o J oy s W N

Qs s s s s s s s D DWW W W W W W W W W NNNNNDNNNNN R R R R R R e R P e
HF O W © J & 0 W N O W Jdo s W N R O VW Do s W NP O LV ®Jd o W N R O WV

Semantic Web 0 (0) 1 1
10S Press

Learning SHACL Shapes from Knowledge
Graphs

Pouya Ghiasnezhad Omran ®*, Kerry Taylor? Sergio Rodriguez Mendez ? and Armin Haller 2

4 School of Computing, The Australian National University , ACT, Australia
E-mails: P.G.omran@anu.edu.au, kerry.taylor@anu.edu.au, Sergio.RodriguezMendez @ anu.edu.au,
armin.haller@anu.edu.au

Abstract. Knowledge Graphs (KGs) have proliferated on the Web since the introduction of knowledge panels to Google search
in 2012. KGs are large data-first graph databases with weak inference rules and weakly-constraining data schemes. SHACL,
the Shapes Constraint Language, is a W3C recommendation for expressing constraints on graph data as shapes. SHACL shapes
serve to validate a KG, to underpin manual KG editing tasks and to offer insight into KG structure.

We introduce Inverse Open Path (IOP) rules, a predicate logic formalism which presents specific shapes in the form of paths
over connected entities. Although IOP rules express simple shape patterns, they can be augmented with minimum cardinality
constraints and also used as a building block for more complex shapes, such as trees and other rule patterns. We define quality
measures for IOP rules and propose a novel method to learn high-quality rules from KGs. We show how to build high-quality
tree shapes from the IOP rules. Our learning method, SHACLEARNER, is adapted from a state-of-the-art embedding-based open

path rule learner (OPRL).

We evaluate SHACLEARNER on some real-world massive KGs, including YAGO2s (4M facts), DBpedia 3.8 (11M facts),
and Wikidata (8M facts). The experiments show SHACLEARNER can learn informative and intuitive shapes from massive KGs
effectively. Our experiments show the learned shapes are diverse in both structural features such as depth and width, and in

quality measures.

Keywords: SHACL Shape Learning, Shapes Constraint Language, Knowledge Graph, Inverse Open Path Rule

1. Introduction

While public knowledge graphs (KGs) became pop-
ular with the development of DBpedia [1] and Yago [2]
more than a decade ago, interest in enterprise knowl-
edge graphs [3] has only taken off since the inclu-
sion of knowledge panels on the Google Search en-
gine, driven by its internal knowledge graph, in 2012.
Although these KGs are massive and diverse, they are
typically incomplete. Regardless of the method that is
used to build a KG (e.g. collaboratively vs individually,
manually vs automatically), it will be incomplete be-
cause of the evolving nature of human knowledge, cul-
tural bias [4] and resource constraints. Consider Wiki-
data [5], for example, where there is more complete
information for some types of entities (e.g. pop stars),

*Corresponding author. E-mail: P.G.omran@anu.edu.au.

while less for others (e.g. opera singers). Even for the
same type of entity, for example, computer scientists,
there are different depths of detail depending on the
country of origin of the scientist.

However, the power of KGs comes from their data-
first approach, enabling contributors to extend a KG
in a relatively arbitrary manner. By contrast, a rela-
tional database typically employs not-null and other
constraints that require some attributes to be instanti-
ated at all times. Large KGs are typically populated
by automatic and semi-automatic methods using non-
structured sources (e.g. Wikipedia) that are prone to
errors of omission and commission.

SHACL[6] was formally recommended by the W3C
in 2017 to express constraints on a KG as shapes. For
example, SHACL can be used to express that a person
needs to have a name, birth date, and place of birth,
and that these attributes have particular types: a string;

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:P.G.omran@anu.edu.au
mailto:kerry.taylor@anu.edu.au
mailto:Sergio.RodriguezMendez@anu.edu.au
mailto:armin.haller@anu.edu.au
mailto:P.G.omran@anu.edu.au

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

2 Ghiasnezhad Omran et al. / SHACLearner

a date; a location. The shapes are used to guide the
population of a KG, although they are not necessar-
ily enforced. Typically, SHACL shapes are manually-
specified and the methods to do this are well-studied.
Howeyver, as for multidimensional relational database
schemes [7], shapes could, in principle, be inferred
from KG data. As frequent patterns, the shapes charac-
terise a KG and can be used for subsequent data clean-
ing or ongoing data entry. There is scant previous re-
search on this topic [8].

While basic SHACL [6] and its advanced fea-
tures [9] allows the modelling of diverse shapes in-
cluding rules and constraints, most of these shapes
are previously well known as expressed by alterna-
tive formalisms, including closed rules [10], trees,
existential rules [11], and graph functional depen-
dencies [12]. We claim that the common underlying
form of all these shapes is the path, over which ad-
ditional constraints induce the various versions. For
example in DBpedia we discover the following path,
< dbo : type > _ < db : Song > (x) —< dbo :
album > (x,y)\ < dbo : recordLabel > (y,z). which
expresses that if an entity x is a song, then x is in an
album y which has a record label z.

Since the satisfaction of a less-constrained shape is
a necessary condition for satisfaction of a more com-
plex shape (but not a sufficient condition), in this pa-
per we focus on learning paths, the least constrained
shape for our purposes. Paths can serve as the basis for
more complex shapes. We also investigate the process
of constructing one kind of more complex shape, that
is a tree, out of paths. For example, we discover a tree
about an entity which has song as its type as we show
in Fig. 1. In a KG context, the tree suggests that if we
have an entity of type song in the KG, then we would
expect to have the associated facts as well.

Type_song

producer

recordLabel

Fig. 1. A tree shape for the Song concept from DBpedia.

In this paper, we present a system, SHACLEARNER,
that mines shapes from KG data. For this purpose we

propose a predicate calculus formalism in which rules
have one body atom and a chain of conjunctive atoms
in the head with a specific variable binding pattern.
Since these rules are an inverse version of open path
rules [13], we call them inverse open path (I10P) rules.
To learn IOP rules we adapt an embedding-based open
path rule learner, OPRL [13]. We define quality mea-
sures to express the validity of IOP rules in a KG.
SHACLEARNER uses the mined IOP rules to subse-
quently discover more complex tree shapes. Each IOP
rule or tree is a SHACL shape, in the sense that it
can be syntactically rewritten in SHACL. Our mined
shapes are augmented with a novel numerical confi-
dence measure to express the strength of evidence in
the KG for each shape.

2. Preliminaries

An entity e is an identifier for an object such as
a place or a person. A fact (also known as a link)
is an RDF triple (e, P,¢’'), written here as as P(e,¢’),
meaning that the subject entity e is related to an ob-
Ject entity ¢’ via the binary predicate (also known as
a property), P. In addition, we admit unary predicates
of the form P(e), also written as the fact P(e,e). We
model unary predicates as self-loops to make the unary
predicate act as the label of an link in the graph, just
as for binary predicates. Unary predicates may, but
are not limited to, represent class assertions expressed
in an RDF triple as (e, rdf:type, P) where P is a
class or a datatype. A knowledge graph (KG) is a pair
K = (E, F), where E is a set of entities and F is a set
of facts and all the entities occurring in F also occur in
E.

2.1. Closed-Path Rules

KG rule learning systems employ various rule lan-
guages to express rules. RLVLR [14] and SCALEKB
[15] use so-called closed path (CP) rules that are a kind
of closed rule as they have no free variables. Each con-
sists of a head at the front of the implication arrow and
a body at the tail. We say the rule is about the predicate
of the head. The rule forms a closed path, or single un-
broken loop of links between the variables. It has the
following general form.

P,(x,y) < P1(x,21)AP2(z1,22) Ao . APy (20=1,).
(H

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Ghiasnezhad Omran et al. / SHACLearner 3

We interpret these kinds of rules with quantification
of all variables at the outside, and so we can infer a
fact that instantiates the head of the rule by finding an
instantiation of the body of the rule in the KG. For ex-
ample, from the rule citizenOf(x,y) < livesIn(x,z) A
locatedIn(z,y), if we have the facts, livesIn(Mary,
Canberra) and locatedIn(Canberra, Australia) in the
KG, then we can infer and assert the following new
fact, citizenOf(Mary, Australia).

Rules are considered of more use if they generalise
well, that is, they explain many facts. To quantify this
idea we recall measures support, head coverage and
standard confidence that are used in some major ap-
proaches to rule learning including [15] and [10].

Definition 1 (satisfies, support). Let r be a CP rule
of the form (1). A pair of entities (e,e’) satisfies the
body of r, denoted body,(e,e'), if there exist enti-
ties ey, ...,e,—1 in the KG such that all of {P1(e, e1),
Ps(e1,€2), ..., Py(en—1,€’)} are facts in the KG. Fur-
ther (e, e') satisfies the head of r, denoted P(e,e'),
if Pi(e,€') is a fact in the KG. Then the support of r
counts the rule instances for which the body and the
head are both satisfied in the KG.

supp(r) = |{(e,€') : body,(e,e') and P,(e, e’) }|

Standard confidence (SC) and head coverage (HC)
offer standardised measures for comparing rule qual-
ity. SC describes how frequently the rule is true, i.e.
of the number of entity pairs that satisfy the body in
the KG, what proportion of the inferred head instances
are satisfied? It is closely related to confidence widely
used in association rule mining [16]. HC measures the
explanatory power of the rule, i.e. what proportion of
the facts satisfying the head of the rule could be in-
ferred by satisfying the rule body? It is closely related
to cover which is widely used for rule learning in in-
ductive logic programming [17]. A non-recursive rule
that has both 100% SC and HC is redundant with re-
spect to the KG, and every KG fact that is an instance
of the rule head is redundant with respect to the rule.

Definition 2 (standard confidence, head coverage).
Letr,e, e, body, be as given in definition 1. Then stan-
dard confidence,

_ supp(r)
[{(e,e’) : body, (e, ")}

and head coverage,

SC(r)

supp(r)

HC(r) = {(e.e’) : Pye, e}

2.2. Open-Path Rules: Rules with Free Variables

Unlike all earlier work in rule mining for KG com-
pletion, active knowledge graph completion [13] de-
fines open path (OP) rules of the form:

Pi(x,20) < P1(z0,21)AP2(z1,22) A . APy (20—1,).
(2)

Here, P; is a predicate in the KG and each of {x, z;,y}
are entity variables. Unlike CP rules, OP rules do not
necessarily form a loop, but a straightforward variable
unification transforms an OP rule to a CP rule, and ev-
ery entity instantiation of a CP rule is also an entity
instantiation of the related OP rule (but not vice-versa).

To assess the quality of open path rules, open path
standard confidence (OPSC) and open path head cov-
erage (OPHC) are derived in [13] from the closed path
forms (Definition 2).

Definition 3 (open path: OPsupp, OPSC, OPHC). Let
r be an OP rule of the form (2). Then a pair of enti-
ties (e, e') satisfies the body of r, denoted body, (e, ¢'),
if there exist entities eq,...,e,_1 in the KG such
that Py(e,e1), Pa(e1,e2), ..., Py(en—1,€') are facts in
the KG. Also (¢',e) satisfies the head of r, denoted
P,(¢,e), if P:(¢,e) is a fact in the KG. The open path
support, open path standard confidence, and open path
head coverage of r are given respectively by

OPsupp(r) = |{e : 3e’, " s.t. body,(e,e') and P,(¢", e)}|

OPsupp(r)
P f—
OPSC(r) |{e : Je’ s.t. body,(e, e')}|
OPHC(r) = OPsupp(r)

" He:3e st Pe,e)}]

2.3. SHACL Shapes

A KG is a schema-free database and does not need
to be augmented with schema information natively.
However, many KGs are augmented with type infor-
mation that can be used to understand and validate data
and can also be very helpful for inference processes
on the KG. In 2017 the Shapes Constraint Language
(SHACL) [6] was introduced as a W3C recommenda-
tion to define schema information for KGs stored as
RDF datasets. SHACL defines constraints for graphs

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

4 Ghiasnezhad Omran et al. / SHACLearner

as shapes. KGs can then be validated against a set of
shapes.

Shapes serve two main purposes: validating the
quality of a KG and characterising the frequent pat-
terns in a KG. In Fig. 2, we illustrate an example of a
shape from Wikidata ! where x and z;s are variables
that are instantiated by entities. Although the shape is
originally expressed in ShEx [18], we translate it to
SHACL here.

SHACL, together with SHACL advanced features [9]
is extensive. Here we focus on the core of SHACL
in which node shapes constrain a target predicate
(e.g. the unary predicate Auman in Fig. 2), with prop-
erty shapes expressing constraints over facts related
to the target predicate. We particularly focus on prop-
erty shapes which act to constrain an argument of the
target predicate. Continuing the example of Fig. 2,
the shape expresses that each entity x which satis-
fies human(x) should satisfy the following paths: (1)
citizenOf(x,z1) A country(zy), (2) father(x,z2) A

human(zz), and (3) nativeLanguage(x, z3) Nlanguage(z3).

Many kinds of shapes, including tree and closed
rule, can be expressed by SHACL. We focus on path
shapes for our shape learning system. A path is a se-
quence of predicates with chained intermediate vari-
ables but permitting unbound variables at both ends.
Although shapes in the form of a path are not as con-
strained as more complex shapes like closed rules, they
are a necessary condition for the more complex shapes
like closed rule or tree, which are also paths (with fur-
ther restrictions). We will define Inverse Open Path
rules induced from paths that have a straightforward
interpretation as shapes, and also propose a method to
mine such rules from a KG. To demonstrate the poten-
tial for these kind of shapes to serve as building blocks
for more complex shapes, we then propose a method
that builds trees out of mined rules, and discuss the ap-
plication of such trees to KG completion.

3. SHACL learning

3.1. Rules with Free Variables or Uncertain Shapes

We observe that the converse of OP rules, that
we call inverse open path rules (I0P), correspond to
SHACL shapes. For example, the shape of Fig.2 has
the following three IOP rules as building blocks:

human(x, x) — citizenOf(x,z1) A country(z1,21).

"https://www.wikidata.org/wiki/EntitySchema:E10

Shape:human
a sh:NodeShape;
sh:targetclass class:human;
sh:property[
sh:path: citizenOf;
sh:path[citizenOf
sh:nodekind country;]
17
sh:property |
sh:path: father;
sh:path[father
sh:nodekind human;]
1;
sh:property |
sh:path: nativeLanguage;
sh:path[nativelLanguage
sh:nodekind language;]
17
human

citizenOf nativeLanguage

Fig. 2. An example of a SHACL shape from Wikidata.

human(x, x) — father(x,z2)A
human(za, z2).
human(x, x) — nativeLanguage(x, z3)\

language(z3,z3).

The general form of an IOP rule is given by

Pl(x,20) = 3(z1, -2n—1,¥) P (20, 21)

APL(z1,22) A oo A PL(20—1,Y). 3)

where each Pj is either a predicate in the KG or its
reverse with the subject and object bindings swapped.
These are not Horn rules. In an IOP rule the body of
the rule is P, and its head is the sequence of predicates,
Py APy A...\P,. Hence we instantiate the atomic body
to predict an instance of the head. This pattern of exis-
tential quantification in the head and free variables in
the body of a rule has been investigated in the literature
as existential rules [11].

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.wikidata.org/wiki/EntitySchema:E10

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Ghiasnezhad Omran et al. / SHACLearner 5

To assess the quality of IOP rules we follow the
quality measures for OP rules [13].

Definition 4 (inverse open path: IOPsupp, IOPSC, 10-
PHC). Let r be an IOP rule of the form (3). Then a
pair of entities (e,e') satisfies the head of r, denoted
head,(e,e’), if there exist entities e, ...,e,—1 In the
KG such that Py(e,e1), P2(e1,e2), ..., Py(e,—1,¢') are
facts in the KG. A pair of entities (€', e) satisfies the
body of r, denoted P,(e", e), if P,(e", e) is a fact in the
KG. The inverse open path support, inverse open path
standard confidence, and inverse open path head cov-
erage of r are given respectively by

I0Psupp(r) =| {e: e’ e s.t. head, (e, ¢') and P,(e”, e)}

IOPsupp(r)
I0PSC(r) =
") = e 37 st Piem 0T |
IOPHC(r) [0Psupp(r)

- | {e: 3¢’ s.t. head,(e,e’)} |

Notably, because a single open path induces both an
OP and IOP rule, the support for an IOP rule is the
same as the support for its corresponding OP form,
IOPSC is the same as the corresponding OPHC, and
TIOPHC is the same as the corresponding OPSC. This
close relationship between OP and IOP rules helps us
to mine both OP and IOP rules in the one process.

We show the relationship between an OP rule and its
converse IOP version in the following example. Con-
sider the OP rule, P1(x, zo)
< P3(z0,21) A P3(z1,22). Assume we have three en-
tities ({es, e4, 5 }) which can instantiate zo and satisfy
both P1(x,z0) and P2(z0,21) A P3(z1,z2). Assume the
number of entities that can instantiate zq to satisfy the
head part is 5 ({e1, €2, €3, €4, ¢5}) and the number of
entities that can instantiate zq to satisfy the body part is
7 ({es, eq, 5, €6, €7, €5, €9 }). Hence, we have the fol-
lowing for this rule, OPsupp = 3, OPSC = 3/7 and
OPHC = 3/5. For the IOP version of the rule over
the same KG, P1(x,z9) — P2(z0,21) A P3(z1,22), we
have the same entities to instantiate z, while the pred-
icate terms corresponding to the bodies and heads are
swapped. Hence, we have the following for the IOP
version of the rule, IOPsupp = 3, IOPSC = 3/5 and
IOPHC = 3/7.

In many cases we need the rules to express not only
the necessity of a chain of facts (the facts in the head of
the IOP rule) but the number of different chains which

should exist. For example, we may need a rule to ex-
press that each human has at least two parents. Hence,
we introduce IOP rules annotated with a cardinality,
Car. This gives the following annotated form for each
IOP rule.

IOPSC,IOPHC,Car : P,(x,20) — P} (z0,21)\

Py(z1,22) A oo A Py(z0—1,¥)
4

where IOPSC and IOPHC belong to [0, 1] and denote
those qualities of the rule. Car is an integer > 1.

Definition 5 (Cardinality of an IOP rule, Car). Let r be
an annotated IOP rule of the form (4) and let Car(r)
be the cardinality annotation for r. Then r satisfies
Car(r) iff for each entity e € {e|3e"s.t. P(e",e)},
Car(r) < | {€|head, (e €'} |

The cardinality expresses a lower bound on the num-
ber of head paths which are satisfied in the KG for
every instantiation of the variable that joins the body
to the head. For example, if we have 0.8,0.1,2
Pi(x,y) = P1(y,2) A P2(z,t) and have P,(ey, e2) sat-
isfied, we should have at least two paths starting from
e- that instantiate two distinct entities for variable ¢, of
the form P1(e2,2) A P2(z, e3) and P1(ea,z) AP2(z, €4).
There is no limitation on the instantiations for vari-
able z which is scoped inside the head, so these two
pairs of instantiations both satisfy cardinality of 2: (1)
Py (62, 6’5) A\ P2(6‘5, 63) and P, (62, 65) A\ P2(65, 64) and
2) P, (6’2, 6’5) A\ P2(€5, 6’3) and P, (62, e6> AN Pg(eg, 64).

Rules with the same head and the same body may
have different cardinalities. In the given example we
might have the following rule as well, 0.9,0.1,1 :
P,(x,y) — P1(y,z) A P3(z,t). While we have a rule
with a cardinality, ¢1, we also have rules with lower
cardinalities 1, ..., (¢; — 1) but their IOPSCs should be
as good or better than the rule with c; cardinality. This
statement is quite intuitive since cardinality expresses
the lower bound number of occurrences of the head.

Lemma 1 (IOPSC is non-increasing with length). Let
r be an IOP rule of the form (3) with n > 2 and let v’
be an IOP rule of the form P)(x,z0) — P}(z0,21) A
P4(z1,22) A oo A Pl (20—2,Y), being r shortened by the
removal of the last head predicate. Then IOPS C(r) <
10PSC(r).

Proof. Observe that by definition 4, the denominator
of IOPS C() is not affected by the head of the rule, and
so has the same value for both. Now, looking at the

O 0 d oy U s W NP

Gr O s s s s R B R D D W W W W W W W W W W NN NN NN R B R B R R B e e
H O W I o U W NP O W W d oUW N R O WV o Jo U s W NP O VW W Jdo U s W NP O

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

6 Ghiasnezhad Omran et al. / SHACLearner

Algorithm 1 SHACLEARNER

Input: a KG K, a target predicate P,

Parameters: max rule length /, max rule cardinality
MCar, MinlOPS C, MinlOPHC, and MinTreeS C
Output: a set of IOP rules R and T'ree

K’ := Sampling(K, P;)
(P, A) := Embeddings(K")
R =10
for2 <k<ldo
Add PathFinding(K’, P;, P, A, k) to R’
end for

e o

Tree := GreadySearch(R, MinTreeS C)
: return Tree and R

o x

numerators, we have that

Ve(3eq, .., e, (P} (e, e1) AP, (e1, e2)A... AP, (en—2, €n—1)\
Pl (en—1,€4)) = Te1,...,en—1(Pi(e,e1)APh(e1,ea)A

.. A\ Pl (en—2,€,-1))). Therefore {e : Je’ s.t.
head,(e,e’)} C {e : e s.t. head, (e,e’)}. There-
fore {e : 3e’, ¢ s.t. head,(e,e') and P,(e",e)} C {e :
Je’, e s.t.

head, (e, e’)and P;(e",e)}. So IOPsupp(r) < IOPsupp(r’)

as required.
O

3.2. IOP Learning through Representation Learning

We start with the open path rule learner OPRL [13],
and adapt its embedding-based OP rule learning to
learn annotated IOP rules. We call this new learner,
SHACLEARNER, shown in Algorithm 1.

Our SHACLEARNER uses a sampling method
Sampling() which prunes the entities and predicates
that are less relevant to the target predicate to obtain
a sampled KG. The sample is fed to embedding learn-
ers such as RESCAL [19, 20] in Embeddings(). Then
in PathFinding() SHACLEARNER uses the computed
embedding representations of predicates and entities
in heuristic functions that inform the generation of
IOP rules bounded by a maximum length. Then, po-
tential IOP rules evaluated, annotated, and filtered in
Evaluation() to produce annotated IOP rules. Eventu-
ally, a tree is discovered for each argument of each
target predicate by aggregating mined IOP rules.

In more detail, in line 1, the Sampling() method
computes a fragment of the KG (K’) consisting of a
bounded number of entities that are related to the goal

R := Evaluation(R’, K, MCar, MinIOPS C, MinIOPHC)

predicate (i.e., P;). This sampling is essential since em-
bedding learners (e.g. HOLE [19] and RESCAL) can-
not handle massive KGs with millions of entities (e.g.
YAGO?2).

After sampling, in line 2 Embeddings(), we com-
pute predicate embeddings as well as subject and ob-

ject argument embeddings for all predicates which ex-

ist in the K’ after sampling, as is done in RLVLR [14].

In a nutshell, we use RESCAL [19] to embed each
entity e; to a vector E; € R and each predicate P; to
a matrix P, € R?*? where R is the set of real numbers
and d is an integer (a parameter of RESCAL). For each
given fact Py(eq, e2), the following scoring function is
computed:

fle1,Po,ez) =El - Py - Ey (5)

The scoring function indicates the plausibility of the
fact that e; has relation Py with e5. The two sets of
embeddings, {E;} and {P;} are learned by minimizing
a a loss function.

The argument embeddings are also computed in
Embeddings() according to the method proposed
in [14]. To compute the subject (respectively object)
argument embeddings of a predicate P, we aggre-
gate the embeddings of entities that occur as the sub-

ject (respectively object) of P in the KG. Hence for

each predicate P, we have two vectors, P{ and P} that
present the subject argument and object argument of
Py respectively.

After that, in line 3 to line 7, PathFinding() produces
potential IOP rules based on the embedding represen-
tation of the predicates which are involved in each rule.
The potential rules are pruned by the scoring function
heuristic proposed in [13] for OP rules. A high-scoring
potential path suggests the existence of both OP and
IOP rules.

An IOP rule P;(x,y) — P1(y,2) A Pa(z,1)., acts to
connect entities satisfying the subject argument of the
body predicate, P;, to entities forming the object argu-
ment of the last predicate, P, along a path of entities
that satisfy a chain of predicates in the rule. There is a
relationship between the logical statement of the rule
and the following properties in embedding space [13]:

1. The predicate arguments that have same variable
in the rule should have similar argument emded-
dings. For example we should have the following
similarities, P? ~ P{ and P ~ P?.

2. The whole path forms a composite predicate,
like P*(x,1) = Pi(x,y) A P1(3,2) A Pa(z,1).

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

© O d o U W NP

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
H O W 0 < o 0 W N O W Jdo 0 WN PR O VW Do U W N R O LV ®Jd o W NP O

Ghiasnezhad Omran et al. / SHACLearner 7

We compute the embedding representation of the
composite predicate based on its components,
P*(x,1) = P/(x,y) - P1(,2) - P2(z,1). Now we
could check the plausibility of P*(x,7) for any
pair of entities by equation 5. However, since
we are interested in the existence of an entity-
free rule, the following similarity will hold: 1 ~
P -P,-P, P, Pl

Based on the above two properties, [13] defines two
scoring functions that help us to heuristically mine the
space of all possible IOP rules to produce a reduced set
of candidate IOP rules.

The ultimate evaluation of an IOP rule will be done
in the next step as we will describe.

In line 8, we use a greedy search to aggregate the
discovered IOP rules for each argument of each target
predicate and form a tree (as illustrated in Figure 3).
The detail of this process will be described in section
3.3.

3.2.1. Efficient Computation of Quality Measures

The structure of SHACLEARNER follows OPRL [13]
very closely, so now we focus our attention on the
efficient matrix-computation of the quality measures
that are novel for SHACLEARNER. Evaluation() in
Algorithm 1 first evaluates candidate rules on the
small sampled KG, and selects only the rules with
IOPsupp(r) > 1. They may still include a large num-
ber of redundant and low quality rules and so are fur-
ther downselected based on their IOPSC and IOPHC
calculated over the full KG. We show in the following
how to efficiently compute the measures over massive
KGs using an adjacency matrix representation of the
KG.

Let K = (E,F) with E = {ey,...,e,} be the set
of all entities and P = {Py,..., P, } be the set of all
predicates in F. Like RESCAL [19, 20], we repre-
sent K as a set of square n x n adjacency matrices by
defining the function A. Specifically, the [i, j]th ele-
ment A(Py)[i, j] is 1 if the fact Py(e;, ¢;) is in F; and
0 otherwise. Thus, A(Py) is a matrix of binary values
and the set {A(Px) | k € {1,...,m}} represents K.

We illustrate the computation of IOPSC and IO-
PHC through an example. Consider the IOP rule r :
Pt(x, Zo) — Pl(Zo,Zl)/\PQ(Zl,y). LetE = {61,62, 83}
and

F = {Pl(elveQ)’Pl(e27el)’Pl(ez’e?’)’Pl(eB’el)’
Py(e1,e2), Pa(es, e2), Pa(es. e3), Pi(e1, e3),
P(e3,e2),Pi(e3,e3)}

The adjacency matrices for the predicates P, P2 and
P, are:

0 1 0 01 0
A(Pl): 1 0 1 ,A(PQ)I 0 0 0 N
1 0 O 0 1 1
0 0 1
AP): 10 0 0
0 1 1

For IOPSC and IOPHC (definition 4) we need to cal-
culate (1) the number of entities that satisfy the body
of the rule, i.e.

#e : 3e" s.t. P(e”,e), (2) the number of entities that
satisfy the head of a rule i.e. #e : 3¢’ s.t. head,(e,e’)
and, (3) the number of entities that join the head of a
rule to its body i.e.

#e : 3e',e" s.t. head,(e,e') and P,(¢", e).

For (1) we can read the pairs (¢”, e) directly from the
matrix A(P;). To find distinct es we sum each column
(corresponding to each value for the second argument)
and transpose to obtain the vector V?(P,). Each non-
zero element of this vector indicates a satisfying e and
the number of distinct es is given by simply counting
the number of non-zero elements. In the example, the
only non-zero element in A(P;) is A(P,)[1, 3] and after
summing the columns and transposing we have

0
V3(p) = |1
2

so we have only V?(P,)[3] non-zero and {e, e3} satis-
fies the head with count 2.

For (2) the pairs (e, ¢’) satisfying the head are con-
nected by the path P, Ps,...P,, and can be ob-
tained, as for (1), directly from the matrix product
A(P1)A(Pz) ... A(Py), being the elements with a
value > Car (for rules with cardinality Car). To
find distinct es we sum each row (corresponding to
each value for the first argument) to obtain the vec-
tor VY(A(P1)A(Ps)... A(P,)). Each element with
> Car value of this vector indicates a satisfying e and
the number of distinct es is given by counting the num-
ber of elements in V! (A(P1)A(P3) ... A(Py)).

In the example we have

0 0 0
A(P1)A(Py) = [0 2 1
01 0

0
VP, Py) = M

1

O 0 d oy U s W NP

B R s R DWW W W W W W W W W NN NN N R R B R B P B e
g s W N P O VW W d oUW N R O O e J s W NP O v O d oUW N PO

46

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

8 Ghiasnezhad Omran et al. / SHACLearner

with satisfying entities eo and es and count of 2 for
Car = 1. For Car = 2, e5 satisfies the rule so the count
is 1.

Computing (3) is now straightforward. We have
that the row index of non-zero elements of V?(P,)
indicates entities that satisfy the second argument
of the body and that row index of elements with a
value > Car of VY(A(P1)A(Ps)... A(Py)) indi-
cates entities that satisfy the first argument of the
head. Therefore we can find the entities that satisfy
both of these conditions by pairwise multiplication.
That is, the entities we need are {e; | (VZ(P,)[i] >
0 A VHAP)A(Ps)... A(Py))]i]) = Car and 1 <
i < n}, and the count of entities is the size of this set.
For the example, for Car = 1, we have {e3, e3} in the
set with count 2 and for Car = 2, we have {e3} in the
set with count 1.

Hence, we could have three versions of r, i.e., r!, 12
and r® with three different Car of 1, 2, and 3 respec-
tively. For Car = 1, IOPsupp(rt) = [{e2,e3}| = 2.
From Definition 4 we can obtain IOPHC(r') = 2/2
and IOPS C(r') = 2/2. For Car = 2, IOPsupp(r?) =
[{e2}| = 1. We can obtain IOPHC(r*) = 1/1 and
IOPSC(r?) = 1/2. In this case, we have the same
qualities for Car = 3 as we have for Car = 2.

3.3. From IOP Rules to Tree Shapes

Now we turn to deriving SHACL trees from anno-
tated IOP rules. For each target predicate we learn two
sets of IOP rules, one binding the subject argument and
the other binding the object argument, i.e. rules about
the predicate and rules about its reverse. We aggregate
the rules about a target predicate as a tree rooted at the
predicate as illustrated in Fig. 3.

For example, the shape of Fig. 2 has the following
tree:

human(x, x) — citizenOf(x,z1) A country(z1,21)
A father(x,z3) A human(zs, z3)
A nativeLanguage(x, z4)\

language(z4,24).

The general form of a tree is given by

Py(x,20) — 3(25.y")

PMz0.21) APy (21.25) A AP (zh 1, 0")

APE(20,21) NP3 (2,23) A oo AP (2 1,3%)

AP (20, 29) A P (], Z4) A A PA(L 1, 3)
(6)

where each P}/ is either a predicate in the KG or its
reverse with the subject and object bindings swapped.
In a tree we say the body of the shape is P, and its head
is the sequence of paths or branches, Path' A Path? A
... \ Path?. Hence we instantiate the atomic body to
predict an instance of the head. All head branches and
the body joint in one variable, zg.

To assess the quality of a path we follow the quality
measures for IOP rules.

Definition 6 (Tree: Treesupp, TreeSC). Let r be a
tree of the above form. Then a set of pairs of enti-
ties (e,el), ..., (e,e?) satisfies the head of r, denoted
head,(e), if there exist the following sequences of en-
tities el,....ep_y, €3,..,e2_, and €i,...el_| in the
KG such that Pi(e,el),Pi(el,el), ... PL(el |, eb),
Pi(e,e?), Pi(e?,e3), .., P2(e2_1,e?) and Pi(e,el),
Pi(el,ed) .., Pl(el_1,e?) are facts in the KG. A
pair of entities (e, e) satisfies the body of r, denoted
P,(e",e), if Pi(e",e) is a fact in the KG. The tree sup-
port and tree standard confidence of r are given re-
spectively by

Treesupp(r) =| {e : 3" s.t. head,(e) and P,(e",e)} |

Treesupp(r)

T =
reeSC(r) | {e:Je” s.t. Pi(e”,e)} |

To learn each tree we deploy a greedy search
(GreadySearch). To do so, we sort all rules that bind
the subject argument (for the left hand tree in Fig.
3) in a non-increasing order with respect to IOPSC.
Then we iteratively try to add the first rule in the list
to the tree and compute the TreeSC. If the TreeSC
drops below the defined threshold (i.e. TreeSCMIN)
we dismiss the rule otherwise we add it to the tree.
For the right hand tree we do the same with the rules
that bind the object argument of the target predicate.
Since a conjunction of IOP rules form a tree, TreeSC
is bounded above by the minimum IOPSC of its con-
stituent IOP rules.

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

® J oy U W N

s s s s s s s D D DWW W W W WwWw W W W NNNNNDNNDNNN R R R R R R e R e e
HF O W © < o 0 W N E O W Jdo W N R O WV Do s W NP O LV ®Jd o s W N R OV

Ghiasnezhad Omran et al. / SHACLearner 9

Vg

Target Predicate
Py P,

IOPSC :

Fig. 3. Trees for a target predicate P;. Each v; indicates a TreeSC.

3.3.1. Tree Shapes are Useful for Human Interaction

Shapes offer KG documentation as readable patterns
and also provide a way to validate a KG. Our novel tree
shapes can additionally be used for KG-completion.
While there are several methods proposed to complete
KGs automatically (e.g. [14, 19, 20]) by predicting
missing facts (also called /inks), all these methods tra-
verse the KG in a breadth-first manner. In other words,
they sequentially answer a set of independent ques-
tions such as
birthPlace(Trump,?) or playsin(Naomi_Watts,?).
Our proposed tree shapes instead provide an opportu-
nity to work sequentially along a path of dependent
questions such as birthPlace(Trump, ?1) followed by
capitalOf(?1,7). The latter question cannot even be
asked until we have an answer for the former ques-
tion, and the existence of an answer to the former
gives us the confidence to proceed to the next question
along the path. This completion strategy is depth-first
as it works through a shape tree. Importantly, when
we want to ask such completion questions of a human,
this depth-first questioning strategy will reduce the
cognitive load due to the contextual connections be-
tween successive questions. This strategy for human-
KG-completion is applied in the smart KG editor Schi-
matos [21].

Tree shapes can also help a human expert to ex-
tract a more intuitive concise sub-tree out of a longer,
more complex tree when desired for explainablity. If
a tree with confidence TreeS C,,;g is pruned either by
removing branches (width-wise) or by reducing the
length of branches (depth-wise), it remains a valid
tree with confidence TreeS C,,,, with the property that
TreeSCpey = TreeSC,,,. Hence, by pruning a tree
we got a tree with higher degree of confidence based
on the data.

4. Related Work

There are some exploratory attempts to address
learning SHACL shapes from KGs [8, 22-25]. They

are procedural methods without logical foundations
and are not shown to be scalable to handle real-world
KGs. They work with a small amount of data and the
representation formalism they use for their output is
difficult to compare with the well-defined IOP rules
which we use in this paper. [25] carries out the task in
a semi-automatic manner: it provides a sample of data
to an of-the-shelf graph structure learner and provides
the output in an interactive interface for a human user
to create SHACL shapes.

There are some works [26, 27] that use existing on-
tologies for KGs to generate SHACL shapes. [26] uses
two different kinds of knowledge to automatically gen-
erate SHACL shapes: ontology constraint patterns as
well as input ontologies. In our work we use the KG it-
self to discover the shapes, without relying on external
modelling artefacts.

From an application point of view, there are papers
which investigate the application of SHACL shapes to
the validation of RDF databases including [28, 29], but
these do not contribute to the discovery of shapes.

[30] proposes an extended validation framework for
the interaction between rules and SHACL shapes in
KGs. When a set of inference rules and SHACL shapes
are provided, a method is proposed to detect which
shapes could be violated by applying a rule.

There are some partial attempts to provide logical
foundations for the semantics of the SHACL language
including [31] that presents the semantics of recursive
SHACL shapes. By contrast, in our work we approach
SHACL semantics in the reverse direction. We start
with logical formalisms with both well-defined seman-
tics and motivating use cases to derive shapes that can
be trivially expressed in a fragment of SHACL.

5. Experiments

We have implemented our SHACLEARNER? based
on Algorithm 1, and conducted experiments to assess
it. Our experiments are designed to prove the effective-
ness of our SHACLEARNER at capturing shapes with
varying confidence, length and cardinality from vari-
ous real-world massive KGs. Since our proposed sys-
tem is the first method to learn shapes from massive
KGs automatically, we have no benchmark with which
to compare. However, the performance of our system

2Detailed experimental results can be found (anonymously) at
https://www.dropbox.com/sh/dn1kujegOb609bw/
AAAbKGIKIZ7e0eaNONz2zE93a?dl1=0

=W N

©w 0 g o U

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.dropbox.com/sh/dn1kujeg0b6o9bw/AAAbKG9KfZ7e0eaNONz2zE93a?dl=0
https://www.dropbox.com/sh/dn1kujeg0b6o9bw/AAAbKG9KfZ7e0eaNONz2zE93a?dl=0

17

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 Ghiasnezhad Omran et al. / SHACLearner

shows that it can handle the task satisfactorily and can
be applied in practice. We demonstrate that

1. SHACLEARNER is scalable so it can handle
real-world massive KGs including DBpedia with
over 11M facts.

2. SHACLEARNER can learn several shapes each
for various target predicates.

3. SHACLEARNER can discover diverse shapes
with respect to qualities of IOPSC and IOPHC.

4. SHACLEARNER discovers shapes of varying
complexity, and diverse with respect to length
and cardinality.

5. SHACLEARNER discovers more complex shapes
(trees) by aggregating learnt IOP rules efficiently.

Our three benchmark KGs are described in Table 1.
All three are common KGs and have been used in rule
learning experiments previously [10, 14].

Table 1
Benchmark specifications

KG # Facts # Entities # Predicates
YAGO2s 4,122,438 2,260,672 37
Wikidata 8,397,936 3,085,248 430
Wikidata +UP 8,780,716 3,085,248 587
DBpedia 3.8 11,024,066 3,102,999 650
DBpedia 3.8 +UP 11,498,575 3,102,999 1,005

All experiments were conducted on an Intel Xeon
CPU ES5-2650 v4 @2.20GHz, 66GB RAM and run-
ning CentOS 8.

5.0.1. Transforming KGs with type predicates for
experiments

In real-world KGs, concept or class membership
is modeled as entity instances of a binary fact, for
example DBpedia contains "<dbo:type>(x,y)" and
"<dbo:class>(x,y)" predicates where the second argu-
ments of these predicates are types (e.g. "<db: Album>"
or "<db:City>") or classes (e.g. "<db:Reptile>" or
"<db:Bird>"). Instead, we choose to model types and
classes with unary predicates. To do so we make new
predicates like "<dbo:type>_<db:Album>(x)" if we
have facts in the form "<dbo:type> (x,<db:Album>)",
where x is the name of an album. Then we produce
new unary facts based on the new predicate and related
facts. For example for
"<dbo:type>(Revolver,<db:Album>)", we produce the
new fact
"<dbo:type>_<db:Album>(Revolver)". We manually

choose two predicates from DBpedia 3.8 "<dbo:type>"
and "<dbo:class>" and one from Wikidata "<occupa-
tion_P106>" to generate those unary predicates and
facts. These predicates each have a class as their sec-
ond argument. To prune the classes with few instances,
we consider only the new unary predicates which have
at least 100 facts. We do not remove the original pred-
icates and facts from the KG but extend the KG with
the new ones. In Table 1 we report the specifications
of two benchmarks where we have added the unary
predicates and facts (denoted as +UP).

5.1. Learning IOP Rules

We follow the established approach for evaluating
KG rule-learning methods, that is, measuring the quan-
tity and quality of distinct rules learnt. Rule qual-
ity is measured by Inverse open path standard con-
fidence (IOPSC) and Inverse open path head cover-
age (IOPHC). We randomly selected 50 target pred-
icates from Wikidata and DBPedia unary predicates
(157 and 355 respectively). We used all binary pred-
icates of YAGO2s (i.e. 37) as target predicates. Each
binary target predicate serves as two target predicates,
once in the straight form and secondly in its reverse
form. In the straight form the object argument of the
predicate is the joining variable to connect the body
and head, while in the reverse form the subject argu-
ment serves to join. In this manner, we ensure that the
results of SHACLEARNER on YAGO2s with its binary
predicates as targets is comparable with the results for
Wikidata and DBpedia that have unary predicates as
targets. Hence for YAGO2s we have 74 target predi-
cates. A 10 hour limit was set for learning each target
predicate. Table 2 shows #Rules, the average numbers
of quality IOP rules found; %SucTarget, the proportion
of target predicates for which at least one IOP rule was
found; and the running times in hours, averaged over
the targets. Only high quality rules meeting minimum
quality thresholds are included in these figures, that is,
with IOPSC> 0.1 and IOPHC> 0.01, thresholds es-
tablished in comparative work [10].

Table 2
Performance of SHACLEARNER on benchmark KGs
Benchmark %SucTarget #Rules Time (hours)
YAGO2s 80 42 0.6
Wikidata+UP 82 67 1.8
DBpedia+UP 98 157 2.4

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Ghiasnezhad Omran et al. / SHACLearner 11

SHACLEARNER shows satisfactory performance in
terms of both the runtime and the numbers of qual-
ity rules mined. Note that rules found have a variety
of lengths and cardinalities. To better present the qual-
ity performance of rules we illustrate the distribution
of rules with respect to the features, IOPSC, IOPHC,
cardinality and length, and also IOPSC vs length. In
the following, the proportion of mined rules having
the various feature values is presented, to more evenly
demonstrate the quality of performance over the three
very different KGs.

The distribution of mined rules with respect to their
IOPSC and IOPHC is shown in Figure 4. In the left-
hand chart we observe a consistent decrease in the pro-
portion of quality rules as the IOPSC increases. In the
right hand chart we see a similar pattern for increas-
ing IOPHC, but the decrease is not as consistent be-
cause there must be frequent relevant rules with many
covered head instances.

The distribution of mined rules with respect to their
cardinalities is shown in Figure 5. We observe that the
largest proportion of rules has cardinality of 1, as ex-
pected, as they have the least stringent requirements to
be met in the KG. We observe an expected decrease
with greater cardinalities as they demand tighter re-
strictions to be satisfied.

The distribution of mined rules with respect to their
lengths is shown in Figure 6. One might expect that
as the length increases, the number of rules would in-
crease since the space of possible rules grows and this
is what we see.

For a concrete example of SHACL learning, we
show the following three IOP rules mined from DBpe-
dia in the experiments.

0.64,0.01,1 : < dbo : type > _ < db : Song >(x) —

< dbo : album >(x,z1) A < dbo : recordLabel >(z1,y).

0.63,0.01,1 : < dbo : type > _ < db : Song >(x) —

< dbo : producer >(x,y).

0.41,0.01,2 : < dbo : type > _ < db : Song >(x) —

< dbo : producer >(x, y).

The numbers prefixing each IOP rule are the corre-
sponding IOPSC, IOPHC, and Cardinality annotations
respectively.
< dbo : type > _ < db: Song >(x) expresses x is a
song. The first rule indicates x should belong to an al-
bum (z1) that has y as record label. The second rule re-

quires a song (x) to have at least one producer while the
third rule requires a song to have at least two produc-
ers, and these two rules are distinguished by the car-
dinality annotation. As we discussed in 3.1, the third
rule is more constraining than the second, so the confi-
dence of the third rule is lower than the confidence of
the second, based on the KG data.

The rules can be trivially rewritten (through a script
that we developed) in SHACL syntax as follows.

:sl
a sh:NodeShape ;
sh:targetclass class:<dbo:type>_<db:Song>;
sh:property [sh:minCount 1 ;
sh:path :<dbo:album> ;
[sh:Path
:<dbo:recordLabel>;]
]
1s2
a sh:NodeShape ;
sh:targetclass class:<dbo:type>_<db:Song>;
sh:property [sh:minCount 1 ;
sh:path :<dbo:producer>;]
:s3
a sh:NodeShape ;
sh:targetclass class:<dbo:type>_<db:Song>;
sh:property [sh:minCount 2 ;
sh:path :<dbo:producer>;]

5.1.1. IOPSC vs IOPHC

Using rules found in the experiments, we further il-
lustrate the practical meaning of the IOPSC and IOHC
qualities. While IOPSC determines the confidence of a
rule based on counting the proportion of target predi-
cate instances for which the rule holds true in the KG,
IOPHC indicates the proportion of rule consequent in-
stances that are justified by target predicate instances
in the KG, thereby indicating the relevance of the rule
to the target. In Wikidata, all unary predicates are oc-
cupations such as singer or entrepreneur, so all the en-
tities which have these types turn out to be persons
even though there is no explicit person type in our KG.
Thus, the occupations all have very similar IOP rules
about each of them with high IOPSC and low IOPHC,
like the following one, for example.

0.47,0.01,1 : < occupation > _ < singer >(x) —

< country_of_citizenship >(x, y).

On the other hand, for these unary occupation predi-
cates there are also some IOP rules with high IOPHC
that apply only to one specific unary predicate, like the

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O 0 J o0 s W N

g g s s D s R R R D D W W W W W W W W W W NN NDNDNNDNNN R R R R R e e
H O W 0w J o LB W N E O W 0 Jd o s W NP O VW 0 d oYy s W NN O VW T Yy U W NP O

12 Ghiasnezhad Omran et al. / SHACLearner

Proportion

o o [=]
oo LoRO
(SRR

o o
o9
[

o 5 ORI
A R S S A

10PSC

N |‘| |II III III III = []| - . |
Q"\(\ Q QB‘\ Q"J\ QQ 0'\\ Qq>\ ch\

EYAGO2s M WikidatatUP M DBpedia+UP

0 III Bel Bom mew mn- n_m I,, Mo e

I e N N N - S
MRS SR R I o '

R N T A S A
IOPHC

EYAGO25s mWikidatatUP m DBpedia+UP

Fig. 4. Distribution of mined rules with respect to IOPSC and IOPHC

Proportion
(=]
S

0.15
0.1
0.05 I
]
1 2 3 4 5

Cardinality

BmYAGO2s m WikidatatUP mDBpediatUP

Fig. 5. Distribution of mined rules with respect to their cardinalities

09
08
0.7

c 06

o
£ 05
=
3 04
03

0.2

M 0

0 | [—
2 3 4

Length

WYAGO2s MWikidatatUP M DBpedia+UP

Fig. 6. Distribution of mined rules with respect to their lengths

following one.

0.15,0.16,5 : < occupation > _ < singer >(x) —

< performer_musical_artist >(x, y).

5.2. Learning Trees from IOP Rules

Now we turn to presenting results for the trees that
are built based on the IOP rules discovered in the
experiments. We report the characteristics of discov-
ered trees in Table 3. We use a value of 0.1 for the
TreeS CMIN parameter and show average TreeSC for
each KG, along with the average number of branches
in the trees and the average runtime building each tree.
The number of trees for each KG is defined by the
number of target predicates for which we have at least
one IOP rule (see %SucRate in Table 2).

Table 3
Tree-learning performance of SHACLEARNER on benchmark KGs

Benchmark TreeSC #branches Time (hours)
YAGO2s 0.13 21 0.06
Wikidata+UP 0.19 21 0.1
DBpedia+UP 0.2 88 0.14

The results show the running time for aggregating
IOP rules into trees is lower than the initial IOP min-
ing time by a factor greater than 10. If, on the other
hand, we wanted to discover such complex shapes
from scratch it would be exhaustively time consum-
ing due to sensitivity of rule learners to the maximum
length of rules. The number of potential rules in the
search space grows exponentially with regards to the
maximum number of predicates of the rules. The av-
erage number of branches in the mined trees are 50%,
31%, and 56% of the corresponding number of mined
rules respectively from Table 2. Hence, by imposing
the additional tree-shaped constraint over the basic
IOP-shaped constraint, at least 44% of IOP rules are
pruned.

For an example of tree shape learning, in the follow-
ing, we show a fragment of a 39-branched tree mined

O o J o s W N

[@ 2 I e > T~ T N S e T St e Oy L O O O O R O O R O O S S I O S I N T S e O T T T R e e e
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

Ghiasnezhad Omran et al. / SHACLearner 13

from DBpedia by aggregating IOP rules in the experi-
ments.

0.13 : < dbo : type > _ < db : Song >(x) —
1: < dbo : album >(x,z1)A

< dbo : recordLabel >(z1,y1)A

2 : < dbo : album >(x, z2

< dbo : producer >(za, yo

1: < dbo : album >(x, z3

< dbo : genre >(z3,y3

)
)
)
)
)
)

A
A
N
A
3: < dbo : artist >(x,z4)A
).

< dbo : musicalArtist >(z4, y4

Here, the first annotation value (0.13) presents the
SC of the tree and the subsequent values at the be-
ginning of each branch indicate the branch cardinality.
This tree can be read as saying that a song has an al-
bum with a record label, and an album with two pro-
ducers, and an album with a genre, and an artist who is
a musical artist.

As can be seen here, there remains an opportu-
nity for further simplification and explanatory value by
unifying additional variables occurring in predicates
shared over multiple branches. We plan to investigate
this potential post-processing step in future work.

6. Conclusion

In this paper we propose a method to learn SHACL
shapes from KGs as a way to describe KG patterns, to
validate KGs, and also to support new data entry. For
entities that satisfy target predicates, our shapes de-
scribe conjunctive paths of constraints over properties,
enhanced with minimum cardinality constraints.

We reduce the SHACL learning problem to learning
a novel kind of rules, Inverse Open Path rules (IOP).
We introduce rule quality measures IOPSC, IOPHC
and Car which augment the rules. IOPSC effectively
extends SHACL with shapes, representing the quanti-
fied uncertainty of a candidate shape to be selected for
interestingness or for KG verification. We also propose
a method to aggregate learnt IOP rules in order to dis-
cover more complex shapes, trees.

The shapes support efficient and interpretable hu-
man validation in a depth-first manner and are em-
ployed in an editor Schimatos [21] for manual knowl-
edge graph completion. The shapes can be used to
complete information triggered by entities with only a
type or class declaration by automatically generating
dynamic data entry forms. In this manual mode, they
can also be used more traditionally to complete miss-
ing facts for a target predicate, as well as other pred-
icates related to the target, while enabling the acqui-
sition of facts about entities that are entirely missing
from the KG.

To learn such rules we adapt an embedding-based
Open Path rule learner (OPRL) by introducing the fol-
lowing novel components: (1) we propose IOP rules
which allow us to mine rules with free variables with
one predicate forming the body and a chain of pred-
icates as the head, while keeping the complexity of
the learning phase manageable; (2) we introduce tree
shapes that are built from the IOP rules for more
expressive patterns; and (3) we propose an efficient
method to evaluate IOP rules and trees by exactly com-
puting the quality measures of each rule using fast ma-
trix and vector operations.

Our experiments show that SHACLEARNER can
mine IOP rules of various lengths, cardinalities, and
qualities from three massive real-world benchmark
KGs including Yago, Wikidata and DBpedia.

In future work we will validate the shapes we learn
with SHACLEARNER via formal human-expert evalu-
ation and further extend the expressivity of the shapes
we can discover. Another future work will be to ex-
tend the SHACLearner algorithm through MapReduce
model to handle extremely massive KGs with tens of
billions of facts.

Acknowledgments

The authors acknowledge the support of the Aus-
tralian Government Department of Finance and the
Australian National University for this work.

References

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak
and Z.G. Ives, DBpedia: A Nucleus for a Web of Open Data,
in: ISWC, Lecture Notes in Computer Science, Vol. 4825,
Springer, 2007, pp. 722-735.

[2] EM. Suchanek, G. Kasneci and G. Weikum, Yago: a core of
semantic knowledge, in: WWW, ACM, 2007, pp. 697-706.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 Ghiasnezhad Omran et al. / SHACLearner

[3] N.Noy, Y. Gao, A.Jain, A. Narayanan, A. Patterson and J. Tay-
lor, Industry-Scale Knowledge Graphs: Lessons and Chal-
lenges, Commun. ACM 62(8) (2019), 36—43—.

[4] E.S. Callahan and S.C. Herring, Cultural bias in Wikipedia
content on famous persons, Journal of the American Society
for Information Science and Technology 62(10) (2011), 1899—
1915.

[5] D. Vrandecic and M. Krotzsch, Wikidata: a free collaborative
knowledgebase, Commun. ACM 57(10) (2014), 78-85.

[6] H. Knublauch and D. Kontokostas, Shapes Constraint Lan-
guage (SHACL), 2017. https://www.w3.org/TR/shacl/.

[7]1 Z. Huo, K. Taylor, X. Zhang, S. Wang and C. Pang, Gener-
ating multidimensional schemata from relational aggregation
queries, World Wide Web 23 (2020).

[8] P. Ghiasnezhad Omran, K. Taylor, S. Rodriguez Méndez and
A. Haller, Towards SHACL Learning from Knowledge Graphs,
in: {ISWC2020} Posters & Demonstrations, CEUR Proceed-
ings, 2020, To appear..

[9] H. Knublauch, D. Allemang and S. Steyskal, SHACL Ad-
vanced Features, 2017. https://www.w3.org/TR/shacl-af/.

[10] L. Galarraga, C. Teflioudi, K. Hose and FM. Suchanek, Fast
rule mining in ontological knowledge bases with AMIE+, The
International Journal on Very Large Data Bases (2015), 707—
730. ISBN 1066-8888.

[11] L. Bellomarini, E. Sallinger and G. Gottlob, The Vadalog sys-
tem: Datalogbased reasoning for knowledge graphs, in: VLDB,
Vol. 11, 2018, pp. 975-987. ISSN 21508097.

[12] W. Fan, C. Hu, X. Liu and P. Lu, Discovering graph functional
dependencies, in: SIGMOD, ACM, 2018, pp. 427-439. ISSN
07308078. ISBN 9781450317436.

[13] P. Ghiasnezhad Omran, K. Taylor, S. Rodriguez Méndez and
A. Haller, Active Knowledge Graph Completion, Technical
Report, ANU Research Publication, 2020.

[14] P.G. Omran, K. Wang and Z. Wang, Scalable Rule Learning
via Learning Representation, in: IJJCAI, 2018, pp. 2149-2155.
ISBN 9780999241127.

[15] Y. Chen, D.Z. Wang and S. Goldberg, ScalLeKB: scalable
learning and inference over large knowledge bases, The Inter-
national Journal on Very Large Data Bases (2016), 893-918.

[16] R. Agrawal and R. Srikant, Fast algorithms for mining associ-
ation rules, in: VLDB, Vol. 1215, 1994, pp. 487-499.

[17] K. Taylor, Generalization by absorption of definite clauses, The
Journal of Logic Programming 40(2-3) (1999), 127-157.

[18] S. Staworko, I. Boneva, J.E. Labra Gayo, S. Hym,
E.G. Prud’hommeaux and H. Solbrig, Complexity and Ex-
pressiveness of ShEx for RDF, in: ICDT, 2015, pp. 195-211.
http://linkeddata.org/.

[19] M. Nickel, L. Rosasco and T. Poggio, Holographic Embed-
dings of Knowledge Graphs, in: AAAI, 2016, pp. 1955-1961.

[20] M. Nickel, V. Tresp and H.-P. Kriegel, A three-way model for
collective learning on multi-relational data, in: /ICML, 2011,
pp. 809-816.

[21] J. Wright, S. Rodriguez Méndez, A. Haller, K. Taylor and
P. Omran, Schimatos: a SHACL-based Web-Form Generator
for Knowledge Graph Editing, in: ISWC, 2020.

[22] N. Mihindukulasooriya, M. Rifat, A. Rashid, G. Rizzo,
R. Garcfa-Castro, O. Corcho and M. Torchiano, RDF Shape
Induction using Knowledge Base Profiling, in: Annual {ACM)
Symposium on Applied Computing, {SAC}, Vol. 8, 2018,
p. pages. ISBN 9781450351911.

[23] D. Feméndez—Alvarez, H. Garcia-Gonziélez, J. Frey, S. Hell-
mann and J.E.L. Gayo, Inference of latent shape expressions
associated to DBpedia ontology, in: ISWC Posters, Vol. 2180,
2018. ISSN 16130073.

[24] B. Spahiu, A. Maurino and M. Palmonari, Towards improv-
ing the quality of knowledge graphs with data-driven ontology
patterns and SHACL, in: Workshop on Ontology Design and
Patterns, Vol. 2195, 2018, pp. 52-66. ISSN 16130073.

[25] L Boneva, J. Dusart, D.F. Alvarez and J.E. Labra Gayo, Shape
designer for ShEx and SHACL constraints, in: ISWC Posters,
Vol. 2456, 2019, pp. 269-272. ISSN 16130073.

[26] A. Cimmino, A. Ferndndez-Izquierdo and R. Garcfa-Castro,
Astrea: Automatic Generation of SHACL Shapes from Ontolo-
gies, in: ESWC, Vol. 12123 LNCS, 2020, pp. 497-513. ISSN
16113349. ISBN 9783030494605.

[27] H.J. Pandit, D. O’Sullivan and D. Lewis, Using ontology de-
sign patterns to define SHACL shapes, in: CEUR Workshop
Proceedings, Vol. 2195, 2018, pp. 67-71. ISSN 16130073.

[28] J.-E. Labra-Gayo, E. Prud’hommeaux, H. Solbrig and
I. Boneva, Validating and describing linked data portals using
shapes, CoRR (2017).

[29] 1. Boneva, J.E. Labra Gayo and E.G. Prud’hommeaux,
Semantics and validation of shapes schemas for
RDF, in: ISWC, Vol. 10587 LNCS, 2017, pp. 104-
120. ISSN 16113349. ISBN 9783319682877. http:
/Iwww.w3.org/Submission/spin-modeling/.

[30] P.Pareti, G. Konstantinidis, T.J. Norman and S. Murat, SHACL
Constraints with Inference Rules, in: ISWC, 2019.

[31] J. Corman, J.L. Reutter and O. Savkovi¢, Semantics and valida-
tion of recursive SHACL, in: ISWC, Vol. 11136 LNCS, 2018,
pp- 318-336. ISSN 16113349. ISBN 9783030006709.

[32] Anonymised, Active Knowledge Graph Completion, in: IJ-
CAIl(Submitted/Under review), 2020.

[33] Authors suppressed, Schimatos: A SHACL-based Web-Form
Generator for Knowledge Graph Editing, 2020, submitted to
ISWC2020.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl-af/
http://linkeddata.org/
http://www.w3.org/Submission/spin-modeling/
http://www.w3.org/Submission/spin-modeling/

	Introduction
	Preliminaries
	Closed-Path Rules
	Open-Path Rules: Rules with Free Variables
	SHACL Shapes

	SHACL learning
	Rules with Free Variables or Uncertain Shapes
	IOP Learning through Representation Learning
	Efficient Computation of Quality Measures

	From IOP Rules to Tree Shapes
	Tree Shapes are Useful for Human Interaction

	Related Work
	Experiments
	Transforming KGs with type predicates for experiments
	Learning IOP Rules
	IOPSC vs IOPHC

	Learning Trees from IOP Rules

	Conclusion
	Acknowledgments
	References

