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Abstract. The rise of knowledge graphs as a medium for storing and organizing large amounts of data has spurred research
interest in automated methods for reasoning with and extracting information from this form of data. One area which seems to
receive less attention is that of inducing a class taxonomy from such graphs. Ontologies, which provide the axiomatic foundation
on which knowledge graphs are built, are often governed by a set of class subsumption axioms. These class subsumptions form a
class taxonomy which hierarchically organizes the type classes present in the knowledge graph. Manually creating and curating
these class taxonomies oftentimes requires expert knowledge and is time costly, especially in large-scale knowledge graphs.
Thus, methods capable of inducing the class taxonomy from the knowledge graph data automatically are an appealing solution to
the problem. In this paper, we propose a simple method for inducing class taxonomies from knowledge graphs that is scalable to
large datasets. Our method borrows ideas from tag hierarchy induction methods, relying on class frequencies and co-occurrences,
such that it requires no information outside the knowledge graph’s triple representation. Furthermore, we show that the induced
hierarchy may be used as a foundation for hierarchical clustering of knowledge graph subjects. We demonstrate the use of our
method on four real-world datasets and compare our results with existing tag hierarchy induction methods. We show that our
proposed method outperforms existing tag hierarchy induction methods, although both perform well when applied to knowledge
graphs.

Keywords: knowledge graphs, taxonomy induction, clustering

1. Introduction

Knowledge graphs are data structures that use prin-
ciples of graph theory to represent information. Specif-
ically, facts are stored as triples which bring together
two entities through a relation. In a graphical context,
these entities are analogous to nodes, and the relations
between them are analogous to edges. In recent years,
knowledge graphs have garnered widespread attention
as a medium for storing data on the web. Public knowl-
edge bases such as DBpedia [1], YAGO [2], and Wiki-
Data [3] are all underpinned by large-scale knowledge
graphs containing upwards of one billion triples each.
These knowledge bases find uses in personal, aca-
demic, and commercial domains and are ubiquitous in
the research fields of the Semantic Web, Artificial In-

*Corresponding author. E-mail: pietrasi@ualberta.ca.

telligence, and computer science. Furthermore, private
companies are known to use proprietary knowledge
graphs as a component of their data stores. Google, for
instance, uses a knowledge graph derived from Free-
base [4] to enhance their search engine results by pro-
viding infoboxes which summarize facts retrieved as
due to a user’s query [5].

Ontologies are often used in conjunction with knowl-
edge graphs to provide an axiomatic foundation on
which knowledge graphs are built. In this view, an on-
tology may be seen as a vocabulary and a rule book
that provides semantics to a knowledge graph and gov-
erns how the information contained within it is repre-
sented and how it can be reasoned with. One of the
core components of an ontology is the class taxonomy:
a set of subsumption axioms between the type classes
that may exists in the knowledge graph. When put to-
gether, the subsumption axioms form a hierarchy of
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classes where general concepts appear at the top and
their subconcepts appear as their descendants.

One of the challenges that arise when working with
large knowledge graphs is that of class taxonomy con-
struction based on their content. Manual construction
is time consuming and requires curators knowledge-
able in the area. DBpedia, for instance, relies on its
community to curate its class taxonomy. Similarly,
YAGO relies on a combination of information from
Wikipedia1 and WordNet2, both of which are manually
selected and organized. On the other hand, automated
methods are not able to induce class taxonomies of the
quality necessary to reliably apply to complex knowl-
edge bases. Furthermore, they oftentimes rely on exter-
nal information which may itself be manually curated
or may only be applicable to knowledge bases in a par-
ticular domain. With this in mind, the impetus for au-
tomatically inducing class taxonomies of high quality
from large-scale knowledge graphs becomes apparent.

In this paper, we propose a scalable method for in-
ducing class taxonomies from knowledge graphs with-
out relying on information external to the knowledge
graph’s triples. Our approach applies methods used to
solve the problem of tag hierarchy induction, which in-
volves inducing a hierarchy of tags from a collection
of documents, and identifying the tags that annotate
them. Although extensively studied in the field of nat-
ural language processing, these methods have yet to be
applied to knowledge graphs to the best of our knowl-
edge. In order to use these methods, we reshape the
knowledge graph’s triple structure to a tuple structure,
exploiting the graph’s single dimensionality in assign-
ing entities to type classes. Using the new structure,
we construct a novel approach to inducing class tax-
onomies which outperforms existing tag hierarchy in-
duction methods both in terms scalability and quality
of induced taxonomies. Finally, we show that an in-
duced class taxonomy may be used as the foundation
for performing hierarchical clustering on the knowl-
edge graph’s subjects. The idea behind this is that each
class in the taxonomy may serve as a hierarchical clus-
ter, reducing the clustering procedure to merely assign-
ing each entity to one class in the taxonomy. Empiri-
cal evaluation demonstrates that this process constructs
coherent hierarchical clusters.

The remainder of this paper proceeds with Section
2 which provides an overview of the existing work

1https://www.wikipedia.org/
2https://wordnet.princeton.edu/

done on inducing class taxonomies, tag hierarchies,
and cluster hierarchies. We formalize the problem and
introduce notation in Section 3. Our proposed method
is described in Section 4 and evaluated in Section 5.
Section 6 concludes the paper.

2. Related work

We divide our discussion of related work into three
subsections: class taxonomy induction methods, tag
hierarchy induction methods, and hierarchical cluster-
ing methods for knowledge graphs. The first two meth-
ods are used to construct a hierarchy of concepts, how-
ever they differ in the type of data they are applied to.
Class taxonomy induction methods are used on knowl-
edge graphs and thus operate on data represented as
triples. Tag hierarchy induction methods operate on
documents and the tags that annotate them. In prac-
tice, these documents are often blog posts, images, and
videos annotated by users on social networking web-
sites. We can view our proposed method as a combi-
nation of the aforementioned categories as it takes the
input structure of documents and tags but is applied
to knowledge graphs to induce a class taxonomy. Hi-
erarchical clustering methods seek to learn clusters of
knowledge graph entities based on shared semantics
and organize them hierarchically such that descendant
clusters contain more specific instances of their corre-
sponding ancestors.

2.1. Methods for class taxonomy induction

Völker and Niepert [6] introduce Statistical Schema
Induction which uses association rule mining on a
knowledge graph’s transaction table to generate ontol-
ogy axioms. Each row in the transaction table corre-
sponds to a subject in the graph along with the classes
it belongs to. Implication patterns which are consis-
tent with the table are mined from this table to create
candidate ontology axioms. The candidate axioms are
then sorted in terms of descending certainty values and
added greedily to the ontology only if they are logi-
cally coherent with axioms added before them.

Nickel et al. [7] propose a method using hierarchi-
cal clustering on a decomposed representation of the
knowledge graph. Specifically, they extend RESCAL
[8], a method for factorizing a three-way tensor, to bet-
ter handle sparse large-scale data and apply OPTICS
[9], a density based hierarchical clustering algorithm.
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Ristoski et al. [10] rely on entity and text embed-
dings in their proposed method, TIEmb. The intuition
behind this approach is that entities of a subclass will
be embedded within their parent class’s embeddings.
Thus if you calculate the centroid for each class’s em-
beddings, you can infer its subclasses as those whose
centroid falls within a certain radius. For instance, the
class centroids of Mammals and Reptiles will fall in-
side the radius of Animals although the converse is
not true since Mammals and Reptiles are more specific
classes and are expected to have a smaller radius.

2.2. Methods for tag hierarchy induction

Heymann and Garcia-Molina [11] propose a fre-
quency based approach using cosine similarity to cal-
culate tag generality. In their approach, tags are as-
signed vectors based on the amount of times they an-
notate each document. The pairwise cosine similarity
between tag vectors is used to build a tag similarity
graph. The closeness centrality of tags in this graph is
used as the generality of tags. To build the hierarchy,
tags are greedily added – in order of decreasing gener-
ality – as children to the tag in the hierarchy that has
the highest degree of similarity. This approach was ex-
tended by Benz et al. [12] to better handle synonyms
and homonyms in the dataset.

Schmitz [13] unveils a method extending on the
work done by Sanderson and Croft [14] which uses
subsumption rules to identify the relations between
parents and children in the hierarchy. The subsumption
rules are calculated by tag co-occurrence and filtered
to control for “idiosyncratic vocabulary”. These rules
form a directed graph which is then pruned to create
a tree. Solskinnsbakk and Gulla [15] use the Aprioir
algorithm [16] to mine a set of association rules from
the tags. Each of these rules has the relationship of
premise and consequence which the authors treat as
that of class and subclass. This is used to construct a
tree which is then verified based on the semantics of
each tag.

The application of Latent Dirichlet Allocation (LDA)
[17] to generate topics comprised of tags is proposed
in Tang et al. [18]. Generality can then be calculated
following the reasoning that tags with high frequen-
cies across many topics are more general than ones
that have a high frequencies in a single topic. Relations
between tags are induced based on four divergence
measures calculated on the LDA results. Agglomera-
tive Hierarchical Clustering for Taxonomy Construc-
tion [19] avoids explicitly computing tag generality

by employing agglomerative clustering and selecting
cluster medoids to be promoted upwards in the hier-
archy. Cluster medoids are chosen based on a similar-
ity metric calculated as the divergence between a tag’s
topic distributions as learned by LDA.

Wang et al. [20] introduce a taxonomy generation
method based on repeated application of k-medoids
clustering. As the distance metric necessary for k-
medoids clustering, they propose a similarity score
based on the weighted sum of document and textual
similarities. Levels in the hierarchy are created by re-
peated application of k-medoids clustering such that
for each cluster, the cluster medoid becomes the parent
of all other tags in the cluster.

A supervised learning approach is used in Dong et
al. [21] where binary classifiers are trained to predict
a “broader-narrower” relation between tags. LDA is
used to generate topic distributions for tags which act
as a basis for three sets of features used to train the
classifier. This approach does not guarantee that the re-
lations between tags will form a rooted tree.

2.3. Methods for hierarchical clustering

In an early method, Roy et al. [22] sample a graph
from a generative model in a fashion reminiscent of
blockmodeling. The model is learned by perform-
ing inference on its parameters via the Metropolis-
Hastings algorithm. A consequence of this process is
the generation of a tree describing entity similarity.
Nickel et al. [7] perform hierarchical clustering on
latent representations learned by the aforementioned
RESCAL method. Using these latent representations
has the advantage of being agnostic to the underlying
hierarchical clustering method used, allowing for flex-
ibility to adapt to different data.

In an approach which bears similarity to our own,
Chen and Reformat [23] describe each subject in a
knowledge graph by its relation-object pairs. These
pairs are then used to calculate a similarity matrix
between subjects on which agglomerative hierarchi-
cal clustering is performed using the extended Ward’s
minimum variance [24] as its measure. Mohamed [25]
takes a similar approach wherein subjects which are
described by the same relation-object pairs are as-
signed to the same groups. The similarity between
these groups is then calculated to construct a hierarchy.
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3. Problem description

A knowledge graph, K, is repository of information
structured as a collection of triples where each triple
relates the subject, s, to the object, o, through a rela-
tion, r. More formally, K = {〈s, r, o〉 ∈ E × R × E}
where 〈s, r, o〉 is a triple, E is the set of entities in K,
and R is the set of relations in K. K can therefore be
viewed as a directed graph with nodes representing en-
tities and edges representing relations.

We can think of relation-object pairs, 〈r, o〉, as tags
that describe the subject, s. In this view, each en-
tity that takes on the role of subject, si, is anno-
tated by tags, t j ∈ Ai, where Ai is the set of tags
that annotate si. We call these entities documents,
di ∈ D, such that the set of all documents is a subset
of all entities, D ⊆ E . Tags are defined as relation-
objects pairs, t := 〈r, o〉, and belong to the set of
all tags, the vocabulary, denoted as V , i.e., t j ∈ Ai

and Ai ⊆ V . For a concrete example of this nota-
tion consider DBpedia, wherein the entity dbr:Canada
is annotated by the tags 〈dbo:capital,dbr:Ottawa〉,
〈dbo:currency,dbr:Canadian_dollar〉,
〈rdf:type,dbo:Location〉, and 〈rdf:type,dbo:Country〉
amongst others. In this view, the knowledge base K
may be represented as the set of document-tag tuples
K = {〈d, t〉 ∈ D × V}, where 〈d, t〉 is the tuple that
relates document d with tag t. We refer to this notation
as the tuple structure for the remainder of the paper.

Information in knowledge graphs is often structured
using an ontology, which provides semantics to the
knowledge graph’s triples through an axiomatic foun-
dation which defines how entities and relations asso-
ciate with one another. A key component of most on-
tologies is the class taxonomy which organizes classes
through a set of class subsumption axioms. These sub-
sumption axioms may be thought of as is-a relations
between classes. For instance, in the DBpedia class
hierarchy, the subsumption axioms {dbo:Person →
dbo:Artist} and {dbo:Artist → dbo:Painter} imply
that dbo:Painter is a dbo:Artist and that dbo:Artist is a
dbo:Person. Furthermore, since class subsumption ax-
ioms are transitive, dbo:Painter is a dbo:Person. This
taxonomy oftentimes takes the form of a rooted tree
with a root class of which all other classes are consid-
ered logical descendants of.

The problem of class taxonomy induction from
knowledge graphs involves generating subsumption
axioms from triples to build the class taxonomy. We
notice that in most knowledge graphs, subjects are re-
lated to their class type by one relation. This has the ef-

fect of reducing the knowledge graph’s class identify-
ing triples to a single dimension. The property can be
exploited in the tuple structure, since all class identi-
fying relations are the same, they can be ignored with-
out loss of information. For instance, in DBpedia the
relation which relates subjects to their class is rdf:type.
Thus, when compiling a dataset of class identifying
tuples, we can treat the tags 〈rdf:type,dbo:Country〉
and dbo:Country as equivalent. Therefore, the tuple
〈dbr:Canada, dbo:Country〉 preserves all information
required to induce a class taxonomy. This can be ex-
ploited by tag hierarchy induction methods which take
documents and their tags as input.

4. Approach

Our proposed method uses class frequencies and
co-occurrences to calculate similarity between tags.
This approach, inspired by the method proposed by
Schmitz, relies on the intuition that subclasses will co-
occur in documents with their superclasses more of-
ten than with classes they are not logical descendants
of. Unlike Schmitz’s method which uses this assump-
tion to generate candidate subsumption axioms, our
method uses similarity to choose a parent tag which al-
ready exists in the taxonomy. In this step, which draws
inspiration from Heymann and Garcia-Molina, tags are
greedily added to the taxonomy in order of decreasing
generality. Thus, subsumption axioms induced by our
method have to abide by the following rules:

– The parent tag has a higher generality than the
child tag.

– The parent tag is the tag with the highest similar-
ity to the child tag from the tags that exist in the
taxonomy when the child tag is being added.

We can populate the induced class taxonomy with
documents, which has the effect of hierarchically clus-
tering the knowledge graph’s subject entities. The pro-
cess for this is to merely find the class, in the hierarchy,
to which the document belongs to and assign it to that
class. We can then treat each class as a cluster and its
constituent documents as cluster elements. The result
of this is a hierarchical structure of clusters annotated
by tags and with strong inheritance properties.

As previously mentioned, our approach leverages
the tuple structure of a knowledge graph to induce a
class taxonomy in the form of a rooted tree. As such,
the first step is data preprocessing wherein all of a
knowledge graph’s class identifying triples are con-
verted to tuple structure.
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4.1. Class taxonomy induction procedure

Before describing the taxonomy induction proce-
dure for our method, we define measures which are
calculated on the knowledge graph as required input
for our algorithm.

– The number of documents annotated by tag ta is
denoted as Da.

– The number of documents annotated by both tags
ta and tb is denoted as Da,b. We note that this mea-
sure is symmetrical, i.e. Da,b = Db,a.

– The generality of tag ta, denoted as Ga, measures
how general the concept described by the tag is
and how high it belongs in the taxonomy. The
generality is defined as:

Ga =
∑

tb∈V−ta

Da,b

Db
(1)

Where V−ta is the set of all tags excluding tag ta.

Having calculated the aforementioned measures, we
proceed by sorting tags in the order of decreasing gen-
erality and store them as Vsorted. The first element of
this list, Vsorted[0], is semantically the most general of
all tags and becomes the root tag of the taxonomy.
The taxonomy, T , is represented as a set of subsump-
tion axioms between parent and child tags. Formally,
each subsumption between parent tag, tparent, and child
tag, tchild, is represented by {tparent → tchild} such that
{tparent → tchild} ∈ T . The taxonomy is therefore ini-
tialized with the root tag as T = {{∅ → Vsorted[0]}}
where ∅ represents a null value, i.e. no parent.

Following initialization, the remaining tags are
added to the taxonomy in terms of decreasing general-
ity by calculating the similarity between the tag being
added, tb, and all the tags already in the taxonomy, T ∗.
The tag ta ∈ T ∗ that has the highest similarity with
tag tb becomes the parent of tb and {a → b} is added
to T . The similarity between tags ta and tb, denoted as
Sa→b, measures the degree to which tag tb is the di-
rect descendant of tag ta. It is calculated as the degree
to which tag tb is compatible with tag ta and all the
ancestors of ta:

Sa→b =
∑

tc∈Pa

αla−lc Db,c

Db
(2)

Where Pa is the path in the taxonomy from the root
tag Vsorted[0] to tag ta. la and lc denote the levels in the

hierarchy of tags ta and tc, respectively. The levels are
counted from the root tag starting at zero. Thus, the
level of Vsorted[0], denoted as lVsorted[0], is equal to zero,
the levels of its children are equal to one, and so on.
The decay factor, α, is a hyperparameter that controls
the effect ancestors of tag ta have on its similarity when
calculating Sa→b. By setting the value of α such that
0 < α < 1, we ensure that the effect is lower the more
distant an ancestor tag is. The cases were α = 0 and
α = 1 correspond to ancestors having no effect and
equal effect on the similarity, respectively. We explore
the effect various α values have on the induced class
taxonomy in the following section. The full details of
our method’s procedure are outlined in Algorithm 1.

Algorithm 1 Procedure for Class Taxonomy Induction
Input: knowledge graph in tuple structure in a form
of sets D and V; document counts annotated by tag(s)
Di(, j); generality of tags Gi; decay factor α
Output: induced class taxonomy subsumption axioms
T and T ∗

1: Sort tags in order of decreasing generality Gi, cre-
ate Vsorted

2: Initialize taxonomy with root tag equal to the tag
with highest generality, T = {{∅ → Vsorted[0]}}

3: Initialize the set of tags that have already been
added to the taxonomy, T ∗ = {Vsorted[0]}

4: for b = 1, 2, ..., |Vsorted| do
5: tb = Vsorted[b]
6: maxS imTag = Vsorted[0]
7: maxS imValue = 0
8: for ta ∈ T ∗ do
9: Calculate Sa→b using Equation 2

10: if Sa→b > maxS imValue then
11: maxS imTag = ta
12: maxS imValue = Sa→b

13: end if
14: end for
15: T = {maxS imTag→ tb} ∪ T
16: T ∗ = tb ∪ T ∗
17: end for

4.2. Hierarchical clustering procedure

We can use the induced taxonomy as the founda-
tion of a hierarchical clustering of documents, i.e. the
knowledge graph’s subject entities. The taxonomy is
used to initialize the clusters such that each tag in the
taxonomy becomes a cluster and the hierarchical re-
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lations between tags are extended to the clusters. The
tags may then be seen as annotations for each cluster.
We exploit this in our notation such that ca is the clus-
ter initialized from tag ta. Documents are assigned to
clusters by the degree to which they belong to a clus-
ter. Belonging of document di to cluster ca, denoted
Bi→a, is calculated as the Jaccard coefficient between
the document’s tags, Ai, and the tags encountered in
the path from the root cluster to cluster ca, denoted Pa.
Formally, this is:

Bi→a =
|Ai ∩ Pa|
|Ai ∪ Pa|

(3)

Each document is added to the cluster to which it has
the highest degree of belonging. We denote the set of
documents that belong to cluster ca as Ca. The process
of assigning documents to clusters may be parallelized
to increase performance.

This process may induce a hierarchy containing
empty clusters which need to get pruned. Pruning is
performed by traversing the hierarchy depth first and
removing all empty clusters. In addition, non-empty
clusters which have empty parent clusters are reat-
tached as the children of their first non-empty ancestor.
If a non-empty cluster has no non-empty ancestors, it
becomes the child of the root. The root cluster is never
removed, regardless of whether it is empty or not. The
hierarchical clustering process is summarized in Algo-
rithm 2.

5. Evaluation

Evaluation of class taxonomy induction methods is
difficult as there may be several equally valid tax-
onomies for a dataset. Previous works such as Gu et al.
[26] and Wang et al. (2009) [27] have opted for human
evaluation, wherein domain experts assess the correct-
ness of relations between classes. Wang et al. (2012)
[20] used domain experts to rank entire paths on a three
point scale. Others, such as Liu et al. [28] and Almo-
qhim et al. [29], compare class relations against a gold
standard taxonomy. In this approach, a confusion ma-
trix between class subsumption axioms is calculated
between the induced and gold standard taxonomies.
When a gold standard taxonomy can be established, it
is the preferred evaluation method as it provides an ob-
jective measurement; as such, it is the one we use in
our work. We use the confusion matrix to derive the

Algorithm 2 Procedure for Hierarchical Clustering
Input: knowledge graph in tuple structure in a form of
sets D and V; class taxonomy as subsumption axioms
T and T ∗; paths in hierarchy to clusters Pa; decay fac-
tor α
Output: cluster hierarchy as subsumption axioms T ;
cluster members C

1: Initialize all clusters C as empty
2: for di ∈ D do
3: maxBelClus = None
4: maxBelValue = 0
5: for ca ∈ T ∗ do
6: Calculate Bi→a using Equation 3
7: if Bi→a > maxBelValue then
8: maxBelClus = ca

9: maxBelValue = Bi→a

10: end if
11: end for
12: CmaxBelClus = CmaxBelClus ∪ di

13: end for
14: Prune cluster hierarchy defined by T and C recur-

sively

harmonic mean between precision and recall, the F1

score [30], as our evaluation metric:

precision =
T P

T P + FP
(4)

recall =
T P

T P + FN
(5)

F1 = 2 ∗ precision ∗ recall
precision + recall

(6)

Where T P, FP, and FN are the number of true posi-
tives, false positives, and false negatives, respectively.
Since the F1 score is also used in evaluating the qual-
ity of the cluster hierarchy, we use the notation Tax-F1

to refer to the F1 score calculated on the induced and
gold standard taxonomies.

We evaluate the hierarchical clustering by calcu-
lating the F1 score of: the belonging of documents
to clusters (Doc-F1); and how well clusters repre-
sent the tags from in the vocabulary (Tag-F1). Doc-F1

and Tag-F1 highlight the trade-off between large, het-
erogeneous clusters on a strongly heritable hierarchy
(favoured by Doc-F1) and smaller homogeneous clus-
ters on a less heritable hierarchy (favoured by Tag-F1).
For obtaining the former, each cluster inherits all the
documents of its descendant clusters and the F1 score
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is calculated such that a document is correctly assigned
to a cluster if both document and cluster are annotated
by the same tag. The latter is obtained in a way simi-
lar to the technique used in [7]. As before, each clus-
ter inherits all the documents of its descendant clusters
and the F1 score between each tag and each cluster is
calculated. The F1 that is highest among the clusters
becomes the score of the tag.

For the remainder of this section, we first evaluate
the effect of our method’s hyperparameter, α, on each
of the four datasets and provide suggestions for select-
ing the α value when applying our method to other
datasets. This is followed by a comparison our method
to the aforementioned Heymann and Garcia-Molina
method, Schmitz method, as well as results from the
literature. We also provide visualizations of excerpts
from the class taxonomies induced by our method on
the Life, DBpedia, and IIMB datasets. Finally, our
method’s computational complexity and the effect of
dataset size on induced taxonomies are evaluated. The
method was implemented using Python and has been
made public alongside our datasets for reproducibility
on Github34.

5.1. Datasets

We evaluate the method on four real-world datasets
generated from public online knowledge bases: Life,
DBpedia, WordNet, and IIMB. All four datasets as
well as their respective gold standard class taxonomies
were generated or acquired during the month of
November 2019.

5.1.1. Life
The Life dataset was generated by querying the Cat-

alogue of Life: 2019 Annual Checklist (CoL) [31], an
online database that indexes living organisms by their
taxonomic classification. One hundred thousand liv-
ing organisms were randomly selected from the GBIF
Type Specimen Names [32], an online checklist of
1,226,904 organisms, and queried on CoL at each of
their taxonomic ranks to generate the document-tag
tuples. The resulting dataset takes the form such that
each organism is a document and its membership at
each taxonomic rank is a tag related by is-a. For in-
stance, the document Canis_latrans (coyote) will have
the tags 〈is-a, Mammalia〉 and 〈is-a, Canidae〉. Fur-
thermore, to anchor the class taxonomy to a root tag,

3https://github.com/mpietrasik/smict
4https://github.com/mpietrasik/smich

we added the tag 〈is-a, LivingOrganism〉 to every doc-
ument. We note that even though the number of taxo-
nomic ranks is fixed, most organisms in the database
are not defined on all of them. As such, the number of
tags per document varies from two to ten. In total, there
are 100,000 documents and 37,368 unique tags. Since
the dataset itself is classified in the correct taxonomic
order, the Life gold standard taxonomy could simply
be obtained by querying for subsumption axioms from
the dataset.

5.1.2. DBpedia
The DBpedia dataset was generated by randomly

querying for 50,000 unique subjects in DBpedia for
which there exists a triple where the subject is related
to a DBpedia class object (an object having the prefix
dbo:) via the relation rdf:type. These 50,000 subjects
become the documents in the tuple structure. Follow-
ing this step, all the triples for each document having
the tag form 〈rdf:type, dbo:*〉 were queried to make
the document-tag tuples. (dbo:* represents any object
with the prefix dbo.) In total, 205,793 triples were used
to create the dataset with 418 unique tags. The DBpe-
dia gold standard taxonomy was taken from the DB-
pedia ontology class mappings which can be found on
the DBpedia website5. At the time of querying, the on-
tology had 765 classes, 418 of which were present in
the dataset. This difference made it necessary to in-
clude only those subsumption axioms for which parent
and child tags exist in the dataset when computing the
confusion matrix. This is similar to the dataset gener-
ated in Ristoski et al. [10] where the number of classes
present in their dataset was 415.

5.1.3. WordNet
The WordNet dataset was generated by querying

DBpedia for subjects of types that exist in Word-
Net [33], an English language lexical database. Fifty
thousand subjects having a WordNet class object re-
lated by rdf:type were queried. In DBpedia, Word-
Net class objects use the yago: prefix, giving the
tag format 〈rdf:type, yago:*〉. This process yielded
a dataset comprised of 50,000 documents and 1752
unique tags generated from 392,846 triples. To gen-
erate the WordNet gold standard taxonomy, DBpedia
was queried to learn the relations between WordNet
classes through the rdfs:subClassOf relation. In this
process, yago:PhysicalEntity100001930 is set as the
root class and the taxonomy is built by recursively

5http://mappings.dbpedia.org/server/ontology/classes/



8 M. Pietrasik and M.Z. Reformat / A simple method for inducing class taxonomies in knowledge graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

Ta
x-

F
1

Sc
or

e

Tax-F1 Scores

Life
DBpedia
WordNet

IIMB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.6

0.7

0.8

0.9

1

α

D
oc

-F
1

Sc
or

e

Doc-F1 Scores

Life
DBpedia
WordNet

IIMB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

α

Ta
g-

F
1

Sc
or

e

Tag-F1 Scores

Life
DBpedia
WordNet

IIMB

Fig. 1. Sensitivity to α as per Tax-F1, Doc-F1, and Tag-F1 on the Life, DBpeida, WordNet, and IIMB datasets.

querying for subclasses using rdfs:subClassOf as the
relation. This process builds a taxonomy of 30722 tags.
To fit the 1752 tags present in the dataset, it was neces-
sary to collapse the gold standard taxonomy. This was
done by removing tags in the gold standard taxonomy
that are missing in the dataset and adopting orphaned
tags with the nearest ancestor existing in the dataset.

5.1.4. IIMB
The IIMB dataset [34] is a benchmark created by

the 2010 Ontology Alignment Evaluation Initiative to
evaluate instance matching techniques and tools. The
dataset contains 1416 documents and 4793 unique tags
which describe facts about popular movies includ-
ing: titles, genres, actors, locations, etc. The dataset
is structured into five top-level tags to which all other
tags belong: Location, Language, Film, Creature, and
Budget. We manually added a root tag to anchor the
dataset such that there are 82 unique tags in total.

5.2. Hyperparameter sensitivity

We evaluate our method’s sensitivity to the decay
factor, α, by performing a hyperparameter sweep on
each of the four datasets. In this process, our method is
applied five times on each dataset for α values starting
at α = 0.05 and increasing by increments of 0.05 up
until α = 0.95. This process is analogous to increasing
the relative importance of ancestor tags when calculat-
ing tag similarity. Furthermore, since similarity is cal-
culated as a summation, increasing α will favour plac-
ing tags lower in the taxonomy. The F1 scores are cal-
culated and their means at each α value are displayed
graphically in Figure 1. For clarity, we omit graphing
the mean F1 scores at α = 0 as the values are dispro-
portionately low for all four datasets (F1 < 0.1). This
is because when α = 0, the similarity gets reduced to
Sa→b = Da,b/Db which has the effect of inducing shal-

low taxonomies with most tags as children of the root
tag.

For class taxonomy induction, cursory inspection
of the Tax-F1 scores shows that there is no clear
behaviour that α exhibits which is constant across
datasets. This is also apparent when comparing the
optimal α values: 0.95, 0.70, 0.35, and 0.4 for Life,
DBpedia, WordNet, and IIMB datasets, respectively.
Furthermore, we notice that as α increases, the trend
follows three different patterns: stable, generally in-
creasing, and generally decreasing. A possible reason
for the relative stability of α on the Life dataset is its
consistency. Due to the strict requirements for source
datasets to be included in CoL, all entries are well scru-
tinised. As such, tags will always appear with their an-
cestors in the same documents. For example, all 893
instances of the tag Mammalia co-occur with the tag’s
ancestors Animalia, Chordata, and LivingOrganism. In
this scenario, there is less information to be gained by
incorporating information from higher up in the tax-
onomy. On the other hand, the DBpedia dataset shows
improvement with increasing α values until a peak is
reached and Tax-F1 declines. The increase in induced
taxonomy quality with increasing α values in consis-
tent with the assumption that taking into account a po-
tential parent’s path is advantageous when selecting a
parent. The decline in Tax-F1 after α = 0.8 can be ex-
plained by distant ancestor tags having too strong an
influence in assigning parent tags to children. One pos-
sible explanation for better Tax-F1 scores of lower α
values on WordNet and IIMB is our method’s overall
lower Tax-F1 scores on these datasets. Errors in the
induced taxonomy propagate downwards and their ef-
fect increases with the value of α. Thus, in a taxonomy
with many errors, it is advantageous to place a rela-
tively higher value on the similarity between the direct
parent tag and its child, as is done with lower α values.
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Table 1
Method results (mean ± standard deviation) on the Life, DBpedia, WordNet, and IIMB datasets.

Method Life DBpedia WordNet IIMB
Heymann and Garcia-Molina – 0.7982± 0.0159 0.5918± 0.0114 0.2025± 0.0068

Schmitz 0.8423± 0.0000 0.8013 ± 0.0000 0.7943± 0.0000 0.5211± 0.0000

Paulheim and Fümkranz6 [10, 35] – 0.1410 – –
Ristoski et al.6 [10] – 0.5210 – –
Völker and Niepert6 [6] – 0.9950 – –

Our method 0.8625± 0.0040 0.8824± 0.0052 0.7144± 0.0069 0.4444± 0.0000

Broadly, the measures of performance of hierarchi-
cal clustering, Doc-F1 and Tag-F1, follow a similar
pattern to Tax-F1. The main reason for this is that hi-
erarchical clustering is initialized by taxonomy induc-
tion. As such, errors present in the taxonomy propa-
gate to the clustering procedure. We note two excep-
tions to this: Doc-F1 and Tag-F1 scores on the Word-
Net dataset; and Tag-F1 scores on the IIMB dataset.
The former exception does not show decline in clus-
tering performance at α > 0.7, despite initialization by
lower quality taxonomies. We hypothesize that this is
due the fact that many errors in the WordNet taxon-
omy occur at lower levels which get pruned during hi-
erarchical clustering and therefore do not impact Doc-
F1 and Tag-F1 scores. The latter exception only shows
a decline in Doc-F1 scores at α > 0.4, with Tag-F1

scores increasing. This is because higher α values in-
duced a deeper hierarchy which introduces more er-
rors when higher level clusters inherit the documents
of their descendants. Unlike Doc-F1, Tag-F1 is resis-
tant to these errors since only the highest F1 score is
considered in the pairwise comparison between tags
and clusters.

In general, it is difficult to predict the optimal α
value a priori, however there are a few rules of thumb
to guide this process when applying our method. When
there is no prior information about a nature of the
dataset or its expected class taxonomy, we suggest us-
ing α values around 0.5 as these values perform well
(although not optimally) in our experiments. Datasets
which are complex, or have low co-occurence rates be-
tween ancestor and descendent tags will favour lower
α values as these ensure errors will propagate less
through the taxonomy. On the other hand, well struc-
tured datasets will be less affected by varying α values.

5.2.1. Taxonomy induction
In our experiments, we applied our proposed method

to each of the aforementioned datasets at the α val-
ues determined optimal in the previous subsection.
Each dataset was applied five times to account for the

stochasticity in sorting tags of equal generality. The re-
sults of our method as well as those of the comparison
methods are summarized in Table 1. We implemented
Heymann and Garcia-Molina, and Schmitz methods
to the best of our understanding and performed hy-
perparameter exploration for their respective hyper-
parameters on each dataset. After obtaining the opti-
mal hyperparameters, we ran the methods five times
on each dataset and collected the results. We note that
Heymann and Garcia-Molina was not able to termi-
nate sufficiently fast enough for us to obtain results
on the Life dataset. In the table we also included the
results reported in previous work applied on the DB-
pedia dataset. Although the DBpedia dataset was de-
rived similarly to our own, conclusions in comparing
this method to our proposed method should be drawn
cautiously. We indicate these entries in the table with
a footnote6.

In general, all tag hierarchy methods achieve en-
couraging results and our method outperforms the
others on two of the four datasets. We notice that
since Tax-F1 measures the balance between preci-
sion and recall values, this suggests that our method
is both capable of inducing subsumption axioms (re-
call) while ensuring these axioms are correct (pre-
cision). Furthermore, closer inspection of the re-
sults reveals that many of the errors can be catego-
rized by two types, which we illustrate by using re-
sults from the DBpedia dataset. In the first, the or-
der between parent and child tags are reversed as in
the induced {dbo:Guitarist → dbo:Instrumentalist}
when the correct order is {dbo:Instrumentalist →
dbo:Guitarist}. In the second, a tag is misplaced
as the child of its sibling, for instance, the gold
standard classification of educational institutions is
{{dbo:EducationalInstitution → dbo:University},
{dbo:EducationalInstitution → dbo:College}} while
our induced taxonomy gives the following:

6 The result for this method was obtained from the literature.
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LivingOrganism

Animalia

Anthropoda Insecta
Coleoptera Trochida Trochoidea Arene

Diptera Tipuloidea Limoniidae Atarba
Mollusca

Cnidaria

Annelida

Bryozoa

Chordata

Actinopterygii

Amphibia

Anura

Hylidae
Litoria

Hyla

Ranidae Rana

Caudata Plethodontidae

Plethodon

Bolitoglossa

Pseudoeurycea

Aves

Capensis

Dorsalis

Mammalia
Carnivora

Canidae Canis Lupus

Felidae Felis Silvestris
Primates

Reptilia

Archaea

Bacteria

Chromista

Fungi
Ascomycota

Lachnella

Plantae Tracheophyta Magnoliopsida
Astrales Asteraceae Hieracium

Lamiales Lamiaceae Salvia
Protozoa

owl:Thing

dbo:Agent

dbo:Person

dbo:Artist

dbo:Actor dbo:AdultActor

dbo:MusicalArtist dbo:Instrumentalist

dbo:Painter

dbo:Athlete
dbo:Boxer dbo:AmateurBoxer

dbo:WinterSportPlayer

dbo:Organisation dbo:Company
dbo:Airline

dbo:Bank

dbo:Place

dbo:NaturalPlace dbo:BodyOfWater
dbo:Stream

dbo:Lake

dbo:PopulatedPlace
dbo:Country

dbo:Settlement dbo:City

Fig. 2. Excerpts of the induced class taxonomies for the Life (top) and DBpedia (bottom) datasets. (Read left to right.)



M. Pietrasik and M.Z. Reformat / A simple method for inducing class taxonomies in knowledge graphs 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

root

location
anhui burnaby
miami queens

country

canada colombia
germany scotland

city

havana madrid
montevideo prague

actor
james_woods brad_pitt
meg_ryan tom_hanks

film
seven_swords shane
some_girls_do spy_game

comedy

schtonk scoop
silverado strange_brew

musical
school_of_rock seven_brides_for_seven_brothers
singin_in_the_rain south_park_bigger_longer_uncut

buddy film

shanghai_knights stripes
starsky_hutch_2004 swingers

language

english french
polish russian

director
alfred_hitchcock andrei_tarkovsky
richard_linklater stanley_kubrick

character creator
george_lucas stanislaw_lem
stan_lee steve_ditko

Fig. 3. Excerpt of the cluster hierarchy induced on the IIMB dataset. Node top indicates cluster’s tag; bottom indicates cluster’s constituent
subjects.

Table 2
Hierarchical clustering results (mean ± standard deviation) on the
Life, DBpedia, WordNet, and IIMB datasets.

Dataset Doc-F1 Tag-F1

Life 0.9949± 0.0000 0.9499± 0.0000

DBpedia 0.9624± 0.0000 0.9572± 0.0000

WordNet 0.8977± 0.0000 0.8765± 0.0000

IIMB 0.8903± 0.0000 0.7843± 0.0000

{{dbo:EducationalInstitution → dbo:University},
{dbo:University → dbo:College}}. Finally, our in-
duced taxonomy includes subsumption axioms which
are considered incorrect as per the gold standard but
may not be to a human evaluator. An example of this
is that our method induced the subsumption axiom
{dbo:SportFacility → dbo:Stadium} while the gold
standard considers {dbo:Venue→ dbo:Stadium} to be
the correct parent for dbo:Stadium. We provide an ex-
cerpt of our induced class taxonomies on the Life and
DBpedia datasets in Figure 2.

5.2.2. Hierarchical clustering
As before, we apply our hierarchical clustering

scheme on each of the four datasets at optimal α values
as per the Tax-F1 score. We repeat this process five
times for each dataset and report the results in Table
2. We notice no variance in results despite our model’s
stochasticity in sorting tags. This is because the Doc-
F1 and Tag-F1 metrics are insensitive to the order-
ing errors between parents and children discussed ear-
lier. Furthermore, Doc-F1 is higher than Tag-F1 on all
datasets. This suggests that our method is better at in-
ducing clusters with strong inheritance properties and
a high degree of consistency between cluster members
and cluster annotation than it is at representing every

class in the taxonomy with a cluster. Closer inspection
of clustering errors shows that the majority of errors
are the result of errors carried over from the taxonomy
induction step. Specifically, the most common type of
error is due to missing or incorrect ancestors in the
paths of documents’ clusters. Missing ancestors result
in a false negative whereas incorrect ancestors result
in a false positive, decreasing F1 scores.

Figure 3 provides an excerpt of hierarchical clus-
tering on the IIMB dataset. Recall that the induced
class taxonomy showed a poor Tax-F1 score on this
dataset. Despite this, the hierarchical clustering ob-
tained from this taxonomy scores highly on Doc-F1

and Tag-F1 and qualitative assessment confirm that it
is well structured and coherent. This highlights prob-
lems with using gold standards, namely: there may be
multiple valid ways of structuring a taxonomy; and
there may be a disconnect between how the data ought
to be structures and how it is structured. Both of these
problems are manifest in the IIMB dataset.

5.3. Computational complexity analysis

One of the most salient issues that arises when
applying class taxonomy induction methods to real-
world knowledge graphs is that of scalability. As men-
tioned previously, DBpedia, Yago, and WikiData have
upwards of one billion triples each, thus for a method
to operate on these datasets, it has to be computation-
ally efficient. It is important to note, however, that in
inducing a class taxonomy, it is not necessary to use all
the triples available in the knowledge graph but rather
to only use as many as is required to achieve an ac-
ceptable result. We discuss this idea in the following
subsection.
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The most computationally taxing procedure in tax-
onomy induction using our method is that of calcu-
lating the number of documents annotated by two
tags, Da,b, which has a worst case time complexity of
O(|D||V|2), where |D| and |V| are the number of doc-
uments and tags, respectively. It is important to note,
however, that the worst case only occurs when all doc-
uments are annotated by all tags. In this scenario, every
subject in a knowledge graph is of every class type in
the ontology. The average computation complexity of
our algorithm is O(|D||A|

2
) where |A| is the average

number of tags that annotate a document. In our exper-
iments our method was faster to terminate than both
the Heymann and Garcia-Molina and Schmitz methods
on all four datasets.

Hierarchical clustering of documents involves a
pairwise comparison between the documents and
classes in the taxonomy. Thus, the time complexity of
performing hierarchical clustering given the induced
class taxonomy is O(|D||V|), allowing for fast execu-
tion even on large datasets. We note that the two met-
rics used for evaluating the clustering are relatively
costly. Specifically, Doc-F1 has a time complexity of
O(|V|) and Tag-F1 has a time complexity of O(|V2|).

5.4. Effect of dataset size on induced taxonomy

As mentioned previously, although a method’s scal-
ability to large knowledge graphs is important in
the context of the Semantic Web, it’s not the case
that larger datasets will produce better taxonomies.
To demonstrate this, we applied our method to DB-
pedia datasets at differing document counts. Each
dataset was derived the same way as described in the
Datasets subsection, such that all of the smaller DBpe-
dia datasets are strict subsets of the larger ones. A sum-
mary of the results is displayed in Table 3. We note that
runtime measures the execution of our method with-
out including time for input and output. We notice that
although larger datasets obtain higher Tax-F1 scores,
the incremental increase in Tax-F1 diminishes, and the
scores plateau after 20,000 documents. However, rely-
ing on Tax-F1 score as the sole comparison metric may
be misguiding since it is calculated on the tags which
exist in the dataset. Thus since there are 211 unique
tags in the DBpedia 1,000 dataset and 428 unique tags
in the DBpedia 100,000 dataset, the induced taxonomy
of the latter will be over twice as large as the former.

Table 3
Summary of our method’s results on DBpedia datasets at various
document counts, |D|.

|D| |V| Triples Optimal α Time (sec) F1

100000 428 422860 0.65 1.6311 0.8810
90000 427 379444 0.65 1.5131 0.8808
80000 425 336084 0.45 1.3340 0.8826
70000 424 292791 0.55 1.1248 0.8847
60000 423 249383 0.70 0.9767 0.8783
50000 418 205793 0.70 0.8556 0.8824
40000 414 164470 0.70 0.6545 0.8783
30000 408 123408 0.55 0.5564 0.8716
20000 392 82381 0.65 0.3652 0.8791
10000 365 41081 0.65 0.2001 0.8425
5000 326 20481 0.70 0.1161 0.8354
2500 284 10330 0.60 0.0670 0.8372
1000 211 4097 0.35 0.0280 0.7632

6. Conclusions

In this paper, we described the problem of inducing
class hierarchies from knowledge graphs and its signif-
icance to the Semantic Web community. In our contri-
bution to this research area, we proposed an approach
to the problem by marrying the fields of class taxon-
omy induction from knowledge graphs with tag hier-
archy induction from documents and tags. To this end,
we reshaped the knowledge graph to a tuple structure
and applied two existing tag hierarchy induction meth-
ods to show the viability of such an approach. Further-
more, we proposed a novel method for inducing class
taxonomies that relies solely on class frequencies and
co-occurrences and can thus be applied on knowledge
graphs irrespective of their content. We demonstrated
our method’s ability to induce class hierarchies by ap-
plying it on four real-world datasets and evaluating it
against their respective gold standard taxonomies. Fi-
nally, we showed how a class taxonomy may be used
as the foundation for a simple hierarchical clustering
scheme. This scheme was applied to the aforemen-
tioned datasets and evaluated on two metrics. Results
demonstrate that our approach is capable of inducing
high quality class taxonomies as well as hierarchical
clusterings and can be reliable applied to large-scale
knowledge graphs.
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