/unshacled/spec/shape-uml/20210118/.

In the remaining, we describe the graphical primitives
and elaborate with an example.

3.1.1. Shape

We reuse classes (rectangles) from UML [13] to
represent both node and property shapes, redefine the
meaning of rectangle’s compartments for RDF con-
straint specifics, introduce data shape stereotypes to
indicate a data shape’s type and distinguish it from
other UML rectangles representing other concepts.

We use the graphical primitive shape to represent
the fundamental construct data shapes and its sub-
classes node and property shape thus adhering to
ODM [15]. Data shapes are represented using a rect-
angle (Fig. 3 (1)), and describe constraints applying
on subjects and objects from the data graph. Node
shapes describe constraints on individual focus nodes,
while property shapes describe constraints for reach-
able nodes via a property path.

In UML "a class is drawn as a solid-outline rect-
angle with three compartments separated by horizon-
tal lines" [13] which we redefine for data shapes. The
upper compartment contains the data shape’s type
and name (Fig. 3 @). We determine the data shape’s
type by reusing UML concepts similar to the UML
profile for OWL and RDF [15], i.e. we define UML
"stereotypes" to signify what the rectangles represent:
node shapes declared as «NodeConditions», property

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://w3id.org/imec/unshacled/spec/shape-uml/20210118/
https://w3id.org/imec/unshacled/spec/shape-uml/20210118/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

6 S. Lieber et al. / Visual Notations for RDF Constraints

Cat SHACL term Text dispayed at
ategory {PLACEHOLDER}

sh:class class ex:testClass

Value Type sh:datatype datatype ex:testType
sh:nodeKind nodeKind IR)
sh:minCount

Cardinality
sh:maxCount

sh:minExclusive minExclusive 5

h:mir i i ive 5

Value Range
sh ive ive 10

sh:maxIinclusive maxinclusive 10

sh:minLength minLength 5

sh:maxLength maxLength 10

sh:pattern
String-based pattern /p/flags
sh:flags

h:] 1 (‘en’)

sh:uniqueLang uniquelLang true

sh:equals equals ex:test

sh:disjoint disjoint ex:test
Property pair

sh:lessThan lessThan ex:test

sh:lessThanOrEquals lessThanOrEquals ex:test

sh:not

sh:and AND
Logical

sh:or OR

sh:xone OneOf

sh:node

sh:property

Shape-based sh:qualiviedValueShape
sh:qualifiedMinCount
sh:qualififedMaxCount
sh:closed onlyListedProperties true

sh:ignoredProperties otherAllowedProperties ex:test

Other
sh:hasValue hasValue ex:test

shiin valueln (ex:test1, ex:test2)

<<Conditions>>

id: ex:exampleShape

{PLACEHOLDER}

<<PropertyConditions>>
min..max

———3path schema:postalCode

<<PropertyConditions>>

id: ex:exampleShape

{PLACEHOLDER}

NOT <<Conditions>>

<<Conditions>>

£ A

<<Conditions>>

7
{PLACEHOLDER} _ . N

<<Conditions>>

complyWith <<NodeConditions>>

ex:test <<PropertyConditions>>
—3(path ex:test

complyWith <<NodeConditions>>

min..max

<<PropertyConditions>>

id: ex:exampleShape
{PLACEHOLDER}

<<PropertyConditions>>

id: ex:exampleShape

{PLACEHOLDERY}

Fig. 1. Correspondence between semantic constructs and ShapeUML: SHACL core constraints (left) and graphical notations (right).

shapes declared as «PropertyConditions» and (if the
data shape type is not specified) data shapes as «Con-
ditions». The name of the data shape is displayed as
bold text to support the user in the identification and
differentiation of data shapes. This name may be pop-
ulated from rdfs:label values of the data shape,
thus following best practices in labeling RDF concepts
for humans. Both the middle and lower compartment
list text-based key-value pairs, therefore we stay com-

pliant to UML. Additionally, constraint language inde-
pendent labels (Figs. 1 and 2) are used to convey mean-
ing and support users. The middle compartment lists
information about the data shape’s identification and
validation (Fig. 3 @). Thus, data shapes are similar to
UML where the middle compartment usually contains
the attributes of classes, i.e. what characterizes them.
The lower compartment contains actual constraints
as a key-value list (Fig. 3 €)).

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 7

Category SHACL term Text displayed at
{PLACEHOLDER}
sh:targetNode appliesOn(ex:alice)
sh:targetClass appliesOn class(ex:Test)
Target
sh:targetSubjectsOf appliesOn subjectsOf(ex:Test)
sh:targetObjectsOf appliesOn objectsOf(ex:Test)
Severity sh:severity severity Warning
Deactivation sh:deactivated deactivated true
Predicate path ex:parent

sh:inversePath Aex:parent

Sequence path ex:parent/ex:firstName

Property Path sh:alternativePath ex:father | ex:mother

sh:zeroOrMorePath rdfs:subClassOf*
sh:oneOrMorePath rdfs:subClassOf?

sh:zeroOrOnePath rdfs:subClassOf+

<<Conditions>>

id: ex:exampleShape
{PLACEHOLDER}

Condit

id: ex:exampleShape
{PLACEHOLDER}

{PLACEHOLDER} | <<PropertyConditions>>
————3path {PLACEHOLDER}

Fig. 2. Correspondence between semantic constructs and Shape UML: other relevant SHACL concepts besides core constraints (left) and graphical

notations (right).

3.1.2. Edge

We reuse directed solid edges from ODM/UML [15]
to represent relationships, reuse dashed edges over-
laying individual edges from UML [13] to repre-
sent one-to-many relationships, and redefine directed
dashed edges for RDF constraint specifics.

Directed edges represent different relationships be-
tween data shapes and, thus, ShapeUML is able to rep-
resent relationships between different types of data
shapes. Directed edges have a label at the center of the
edge and possibly cardinalities next to the ends of the
association (Fig. 3 9). These edges associate a data
shape with another data shape or set of data shapes.

We introduce solid and dashed directed edges to vi-
sually distinguish between different types of relation-
ships. We indicate the edges from node shapes to prop-
erty shapes as a directed solid edge (Fig. 3 @) as it
represents relationships between subjects and objects
of the data graph. The label of such a connection is the
property path of the connected property shape which
supports readability as humans can read the label while
processing the edge and do not have to look for this
label elsewhere in a rectangle; annotating an edge with
a label also follows UML. A dashed directed edge
with the label complyWith indicates that the source
data shape needs to comply with the constraints of

the destination data shape (Fig. 3 @). Therefore such
connections can be distinguished from property shape
connections both via a visual difference and a differ-
ent label. Similarly, a dashed directed edge with the la-
bel NOT indicates that the source data shape must not
comply with the destination data shape (Fig. 3 (). A
dashed line vertically over individual edges with la-
bel next to the dashed line indicates one-to-many rela-
tionships between a data shape to a set of data shapes,
following the UML specification [13] (Fig. 3 6).

3.1.3. Text

We reuse text from UML to represent different con-
cepts and introduce striked through text for data
shape stereotypes to indicate a deactivated data shape.

Text represents constraints stated by a data shape
and provides additional information where necessary.
Text is added to the upper, middle and lower com-
partment of a data shape and as label on edges. The
type of a data shape in the upper compartment can be
striked through, showing that the constraints of this
data shape are not used for validation, i.e. the data
shape is deactivated (Fig. 3 9). This visual aid aims
in the quick identification of deactivated data shapes
which does not introduce any visual symbol and thus
does not deviate too much from the UML specification.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 S. Lieber et al. / Visual Notations for RDF Constraints

<<NodeConditions>>
Person

IRI ex:personConditions
appliesOn class(schema:Person)

A

<<PropertyConditions>>
ex:address 1.2

path ex:address
severity warning

instance(ex:bob)
severity violation

nodeKind IRl

<<NodeConditions>>

schema:givenName

1.*

schema:familyName

1.7

<<PropertyConditions>>

<<PropertyConditions>>

ex:fullName

<<PropertyConditions>>

path ex:fullName
severity violation

datatype xsd:string

class schema:PostalAddress

T *
e

o I complyWith
1

¥

<<NodeConditions>>
Address

IRI ex:validAddress
severity violation
onlyListedProperties true
otherAllowedProperties (rdf:type)

ex:postalCode

path schema:givenName path schema:familyName
severity information severity violation T 0.1
\ .
datatype xsd:string datatype xsd:string G 1 NOT <<PropertyConditions>>
1
Y
c "™ > path ex:postalCode

severity violation

severity violation
Deactivated true

datatype xsd:string

ex:organizationShape pattern MdAS/

Fig. 3. Constraints visualized using ShapeUML: A subject valid to the Person data shape should have an IRI (1), at least one but maximum two
ex:address properties (2) of class schema:PostalAddress (3) and the object of at least one ex:address property should comply
with the existing data shape ex : validAddress (4). Additionally, the subject valid to person should either have exactly one ex : ful1Name
or at least one schema : givenName (5) and at least one schema : fami 1yName all of datatype xsd: st ring. The value of ex: fullName
must not comply with the data shape ex:organizationShape (6). Addresses must only have values for the property postalAddress
with an exception for rdf : type (7). Constraints of the ex : organizationShape are not considered for validation (8).

Values referring to RDF terms can be shortened with a
prefix, therefore the tool implementing the visual no-
tation has to provide a prefix list.

3.1.4. Border

We reuse solid borders from UML, they are used
for data shapes. According to the UML standard,
stylistic details, such as line thicknesses, are not ma-
terial to the specification. So, all data shapes are ren-
dered using solid borders.

3.1.5. Position

We reuse positions at the beginning and end of
directed edges from UML to represent cardinality-
related constraint types. Within UML, association
ends are among others specified by their cardinality.

In ShapeUML, cardinality constraints referring to
properties are visualized next to the arrow head of a
directed edge, i.e. minCount and maxCount (Fig. 3
@) cardinality constraints referring to data shapes
are visualized next to the source of a directed edge,
i.e. qualifiedMinCount and qualifiedMaxCount (Fig. 3
@). Thus, the visualization reflects the reading di-

rection, for example: the person data shape requires
the property ex :address at least 1 but maximum 2
times (Fig. 3 9) vs a valid address property requires
that at least 1 property value need to comply with the
address node shape (Fig. 3 Q).

3.1.6. Visual Example

The visual vocabulary of ShapeUML defined in the
last section, can be used to represent SHACL shape
graphs. We present and discuss an example (Fig. 3).

ShapeUML defines visual elements for data shapes
(Fig. 3). Data shapes of different types («Conditions»,
«NodeConditions» and «PropertyConditions») can be
uniquely identified with an IRI but can also have a
human readable label. For example, a node shape
uniquely identified (ex : personConditions, mid-
dle compartment) can have the human readable name
Person (bold label in upper compartment) (Fig. 3 €)).
Such a node shape can by default be applied on re-
sources, e.g. ex :bob, or all instances of a class, e.g.
schema:Person, both indicated by the key ap-
pliesOn in the middle compartment of a ShapeUML
data shape.

Sw N

o 3 o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 9

severity(warning)
Person

schema:Postal
Address

» 1.2
ex:personConditions: ex:address ——p G

© ¢
11
1
| 1
6 e 1 complyWith
1
[}
|

nodeKind(IRI)
appliesOnClass(schema:Person)
appliesOn(ex:bob)

Address o
ex:validAddress
onlyListedProperties(true)
otherAllowedProperties(rdf:type)

AND
)

’ schema:givenName ‘ schema:familyName ‘

/o

. ex:postalCode
1
’ @ xsd:string ‘ ‘ Q xsd:string ‘ e : NOT 0.1
A
1
severity(information) * 0 .
xsd:string
y Y pattern(“M\d{4}$/)
6 | exorganization |
. Shape y O

Fig. 4. Constraints expressed using ShapeVOWL: A subject valid to the Person data shape should have an IRI (1), at least one but maximum two
ex:address properties (2) of class schema : PostalAddress (3) and the object of at least one ex : address property should comply with
the existing condition set ex : validAddress (4). Additionally, the subject valid to person should also either have exactly one ex : fullName
or at least one schema : givenName (5) and at least one schema : familyName all of datatype xsd: st ring. The value of ex: fullName
must not comply with the data shape ex:organizationShape (6). Addresses must only have values for the property postalAddress
with an exception for rdf : type (7). Constraints of the ex:organizationShape are not considered for validation (8). ShapeVOWL also
visualizes optional accompanying logos for constraint types (9).

Constraints are listed in the lower compartment erty shape (Fig. 3 @). In case every address should
of a data shape rectangle. A node could be constrained comply with the provided data shape, the quali-
to be of a specific type using the nodeKind constraint. fied cardinalities at the source of the dashed ar-
Similarly, constraints on property values are placed in row need to be removed. Such a removal would
the lower compartment of the corresponding «Proper- mean for a SHACL implementation that the two con-
tyConditions» property shape. A fictive person node straints sh:qualifiedvValueShape and related
shape can represent the constraint that data valid to this sh:qualifiedMinCount are replaced by a single
data shape must have a unique identifier. And in the sh:node constraint. However, this is transparent in

the visualization and users are not bothered with this
specific terminology.

Data shapes can be connected with logical op-
erators to build more complex constraints (Fig. 3
9): subjects valid to the Person node shape should
have either exactly one ex:fullName property, or
at least one schema:givenName and at least one
schema: familyName: dashed vertical OR edge
overlaying individual edges.

same fashion, the value of an ex: address property
can be constrained to be of a specific class (Fig. 3 O).

Cardinality constraints are represented using
text and position. Therefore a constraint to express
that a person must have at least one but maximum fwo
addresses will be denoted with the (inclusive) cardi-
nality specification 1. . 2 next to the arrow head of the
directed edge which connects the person node shape
with the address property shape (Fig. 3 @).

Dashed directed edges can be used to indicate 3.2. ShapeVOWL
reuse of data shapes. To denote that the value of at
least one of the aforementioned ex :address prop- This visual notation is based on VOWL [4] and de-
erties must comply with the ex:validAddress signed to be as close as possible to it. The graphical
data shape, a dashed relationship with correspond- primitives of ShapeVOWL are shape, edge, text, bor-

ing cardinalities 1. . is drawn at the source prop- der, position and color. The full specification is avail-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

10 S. Lieber et al. / Visual Notations for RDF Constraints

able online at https://w3id.org/imec/unshacled/spec/
shape-vowl1/20210118 We describe the graphical prim-
itives and elaborate with an example.

3.2.1. Shape

We reuse blue ellipses and blue and yellow rect-
angles from VOWL to represent subjects, predicates
and objects of the data shape graph and introduce
white note-elements to represent constraints.

The graphical primitive shape distinguishes the fun-
damental constructs node shapes, property shapes and
constraints, and represents one-to-many relationships.
This follows VOWL where nodes in the graphs as well
as specific restrictions such as disjointness are repre-
sented with dedicated nodes. Node shapes, subjects of
triples, are represented as ellipses (Fig. 4). property
shapes, the predicate and object of a triple, as rectan-
gular label on a directed edge (Fig. 4 @) and either
a ellipse or rectangle at the end of the edge (Fig. 4
9, @), and constraints as rectangle with the up-
per right corner bent (note element) (Fig. 4 0. @).
Thus, node and property shapes align with VOWL as
the data shapes appear like the RDF graph on which
they define constraints on.

The note-element, containing constraints as text, is
visually attached at the node shape or property shape
indicating the constraints applying on the represented
subjects, predicates or objects of a triple; constraints
are visualized where they apply to facilitate the pro-
cessing of the visualization by users. We also introduce
ellipses as intermediate element to denote one-to-many
relationships (see edges).

3.2.2. Edge

We reuse directed solid edges with rectangular la-
bels from VOWL to represent properties and redefine
directed dashed edges for RDF constraint specifics.

Edges represent relationships between data shapes
which makes ShapeVOWL able to represent differ-
ent kind of constraints in a visual fashion. Directed
dashed edges (Fig. 4 @) refer to relationships be-
tween data shapes and denote their label directly as
text on top of the relationship. They indicate that the
source data shape needs to comply with the constraints
of the destination data shape.

Directed solid edges are part of a property shape
and indicate their label in a rectangle above the edge
(Fig. 4 @), following VOWL. The label of directed
solid edges is the property path of the represented
property shape; relationships between data shapes are
visually distinguished from property shapes due to the
use of different edges.

Similar to VOWL, cardinalities are denoted next to
the arrow head (Fig. 4 9), but additionally data shape
related qualified cardinalities are denoted at the start
of a directed dashed edge (Fig. 4 @). Node and prop-
erty shapes may refer to multiple other node and prop-
erty shapes in a one-to-many relationship to repre-
sent logical relationships. We represent such relation-
ships using additional ellipses, representing the mean-
ing of individual one-to-many relationship, i.e. con-
junction and (exclusive) disjunction (Fig. 4 e), simi-
lar to certain restrictions in VOWL, e.g., disjointness.

3.2.3. Text

We reuse text from VOWL to represent labels, re-
define datatype to represent datatype constraints, in-
troduce text to represent constraints and italic text to
represent the unique identifer of data shapes.

We use text to represent constraints stated by data
shapes, unique identifiers, and labels. Text is added
in constraint note elements, node shapes and property
shapes. Constraint note elements contain constraints
in the form of text where the constraint’s name is listed
followed by its value in parentheses. This allows a con-
sistent representation of different constraints without
introducing a new visual variable for each of possibly
more than 80 constraint types [21]. Values referring to
RDF terms can be shortened with a prefix, therefore
the tool implementing the visual notation has to pro-
vide a prefix list. Data shapes may have an optional
human readable name which is denoted as bold text in
the upper part of the data shape to facilitate the dis-
tinction of data shapes. This name may be populated
from rdfs:label values, and, thus following best
practices for labeling RDF concepts. Additionally, the
unique identifier of node shapes is visualized as text in
italics in the center of the ellipse representing the node
shape (Fig. 4 @). Users can also identify node shapes
without a human readable label present. The italic type
distinguishes the unique identifier from other text.

3.2.4. Border

All visual shapes have a border, we reuse solid bor-
ders from VOWL, redefine dashed borders to ac-
commodate for validation-specific characteristics re-
garding deactivation and introduce thick solid bor-
ders to represent the constraint type closed.

VOWL uses dashed borders for specific OWL
classes and literals without datatype. However, we use
dashed borders to indicate which data shapes are
not considered for validation (deactivated), because in
contrast to an ontology visualization, we do not con-
sider specific OWL classes but RDF constraints for

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://w3id.org/imec/unshacled/spec/shape-vowl/20210118
https://w3id.org/imec/unshacled/spec/shape-vowl/20210118

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 11

Cat SHACL term Optional icon and text dispayed at
ategory {PLACEHOLDER}
sh:class e ex:testClass
Value Type sh:datatype e ex:testType
sh:nodeKind nodeKind(IRI)
sh:minCount
Cardinality

sh:maxCount
sh:minExclusive
sh:mininclusive
Value Range l?s range(min..max)
sh:maxExclusive

sh:maxIinclusive

sh:minLength

G length(min..max)
sh:maxLength
sh:pattern
String-based pattern(/p/flags)
sh:flags

sh:languageln languageln(en)

sh:uniqueLang uniqueLang(true)

sh:equals equals(ex:test)

sh:disjoint disjoint(ex:test)
Property pair

sh:lessThan lessThan(ex:test)

sh:lessThanOrEquals

OJOICIO]

sh:not

sh:and
Logical

sh:or

sh:xone

sh:node

sh:property
Shape-based | sh:qualiviedValueShape

sh:qualifiedMinCount

sh:qualififedMaxCount

lessThanOrEquals(ex:test)

——({PLACEHOLDER}

{PLACEHOLDER}

min..max
—>

—
{PLACEHOLDERY}|

{PLACEHOLDER}

NOT
-

AND

)

OneOf

@O

complyWith
—-———

s

complyWith
- === =

min..max

' {PLACEHOLDERY}

sh:closed onlyListedProperties(true)

sh:ignoredProperties
Other

sh:hasValue hasValue(ex:test)

otherAllowedProperties(ex:test)

| {PLACEHOLDER]

shiin valueln(ex:test1, ex:test2)

Fig. 5. Correspondence between semantic constructs and ShapeVOWL: SHACL core constraints (left) and graphical notations (right).

validation, and our visualization of literals has a dif-
ferent meaning as we visualize constraints (Fig. 4 @).
For deactivated node shapes both the ellipse repre-
senting the node shape as well as a possibly attached
note element with constraints will get a dashed border
(Fig. 4 6). Similarly, for deactivated property shapes
the rectangle of the relationship label, the object and
potentially attached note elements get a dashed border.

We introduce thick solid borders for node shapes,
indicating that for validation only the explicitly linked
properties are allowed (closed data shape, Fig. 4 @)).

The thick borders aim to represent the closeness
whereas dashed borders aim to represent inactiveness.
As the thickness and style of the edges are two dif-
ferent visual features, possible combinations of deacti-
vated and closed data shapes can still be represented.

Sw N

o 3 o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

12 S. Lieber et al. / Visual Notations for RDF Constraints

Category SHACL term Text displayed at
{PLACEHOLDER}
sh:targetNode appliesOn(ex:alice)
sh:targetClass appliesOnClass(ex:Test)
Target sh:targetSubjectsOf appliesOnSubjectsOf(ex:T
est)
sh:targetObjectsOf appliesOnObjectsOf(ex:Te
st)
Severity sh:severity severity(Warning)

Deactivation sh:deactivated deactivated(true)

Predicate path ex:parent
sh:inversePath Aex:parent
Sequence path ex:parent/ex:firstName

Property Path | sh:alternativePath ex:father | ex:mother

sh:zeroOrMorePath rdfs:subClassOf*
sh:oneOrMorePath rdfs:subClassOf?
sh:zeroOrOnePath rdfs:subClassOf+

. {PLACEHOLDER}

.| {PLACEHOLDER}

— {PLACEHOLDER) @

Fig. 6. Correspondence between semantic constructs and ShapeVOWL: other relevant SHACL concepts besides core constraints (left) and graph-

ical notations (right).

3.2.5. Position

We reuse cardinality positions at directed edge
endings for property-based cardinality constraints, in-
troduce cardinalities at the beginning of a directed
edge to represent data shape related cardinality con-
straints, introduce positions for logical constraints
within dedicated nodes and introduce positions for
datatype and class constraints within the objects of
visualized triples.

We use specific positions for cardinality, datatype,
class and logical constraints utilizing the graph visu-
alization to support users in the parsing of informa-
tion. In ShapeVOWL, cardinality constraints referring
to properties are visualized next to the arrow head of a
directed edge, i.e. minCount and maxCount; cardinal-
ity constraints referring to data shapes are visualized
next to the source of a directed edge, i.e. qualifiedMin-
Count and qualifiedMaxCount (Fig. 4 @)). The visual-
ization reflects the reading direction, for example: the
person data shape requires the property ex : address
at least 1 but maximum 2 times (Fig. 4 @) vs a valid
address property requires at least 1 property value to
comply with the address node shape (Fig. 4 e).

Datatype and class constraints are not visualized in
a note element, but directly as text in the graphical
element representing the object, i.e. a yellow rectan-

gle for datatype constraints (Fig. 4 @) or a blue el-
lipse for class constraints (Fig. 4 @). VOWL visual-
izes datatypes as text within the yellow rectangle rep-
resenting a literal. We reuse this visualization to de-
note a datatype constraint of a property value and add
an additional datatype icon in front of the name of the
datatype to indicate that a constraint exists (Fig. 4 @).
This icon is an orange D in a black circle (Fig. 4).
Consistently with datatypes, class constraints are de-
noted as text within the ellipse representing the prop-
erty value. Class constraints have an additional class
icon in front of the name of the class. This icon is an
orange C in a black circle (Fig. 4 €)).

Logical constraints are not represented in a note el-
ement, but as dedicated nodes or as labels on dashed
edges which enables ShapeVOWL to represent rela-
tionships between different types of data shapes. Con-
junction and (exclusive) disjunction constraints are vi-
sualized as ellipse with respective labels on the upper
part of the ellipse (Fig. 4 6). Additionally, icons rep-
resenting Venn diagrams are used to distinguish the
different logical constraint types. These icons repre-
sent Venn diagrams, similar to certain VOWL con-
structs. Negation constraints are represented as text la-
bel "NOT" on top of dashed edges connecting data

shapes (Fig. 4 @).

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

S. Lieber et al. / Visual Notations for RDF Constraints 13

3.2.6. Color scheme

We reuse the VOWL base color to represent sub-
jects, predicates and objects of the data shape graph,
reuse the VOWL literal color to represent literals and
introduce border colors for data shapes’ severity.

A color scheme is applied on the border color of
data shapes and note elements to express different
severities (Fig. 4 o). VOWL uses a color scheme for
a better distinction of the different elements [4]. We
reuse the base color and literal color of VOWL.

Additionally, for ShapeVOWL colors on borders are
used to express the severity of data shapes. For the
severities violation, warning and information from the
SHACL specification we recommend the respective
colors red, yellow and green. Green is chosen instead
of blue so the severity colors for data shapes are not
confused with the VOWL general color.

3.2.7. Visual Example

The visual vocabulary of ShapeVOWL defined in the
last section, can be used to represent SHACL shape
graphs. We present and discuss an example (Fig. 4).

ShapeVOWL defines visual elements for data shapes
(Fig. 4). Our color scheme is applied; data shapes are
colored with respect to their severity.

Node shapes can be uniquely identified with an IRI
but can also have a human readable label. For ex-
ample, a node shape uniquely identified with the IRI
ex:personConditions (center of ellipse repre-
senting a subject node) can have the human readable
name Person (bold label in upper part of the ellipse)
(Fig. 4 €). Such a node shape can by default be ap-
plied on resources, e.g. ex :bob or all instances of a
class such as schema :Person, both is is indicated
by the appliesOn annotation in the attached white note-
element of a ShapeVOWL data shape.

Constraints have a special position or are listed
in white note-elements attached to a data shape; de-
pending on the rendering either overlapping an ellipse
(Fig. 4 @) or next to a rectangle (Fig. 4 @). A fic-
tive person node shape can represent the constraint
that persons must have a unique identifier (Fig. 4 @),
nodeKind constraint). The value of an ex:address
property can be constrained to be of a specific class
whereas value type constraints are listed within the
shape representing the object together with an icon
(Fig. 4 €). Cardinality constraints are represented us-
ing text and position. Thus, a constraint to express that
a person must have at least one but maximum two ad-
dresses will be denoted with the (inclusive) cardinal-
ity specification 1. .2 next to the arrow head of the

directed edge which connects the person node shape
with the address property shape (Fig. 4 9).

Dashed directed edges with the label complyWith
indicate reuse of data shapes. To denote the con-
straint that the value of at least one of the aforemen-
tioned ex : address properties must comply with the
ex:validAddress data shape, a dashed relation-
ship with corresponding cardinalities 1. . * is drawn
at the source property shape (Fig. 4 Q). In case every
address should comply with the provided data shape,
the qualified cardinalities at the source of the dashed
arrow have to be removed.

Data shapes can be connected with logical op-
erators to build more complex constraints (Fig. 4
©): subjects valid to the Person node shape should
have either exactly one ex:fullName property, or
at least one schema:givenName and at least one
schema: familyName: disjunction node with label
"OR" and Venn diagram icon. The logical operator
negation only takes one data shape as argument and not
a whole data shape list, therefore it is visualized with
the label NOT on a dashed connection (Fig. 4 @).

With respect to validation data shapes may be
closed or deactivated. The ex:validAddress
data shape is closed, visually indicated by a thick
border: valid addresses are only allowed to have the
property postalCode and an exception is made for
rdf:type denoting the class (Fig. 4 @). The data
shape ex:organizationShape is deactivated, vi-
sually indicated by dashed border: its constraints are
not considered during validation (Fig. 4 €)). Con-
straint types can be accompanied with a logo displayed
before the constraint in the note element (Fig. 4 €).

4. Comparative Analysis

Both ShapeUML and ShapeVOWL were designed
by following basic principles of cognitive effective-
ness [8], however, as we reused the existing notations
UML and VOWL these principles could only be applied
to a certain extent. Therefore, we analyze ShapeUML
and ShapeVOWL with respect to these design princi-
ples with the aim of scientifically argue about the im-
pact of design decisions on human information pro-
cessing and thus the effectiveness of ShapeUML and
ShapeVOWL from a theoretical perspective.

We refer to each principle’s definition according to
Moody [8] and discuss to which extent each visual no-
tation complies. We omit the design principle cognitive
integration as it only applies when multiple diagrams

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

14 S. Lieber et al. / Visual Notations for RDF Constraints

of different types are integrated. Table 1 summarizes
the comparison which is discussed in Section 4.9.

4.1. Semiotic Clarity

Semiotic clarity relates to the correspondence be-
tween symbols and their referent concepts [8]. In case
of symbol redundancy, a semantic construct is repre-
sented by multiple graphical symbols; the opposite is
symbol overload. Symbol excess occurs if graphical
symbols do not correspond to any semantic construct;
and the opposite is symbol deficit, a semantic construct
with no graphical symbol.

ShapeUML All semantic constructs are represented
in the visual notation (Figs. 1 and 2), i.e. terms from
the SHACL specification; some constructs use the
same graphical symbol but text is used to differentiate,
and, thus, to maintain visual expressiveness. Follow-
ing the ODM-profile of UML, ShapeUML uses rectan-
gles with solid borders to represent data shapes, thus
node and property shapes share the same graphical
symbol (symbol overload). However, node and prop-
erty shapes are distinguished by additional text indi-
cating the type. Symbol deficit was deliberately intro-
duced to reduce graphic complexity: more than 30 con-
straint types are supported, but they are all represented
as text, only logical constraint types and cardinality
constraints use additional visual variables (edges and
position). ShapeUML does not visualize any seman-
tic construct with multiple graphical symbols (symbol
redundancy) nor does it contain any graphical sym-
bol which does not correspond to a semantic construct
(symbol excess), thus semiotic clarity is achieved.

ShapeVOWL All semantic constructs are represented
in the visual notation (Figs. 5 and 6) and similar to
ShapeUML, symbol deficit is deliberately introduced
to increase visual expressiveness. Multiple graphical
symbols are used in ShapeVOWL. Circles represent
node shapes (subject of triples) but also part of prop-
erty shapes (objects of triples). However, as node
shapes are represented as subjects, they can be distin-
guished from objects because they only have outgoing
solid edges with property paths in a rectangular label;
ingoing edges are limited to dashed edges which indi-
cate node shape reuse.

Certain constraint types are represented using the vi-
sual variables border, edge and position but to reduce
graphic complexity most of the 31 constraint types
are represented textually within note-elements. How-
ever, constraint types may also be accompanied by

an icon which we provide for commonly used con-
straint types [22] which do not already are visualized
using other visual variables such as position (see next
section). Similar to ShapeUML, ShapeVOWL achieves
semiotic clarity as no symbol redundancy nor symbol
excess are present.

4.2. Perceptual Discriminability

Perceptual discriminability describes the ease and
accuracy with which graphical symbols can be differ-
entiated from each other [8]. A factor is the visual dis-
tance, i.e. the number of visual variables on which the
symbols differ and the size of differences in percepti-
ble steps (capacity). Shapes are the primary basis for
humans to identify objects in the real world, while zex-
tual differentiation is a cognitively ineffective way to
handle graphic complexity [8].

ShapeUML ShapeUML uses the visual variables
shape, edge, text, border, and position. However, the
perceptual discriminability is low as only one kind of
shape and two types of edges are used. However, there-
fore we stay close to the UML specification, where
users potentially are familiar with. Given the lim-
ited number of graphical symbols, i.e. rectangles with
solid borders for data shapes, text for constraints as
well as solid and dashed edges to relate data shapes,
ShapeUML only provides limited visual distance.

ShapeVOWL ShapeVOWL uses the visual variables
shape, edge, text, border, position, and color, thus one
visual variable more than ShapeUML. Nodes and
properties are clearly distinguished by the visual vari-
able shape and color, i.e. the VOWL base-color blue
is used for nodes and property labels and the VOWL
color yellow is used for literals. Additionally, the vi-
sual distance between symbols is increased because
ShapeVOWL defines optional icons for different con-
straint types. Both subjects and potential objects are
represented using ellipses. As discussed for semiotic
clarity, this is not a case of symbol overload because
node and property shapes can still be distinguished by
the type of ingoing edges and whether it is a subject or
object. However, this is a rather subtle difference with
a low visual distance, thus perceptual discriminability
is slightly decreased.

4.3. Semantic Transparency

Semantic transparency is the extent to which a nota-
tion’s meaning can be inferred from its appearance, in-

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

S. Lieber et al. / Visual Notations for RDF Constraints 15

formally its “intuitiveness” or the degree of how much
the appearance provides a cue to its meaning [8].

ShapeUML ShapeUML is based on UML which uses
abstract shapes, and, thus it does not provide much
semantic transparency. The boxes representing data
shapes do not provide a cue to their meaning. How-
ever, presenting the property path as a label on edges
connecting node with property shapes may resemble
the underlying graph structure of RDF and could min-
imally provide semantic transparency.

ShapeVOWL ShapeVOWL uses a graph visualization
based on nodes and edges of the actual RDF graph
for which it defines the constraints. Several indicators
suggest that ShapeVOWL has high semantic trans-
parency. Previously defined VOWL-based visual no-
tations already demonstrated that users find the graph
visualization intuitive [4]. ShapeVOWL also reuses vi-
sual metaphors such as Venn diagrams for logical con-
straints, which, according to Moody, increases seman-
tic transparency. Shape VOWL attaches constraints vi-
sually to where they apply to which further increases
semantic transparency; certain property shape con-
straints apply on the property, such as cardinalities,
and others on the value of the property, such as min-
imum inclusive value constraints. If not visually sep-
arated, min/max cardinality constraints on the prop-
erty and min/max constraints on the value might be
confused. To further increase semantic transparency,
ShapeVOWL defines optional icons for constraint types
which can speed up recognition and recall as well as
improve understanding for novice users [8].

4.4. Complexity Management

Complexity management aims not to overload the
human mind. For instance, visual representations often
do not scale well [8]. Modularization and hierarchy
offer solutions to manage complexity.

Both proposed visual notations do not yet account
for modularization or hierarchy. However, tools im-
plementing visual notations can account for this and
e.g. offer zoom functionality [5]. Currently our tool
UnSHACLed provides geometric zooming (Section 5).

4.5. Visual Expressiveness
Visual expressiveness refers to the number of visual

variables in the whole notation. Each variable has a
power denoting the information which can be used [8].

The visual expressiveness of both visual notations is
not very high considering that most constraints types,
one of the fundamental constructs are represented as
text only (with the exception of logical relationships
in both notations). However, one the one hand this is
because both notations were built with the objective to
reuse existing notations already familiar to users, thus
inheritance of visual expressiveness, and on the other
hand we tried to keep the graph complexity low by
deliberately not representing each constraint type with
different visual variables.

If required by specific use cases, both notations can
be improved specifically towards visual expressive-
ness. For example, ShapeVOWL has higher expres-
siveness due to the use of more visual variables com-
pared to ShapeUML, in a similar fashion more visual
variables can be used for both notations.

4.6. Dual Coding

Dual coding is the use of text to complement graph-
ics. Text on its own is cognitively ineffective to encode
information, but, in a supplementary fashion, it can
reinforce and clarify meaning [8]. However, although
textual annotations improve understanding, having a
dedicated graphical symbol only for annotations not
representing any semantic construct of the language it
harms semiotic clarity, i.e. a case of symbol excess as
the graphical symbol of annotation does not represent
a semantic construct [8].

ShapeUML 1is based on UML, heavily text-based
and thus has limited dual coding. Text is mostly used
to denote constraints, but also for labels and unique
identifiers. The deactivation of data shapes can be
considered dual coded because, in addition to the tex-
tual declaration, the type of the data shape in the up-
per compartment is strikethrough, i.e. an additional vi-
sual change of font. Node shapes may refer to prop-
erty shapes which in ShapeUML is encoded using a
directed solid edge.

Following UML, logical constraints are represented
with specific edges additionally labeled with the logi-
cal constraint’s name. However, this is not considered
dual coded as without label, edges of different logical
constraints are not distinguishable. Both visual vari-
able and text are needed to denote logical constraints.

ShapeVOWL visualizes graphs, and text is added
to graph elements. Several elements are dual coded
in ShapeVOWL. Similar to ShapeUML, text is mostly
used to denote constraints, but also for labels, unique
identifiers. All constraints are represented textually in

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

16 S. Lieber et al. / Visual Notations for RDF Constraints

a note-element, but some constraint types are also rep-
resented using additional icons or the visual variables
border, edge and color. ShapeVOWL defines optional
icons for constraint types, e.g. for class, datatype or lit-
eral pattern constraints. Together with the visual vari-
able color and border, text also denotes the severity
of data shapes. Dashed and thick solid borders, in ad-
dition to text, are used to indicate characteristics rel-
evant to validation of the RDF constraints, the con-
straint type closed and deactivation of data shapes.

4.7. Graphic Economy

Graphic economy states that the size of the vi-
sual vocabulary should be cognitively manageable to
achieve a low graphical complexity [8]. The number
of semantic constructs can be limited, symbol deficit
can be introduced or the visual expressiveness can be
increased.

Both visual notations should be cognitively man-
ageable. SHACL supports a subset of possibly more
than eighty constraint types, thus the number of se-
mantic constructs is already limited (all concepts listed
in Figs. 1, 2, 5 and 6). Additionally, symbol deficit is
deliberately introduced by the design decision of not
visualizing each constraint type of the SHACL core
using separate visual variables. An unlimited num-
ber of symbols can be created by combining visual
variables, however, this does not scale due to cogni-
tive limits where humans must remember the meaning
of the symbol [8]. Both ShapeUML and ShapeVOWL
have a small visual vocabulary as both use less than
five graphical primitives.

4.8. Cognitive Fit

Cognitive fit means different representations are
suitable for different tasks and audiences [8]. Optimiz-
ing visual notations for novice users can reduce effec-
tiveness for experts and vice versa. More, the medium
on which a visual notation is presented influences the
effectiveness, i.e. manual drawing with pen and paper
vs computer display. Icons, color, and texture are more
difficult to draw than simple geometric shapes [8].

ShapeUML ShapeUML is based on UML, and, thus
is suited for users already familiar with UML. It
also consists only of rectangles, edges and text which
facilitates manual drawing. ShapeUML uses a small
number of visual variables and encodes a lot as text.
For novice users it may be difficult to understand

ShapeUML but optimizing it for novice users might in-
troduce large deviations from UML which would make
it harder for experts to understand.

ShapeVOWL ShapeVOWL uses a graph visualiza-
tion with ellipses and edges. Experiments with other
VOWL-based notations already suggest that VOWL
is intuitive also for people with less knowledge about
the underlying languages [4]. Additionally, semantic
web experts are usually already familiar with differ-
ent VOWL-based notations and the graph model in
general; ShapeVOWL leverages this and may pro-
vide a trade-off between understanding for experts
and novices. ShapeVOWL relies on simple geometric
shapes and text, colors are optional, thus, with respect
to perceptual discriminability, semantic transparency
and visual expressiveness, ShapeVOWL can also be
drawn by hand without effort (neglecting certain dual
coding like more complicated icons).

4.9. Discussion

We analyzed both visual notations with respect to
Moody’s design principles and in the following discuss
our findings which are summarized in Table 1.

One the one hand, ShapeVOWL uses more visual
variables and symbols to express semantic constructs
than ShapeUML. For example, it uses more shapes,
meaning of borders but also colors and icons. This —in
addition to the depiction of the underlying RDF graph
data, specific edges to connect elements, and Venn di-
agrams — results in high scores for semiotic clarity and
semantic transparency. All other principles are at least
partially addressed with the exception of complexity
management which can be accomplished by a tool im-
plementing ShapeVOWL, e.g. by providing different
means of zooming.

On the other hand, ShapeUML shows semiotic clar-
ity and graphic economy with an advanced cognitive
fit. This means that ShapeUML represents all RDF
constraints’ needed concepts in a cognitively manage-
able fashion and, additionally, may be suited for spe-
cific tasks and audiences. Perceptual discriminability,
semantic transparency and visual expressiveness are
affected by cognitive fit [8], thus, considering hand-
drawn representations of ShapeUML, its simplicity
may become an advantage as no special drawing abil-
ities are needed.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 17

Principle ShapeUML | ShapeVOWL
Semiotic Clarity + ++
Perceptual Discriminability - +
Semantic Transparency - ++
Complexity Management - -
Visual expressiveness - +

Dual Coding - +
Graphic Economy + +
Cognitive Fit ++ +

Table 1

A comparative analysis with Moody’s design principles [8] for cog-
nitive effective visual notations reveals that ShapeVOWL scores bet-
ter compared to ShapeUML. A double plus (++) indicates that each
dimension of the principle is addressed, a single plus (+) that at least
one dimension is addressed respectively not violated and a minus (-)
indicates that a principle is not or very poorly addressed.

5. UnSHACLed editor

UnSHACLed is a graphical editor for RDF con-
straints. It allows users to validate RDF data against
RDF constraints and view a validation report by load-
ing existing RDF data into the tool and validate them
with separately loaded or visually created RDF con-
straints. The main goal of UnSHACLed is to enable
users familiar with RDF but not familiar with spe-
cific RDF constraint languages to create and edit RDF
constraints. UnSHACLed offers a web interface and
thus can be used with any browser. An early prototype
was presented in previous work [9] and is available on
GitHub'?. In this paper we present a recently reworked
version: https://github.com/KNowledgeOnWebScale/
unshacled.

In this section we discuss features for an RDF con-
straint editor (Section 5.1) and how visual notations
contribute to it, as well as introducing the implementa-
tion of our RDF editor UnSHACLed (Section 5.2).

5.1. Features for Data Shape Editing

In previous work [9] we introduced seven desired
features for the editing of data shapes.

F1: Independence of constraint language Data shape
editors should not confront domain experts with writ-
ing the textual syntax of a specific constraint language.
Moreover, the visualization of the constraints should
be independent of the underlying constraint language:

10https://github.com/dubious-developments/UnSHACLed

generic (graphical) symbols can be used to (partially)
hide language-specific textual syntax, as constraint
languages have overlapping semantic constructs. Both
ShapeUML and ShapeVOWL are constraint language
independent and have a defined visual vocabulary cov-
ering semantic constructs of RDF constraints.

F2: Support multiple data sources Data shape edi-
tors should support domain experts in defining data
shapes referring to multiple data sources at once. The
proposed visual notations allow to define RDF con-
straints in a visual fashion for different data sources.

F3: Support different serializations Data shape ed-
itors should not restrict domain experts to specific
serializations of the data source nor the constraint
language. A data graph can be serialized in differ-
ent ways without changing the actual data or struc-
ture (e.g. RDF/XML vs Turtle). The visual vocabulary
of both ShapeUML and ShapeVOWL covers semantic
constructs of RDF constraints and is currently mapped
to SHACL. Thus it is represented in RDF which can
be serialized to different serializations.

F4: Support multiple ontologies Data shape editors
should support domain experts in defining data shapes
for data graphs annotated with multiple ontologies si-
multaneously. Both notations use URIs where neces-
sary, e.g. for property paths or class constraints. Thus,
multiple ontologies are supported by both notations.

F5: Multiple alternative modeling approaches Data
shape editors should enable and support multiple alter-
native modeling approaches and allow domain experts
to choose the most adequate one for their needs. Two
modeling approaches, complementary to visual nota-
tions, were discussed in our previous work [9].

F6: Non-linear workflows Data shape editors should
allow domain experts to keep an overview of the re-
lationship between the data graph and data shapes, by
providing non-linear editing. Although the data graph
is not visualized together with the shapes graph, the
data is visualized in the data panel. Terms related to
data shapes’ assignment to instance data is covered by
the visual notations, i.e. the appliesOn concept indicat-
ing on which data shown constraints apply by default.

F7: Independence of execution Data shape editors
should allow importing and exporting the data shapes
specified by the domain experts, as a use case may
require to execute the data shapes elsewhere. Both
ShapeUML and ShapeVOWL are currently mapped to

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://github.com/KNowledgeOnWebScale/unshacled
https://github.com/KNowledgeOnWebScale/unshacled
https://github.com/dubious-developments/UnSHACLed

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

18 S. Lieber et al. / Visual Notations for RDF Constraints

SHACL and, thus, to RDF which provides interoper-
ability and allows the import and export of data shapes.

5.2. Implementation

We describe the modular architecture of our RDF
constraint editor UnSHACLed (Section 5.2.1), and rel-
evant GUI components providing user interactions in a
visual fashion (Section 5.2.2).

5.2.1. Architecture

UnSHACLed is a web-based RDF constraint editor
independent from specific data formats, visual nota-
tions or validation engines.

Framework UnSHACLed is implemented with the
web framework emphVue.js following the model-
view-viewmodel (MVVM) design pattern introduced
by John Gossman in 2005'".

It therefore can run in modern Browsers and no ad-
ditional server infrastructure such as databases are re-
quired.

Intermediate format UnSHACLed uses the state man-
agement pattern and library Vuex to store RDF con-
straints using an intermediate data format which al-
lows all application components to access the RDF
constraints in a controlled manner. Therefore other
constraint languages can be supported by providing a
mapping to the intermediate format without the need
to change other parts of the implementation.

Visual notations UnSHACLed uses the VueKonva li-
brary to draw canvas graphics. Several components for
both ShapeUML and ShapeVOWL were developed to
render the two notations. New visual notations can be
added in the form of new components which also read
and write data to the intermediate format of Vuex store.

Validation ~ For validation the intermediate format is
transformed to a representation of a concrete RDF con-
straint language (currently supported is SHACL) and
is passed together with the data to a separate validation
engine. Another constraint language and validation en-
gine can be used which only leads to adjustments in
UnSHACLed with respect to transformations of the in-
termediate representation or invocation of another val-
idation engine, no adjustments to the GUI are required.

https://web.archive.org/web/20051029151624/http://blogs.
msdn.com:80/johngossman/archive/2005/10/08/478683.aspx

5.2.2. Graphical User Interface

In this section we discuss the graphical user in-
terface of UnSHACLed, namely the different existing
panels and interactions elements with which users can
interact using visual notations.

Panels The GUI consists of three panels representing
different parts of a Linked Data validation workflow: a
data panel, modeling panel and validation result panel.

The Data panel shows data which should be con-
strained or described (left panel in Fig. 7). RDF is cur-
rently supported in different serializations, such as fur-
tle and JSON-LD. This is raw data and can also be
edited. UnSHACLed is modular and the functionality
can be extended to also visualize data of other kind to
support other editing approaches.

The Modeling panel shows RDF constraints in the
visual notation chosen in the menu, both ShapeUML

and ShapeVOWL are supported (middle panel in Fig. 7).

Elements in the modeling panel are denoted visually
and scalability is addressed with geometric zooming.

The Validation result panel shows the validation
result of applying the RDF constraints of the modeling
panel on the data of the data panel as reported by a val-
idation engine for RDF constraints. The validation re-
sult panel is implemented as a modal dialog, i.e. it ap-
pears after clicking the validation button. UnSHACLed
is independent of concrete RDF constraint languages,
it can be extended with different validation engines.

Interactions Visual notations specify how RDF con-
straints are visualized, but UnSHACLed also allows to
interact with the visualizations. Most notably nodes in
the graph can be dragged and dropped inside the mod-
eling panel. When hovering over an element a red and
a green button appear representing actions for delete
and editing. In the latter case a modal dialog opens in
which users can change or add constraints. Thus, users
can also edit RDF constraints using the visual nota-
tions and do not have to learn a specific textual syntax.

6. User Evaluation

We conducted a comparative study to validate our
main hypothesis that users familiar with Linked data
can answer questions about visually represented RDF
constraints more effective with ShapeVOWL than with
ShapeUML. We compared how accurately users can
answer questions about data shapes represented using
either ShapeUML or ShapeVOWL. In Section 6.1, we
describe the questionnaire to cover various aspects of

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://web.archive.org/web/20051029151624/http://blogs.msdn.com:80/johngossman/archive/2005/10/08/478683.aspx
https://web.archive.org/web/20051029151624/http://blogs.msdn.com:80/johngossman/archive/2005/10/08/478683.aspx

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 19

+ shape + Property @ v Validate

Data <<PropertyConditions>>
given name

{ path schema:givenName

“http://example.org/ns#Bob" ,

datatype xsdstring

s@typen:
“http://schema.org/Person”

“http://schema.org/givenNane”: [

"@value”: "Robert"
<<PropertyConditions>>

1,
"http://schema.org/familyName": [

ath schema:gender
"@value”: "Junior" P o

in female,male

1,
"http://schema.org/birthDate”: [
{

“@ualue’: "1971-07-07",
"@type”: "http://www.w3.0rg/2001/XMLSchena#date”
}

1,
"http://schema.org/deathDate”: [
{ <<PropertyConditions=>
"@value’: "1968-09-10",
"@type”: "http://wWw.w3.0rg/2001/XMLSchema#date”
}

patn schema:birthDate

1,
“http://schena.org/address": [

lessThan schema:

"@id": "http://example.org/ns#BobsAddress"
} maxCount 1

"http://example.org/ns#BobsAddress”,
//schema.org/streetAddress™: [

"@value”: "1600 Amphitheatre Pkway"
}

1,
“http://schema.org/postalCode”: [

"@ualue’: "9404",
"@type”: "http://www.w3.0rg/2001/XMLSchema#integer"
s

~\Mm aotatype xadinteger

schemagender
[=~

<<Condtians>> <<Conditions>>

applissOn class(schema:Person)

mininclusive 10000

maxinclusivesgess

patn

schema:postalCode

<<PropertyCondiions>>

path

datatype xsd:string

desed tue

Fig. 7. The user interface of our tool UnSHACLed consisting of several panels supporting different editing approaches.

the data shape domain based on the SHACL core spec-
ification. In Section 6.2, we elaborate on the experi-
ment, in Section 6.3, we discuss potential threats to va-
lidity, in Section 6.4, we analyze the results of quan-
titative questions, and in Section 6.5, we analyze re-
sults of qualitative questions. Collected (anonymized)
data, the questionnaire and user introductions as well
as code for the quantitative and qualitative analy-
sis are openly available at https://doi.org/10.6084/m9.
figshare.13614440.v1.

6.1. Questionnaire

We derived questions from the SHACL specification
relevant to RDF constraints and validation, which were
used in a user study to validate our hypothesis.

We created questions to test (i) at least one con-
straint type per core constraint category of the SHACL
specification, and (ii) other RDF constraint concepts
relevant for validation, i.e. the targeting mechanism,
property paths, severity and deactivation. The SHACL
specification lists eight core constraint categories:

. value type, 1 constraint

. cardinality, 1 constraint

. value range, 1 constraint

. string-based, 1 constraint
. property pair, 1 constraint
. logical, 1 constraint

. shape-based, 2 constraints
. other, 2 constraints

01NN B W

We selected at least one constraint type for each cat-
egory and created an associated question, for exam-
ple “How many datatype constraints can you see?”
for the constraint type datatype of value type category.
The last two categories mix several relevant constraint
types, so, we selected 2 constraints types for each.

Additionally we created one question for each of the
aforementioned other relevant concepts, such as "How
many property conditions with the severity ’informa-
tion’ can you see?" for the concept severity or "How
many zero-or-more property paths can you see?" for
the concept property paths.

6.2. Method

The user study follows a within-subject design (also
referred to as within-group or repeated measures [41])
in which all participants are confronted with exam-
ples of both visual notations ShapeUML and Shape-
VOWL. We discuss the method of the user study by ex-
plaining the procedure, elaborating on recruited partic-
ipants, and introduce the example test cases.

Procedure Potential participants with Linked Data
knowledge were directly contacted by the authors.
Those who participated were assigned in a round-robin
fashion to one of two groups (groups A and B) to mit-
igate order effects (see threats to validity Section 6.3),
and had to (i) read introductions to both ShapeUML
and ShapeVOWL (presented in this order), and (ii)
complete an online questionnaire. The user study is

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://doi.org/10.6084/m9.figshare.13614440.v1
https://doi.org/10.6084/m9.figshare.13614440.v1

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

20 S. Lieber et al. / Visual Notations for RDF Constraints

divided into three steps: a pre-assessment, a session
in which the questionnaire is answered, and a post-
assessment.

(i) The pre-assessment is focused on the partici-
pants’ sociodemographic traits, such as year of birth,
gender, and level of education, to provide indicators
of the studied population. Additionally, through a self-
assessment, the participants’ expertise with Linked
Data and with RDF constraints is assessed as well as
their familiarity with the topic and tools.

(i) The main questionnaire consists of 11 ques-
tions about data shapes presented using ShapeUML
and ShapeVOWL to assess how effective visualized
elements are recognized. After that, 15 questions on
4 test cases were asked to compare visualizations in
ShapeUML and ShapeVOWL. These questions include
14 questions derived from the SHACL specification
(Section 6.1) and one open question to provide feed-
back about the shown examples and asked questions.
For group A the general example is first shown in
ShapeUML afterwards in ShapeVOWL and then the
test cases are presented started with the first test case
in ShapeUML, the second in ShapeVOWL and so forth;
it is the other way around for group B to mitigate order
effects (see validity threats in Section 6.3).

(iii) The post-assessment consists of 4 questions
and collects information about the participants’ prefer-
ence for either ShapeUML or ShapeVOWL to answer
questions about data shapes, whether they want to use
one of the notations also for the editing of data shapes,
besides only to visualize them; and general feedback.

Farticipants The online questionnaire was sent to 14
potential participants in September 2020. 12 partici-
pants took part in the experiment, their age range was
23 to 40. All participants were highly educated: all
have at least a master degree, one a PhD. According
to a self assessment, all participants are familiar with
Linked Data, most participants generate or use Linked
Data (Fig. 8). All participants are familiar with UML
class diagrams, the underlying notation of ShapeUML,
and the majority of the participants is familiar with the
tool WebVOWL, a tool implementing VOWL, the un-
derlying notation of ShapeVOWL (Fig. 9).

Real world test cases All test cases are real world
from online resources such as GitHub or the Shape-
ViBe benchmark.

The Traffic Lights test case represents constraints
on RDF lists'. It is characterized by containing a zero-

2https://www.topquadrant.com/constraints-on-rdflists-using-shacl/

or-more property path and several constraints on RDF
list elements while also reusing an external data shape
by referring to it with a constraint.

The Address test case is an excerpt from possible
schema.org data shapes'3. It was manually curated to
constrain schema.org addresses for Australia. This test
case is characterized by containing logical constraints
as well as a few other constraints on literal values.

The DCAT test case is an excerpt from the DCAT
application profile for Swiss data portals'®. It has con-
straints on many properties of a single node, mostly
constrained by their cardinality, datatype or class, but
also by logical constraints, e.g. either class A or B.

The Geo coordinates test case is from the ShabeViBe
benchmark!>. It is characterized by containing com-
binations of different minimum and maximum con-
straints which can be easily confused. Namely, min/-
max cardinality constraints on properties, min/max
value range constraints on property values as well as
qualified cardinalities related to data shapes.

Experience with Linked Data (LD)
09
%

0 2 2 6 8 10
& Number of participants

Fig. 8. Answers based on self assessment: all participants are famil-
iar with Linked Data, most participants generate or use Linked Data.

6.3. Threats to Validity

External and internal threats to the experiment’s va-
lidity exist, we identified the following threats and we
discuss how we addressed them in our study design.

6.3.1. External Validity Threats
External validity threats occur when wrong infer-
ences from sample data are made beyond the stud-

3http://datashapes.org/schemashacl.shapes.tl

4https://github.com/factsmission/dcat-ap-ch-shacl

Bhttps://w3id.org/imec/unshacled/shape- vibe/modules/
min-max-values/

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.topquadrant.com/constraints-on-rdflists-using-shacl/
http://datashapes.org/schemashacl.shapes.ttl
https://github.com/factsmission/dcat-ap-ch-shacl
https://w3id.org/imec/unshacled/shape-vibe/modules/min-max-values/
https://w3id.org/imec/unshacled/shape-vibe/modules/min-max-values/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 21

WebVOWL

i

UnSHACLed

UML class diagrams |

TopBraid Composer

Tools/Frameworks

RDFShape

o

2 4 6 8 10
Number of participants

-
o

[I have used it

[| have heard of it and | know what it does

I | have heard of it, but | am not quite sure what it does
Il | haven't used nor heard of it

Fig. 9. UML diagrams known by all participants and already used
by the majority, other tools/frameworks less commonly known.

ied population or experimental setup [41]. We iden-
tified two external threats: participants familiarity
with Linked Data and experiment environment.

Participants familiarity with Linked Data This threat
concerns the generalization to individuals outside the
study [41]. All our participants were recruited from
Ghent University, Belgium and RWTH Aachen, Ger-
many and were familiar with Linked Data, thus the
findings might not be generalizable to a more general
population. However, this was intentional as we aimed
to study users already familiar with RDF graphs, a pre-
requisite to understand RDF constraints which are the
semantic constructs our visual notations represent.

Experiment environment This threat concerns the
generalization to individuals outside the experiment’s
setting [41]. The experiment was an online question-
naire. Participants could use any browser and com-
puter, thus, they participates from a well-known envi-
ronment. No specific experimental setup prevents gen-
eralizations to individuals outside our study.

6.3.2. Internal Validity Threats

Internal validity threats concern the experimental
setup or experience of participants which threaten the
ability to draw correct conclusions about the popula-
tion in the experiment [41]. We identified three internal
threats: selection bias, sample size and order effects.

Selection bias This threat concerns the selection of
biased participants, i.e. participants with certain char-
acteristics that predispose them to have certain out-
comes [41]. Our participants were all recruited from
Ghent University and RWTH Aachen and have similar
demographics. All participants have knowledge about
Linked Data, but this is intentional as it is a prerequi-

site of the user study. To mitigate a selection bias all
participants were assigned in a round-robin fashion to
one of two groups, i.e. groups were not assigned based
on specific characteristics. Some participants might be
more familiar with one of the underlying visual no-
tations of ShapeUML or ShapeVOWL. However, they
self-assessed their familiarity with UML class dia-
grams and the WebVOWL tool in the pre-questionnaire,
therefore any bias is visible. Please note that familiar-
ity with one of the notations is considered positive as
the design rationale of both visual notations is to build
upon the underlying visual notation.

Sample size A small sample size may not have suf-
ficient statistical power to detect an effect. Our sam-
ple size is relatively small. To mitigate this threat, we
chose a within-subject study design [41]. It reduces er-
rors associated with individual differences without re-
quiring a large pool of participants'®.

Order effects When participants perform tasks sev-
eral times certain effects like learning can occur. To
counterbalance potential order effects when present-
ing ShapeUML and ShapeVOWL, we assigned partici-
pants in a round-robin fashion to two different groups.
The first group (group A) started with the first exam-
ple in Shape UML, the second in ShapeVOWL, the third
in ShapeUML and so forth. Participants of the second
group (group B) were presented the first example in
ShapeVOWL, the second in ShapeUML and so forth.

6.4. Quantitative Results

We analyze the participants’ self assessment given
by a Likert scale [42] (Section 6.4.1), statistically val-
idate the significance of the overall error rate dif-
ferences between ShapeUML and ShapeVOWL (Sec-
tion 6.4.2), analyze error rates per RDF constraint con-
cept (Section 6.4.3), and analyze error rates per real
world test case (Section 6.4.4).

6.4.1. Self Assessment

The post-questionnaire contained three questions in
which the participants could self assess how confident
they are with their answers, if they prefer ShapeVOWL
over ShapeUML and if they would like to use Sha-
peVOWL also for RDF constraint editing. These three
questions were asked using a 7-point Likert scale from
1 (not agree at all) to 7 (fully agree).

16https://web.archive.org/web/20201216150003/http:
/lonlinestatbook.com/2/research_design/designs.html

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://web.archive.org/web/20201216150003/http://onlinestatbook.com/2/research_design/designs.html
https://web.archive.org/web/20201216150003/http://onlinestatbook.com/2/research_design/designs.html

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

22 S. Lieber et al. / Visual Notations for RDF Constraints

B UML
0.5 1 1 vowL

0.4 A

0.3 1

Error rate

0.2 1

0.14

0.0 4
P PR RGP
Participants

Fig. 10. Error rates of participants: 7 participants made fewer errors
using ShapeVOWL; participants of group B have higher error rates
in general. According to a Wilcoxon signed-rank test the mean error
differences are not statistically significant: p-value= 0.8933

All participants were asked if they are confident that
their provided answers are correct. Their average value
is 3.6 and median is 3, thus in a self assessment par-
ticipants are not very confident. Participants could
also provide feedback for each test case via a text
field. Considering the provided feedback, some par-
ticipants had trouble interpreting the asked questions
which could relate with their low confidence.

All participants were asked if ShapeVOWL is pre-
ferred and the average value is 4.6 and median is 5,
thus in a self assessment participants prefer Shape-
VOWL. Similarly the average is 4.8 and median is 5
for the question if the participants would like to use
ShapeVOWL to edit RDF constraints.

6.4.2. ShapeUML/ShapeVOWL Error Rate

Based on the correct answers, we calculated the er-
ror rates of all questions to compare ShapeUML and
ShapeVOWL.: initial questions for general examples as
well as for the 4 test cases (Section 6.1).

Statistical test There is no significant difference
in the mean error rates of ShapeUML and Shape-
VOWL. The error rate for ShapeVOWL is lower for 7
from 12 participants compared to ShapeUML. How-
ever, we are interested if the mean error difference is
statistically significant. We first tested the normality
of the error rates’ distribution using a distribution plot
and a Shapiro-Wilk test [43] with @ = 5% to deter-
mine which statistical test to choose. The data was not
normally distributed, thus we performed a Wilcoxon
signed-rank test [44] with @ = 5%. The calculated p-
value of 0.8933 is bigger than @ so we fail to reject

the null hypothesis, which means there is no significant
difference in the mean error rates.

6.4.3. Error Rates for Constraint Concepts

The questions of Section 6.1 represent fundamental
concepts and core constraints of RDF constraint lan-
guages. We analyze which concepts were processed
most or least effective, by comparing the error rates of
questions across test cases (Fig. 11).

E= uML
[vowL
0.4 1
803
(0]
—
—
o
< 021
w
0.1
0.0 -
L ¥ . £ L L £ QO R X O
& x\’b\o (\é\o c}‘@Q \°(’e ‘\’&0‘("0\{6?5\& ’bdQ O QB@AQ(@&""Q?*&Z
S ot g T ST P &
er' & ORI A 6@
& &° R ((@"‘

Questions
Fig. 11. Errors were made with both visual notations. Higher error
rates for both visual notations were achieved for property paths and
maximum value.

With both visual notations the error rates are rel-
atively low, on average 19% for ShapeUML 18% for
ShapeVOWL. We discuss each question relating to one
RDF constraint concept.

Deactivation of data shapes Both ShapeUML and
ShapeVOWL make it easy to recognize deactivated
data shapes. This concept indicates that data shapes
are not considered for validation. With both nota-
tions only 4% errors were made, one reason might be
that this concept is also visually represented in both
notations. It is indicated by striked through text in
ShapeUML and by dashed borders in ShapeVOWL.

Target concept Participants recognize the target
concept more effective with ShapeVOWL. This con-
cept indicates on which nodes of the data graph,
data shapes apply by default. With ShapeVOWL only
4% errors are made compared to 12.5% errors with
ShapeUML. Both notations use the label "appliesOn":
ShapeUML lists it in the middle compartment and
ShapeVOWL in a note-element attached to the note.
Since both notations encode targeting textually at node
shape, the error difference occurs due to other reasons,
e.g. general participants performance.

Sw N

© 0 9 o u

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

S. Lieber et al. / Visual Notations for RDF Constraints 23

Severity of constraints 1t is easier to spot severi-
ties with ShapeVOWL than with ShapeUML. This
concept indicates a severity which after a validation
may be indicated in the validation report, possible val-
ues are "violation" (the default), "warning" and "in-
formation". Fewer errors were made with ShapeVOWL
which indicates severities additional to text with bor-
der colors. With ShapeUML severities are only en-
coded with text which suggests that the dual coding
design principle (Section 4) improves ShapeVOWL.

Property constraint Both notations facilitate the
recognition of property constraints relying on the
RDF graph model’s visualization. This concept links
contextualized constraints for nodes (node shape)
with contextualized constraints for properties (prop-
erty shapes). With ShapeUML and ShapeVOWL 12.5%
errors were made, both notations encode this constraint
type similarly which may explain the similar error rate:
both notations visually represent node and property
shapes with geometric shapes connected with arrows
labeled with the property.

Less than or equals constraint Effective processing
with ShapeVOWL may rely on text as well. This
concept represents that one property value must be
less than the value of another property. Participants
made 8% errors with ShapeUML and 17% with Sha-
peVOWL. Both notations encode this constraint type
as text, ShapeVOWL additionally uses an icon but in
the provided example the text "lessThanOrEquals" was
omitted for ShapeVOWL. This is interesting as it shows
that an icon alone may not provide sufficient informa-
tion and text in the dual coded principle is indeed nec-
essary for RDF constraints too.

Datatype constraint ShapeUMLs clear textual rep-
resentation of datatype constraints was recognized
as accurate as ShapeVOWL’s visually enhanced
representation. This concept represents the constraint
that a literal value must be of a certain datatype. With
both notations 12.5% of answers were wrongly an-
swered. Whereas ShapeUML represents this constraint
as text only, ShapeVOWL uses an additional icon and
relies on the VOWL notation representing literal val-
ues as yellow rectangles. Despite all the visual fea-
tures but maybe because of some, the error rate for
ShapeVOWL 1is not lower: we represent literal values
like VOWL with yellow rectangles which might be
counted already as datatype constraint by some partic-
ipants possessing prior knowledge of VOWL.

Minimum length constraint Visual features of Sha-
peVOWL such as position may improve Shape-
VOWL’s effectiveness for minimum length con-
straints compared to ShapeUML. This concept rep-
resents the constraint that a property value must be
of a certain minimum length, i.e. minimum string-
length for literals and IRIs. Double the number of er-
rors were made with ShapeUML, 25%, compared to
ShapeVOWL, 12.5%. Whereas ShapeUML clearly in-
dicates "minLength", ShapeVOWL uses the notation
"length(min..max)" positioned next to the literal and
uses an additional icon. A combination of visual fea-
tures or one of it may cause lower error rate for Shape-
VOWL, i.e. combination of position, label or icon.

Maximum cardinality constraint Participants make
less mistakes in recognizing maximum cardinality
constraints with ShapeVOWL. This concept repre-
sents the constraint that a property must have a max-
imum cardinality. Participants only made 17% er-
rors with ShapeVOWL compared to 25% errors with
ShapeUML. Both notations indicate the cardinality
next to the arrow head connecting node with prop-
erty shapes. One reason for the higher error rate of
ShapeUML might be that other constraint types start-
ing with "max" such as "maximum value" might have
been mistakingly counted. ShapeVOWL also uses the
visual variable position which distinguishes prop-
erty cardinalities (next to the arrow head) from other
minimum/maximum constraint types shown in note-
elements such as maximum length.

Specific value constraint Participants recognized
constraints restricting property values to explicitly
provided valid values better with ShapeUML. The
question related to this concept targeted constraints
which limit the value of a property to one specific value
which is provided directly or provided in a list of valid
values. We observe almost double the number of er-
rors for ShapeVOWL, 29%, compared to ShapeUML,
12.5%. Both notations use the same labels for these
constraints, i.e. "hasValue" for a single value and "val-
ueln" if a list of valid values is given. ShapeUML regu-
larly lists these constraints in the lower compartments
of property shapes and ShapeVOWL lists them in a
note-element next to the literal of the property shape
they apply on. It is possible that some participants did
not count the case in which a whole list of valid values
is provided, however this does not explain the com-
parable higher error rates for ShapeVOWL. One par-
ticipant pointed out that a question asking for a "spe-

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

24 S. Lieber et al. / Visual Notations for RDF Constraints

cific value" might comprise other constraint types too,
which suggests a too generic question phrasing.

Comply with constraint We did not observe er-
ror differences between ShapeUML and Shape-
VOWL for the similarly represented comply with
constraint. This concept represents the constraint that
(a specific number of) property values must comply
with a data shape. With ShapeUML and ShapeVOWL
21% errors were made. Both notations encode this
concept similar, a dashed directed edge from one data
shape to another with the label "complyWith" and op-
tional qualified cardinalities at the source of the edge,
and, thus in a visual fashion. Participants sometimes
identified this constraint type even when it was not
present in a test case which indicates that also other
constraints were identified as "compliant with" sug-
gesting a too generic "comply with" label.

Closed data shapes Participants may misunder-
stood underlying semantic constructs. This concept
represents the constraint that a node in the data graph
must only have properties for which property con-
straints are specified, i.e. the node is closed in the sense
that no other properties are allowed. With both no-
tations 21% errors were made. Whereas ShapeUML
only encodes this constraint textually, Shape VOWL ad-
ditionally indicates "closeness" using a thick border;
both notations use the label "onlyListedProperties".
Several constraints of this type were identified in test
cases where it was not present and in a few cases it was
not identified when it was present. Since errors were
also made with the textual only ShapeUML represen-
tation we can exclude visual features as possible mis-
understanding and it may indicate that participants did
not understand the concept behind this constraint type,
i.e. the semantic construct and not its visual represen-
tation.

Disjunction constraint ShapeVOWL disjunctions
were slightly more often correctly identified com-
pared to ShapeUML. This concept represents logical
disjunction constraints. Participants made more errors
with ShapeUML, 25%, than with ShapeVOWL, 21%.
Both notations represent this constraint type visually,
ShapeUML relies on specific edges following the UML
notation and the label "OR" and ShapeVOWL uses a
dedicated node with label "OR" and icon represent-
ing a Venn diagram!”. The additional icon of Shape-

In the user study test cases the Venn diagram was slightly dif-
ferent from the ShapeVOWL specification

VOWL may have caused the slightly better scores as it
"pops out", but with both notations a variety of differ-
ent answers were provided. It seems that participants
counted the number of data shapes connected with a
disjunction or their cardinalities rather than count the
occurrence of a single disjunction.

Maximum value constraint Participants spotted

maximum value constraints better with ShapeUML.

This concept represents that a literal value must not
exceed a maximum value. Participants made fewer
errors with ShapeUML, 29%, compared to Shape-
VOWL, 37.5%. ShapeUML represents this constraint
type using the label "maxExclusive" or "maxInclu-
sive", whereas ShapeVOWL uses the single notation
"range(min..max)" visualized in a constraint note-
element next to the literal the constraint applies on,
and, thus, also the visual variable position.

The observations are interesting as we expected
fewer errors with ShapeVOWL due to its better cog-
nitive features. One participant, according to provided
feedback, did not understand the difference between
the questions for maximum cardinality and maximum
value. On the one hand this could also explain the er-
ror rates for other participants. On the other hand the
visual features of ShapeVOWL were designed to avoid
such an issue (using position and different labels).

Property Paths Most participants successfully rec-
ognized property paths but some may confused
them with logical relationships. This concept is used
to define reachable objects from subjects, i.e. to define
on which reachable properties constraints apply. This
concept resulted in the highest error rates, but slightly
fewer errors were made with ShapeVOWL, 42%, com-
pared to ShapeUML, 46%. Both notations express a
property path as atomic value as label of a relationship
connecting node with property shapes. More than 50%
of participants successfully recognized this concepts
using its textual representation. However, the provided
answers suggest that participants may have confused
property paths with a combination of logical relation-
ships with cardinalities on properties.

6.4.4. Error Rate for Test Cases

The participants saw an initial example in both
ShapeUML and ShapeVOWL and then received four
real world test cases. We elaborate on error rates of dif-
ferent test cases, as described in the procedure section.

Constraint type distribution and general group per-
formance need to be considered when interpreting the
results. As shown in previous work, certain constraint

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 25

16 1 [Address
U [DCAT
= 141 B Geo
© 121 B TrafficLights
)
e
S 10
[v]
4— 84
o
T 61
Qo
E 4
=1
] ﬁ HMIL]
0 . I mu

N

O Qo
6*\@ @Q\o\o\o ® @ & &
& N \é& ,&Q ((o o‘ &7 R

Q@Q K b@@. LN s L @69 &
<<\ & 6 «® 6 R
((\’b-" S c)Q <

Questions

Fig. 12. The occurrence of question-related constraint types in the
four real-world test cases. Two constraint types were present in all
examples, seven constraint types only in one example.

types are used more often than others [12], resulting
also in unequally distributed constraint types in our
real world test cases (Fig. 12). Additionally, due to our
study design, group B participants have seen the test
cases Address and Geo coordinates in ShapeUML and
the Traffic Lights and DCAT in ShapeVOWL (Fig. 13).

0.30 1 I UML
/1 vOowL

0.25 1
.8 0.20 1
©
—
—
O 0.15 A
—
—
AN]

0.10 1

0.05 1

0.00 - —

A
& & o _CS\\‘(’
& Q AN
w &
<@
Test cases

Fig. 13. Participants of group B have higher error rates for both no-
tations. Each test case was only seen by one group in one notation,
suggesting that a bad performance for one visual notation is not only
related to the notation but also the participant group.

In half of the test cases fewer errors were made with
ShapeUML and in the other half fewer errors were
made with ShapeVOWL. Traffic light example: fewer
errors with ShapeUML (7% vs 23%). Australian ad-
dress example: fewer errors with Shape VOWL (18% vs
27%). DCAT example: fewer errors with ShapeUML

(11% vs 25%). Geo coordinates example: fewer errors
with ShapeVOWL (8% vs 31%). We elaborate for the
general example and the different real world test cases
to analyze what constitutes these error values.

Error Rate for General Examples Initially, partici-
pants are presented a general example to test their un-
derstanding, it is the first example they see after read-
ing the introductions of both visual notations. With
both notations the concepts closed, datatype and tar-
get were processed with more than 80% correct-
ness. Interestingly there were no wrong answers for
the concept closed with ShapeUML whereas the — ac-
cording to the theory — more cognitive effective Sha-
peVOWL lead to 16% wrong answers. Both notations
use the same textual label and ShapeVOWL addition-
ally encodes this concept visually.

More than 50% errors were made with the con-
cepts severity and minimum and maximum cardinality
in both notations. Compared to ShapeUML, Shape-
VOWL resulted in 30% fewer errors for the concept
severity most likely because it dual codes severities,
i.e. encode them textually and additionally visually.
In accordance with the user introduction, the default
severity "violation" — which was asked for — was not
indicated textually because it is the default. However,
with ShapeVOWL the concept severity is dual coded
and colored borders were still present.

Participants identified too few cardinalities with
both notations, the frequently given wrong answer of 5
indicates that participants only counted pairs of mini-
mum and maximum only once, ignoring that according
to the question they should not count zero and infinity
cardinalities and hence count minimum and maximum
separately. Two participants identified no cardinalities
at all suggesting it was not clear what cardinalities are
or the answer was given by accident.

Address This test case resulted in similar error rates
for both ShapeUML and ShapeVOWL.

Questions related to the concepts farget, property
and deactivated were answered correctly with both
notations by all participants. Errors were made with
ShapeUML for the concepts severity, less than, max
cardinality, disjunction and comply with whereas with
ShapeVOWL no errors were observed for these con-
cepts. Two out of these five concepts are similarly en-
coded in both notations (max cardinality and comply
with), but the three concepts severity, less than and dis-
Jjunction have more visual features which may explain
that compared to ShapeUML no errors were made.

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

26

S. Lieber et al. / Visual Notations for RDF Constraints

B Address
3 DCAT

3 Geo

B TrafficLights

ShapeUML

Error rate

X
&L \oc)eé ’C\Qe \\'o'@b &8 & 0\@ y @\\)e (\&“ " & Q,o\‘S‘ | & < ,o\oe’ ,b‘ojz,
3 N (3 X
& & & S S
& & & & &
o ot 5 Q
> & o

RDF Constraint concepts

ShapeVOWL

[
)

o
©

Error rate
=]
|
=
] —
%
%,
I—
—

e O e' O <\' e » e X
I A R O S & & E
Y & @ & ¢ N 3 2 R 3% " @
X 2 & © 3 O s+ RS N & 52 &&
& & 2 S 3 2 <@ N I
5 & & <& S &
o s+ X Q
& P 2

RDF Constraint concepts

Fig. 14. The error rates for the different questions across the 4 real world test cases. Most RDF constraint concepts related questions were
answered correctly. Participants made the most errors for property paths, maximum value, specific value and disjunction.

This suggests that either the hasValue or the valueln

081 ; \ng\tw constraint was counted, instead of both. One partici-
0.7 1 pant pointed out in the feedback question that due to a
0 06 shown negation constraint only a not specific value is
§ 0.5 1 present which resulted in the interpretation that O spe-
5 04 cific value constraints exist in this test case. These ob-
ut_, 034 servations regarding different interpretations hint
o that some constraint types conceptually allow sev-
ol eral interpretations.
0.0 Geo coordinates example This test case from the
& & Qéd & 6@& .@&b 9\0&6 = @@e‘ ShapeViBe benchmark resulted in the highest error
£ &€ 06@‘ 6&& & rate for ShapeUML with 31%, and in the lowest error
Questions rate for ShapeVOWL with 8%. Both visual notations

Fig. 15. The error rates of the general example which participants
saw first after reading the introductions. More than 80% correct
answers were given for the concepts closed, datatype and target
whereas for severity relatively high error rates were achieved.

For the concepts datatype, property path and spe-
cific values, ShapeVOWL performs worse compared to
ShapeUML in this test case. Some participants identi-
fied only one specific value constraint instead of two.

use different terms to distinguish these different mini-
mum and maximum constraint types (Figs. 1 and 5).

One reason for the low error rates could be that Sha-
peVOWL uses different terminology and icons to dis-
tinguish the different minimum and maximum val-
ues which makes them easier distinguishable; for
ShapeUML errors were made for all min/max con-
straints, whereas for ShapeVOWL there are no errors
for min length and max cardinality.

Sw N

o 3 o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

S. Lieber et al. / Visual Notations for RDF Constraints 27

DCAT This test case which is an excerpt from the
DCAT application profile for Swiss data portals re-
sulted in the the highest error rate for Shape VOWL.

All participants answered more than 70% of
questions correctly with ShapeUML and made only
minor errors for datatype and closed constraints as
well as some more errors with property paths and dis-
Jjunction. Participants identified datatype constraints
although non were present, similarly they identified
non-existent closed constraints. One property shape
contained a nodeKind sh:Literal constraint and thus
participants may have confused this with a datatype.
The example also contains a class constraint with the
value schema:URL which officially is a datatype,
users familiar with this term may have counted it as
datatype; this real world test case uses schema : URL
wrongly as class, however this example explicitly
marks it with a class constraint.

Participants scored relatively high error rates for
the zero-or-more property path and disjunction con-
straints with both notations. No such property path
was present in the example, but an existing exclu-
sive disjunction constraint with the label "OneOf" may
have been confused by some participants with prop-
erty paths). Additionally, some participants wrongly
counted the exclusive disjunction with the label "OneOf"
when counting disjunctions and asked for "disjunction
(logical or)".

Traffic Lights This test case representing constraints
on RDF lists resulted in the the lowest error rate for
ShapeUML and is the only test case actually contain-
ing explicit property paths.

Similarly to the DCAT test case, more than 70%
of questions were correctly answered by all partic-
ipants using ShapeUML; considering both notations
questions related to the concepts target, severity and
minimum length were answered correctly by all partic-
ipants.

Error rates of 50% occurred for property paths
in ShapeUML and maximum value for ShapeVOWL.
Based on the provided answers it seems that some par-
ticipants used the minimum or maximum cardinality of
the property paths value instead of counting once the
only existing zero-or-more property path.

6.5. Qualitative analysis
Qualitative feedback is derived from each test case

in the main questionnaire and generally for both nota-
tions in the post assessment. We qualitatively analyze

provided answers for the post assessment following a
common data analysis for qualitative data [41]: we ex-
plain the used analysis method, and present the results.
In total 58% of participants answered this question.

6.5.1. Method

A general procedure for a qualitative analysis in-
volves the process of "coding" [41], a commonly used
technique for reducing qualitative data to meaningful
information by assigning labels to chunks of data [45].
Following common guidelines [41] we read answers
provided in the post questionnaire and thus were able
to identify 5 high level codes: advantages, disadvan-
tages, uncertainty, suggestion and preference. These
codes are further detailed in a hierarchy, for example
the high level code advantages is further specified as
easier comprehensible, display of sparse constraints
and space efficiency. In a similar fashion the other high
level codes are further specified to be used as annota-
tion for the qualitative data.

6.5.2. Interpretation and Meaning

Based on the created annotations we interpret the
feedback provided by the participants by discussing
the high level codes such as advantages and which in-
formation specifically was provided.

Participants preference and suggestions Findings
regarding preferences and provided suggestions
correspond with our analysis of cognitive effective
design principles in both notations, i.e. ShapeVOWL
adheres to more design principles. In total 4 partici-
pants explicitly indicated which visual notation they
prefer, 3 of them prefer ShapeVOWL and 1 ShapeUML.
To improve ShapeUML one participant suggested to
remove potential redundancies in ShapeUML (see dis-
advantages) and “a more user-friendly visualisation of
UML (eg: colors, option to hide parts)”.

Advantages Slightly more advantages were pointed
out for ShapeVOWL, whereas both notations have
their own advantages mostly related to how com-
prehensible they are for certain use cases. In total
5 participants provided feedback with respect to ad-
vantages, 3 of them for ShapeUML and 4 for Sha-
peVOWL. ShapeUML was recognized more space ef-
ficient by 1 participant whereas the same participant
mentioned that for sparse constraints ShapeVOWL
“looks cleaner”. For both notations 3 participants indi-
cated that the respective notation is easier comprehen-
sible. For ShapeUML 2 participants pointed out that
its list representation allows to condense more con-
straints of a single node and 1 participant expressed

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

28 S. Lieber et al. / Visual Notations for RDF Constraints

that ShapeUML is more intuitive. For ShapeVOWL 2
participants pointed out that it is easier to spot con-
straints due to visual features and 1 participant explic-
itly mentioned the familiarity to VOWL as reason.

Disadvantages Although ShapeVOWL was pre-
ferred, more disadvantages were explicitly pointed
out for it compared to ShapeUML. In total 3 partici-
pants provided feedback with respect to disadvantages,
1 for ShapeUML and 3 for ShapeVOWL. ShapeUML
was perceived redundant by 1 participant in a nega-
tive sense, i.e. the repetition of property paths both in
the data shape rectangle and on the relationship be-
tween node and property shape. For ShapeVOWL, 2
participants reported possible complications when in-
teracting with it, namely “many small comment boxes”
for constraints which “would be less orderly” and the
different geometrical shapes and colors as “things”
which are “more of a hassle to work with (more click-
ing and less typing involved)”. Additionally, 1 partic-
ipant noted that ShapeVOWL “looks very simplistic,
but needs more understanding to apply”.

Uncertainty Corresponding with Likert-scale an-
swers regarding confidence and our quantitative
analysis, participants explicitly mentioned unclear
terminology. In total 3 participants provided feedback
with respect to unclarity, whereas 2 participants men-
tioned an unclear terminology and 1 participant am-
biguous questions. This corresponds also with obser-
vations from the quantitative analysis, i.e. wrong an-
swers for conceptually similar constraint types.

7. Discussion and Conclusion

Data integration as main challenge in our time can
be addressed with the uniform graph data model of
RDF. Use case specific data quality requires valida-
tion, but currently human users — often the creators of
constraints — are not well supported when viewing and
editing RDF constraints. Therefore, we investigated vi-
sual notations for RDF constraints tailored for the hu-
man information processing system to answer the re-
search question how we can support users in viewing
and editing RDF constraints?. The human information
processing system requires effective visual notations
that move the cognitive load from the slow cognitive
processing to the fast perceptual processing.

The two visual notations UML and VOWL are
broadly used within the Semantic Web community. We
reused these already familiar to users notations and

adapted them for RDF constraints: the two notations
are dubbed ShapeUML and ShapeVOWL.

In particular, we investigated in this work the hy-
pothesis that "users familiar with Linked Data can an-
swer questions about visually represented RDF con-
straints more effective with ShapeVOWL than with
ShapeUML", because VOWL was built with the aim
to be intuitive. We could not validate this hypothesis:
there was no significant difference in error mean values
which would indicate that better results are achieved
with ShapeVOWL. However, analyzing the design con-
siderations of both visual notations and user study re-
sults in detail we conclude the following things.

ShapeVOWL is preferred Although our hypothesis
regarding effective processing could not be validated
in the performed user evaluation, detailed findings
of our work strongly suggest that Shape VOWL will
find more user acceptance than ShapeUML. For
both notations on average 81% of RDF constraint re-
lated questions where answered correctly. Several fac-
tors imply a higher user acceptance for ShapeVOWL:
(i) according to our analysis based on cognitive effec-
tive design principles, ShapeVOWL adheres to more
principles compared to ShapeUML, (ii) findings of our
quantitative analysis suggest that visual variables such
as position, border or icons positively influence Sha-
peVOWLs effectiveness in answering RDF constraint
questions, (iii,) a self-assessment by users of our study
revealed that ShapeVOWL is preferred, and (iv) ac-
cording to our qualitative analysis users prefer Shape-
VOWL as constraints can be spotted easier.

Disadvantages brought up in the qualitative anal-
ysis — such as complicated interaction or space ef-
ficiency — mainly concern more complex and dense
RDF constraint graphs and can be mitigated by com-
plementary functionality of RDF constraint editors im-
plementing ShapeVOWL. Additionally, findings of our
study with respect to misunderstood terminology or
concepts (for both notations) can be addressed in fu-
ture versions for both notations, e.g. more specific la-
bels.

Clear and efficient text encoding of ShapeUML with
potential improvement Despite visual features for
cognitive effective processing by humans, we noticed
that Shape UMLs textual representation in certain cases
was as effective as ShapeVOWL and sometimes even
more effective. According to our qualitative analysis,
ShapeUML has an advantage for more dense or com-
plex RDF constraint graphs due to its space efficient
representation. Although text is processed using the

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

S. Lieber et al. / Visual Notations for RDF Constraints 29

slower cognitive processing system [8], this system
might be needed for RDF constraints in any case. But
instead of providing an enhanced alternative no-
tation such as ShapeVOWL, the already space ef-
ficient ShapeUML can be improved by addressing
specific design principles to support users even bet-
ter. However, this would cause that ShapeUML may
deviate from the UML specification, but as one par-
ticipant put it: "I do believe a more UML-like format
would be preferred by users IF [sic] users were allowed
some slack from the rigid UML definitions".

Limitations Our work covers the accurate processing
of visually represented RDF constraint concepts and,
thus, does not cover scalability of visual notations or
the speed in which users processed presented informa-
tion. To the best of our knowledge this is the first work
investigating visual notations for RDF constraints in
detail. Hence our results are initial results. We studied
how different RDF constraint concepts can be visual-
ized and how this affects the accuracy of user-provided
answers based on related questions.

Future Work Findings of our analysis suggest future
work regarding the integration of visual notations
in RDF editors, the visual notations itself and, ad-
ditionally, a possible mapping from ShEx concepts.
In future work we plan to incorporate features in our
tool UnSHACLed to complement both visual notations
such as semantic zooming to improve working with
large RDF constraint graphs or enhanced user interac-
tions to accommodate for different use cases; gener-
ally, more research towards user interactions is needed
to understand real needs, especially with respect to dif-
ferent editing approaches for RDF constraints.

Regarding the visual notations, a visually enhanced
ShapeUML variant — as suggested by a participant —
could represent a trade-off in space efficiency and ef-
fective processing and it would be an appropriate can-
didate for future developments and user evaluations.

Finally, a mapping from ShEx concepts to the pre-
sented visual notations could motivate efforts to extend
the presented tool UnSHACLed with respect to ShEx
validation of RDF data, thus more users would profit
from the developed effective visual notations.

Acknowledgements
We would like to thank the organizers and partici-

pants of the Open Summer of Code 2019 in Belgium in
which an updated version of UnSHACLed was imple-

mented. We also thank all participants of the user study
for their time and efforts. The described research activ-
ities were funded by Ghent University, imec, Flanders
Innovation & Entrepreneurship (VLAIO), and the Eu-
ropean Union. Ruben Verborgh is a postdoctoral fel-
low of the Research Foundation — Flanders (FWO).

References

[1] J.E. Labra Gayo, E. Prud’hommeaux, I. Boneva and D. Kon-
tokostas, Validating RDF Data, Vol. 7, Morgan & Claypool
Publishers LLC, 2017, pp. 1-328.

[2] H. Knublauch and D. Kontokostas, Shapes Constraint Lan-
guage (SHACL), Recommendation, World Wide Web Consor-
tium (W3C), 2017. https://www.w3.org/TR/shacl/.

[3]1 IM. Juran, Juran’s Quality Control Handbook, 4% edp,
Mcgraw-Hill, Texas, USA, 1988.

[4] S.Lohmann, S. Negru, F. Haag and T. Ertl, Visualizing ontolo-
gies with VOWL 7 (2016), 399—419.

[5] P. Heyvaert, A. Dimou, B. De Meester, T. Seymoens, A.-
L. Herregodts, R. Verborgh, D. Schuurman and E. Mannens,
Specification and implementation of mapping rule visualiza-
tion and editing: MapVOWL and the RMLEditor, Web Seman-
tics: Science, Services and Agents on the World Wide Web 49
(2018), 31-50.

[6] F. Haag, S. Lohmann, S. Siek and T. Ertl, QueryVOWL: A Vi-
sual Query Notation for Linked Data, in: Proceedings of ESWC
2015 Satellite Events, Vol. 9341, 2015, pp. 387-402.

[7] M. Weise, S. Lohmann and F. Haag, Extraction and visualiza-
tion of tbox information from sparql endpoints, in: European
Knowledge Acquisition Workshop, 2016, pp. 713-728.

[8] D. Moody, The “Physics” of Notations: Toward a Scientific
Basis for Constructing Visual Notations in Software Engineer-
ing, IEEE Transactions on Software Engineering 35(6) (2009),
756-779.

[9] B. De Meester, P. Heyvaert, A. Dimou and R. Verborgh, To-
wards a Uniform User Interface for Editing Data Shapes, in:
Proceedings of the 4" International Workshop on Visualization
and Interaction for Ontologies and Linked Data, Vol. 2187,
2018, pp. 13-24. ISSN 1613-0073.

[10] J.E.L. Gayo, D. Fernéndez-Alvarez and H. Garcia-Gonzilez,
RDFShape: An RDF Playground Based on Shapes, in: Inter-
national Semantic Web Conference, 2018.

[11] E.Prud’hommeaux, J.E. Labra Gayo and H. Solbrig, Shape ex-
pressions: an RDF validation and transformation language, in:
Proceedings of the 10" International Conference on Semantic
Systems, New York, NY, United States, 2014, pp. 32—40.

[12] S.Lieber, B. De Meester, A. Dimou and R. Verborgh, Statistics
about Data Shape Use in RDF Data, in: Proceedings of the
19th International Semantic Web Conference: Posters, Demos,
and Industry Tracks, CEUR Workshop Proceedings, Vol. 2721,
2020, pp. 330-335. ISSN 1613-0073.

[13] OMG, Unified Modeling Language, Version 2.5.1, Technical
Report, Object Management Group, 2017. https://www.omg.
org/spec/UML/2.5.1/.

[14] S. Cranefield and M. Purvis, UML as an Ontology Modelling
Language, in: Intelligent Information Integration, 1999.

[15] OMG, Ontology Definition Metamodel, Version 1.1, Technical

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.w3.org/TR/shacl/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

30 S. Lieber et al. / Visual Notations for RDF Constraints

Report, Object Management Group, 2014. https://www.omg.
org/spec/ODM/1.1.

[16] H. Knublauch, J.A. Hendler and K. Idehen, SPIN — Overview
and Motivation, Member Submission, World Wide Web
Consortium (W3C), 2011. https://www.w3.org/Submission/
spin-overview/.

[17] A. Ryman, Resource Shape 2.0, Member Submission, World
Wide Web Consortium (W3C), 2014. https://www.w3.org/
Submission/shapes/.

[18] A.G. Ryman, A.J. Le Hors and S. Speicher, OSLC Resource
Shape: A language for defining constraints on Linked Data, in:
Proceedings of the WWW2013 Workshop on Linked Data on
the Web, Vol. 996, 2013.

[19] E. Prud’hommeaux, Shape Expressions 1.0 Primer,
Member Submission, World Wide Web Consortium
(W30), 2014. https://www.w3.org/Submission/2014/
SUBM-shex-primer-20140602/.

[20] H. Knublauch, From SPIN to SHACL, Technical Report, 2017.
https://spinrdf.org/spin-shacl.html.

[21] T. Bosch, A. Nolle, E. Acar and K. Eckert, RDF Validation
Requirements — Evaluation and Logical Underpinning, 2015.

[22] S. Lieber, B. De Meester, A. Dimou and R. Verborgh, Mon-
toloStats — Ontology Modeling Statistics, in: Proceedings of
the 10™ International Conference on Knowledge Capture - K-
CAP '19, 2019, pp. 69-76.

[23] S. Steyskal and K. Coyle, SHACL Use Cases and Require-
ments, Technical Report.

[24] D. De Paepe, G. Thijs, R. Buyle, R. Verborgh and E. Mannens,
Automated UML-Based Ontology Generation in OSLO?, in:
The Semantic Web: ESWC 2017 Satellite Events — ESWC 2017,
Vol. 10577, 2017, pp. 93-97.

[25] A. Cimmino, A. Fernindez-Izquierdo and R. Garcia-Castro,
Astrea: Automatic Generation of SHACL Shapes from Ontolo-
gies, The Semantic Web 12123 (2020), 497-513.

[26] EJ. Ekaputra and X. Lin, SHACL4P: SHACL constraints val-
idation within Protégé ontology editor, in: 2016 International
Conference on Data and Software Engineering (ICoDSE),
2016.

[27] 1. Boneva, J. Dusart, D. Ferndndez Alvarez and J.E.L. Gayo,
Shape Designer for ShEx and SHACL Constraints, in: ISWC
2019 Satellites, 2019.

[28] C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks,
A. Ruttenberg, U. Sattler and M. Smith, OWL 2 Web On-
tology Language — Structural Specification and Functional-
Style Syntax (Second Edition), Recommendation, World
Wide Web Consortium (W3C), 2012. http://www.w3.org/TR/
owl2-syntax/.

[29] OMG, Object Constraint Language, Version 2.4, Technical Re-
port, Object Management Group, 2014. https://www.omg.org/
spec/OCL/2.4.

[30] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis and E. Gi-
annopoulou, Ontology visualization methods — a survey, ACM
Comput. Surv. 39 (2007), 10.

[31] S. Mikhailov, M. Petrov and B. Lantow, Ontology Visualiza-
tion: A Systematic Literature Analysis, in: BIR Workshops,
2016.

[32] N. Achich, B. Bouaziz, A. Algergawy and F. Gargouri, Ontol-
ogy Visualization: An Overview, in: ISDA, 2017.

[33] A. Anikin, D. Litovkin, M. Kultsova, E. Sarkisova and
T. Petrova, Ontology Visualization: Approaches and Software
Tools for Visual Representation of Large Ontologies in Learn-

ing, in: Creativity in Intelligent Technologies and Data Sci-
ence, 2017, pp. 133-149. ISBN 978-3-319-65551-2.

[34] M. Dudas, S. Lohmann, V. Svatek and D. Pavlov, Ontology
visualization methods and tools: a survey of the state of the art,
The Knowledge Engineering Review 33 (2018).

[35] M.E. Joseph and R. Lourdusamy, Feature analysis of ontology
visualization methods and tools, Computer Science and Infor-
mation Technologies 1(2) (2020), 61-77.

[36] F. Ghorbel, N. Ellouze, F. Métais, F. Gargouri, N. Herradi et al.,
MEMO GRAPH: an ontology visualization tool for everyone,
Procedia Computer Science 96 (2016), 265-274.

[37] G. Braun, C. Gimenez, L. Cecchi and P. Fillottrani, crowd: A
Visual Tool for Involving Stakeholders into Ontology Engi-
neering Tasks, KI - Kiinstliche Intelligenz (2020), 1-7.

[38] D. Garijo, WIDOCO: a wizard for documenting ontologies, in:
International Semantic Web Conference, 2017, pp. 94-102.

[39] S. Lohmann, V. Link, E. Marbach and S. Negru, WebVOWL:
Web-based visualization of ontologies, in: International Con-
ference on Knowledge Engineering and Knowledge Manage-
ment, 2014, pp. 154-158.

[40] S. Lohmann, S. Negru and D. Bold, The Protégé VOWL plu-
gin: ontology visualization for everyone, in: European Seman-
tic Web Conference, 2014, pp. 395-400.

[41] J.W. Creswell, Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches, 3rd edn, Sage Publications
Ltd., 2008.

[42] R. Likert, A technique for the measurement of attitudes.,
Archives of psychology 22(140) (1932), 55.

[43] S.S. Shapiro and M.B. Wilk, An analysis of variance test
for normality (complete samples), Biometrika 52(3/4) (1965),
591-611.

[44] F. Wilcoxon, Individual comparisons by ranking methods, in:
Breakthroughs in statistics, Springer, 1992, pp. 196-202.

[45] J. Recker, Scientific Research in Information Systems: A Be-
ginner’s Guide, Springer Science & Business Media, 2012.

[46] World Wide Web Consortium (W3C), Semantic Web - Vocab-
ularies, 2009.

[47] 1. Boneva, J. Dusart, D. Fernandez-Alvarez and J.E. Emilio
Labra Gayo, Semi Automatic Construction of ShEx and
SHACL Schemas, CoRR abs/1907.10603 (2019).

[48] R. Cyganiak, D. Wood and M. Lanthaler, RDF 1.1
Concepts and Abstract Syntax, Recommendation, World
Wide Web Consortium (W3C), 2014. http://www.w3.org/TR/
rdf11-concepts/.

[49] S. Das, S. Sundara and R. Cyganiak, R2ZRML: RDB to RDF
Mapping Language, Working Group Recommendation, World
Wide Web Consortium (W3C), 2012. http://www.w3.org/TR/
r2rml/.

[50] B. De Meester, P. Heyvaert and A. Dimou, YARRRML, Un-
official Draft, imec — Ghent University — IDLab, 2019. https:
/Iw3id.org/yarrrml/spec.

[51] A.Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Man-
nens and R. Van de Walle, RML: A Generic Language for Inte-
grated RDF Mappings of Heterogeneous Data, in: Proceedings
of the 7th Workshop on Linked Data on the Web, Vol. 1184,
2014. ISSN 16130073.

[52] R. Falco, A. Gangemi, S. Peroni, D. Shotton and F. Vitali,
Modelling OWL Ontologies with Graffoo, in: The Semantic
Web: ESWC 2014 Satellite Events, Vol. 8798, 2014, pp. 320—
325.

[53] D. Feméndez—Alvarez, H. Garcia-Gonzélez, J. Frey, S. Hell-

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.omg.org/spec/ODM/1.1
https://www.omg.org/spec/ODM/1.1
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/shapes/
https://www.w3.org/Submission/shapes/
https://www.w3.org/Submission/2014/SUBM-shex-primer-20140602/
https://www.w3.org/Submission/2014/SUBM-shex-primer-20140602/
https://spinrdf.org/spin-shacl.html
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
https://www.omg.org/spec/OCL/2.4
https://www.omg.org/spec/OCL/2.4
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
https://w3id.org/yarrrml/spec
https://w3id.org/yarrrml/spec

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

[54]

[55]

[56]

[57]

S. Lieber et al. / Visual Notations for RDF Constraints 31

mann and J.E.L. Gayo, Inference of Latent Shape Expressions
Associated to DBpedia Ontology, in: International Semantic
Web Conference, 2018.

H.-G. Fill, B. Pittl and G. Honegger, A modeling environment
for visual SWRL rules based on the SeMFIS platform, in: In-
ternational Conference on Design Science Research in Infor-
mation System and Technology, 2017, pp. 452—-456.

P. Heyvaert, A. Dimou, R. Verborgh, E. Mannens and R. Van de
Walle, Towards Approaches for Generating RDF Mapping
Definitions, in: Proceedings of the 14™ International Semantic
Web Conference: Posters and Demos, Vol. 1486, 2015. ISSN
1613-0073.

G.A. Miller, The magical number seven, plus or minus two:
Some limits on our capacity for processing information., Psy-
chological review 63(2) (1956), 81.

C. Pinkel, C. Binnig, P. Haase, C. Martin, K. Sengupta and
J. Trame, How to Best Find a Partner? An Evaluation of Editing

[58]

[59]

[60]

Approaches to Construct R2ZRML Mappings, in: The Semantic
Web: Trends and Challenges, 2014, pp. 675-690.

J. Rumbaugh, I. Jacobson and G. Booch, The Unified Model-
ing Language Reference Manual (2" Edition), Pearson Higher
Education, 2004. ISBN 0321245628.

B. Spahiu, A. Maurino and M. Palmonari, Towards Improving
the Quality of Knowledge Graphs with Data-driven Ontology
Patterns and SHACL, in: Workshop on Ontology Design Pat-
terns (WOP) at ISWC (Best Workshop Papers), 2018, pp. 103—
117.

V. Wiens, S. Lohmann and S. Auer, GizMO-A Customizable
Representation Model for Graph-Based Visualizations of On-

tologies, in: Proceedings of the 10" International Conference
on Knowledge Capture, 2019, pp. 163-170.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	Introduction
	Research question and approach
	Hypothesis
	Contributions

	State of the Art
	RDF constraint languages
	Constraint Types
	RDF Constraint Editors
	Semantic Web Visualizations

	Visual Notations
	ShapeUML
	Shape
	Edge
	Text
	Border
	Position
	Visual Example

	ShapeVOWL
	Shape
	Edge
	Text
	Border
	Position
	Color scheme
	Visual Example

	Comparative Analysis
	Semiotic Clarity
	Perceptual Discriminability
	Semantic Transparency
	Complexity Management
	Visual Expressiveness
	Dual Coding
	Graphic Economy
	Cognitive Fit
	Discussion

	UnSHACLed editor
	Features for Data Shape Editing
	Implementation
	Architecture
	Graphical User Interface

	User Evaluation
	Questionnaire
	Method
	Threats to Validity
	External Validity Threats
	Internal Validity Threats

	Quantitative Results
	Self Assessment
	ShapeUML/ShapeVOWL Error Rate
	Error Rates for Constraint Concepts
	Error Rate for Test Cases

	Qualitative analysis
	Method
	Interpretation and Meaning

	Discussion and Conclusion
	Acknowledgements
	References

