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Abstract.
In recent years, we have witnessed a steady growth of linguistic information represented and exposed as linked data on the Web.

This is allowing the growth and application of openly available linguistic knowledge graphs. In this work we explore techniques
that exploit the graph nature of bilingual dictionaries to automatically infer new links (translations).We build upon a cycle density
based method: partitioning the graph into biconnected components for a speedup, and simplifying the pipeline through a careful
structural analysis that reduces hyperparameter tuning requirements. We also analyse the shortcomings of traditional evaluation
metrics used for translation inference and propose to complement them with new ones, both-word precision (BWP) and both-
word recall (BWR), aimed at being more informative of algorithmic improvements. On average over twenty-seven language
pairs, our algorithm produces dictionaries about 70% the size of existing Apertium RDF dictionaries at a high BWP of 85% from
scratch within a minute. Human evaluation shows that 78% of the additional translations generated for enrichment are correct as
well. We further describe an interesting use-case: inferring synonyms within a single language, on which our initial human-based
evaluation shows an average accuracy of 84%. We release our tool as a free/open-source software which can not only be applied
to RDF data and Apertium dictionaries, but is also easily usable for other formats and communities.

Keywords: Bilingual dictionaries, RDF, Apertium, Graph, Linguistic linked data, Evaluation methods, Polysemy

1. Introduction

Bilingual electronic dictionaries contain translations
between collections of lexical entries in two differ-
ent languages. They constitute very useful language
resources, both for professionals (such as translators)
and for language technologies (such as machine trans-
lation or the alignment of sentences in translated doc-
uments). Currently, we are witnessing an increase of
such resources as linked data on the Web, owing to the
adoption of linguistic linked data (LLD) techniques [1]
by the language technologies community. That is the

*Corresponding author. E-mail: jogracia@unizar.es.

case of the Apertium RDF graph, built on the basis
of the family of bilingual dictionaries of Apertium,1

a free-open/source machine translation platform [2].
A subset of 22 such dictionaries was initially con-
verted into RDF (resource description framework)2,
published as linked open data on the Web, and made
available for access and querying in a way compliant
with semantic web standards [3]. More recently, an up-
dated version of the Apertium RDF graph has been re-
leased, covering 53 language pairs [4] (see Figure 1).

1http://apertium.org
2http://www.w3.org/TR/rdf-primer
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Publishing bilingual dictionaries, and linguistic data
in general, as linked data on the Web has a number of
advantages. First, the data are described by using stan-
dard mechanisms of the Semantic Web, such as RDF
and OWL (web ontology language3), and use consen-
sual ontologies, agreed by the community, for their
conceptual representation (such as Ontolex-lemon4 [5]
in the case of Apertium RDF). Further, it can be ac-
cessed thorough standard languages and query means
such as the SPARQL protocol and RDF query lan-
guage5, avoiding any dependence on proprietary appli-
cation programming interfaces (APIs). This enhances
the availability, the interoperability, and the usabil-
ity of the linguistic information that use such tech-
niques [1]. In fact, every piece of lexical information
(such as lexical entries, lexical senses, or translations)
has its own URI, which identifies it at the web scale
and makes it easier to be linked to, or to be reused
by, any other dataset or semantic-aware system de-
veloped for any purpose. For instance, the Apertium
data, initially intended for their use in machine trans-
lation, has been successfully used, in its RDF version,
for cross-lingual model transfer in the pharmaceuti-
cal domain [4]. In this application, an embeddings-
based model for sentiment analysis in English was ef-
ficiently transferred into Spanish without retraining it
from scratch, by injecting the EN-ES translations con-
tained in Apertium RDF.

In this work, we explore a method to automatically
expand a graph of bilingual translations by inferring
new translations based on the already existing ones.
The method is agnostic of the particular graph formal-
ism used to represent the data, although we apply it to
the particular case of Apertium RDF. We further show
how automatic dictionary generation is actually far
more effective than reported in existing literature by
developing evaluation methods that are more reflective
and indicative. The motivation is two-fold: to support
the evolution and enrichment of the Apertium RDF
graph with new, automatically obtained high-quality
data, and to support the Apertium developers when
building new bilingual dictionaries from scratch as val-
idating and adapting automatically predicted transla-
tions is easier for dictionary developers than writing
new translation entries from scratch.

3http://www.w3.org/TR/owl-primer
4https://www.w3.org/2016/05/ontolex/
5http://www.w3.org/TR/sparql11-protocol/

Fig. 1. Apertium RDF graph (figure taken from [4]), which covers 44
languages and 53 language pairs. The nodes represent monolingual
lexicons and edges the translation sets among them. Darker nodes
correspond to more interconnected languages.

Imagine for instance that we have the following cor-
respondences between nouns in a set of five bilingual
dictionaries:

– book (English)–libro (Spanish);
– book (English)–llyfr (Welsh),
– libro (Spanish)–llibre (Catalan),
– llyfr (Welch)–llibre (Catalan), and
– llibre (Catalan)–book (English).

In view of these correspondences, it would be very
reasonable to propose the Welsh–Spanish entry llyfr
(Welsh)–libro (Spanish).

Our method tries to discover such indirect transla-
tions and assigns a confidence score to them. Our work
is grounded on the approach proposed by Villegas et
al. [6], based on the identification of dense cycles in
the graph. We improve and extend this work in several
directions:

– We improve the cycle-based algorithm by exploit-
ing properties of biconnected graphs, which re-
duces time response while discovering the same
translations.

– We reduce the number of hyperparameters, and
provide a rationale for previously empirical ones
based on new insights, enhancing accuracy and
coverage of results.

– We scale the experimental set-up to a much larger
dataset, from two language pairs in the initial
work (English–Spanish and English–French) up
to 27 language pairs.

http://www.w3.org/TR/owl-primer
https://www.w3.org/2016/05/ontolex/
http://www.w3.org/TR/sparql11-protocol/


S. Goel et al. / Bilingual dictionary enrichment via graphs 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– We also measure the quality of predictions not
found in the evaluation set through human evalu-
ation and through validation with other available
dictionaries such as MUSE.6

We also contribute to the general translation infer-
ence problem in the following aspects:

– We demonstrate weaknesses of evaluation met-
rics used in existing literature that underestimate
progress in translation inference. To this effect,
we introduce and discuss novel metrics which
are representative of performance and provide in-
sights for further improvement.

– We propose a novel use-case of the cycles-based
method, the generation of synonyms.

As result of this work, we release a modular and eas-
ily extensible software tool that can be used for practi-
cal dictionary generation. (see Section 7). Currently, it
supports RDF and the original Apertium format, but it
can be easily extended to other communities and sys-
tems that need dictionary generation, simply by con-
verting between their format and the internal tabulator-
separated value (TSV) format.

The remainder of this paper is organised as follows:
First, related work is summarised in Section 2. Then,
Section 3 describes translation graphs, Section 4 de-
scribes the original cycle density algorithm [6], Sec-
tion 5 describes the optimized version of the algorithm
described in this work, Section 6 analyses the roles and
need of each hyperparameter, Section 7 describes the
software implementation, Section 8 describes the ex-
perimental settings of the study, novel evaluation met-
rics are proposed in Section 9, and the results are pre-
sented and discussed in Section 10. Use cases are dis-
cussed in Section 11 and, finally, Section 12 presents
some conclusions and future work.

2. Related work

The automatic generation of electronic bilingual
dictionaries, based on existing ones, is not a new re-
search topic. Several approaches have been proposed
over the last few decades. In this section we give an
overview of the main ones.

6https://github.com/facebookresearch/MUSE

2.1. Pivot-based methods

The simplest approach is to assume that the trans-
lation relation is transitive. This method assumes the
existence of two bilingual dictionaries, one containing
translations language L1 to another language L2, and
another from L2 to L3. Language L2 acts as pivot lan-
guage and a new set of translations from L1 to L3 is
discovered through direct transitivity. For example, the
translations perro to dog and dog to chien contained in
a Spanish–English and English–French dictionary, re-
spectively, would lead to discover the translation perro
(Spanish) to chien (French). This method, despite its
simplicity, is still quite effective in a scenario in which
human supervision is assumed. Actually, this is the
basis of the cross option provided in the Apertium
framework as part of the apertium-dixtools
tool,7 which is used to cross two language pairs to gen-
erate a new language pair [7].

However, the translation relation is not always tran-
sitive as polysemy in the pivot language could lead
to wrong translations being inferred. For instance, the
Spanish (L2) word muñeca is translation of wrist in
English (L1) in one sense (‘where hand meets arm’),
while it translates to poupee in French (L3) in another
sense (‘doll’). Clearly French poupee is not a good
translation for English wrist, but simple transitive ap-
proaches will propose it.

In order to overcome this issue and identify in-
correct translations when constructing bilingual dic-
tionaries mediated by a third language, Tanaka and
Umemura [8] proposed in 1994 a method called one-
time inverse consultation (OTIC). In short, the idea of
the OTIC method is, for each word w in L1, to assign a
score to each candidate translation ti of w in L3 based
on the overlap of pivot translations in L2 shared by
both w and ti.

OTIC was later adapted for different purposes, such
as the creation of multilingual lexicons from bilin-
gual lists of words [9]. While OTIC is intended for
generic dictionaries, similar methods have been devel-
oped for generation of domain-adapted bilingual dic-
tionaries [10]. Other authors have enriched OTIC with
the inclusion of semantic features, such as Bond and
Ogura [11] for the creation of a Japanese-Malay dic-
tionary. Saralegi et al. [12] studied how to use distribu-
tional semantics computed from comparable corpora
to prune pivot-based translations.

7https://wiki.apertium.org/wiki/Apertium-dixtools

https://github.com/facebookresearch/MUSE
https://wiki.apertium.org/wiki/Apertium-dixtools
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2.2. Graph-based methods

The works referred so far illustrate techniques that
take into account the existence of (at least) two lan-
guage pairs connected through a common pivot. How-
ever, when dictionaries can be connected in a richer
way as part of a larger graph, other algorithms based
on graph exploration may come into play. That is the
case, for instance, of the CQC algorithm, developed
by Flati and Navigli [13], which exploits the notion
of cycles and quasi-cycles for the automated disam-
biguation of translations in a bilingual dictionary. No-
tice that, unlike our approach, this method is not in-
tended for dictionary building but for dictionary val-
idation. Another remarkable method based on graph
exploration is the SenseUniformPaths algorithm pro-
posed by Mausam et al. [14], which relies on prob-
abilistic methods to infer lexical translations. Sense-
UniformPaths was used in the generation of PanDic-
tionary [15], a massive translation graph built from
630 machine-readable dictionaries and Wiktionaries,
which contain over 10 million words in different lan-
guages and 60 million translation pairs. The method
applies probabilistic sense matching to infer lexical
translations between two languages that do not share a
translation dictionary. To that end, they define circuits
(cycles with no repeated vertices), calculate scores for
the different translation paths, and prune those circuits
that contain nodes that exhibit undesirable behaviour,
called correlated polysemy (see section 4.1).

The SenseUniformPaths algorithm served as the ba-
sis for the cycle density method proposed by Ville-
gas et al. [6] that we explore and expand in this work.
Both approaches coincide in the use of cycles to iden-
tify potential translation targets, but differ in that Vil-
legas et al. use graph density to rate the confidence
value. The cycle density algorithm does not need to
identify ambiguous cycles, thus being computation-
ally less expensive. Moreover, SenseUniformPaths ex-
ploits dictionary senses, as found in resources such as
Wiktionary8 while the cycle density method operates
in dictionaries without such sense information, such
as the Apertium bilingual dictionaries, and therefore
solves a harder problem.

2.3. Comparison with OTIC

The OTIC algorithm continues to be a powerful
method for translation inference and it has proven to

8http://wiktionary.org

be very effective even in comparison with more con-
temporary methods [16, 17]. However, OTIC needs
a pivot language to operate, while cycle-based sys-
tems can discover translations between more distantly
connected languages. For instance, this is the case of
Sardinian (sc) - Italian (it) in the Apertium RDF
graph (see Figure 1), for which OTIC cannot work.
On the other hand, there can be less connected parts
of the graph where cycles are difficult to find but a
pivot language is still available. For instance, English
(en) - Russian (ru) in Apertium RDF. Therefore, we
consider OTIC and cycle density complementary ap-
proaches.

Cycle-based methods can be used for additional
tasks such as synonym generation (see section 11.2),
which OTIC is not able to address. Further, cycle-
based procedures are more suitable for iterative dictio-
nary enrichment, as the produced translations for a tar-
get language pair (L1 → L2), once manually validated
and integrated into the ground-truth input sets, can help
produce more cycles. However, for the OTIC algo-
rithm, the pivot dictionaries would also have to be en-
riched to be able to produce further entries. Lastly, the
richer Apertium RDF gets in terms of language-pair
connections and number of translations, the more ca-
pable the cycle-based algorithm becomes as it can har-
ness the entire graph, not just information from pivot
dictionaries.

2.4. Distributional semantics-based methods

Other methods have been also proposed that do not
rely on graph exploration for bilingual lexicon induc-
tion but are based on distributional semantics. Ini-
tial approaches have been based on vector space mod-
els [18, 19] or in leveraging statistical similarities be-
tween two languages [20, 21]. More recent approaches
that exploit distributional semantics rely on the in-
ference and use of cross-lingual word embeddings.
An initial contribution in that direction was made by
Mikolov et al. [22]. Methods using word embeddings
to infer new dictionary entries require an initial seed
dictionary that is used to learn a linear transforma-
tion that maps the monolingual embeddings into a
shared cross-lingual space. Then, the resulting cross-
lingual embeddings are used to induce the translations
of words that are missing in the seed dictionary [23].

Such ideas evolved and new embeddings-based
methods appeared that did not need such initial train-
ing, such as the work by Lample et al. [24], who pro-
pose a method to develop a bilingual dictionary be-

http://wiktionary.org
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tween two languages without the need of using paral-
lel corpora. The method needs large monolingual cor-
pora for the source and target language and leverages
adversarial training to learn a linear mapping between
the source and target spaces. The software implement-
ing the method and the ground-truth bilingual dictio-
naries used to test it are publicly available;9 We use
these ground-truth dictionaries as part of our evalua-
tion (section 9.3).

Another remarkable method of this embeddings-
based family of techniques was developed by Artetxe
et al. [25]. In their work, instead of directly inducing
a bilingual lexicon from cross-lingual embeddings as
in [24], they use the embeddings to build a phrase-
table, combine it with a language model, and use the
resulting machine translation system to generate a syn-
thetic parallel corpus, from which the bilingual lexi-
con is extracted using statistical word alignment tech-
niques.

In contrast to graph-based methods, the embeddings-
based approaches still need large corpora to operate;
this limits their applicability for under-resourced lan-
guages. Further, in principle they operate at the word
representation level, thus not taking into account other
lexical information such as the part of speech, which
graph-based methods can use in a straightforward way.

2.5. Systematic evaluation

The fact that inferring new translations is not a triv-
ial problem has motivated the Translation Inference
Across Dictionaries (TIAD)10 periodic shared task, as
a coherent experimental framework to enable reliable
comparison between methods and techniques for auto-
matically generating new bilingual (and multilingual)
dictionaries from existing ones. A number of works,
based on graph exploration, word embeddings, parallel
corpora, etc. have participated so far in the campaign to
test their ideas, many of them preliminary and subject
to continuous improvement [16, 17, 26].

3. Translation Graph

We define translation graph as an undirected graph
G(V, E) where V and E denote the set of vertices
and edges respectively. Each vertex v ∈ V repre-
sents a dictionary lexical entry defined by the tuple:

9https://github.com/facebookresearch/MUSE
10https://tiad2021.unizar.es/

〈rep, lang, pos〉 where rep is the written representation
of its canonical form, lang is the language, and pos
is the part of speech (POS). An edge e(u, v) ∈ E in-
dicates that the lexical entries u and v are connected
through a translation relation, therefore sharing at least
one lexical sense. For simplicity, we will use word to
refer to a lexical entry in the remainder of the paper.

Note that G is initially populated using multiple
bilingual dictionaries at once. Since the input transla-
tions (and hence graph edges) are between words of
different languages (∀(u, v) ∈ E, u.lang 6= v.lang), the
graph is K-partite, where K is the number of distinct
languages in the input data.

In particular, we have used the latest version (v2.1)
of the Apertium RDF graph as our initial transla-
tion graph11. It contains 44 languages and 53 lan-
guage pairs, with a total number of translations |E| =
1, 540, 996 and words |V| = 1, 750, 917.

Our problem is now to enrich this initial graph G,
that is to infer edges that do not initially exist but define
valid translations.

4. The original cycle density method

In this section we describe with more detail the cycle
density method developed by Villegas et al. [6], which
we base our work on.

4.1. Cycles in the Translation Graph

As it was mentioned in Section 2, the original
algorithm relies on simple cycles instead of transi-
tive chains, following the idea of circuits introduced
in [14]. A simple cycle is a sequence of vertices start-
ing and ending in the same vertex with no repetitions
of vertices and edges. For ease of explanation, we will
be referring to simple cycles as just cycles.

For a sequence of words u1, u2 . . . un, u1 to be in a
cycle while simultaneously containing a pair of words
that are not a valid translation, there needs to be a
stronger condition than polysemy which we will call
correlated polysemy. This means that two words in
the cycle, say, vertices ui and u j (i < j without

11The Apertium RDF data dumps, developed by Goethe Univer-
sity Frankfurt, are available in Zenodo through this URL: https:
//tinyurl.com/apertiumrdfv2. More details on the generation of Aper-
tium RDF v2 can be found at [4]. A stable version of Apertium RDF
v2 will be uploaded to http://linguistic.linkeddata.es/apertium/ and
hosted by Universidad Politécnica de Madrid (UPM) as part of the
Prêt-à-LLOD H2020 project.

https://github.com/facebookresearch/MUSE
https://tiad2021.unizar.es/
https://tinyurl.com/apertiumrdfv2
https://tinyurl.com/apertiumrdfv2
http://linguistic.linkeddata.es/apertium/
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loss of generality) contain the same distinct set of
possible senses. This may lead to ui, ui+1 . . . u j and
u j, u j+1 . . . un, u1, . . . ui being paths along two differ-
ent senses, but still completing a cycle. We want to en-
sure words from these differing sense-paths do not get
considered valid translation pairs, but this is non-trivial
considering the source data does not carry any sense
information.

4.2. Confidence metric: Cycle Density

There can be multiple instances of correlated poly-
semy in a single cycle. In fact, considering that many
language pairs in Apertium are linguistically close, this
is not unexpected. Therefore, approaches based on ex-
ploiting sparsely inter-connected partitions of cycles
may not be fruitful, as our experience has shown. Ac-
cordingly, we stick to using cycle density as proposed
in [6] as a metric to avoid invalid predictions due to
correlated polysemy.

The density of a subgraph G′(V ′, E′) here is defined
as 2|E′|
|V′|(|V′|−1) , that is, as the ratio of the actual number

of edges |E′| to the number of edges |V
′|(|V′|−1)

2 that
would be found in a fully connected graph (or clique).
Cycle density is therefore the density of the subgraph
induced by a cycle, that is, the subgraph made up of
the vertices in the cycle and the edges between them.

A higher density implies that the nodes in a cycle
are closer to forming a clique. Therefore, intuitively,
for high-density cycles, completing the clique by pre-
dicting the pairs of words with no edge between them
as possible translations becomes a useful strategy, one
which we adopt. In cases with correlated polysemy,
subsets of vertices corresponding to a different set of
senses are unlikely to have any edges between them,
leading to a lower cycle density.

4.3. Original Algorithm

The algorithm outlined in [6] is as follows: For each
word w do the following.

1. Find the D-context of w, which is the sub-
graph GD(w)(VD(w), ED(w)) formed by vertices
within a certain distance D from W; D is referred
to as the context depth.

2. Find all cycles in GD(w) traversing w. Since
there can be up to O(2|VD(w)|2) [27] such cy-
cles, and even real translation graphs are not
sparse enough to compute them all, limit the cy-
cle length to Lmax.

3. The confidence score of a translation from w to
u not directly connected in the input data to w is
the density of the densest cycle containing both
w and u.

4. Impose further constraints on possible transla-
tions to improve empirical results such as:

(a) not allowing language repetition within a cy-
cle, that is, one word per language only;

(b) ignoring cycles with size under a particular
minimum length Dmin, which differs for small
and large GD(w);

(c) requiring a lower confidence score for target
nodes u that have a higher degree than 2 in the
subgraph induced by the cycle.

5. Improving efficiency of the cycle density
method

In order to allow for application scenarios in which
time performance is an important feature as well as to
facilitate scalability to larger graphs, our first modifica-
tions to the cycle density method were aimed at mak-
ing computation more efficient, without having any
negative impact on the quality of the inferred transla-
tions.

Notice that the algorithm requires us to operate on
cycles, and cycle-finding is essentially a bottleneck in
terms of computation time, even after having estab-
lished a bound on the maximum cycle length. Opti-
mizing cycle-finding is essential for scaling to larger
graphs, and also allows end users to make multiple
runs with different hyperparameter settings, which can
be important for achieving optimal results on their tar-
get language-pair.

The original implementation of the cycle density
method12 computes and stores all cycles up to length
Lmax by trying all possible combinations of nodes.
Then, it proceeds to filter these and calculate the met-
rics. This can clearly be improved, as will be described
in the following section.

5.1. Precomputing Biconnected Components

A biconnected graph is one in which no vertex ex-
ists such that removing it disconnects the graph. A bi-
connected component is a maximal biconnected sub-
graph.

12https://github.com/martavillegas/ApertiumRDF

https://github.com/martavillegas/ApertiumRDF
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Different biconnected components can only share
cut vertices, that is, vertices whose removal renders
the graph disconnected. The decomposition of a graph
G(V, E) to compute all its biconnected components can
be done through a well-known algorithm with a time
complexity in O(V + E) by Hopcroft and Tarjan [28].
Consider the following fundamental properties of a bi-
connected component:

Property 1: Consider any two vertices u, v in the same
biconnected component. There must be at least
one simple cycle with vertices only in the bicon-
nected component containing both u and v.

Proof: There must be at least two vertex-disjoint
(apart from u and v) paths from u to v. Combining
these 2 vertex-disjoint paths would give a simple
cycle as the graph is undirected. Otherwise, if all
paths from u to v within the component have a
common vertex w, removing w would disconnect
u and v and this is not possible in a biconnected
component by definition.�

Property 2: For every simple cycle C, there exists a
biconnected component B such that ∀v ∈ V(C),
v ∈ V(B) where V(G) denotes the set of vertices
of a graph G.

Proof: A simple cycle is in itself a biconnected graph.
It must therefore be a subgraph of some bicon-
nected component. �

Property 2 tells us that we can run the algorithm sep-
arately for each biconnected component without miss-
ing any cycle, and consequently any translation. Prop-
erty 1 shows us that biconnected components are in
some sense the minimal units such that decomposing
them further would make us lose information. Find-
ing all cycles takes exponential operations in the num-
ber of edges, so by splitting a graph into smaller sub-
graphs, we require much less computation. Mathemat-
ically, this follows from

∑
i (xi)

k 6 (
∑

i xi)
k (for x > 0

and k > 1), which comes from the multinomial theo-
rem.

The partition in biconnected components can par-
ticularly be useful when searching for translations
of specific words instead of the entire vocabulary in
one go. A lookup table file mapping words to bicon-
nected components can be maintained. This helps load
only the biconnected components the word belongs to,
which are sufficient for our method. This cuts runtime
and memory requirements during execution.

DATA SET COMPUTED ON TIME RANGE (SEC)

Development
biconnected 10–15
entire graph 17–23

Large
biconnected 22–57
entire graph 33–80

Table 1
For our lexicon-wide experiments (see section 8), splitting into bi-
connected components reduces time by about a third on average
compared to when we are not. Note that the improvement is partially
shadowed due to the cycle finding algorithm we use (see 5.3), which
also implicitly exploits the locality of the graph.

Case |V(G)| |E(G)| |V(Bmax)| |E(Bmax)|

All translations 704,284 774,986 84,088 188,116

No cross-POS 704,284 769,708 44,542 99,081

Table 2
Size of the entire graph (G) and largest biconnected component
(Bmax) when using the 27 language-pair large set (see section 8).
Ignoring just 5,278 cross-POS translations almost halves the size of
the largest biconnected component (a bottleneck in our procedure).

Size 4–5 6–10 11–20 21–100 >100

# 7,193 5,520 1,847 262 7

Table 3
Distribution of biconnected component size in the main graph con-
taining 27 language pairs.

5.2. Filtering cross-part-of-speech translations

Although it is not frequent, there might be cases in
RDF dictionaries in which translations connect words
with different POS. As shown in Table 2, by remov-
ing such cases, large biconnected components contain-
ing multiple POS can be further split into smaller ones
with just one POS. Our method takes that step in order
to reduce run-time, and to prevent potentially spurious
inferred translations.

In Table 3 we present the distribution of number of
biconnected components by size on our large set of
27 language pairs (see section 8) after discarding the
cross-POS translations.

While clearly most biconnected components are
small, some are in-fact quite large, which is evident
from the size of the largest one as shown in Table 2.

There are situations, however, where users might
need to keep such cross-POS translations. For instance,
in Apertium one can find a translation of the English
noun computer into the Spanish adjective informático.



8 S. Goel et al. / Bilingual dictionary enrichment via graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

This allows for rules, in a machine translation system,
that may translate noun modifiers such as computer
engineer as adjectives to get fluent translations such
as ingeniero informático by looking up these cross-
POS entries in the dictionary. This is especially impor-
tant when the target languages don’t have the same set
of POS, requiring changes in POS during translation.
Therefore, any implementation of the method should
make this filter optional.

5.3. Backtracking Search per Source Word

We iterate over all words as the source word and re-
peat the following procedure for finding possible tar-
get words: First, we find and store the context graph of
depth D for word w, GD(w) using breadth-first search.
Then, we launch a backtracking search maintaining a
stack to find relevant cycles, using an algorithm orig-
inally described in [29]. While more efficient algo-
rithms for generating cycles exist [30], the chosen one
has a good balance between ease of modification and
time response (see Section 10).

6. Analysis of hyperparameters

The heuristic indicators used in the original cycle
density method were derived empirically by study-
ing small parts of the RDF graph. Scaling to larger
vocabulary-wide experiments requires generalizing
these heuristics to tunable hyperparameters. To that
end, a deeper understanding of such hyperparameters
is needed. Ideally, language pair developers should be
able to iteratively run the algorithm, verify and include
the correct translations, and then repeat the process
on the updated, richer graph, getting new entries each
time. This necessitates reducing the 8 distinct indi-
cators proposed originally [6] and limiting the combi-
nations that need to be tried to obtain optimal results.
Through our exploratory analysis of the hyperparame-
ters which we describe in this section, we reduce both
runtime and human effort.

6.1. Removed hyperparameters

After a careful analysis, we found that a number of
heuristics and hyperparameters proposed in [6] were
not leading to better results, therefore we propose to
discard them:

Language repetition: The intuition for removing cy-
cles with language repetition as in [6] is that two words
in the same language are likely to not have the exact
same set of semantic senses. Example: pupil in English
can mean the aperture of the iris, but will also come
in cycles with student. This can become a breeding
ground for correlated polysemy leading to incorrect
translations. But allowing language repetition is neces-
sary for the use-case of generating synonyms (see Sec-
tion 11.2), which would necessitate making this op-
tional by adding a binary hyperparameter.

However, we find that not allowing repetition re-
duces recall significantly, and the same higher preci-
sion can instead be achieved by increasing the confi-
dence threshold for a lesser loss in recall. Handling
correlated polysemy is exactly what measuring cycle
density is aimed at, so it is a natural way to mitigate
this issue. We therefore proceed to remove this hyper-
parameter.

Minimum cycle length: Notice that cycle density as
defined in Section 4.2 would favor shorter cycles as the
denominator grows quadratically with cycle length. In
particular, a 4-cycle without any other edges among its
vertices would have a density of 4

4(4−1)/2 = 2
3 , which

would mean a good chance of being selected unless the
threshold is set very high. So essentially, being part of
any 4-cycle (which can easily be 2 correlated polyse-
mous senses) ensures a that a pair of words becomes a
predicted translation.

This is why the original algorithm [6] requires a
minimum cycle length. In-fact, they require different
minimum lengths for a large context and a small con-
text because in relatively sparse areas of the graph,
many cycles might be small and yet correct. This leads
to having three hyperparameters that require tuning:
the minimum length in small contexts, the minimum
length in large contexts, and the threshold defining
when a context becomes large.

However, we found that eliminating all three hyper-
parameters gives similar results on average, while sim-
plifying the pipeline significantly. Allowing small cy-
cles allows more translations to be produced, as ignor-
ing them completely would also leave out the proba-
bly valid translations we could predict using the dense
small cycles.

6.2. Used hyperparameters

Having eliminated four hyperparameters of the orig-
inal cycle density method, we now justify why we need
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the remaining ones and find the most suitable range of
values for them.

Maximum cycle length (Lmax): The cycle length was
originally bounded above to reduce computation time.
Our large-scale experiments reveal that increasing cy-
cle length beyond a certain threshold does not even
help much, because of two main reasons:

1. With increasing distance13 from the source ver-
tex, the chances of sense shifting increase. Thus,
larger cycles have a higher chance of being poly-
semous.

2. Induced graphs of large cycles will probably
have as subgraphs smaller cycles with higher
density. These smaller cycles get selected as the
ones with the highest density for most pairs of
words. This means allowing larger cycles does
not lead to the generation of many new transla-
tions.

The diminishing returns upon increasing context depth
and maximum cycle length (see Table 6) also tell us
that while the cycle-density procedure in the worst
case is exponential on the square of the number of ver-
tices, computing for small context subgraphs and con-
sidering only cycles of a small length suffices, which
is tractable.

Context Depth (D): Similarly to the cycle length, the
original motivation for limiting context depth was to
reduce computation time. We find that increasing it be-
yond a certain threshold is not helpful because of the
following property:

Property 3: It is lossless to keep D 6 int( Lmax
2 ).

Proof: If cycle length is limited to Lmax, the maximum
distance between any 2 vertices that share a com-
mon cycle can be int( Lmax

2 ). Therefore, there will
be no cycle containing both the source vertex and
potential target vertices at more than int( Lmax

2 ) dis-
tance. Therefore, having D > int( Lmax

2 ) leads to no
new predictions. �

This effectively sets an upper bound to the context
depth based on the maximum cycle length. We recom-
mend using int( Lmax

2 ) as the value throughout experi-
ments, as lowering it would lead to loss of information.

13Defined here as the length of shortest path between two vertices.

Target degree multiplier (M): Here, by the degree of
a vertex, we refer to the number of edges from the ver-
tex within the subgraph induced by the cycle. Origi-
nally, in [6], a fixed lower (0.5 instead of 0.7) confi-
dence threshold (density) was required for cycles if the
target word had degree > 2. We model this as a tunable
hyperparameter: the multiplier applied to the density
of the given cycle when the degree of the target is > 2.
This allows its effect to scale relatively when changing
the density thresholds used for final translation selec-
tion. But why is this multiplier important in the first
place? If the target word has only degree 2, it means
that, apart from the two edges on its vertex in the cycle
itself, the target word is not connected to other words
in the cycle. This points to a chance of the target word
not sharing a sense with a large part of the cycle (if it
does, it can still be detected through a different cycle).

Transitivity (T): While an essential premise to ne-
cessitate a cycle-based approach is that transitivity
does not always hold for translations due to poly-
semy, we realized that it can still perform well for non-
polysemous categories of words.14 Specifically, we
identify proper nouns and numerals as being largely
non-polysemous. Both categories are part of the Lex-
Info ontology,15 a catalogue of grammar categories
used by Apertium RDF. We model transitivity as a
ternary hyperparameter:

– T = 0: The default cycle density metric (no tran-
sitivity).

– T = 1: Transitive closure within biconnected
components. 16

– T = 2: Transitive closure up to the distance D
(context depth).

Notice that it is only required to tune the context depth
for T = 2 as the other hyperparameters are irrelevant
with that method.

Confidence threshold (C): For a given pair of words
u, v, let S u,v be the set of all cycles that follow the con-
straints set by the first 2 hyperparameters D and Lmax.
For a cycle c ∈ S u,v, let dc be the density of its induced
subgraph. Let Mc be the target degree multiplier M if
the condition for target degree multiplication is satis-

14This is partly why we allow different hyperparameter settings
for different POS.

15http://www.lexinfo.net/ontology/2.0/lexinfo
16Not used in this paper, it exists for ongoing exploration towards

future work

http://www.lexinfo.net/ontology/2.0/lexinfo
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fied, and 1 otherwise. We define the confidence score
of a predicted translation between u and v as:

argmax
c∈S u,v

min(Mcdc, 1)

This effectively keeps the confidence score within the
range [0, 1].

Note that we stick to only the cycle with the high-
est confidence. We prefer this over metrics that use ag-
gregate statistics over all the cycles containing the two
words such as the number of cycles or their average
density. These are more likely to be sensitive to some
subgraphs or contexts being richer in the number of
translations added during creation, leading to superflu-
ously better aggregates than others. The maximum is
more robust to these differences, as only one dense cy-
cle is then sufficient.

For translations produced using transitivity (T = 1
and T = 2) instead of the cycle density method, we
assign a full confidence score of 1. This allows com-
bining these methods so that they can be used for par-
ticular POS where effective, leading to the generation
of a unified set of possible translations with their con-
fidence scores. We expect the user to use transitivity
only in cases where they are sure it is highly precise,
considering the full confidence assigned.

This gives us the final choice the user makes, the
confidence threshold C. Generated translations above
this confidence threshold are all included in the final
prediction set of the algorithm.

To conclude, we have a set of just four simple hyper-
parameters: context depth D, maximum cycle length
Lmax, target degree multiplier M, and transitivity T
with guidelines for their tuning based on insights de-
scribed above. This produces a set of possible transla-
tions along with their confidence scores, from which
the user can select those above a certain confidence
threshold C, based on whether they want a large set or
a highly precise one.

We have shown a fixed value for context depth rela-
tive to maximum cycle length is optimal in most cases.
Moreover, the procedure is not very sensitive to the
target degree multiplier within a reasonable range of
[1, 1.5].17 From our tests, only proper nouns and nu-
merals benefit from transitivity. So when generating

17We still keep it as a hyperparameter as it can make the confi-
dence score more reflective of the similarity, which might be impor-
tant for some use-cases.

bilingual dictionaries, only the maximum cycle length
needs to be tuned in most cases, followed by trying
different confidence thresholds. This simplifies the ex-
perience for end users who may have to find values
preferable to them for their input datasets, and target
language pair.

7. Implementation

We implemented the algorithmic pipeline in C++. It
has been strategically decoupled into multiple stages
as we will briefly describe below. Detailed instructions
for usage are provided in our GitHub repository,18.

7.1. Input

A simple format has been defined to represent the
data of an input translation graph G(V, E). For every
translation e(s, t) ∈ E we represent the data in TSV
format as:

(s.rep, s.pos, s.lang, t.rep, t.pos, t.lang).

Throughout our pipeline, wherever a language has to
be specified, it is done with ISO-639-3 codes. We
wrote parsers that query RDF graphs for the required
data using SPARQL or directly use Apertium bilingual
dictionaries in their XML format, converting them to
our TSV format. Using such an intermediate TSV for-
mat allows to easily adapt the system to different data
formats, if needed.

7.2. Configuration files

We provide a command-line interface (CLI) to run
the algorithm. The path to a folder containing the input
dictionaries for all language pairs needs to be passed.
The language pairs to be output in a single run as well
as those provided as input need to be specified in a
language configuration file. It is also possible to spec-
ify no fixed target language pair, producing predictions
across all input language-pairs in one go. Translations
for specific individual words can be generated instead
as well by providing a different kind of configuration
file and using the word option instead of the language
option. A separate configuration file can be used to
specify the hyperparameters, with the possibility of us-
ing different ones for different POS.

18https://github.com/shash42/ApertiumBidixGen

https://github.com/shash42/ApertiumBidixGen
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7.3. Generating translations

To infer new translations, the system first obtains
candidate translations along with their confidence
score and, then, filters out all those translations below
a certain threshold (C). These two steps are decoupled
and are called by specifying the relevant options on
the CLI. This allows trying different confidence scores
without having to rerun the entire cycle finding and
scoring procedure.

Once the algorithm is run, it finds cycles for ev-
ery source-word (s) and stores a matrix containing
Metrics vectors for each (s, t) ∈ V . Each vector
component corresponds to one valid cycle where s and
t were present and can store any variables required as
indicators. This allows for easy experimentation with
potentially different metrics. For the purpose of this
paper, we need to store the density of the cycle and the
degree of the target word in its context graph.

7.4. Post-processing

The generated predictions can be brought back into
the target format (RDF or Apertium bidix). Of particu-
lar interest is the Compare class, which provides de-
tailed metrics given the generated predictions, the orig-
inal data used, and the evaluation data. These are fur-
ther described in Section 9.2.

8. Experimental setting

There are two main possible usage scenarios for the
cycle density method: (i) generation of a new bilingual
dictionary from scratch for a new language pair, and
(ii) enrichment of an already existing language pair.
In order to measure the effectiveness of the method
in the first case, we remove one already existing lan-
guage pair (dictionary) from the graph, try to re-create
it with the algorithm, and then compare the result with
the removed dictionary. In the second case, entirely
new translations are created, which are more difficult
to evaluate automatically. Nevertheless, to provide a
quality indication, we propose the use of external bilin-
gual dictionaries that are not part of the Apertium
graph as well as a human evaluation.

8.1. Datasets

For initial experimentation with metrics and hyper-
parameter tuning, we picked a development set of 11

Fig. 2. Fragment of the Apertium RDF graph taken as development
set, containing 6 languages and 11 language pairs.

Fig. 3. Largest biconnected component in the Apertium RDF graph.
This contains 13 languages and 27 language pairs.

language pairs across 6 languages: English, Catalan,
Spanish, Esperanto, French, and Occitan (see Fig-
ure 2). We leave out each language-pair and use the re-
maining 10 to re-generate it. This allows us to measure
average metrics across the 11 language pairs.

Since one of our goals in this research is to scale
up the initial cycle density algorithm, it is important
to validate that the method performs well even when
more language pairs come into play. To that end, we
define what we call the large evaluation set, by taking
all 27 language pairs across the 13 languages which
constitute the largest biconnected component in the
RDF language graph (see Figure 3).19 These languages
are: Aragonese, Basque, Catalan, English, Esperanto,
French, Galician, Italian, Occitan, Portugese, Roma-
nian, Sardinian and Spanish.

We use the same leaving-one-pair-out experiment as
the development set in this new setting, reporting aver-
age metrics across the 27 language pairs.

In general, if a user wants to predict translations
for a target language-pair (L1, L2), using all language-
pairs in the biconnected component containing both L1

19Notice that, although loosely related to the notion of training,
development and test sets in machine learning, the purpose of cre-
ating our development and large sets is slightly different, being tar-
geted towards confirming scalability. The hyperparameters will ulti-
mately be manually tuned by the users to adapt the system to their
particular necessities.
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and L2 is a good strategy. However, if L1 and L2 do
not belong to a common biconnected component, then
pivot based methods like OTIC should be preferred
over cycle-based procedures. This is because less cy-
cles between words in L1 and L2 will be found, and
those that are will rely strongly on having multiple
words from X, Y or intermediate languages. As dis-
cussed earlier, this can lead to higher polysemy and
hence lower quality predictions.

8.2. Hyperparameter settings

After experimenting with the development set, the
final hyperparameter setting, used across the rest of the
evaluation, is the following (unless otherwise speci-
fied): transitive closure (T = 2) with D = 4 for proper
nouns and numerals; and T = 0, D = 3, Lmax = 6,
M = 1.4, C = 0.5 for other POS. See Section 10.1 for
more details on the hyperparameters selection process.

8.3. Baseline

As mentioned earlier, one of the main usage sce-
narios of the cycle density algorithm is the generation
of new bilingual dictionaries for the Apertium frame-
work. The idea is to substitute the cross option pro-
vided as part of the apertium-dixtools in Aper-
tium (see Section 2) which relies on transitive infer-
ence [7]. Therefore, we introduce in our experiments
an explicit comparison with a method that is purely
based on transitivity, which we emulate by running our
system with two sets of hyperparameters: T = 2 and
D = 2 (baseline 1) and T = 2 and D = 4 (baseline 2).
The latter is expected to produce a higher number of
candidate translations since it will traverse more ver-
tices in the graph.

8.4. External dictionaries

In order to validate the enrichment of translations
in already existent language pairs, we use the MUSE
ground truth dictionaries20 as an additional corpora.
MUSE dictionaries, while rich in nouns, verbs, adjec-
tives, adverbs and numerals, have almost no proper
nouns. We thus stick to translations in these five POS
categories for our experiments. There are five MUSE
dictionaries that are common to our large set: English–
Catalan, English–Spanish, French–Spanish, Spanish–
Italian, Spanish–Portuguese, which we use for our ex-
periments.

20https://github.com/facebookresearch/MUSE

9. Evaluation

When evaluating procedures aimed at generation,
a fundamental problem arises when an exhaustive
ground-truth set is not available. Having an exhaustive
set of translations turns out to be particularly hard be-
cause languages keep evolving. Today’s complete set
will become incomplete soon, as the vocabulary of the
languages grow. Moreover, many languages are low-
resourced, and obtaining sets with high coverage itself
is a difficult task.

While the in-production Apertium language pairs
that are used in RDF are large enough to be useful
for a machine translation engine, their coverage can
clearly be increased. In the forthcoming discussion, we
assume that while available evaluation sets may rea-
sonably be considered to have 100% precision (ground
truth),21 they do not carry all possible valid transla-
tions. Moreover, it is even difficult to estimate the total
number of valid translations.

9.1. Notation

We begin by defining some notation we will use
throughout the following sections.

– I denotes the input translation graph, which could
include multiple bilingual dictionaries.

– P denotes the translation graph containing the
predictions (output) of the algorithm. In our ex-
periments, we generate a single language pair,
and hence P can be considered the graph of the
predicted target language pair.

– L1 and L2 denote the languages in the target lan-
guage pair.

– T denotes the translation graph of the chosen test
dictionary for evaluation. This is the left-out RDF
dictionary for pair L1 − L2,

– A denotes the hypothetical complete set of valid
translations for language L1 − L2. As mentioned
before, neither A nor |A| are known.

– V(X) (resp. E(X)) denotes the set of vertices
(resp. edges) of a translation graph X.

– v1(e) (resp. v2(e)) denotes the vertex of edge e
belonging to language L1 (resp. L2).

21Apertium dictionaries (and hence the derived RDF dictionaries)
do have some translations that may not be considered “correct”, so
they are not 100% precise as assumed, but such errors are limited in
number and do not affect evaluation significantly.

https://github.com/facebookresearch/MUSE
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– BWA(B) where A and B are translation graphs de-
notes those translations (edges) in B whose both
words involved exist in A.

9.2. Metrics for automatic evaluation

The unavailability of a complete test dictionary
makes it difficult to measure traditional metrics like
precision ( |E(P)∩E(T)|

|E(P)| ) and recall ( |E(T)∩E(P)|
|E(T)| ). One

might ask: is a translation produced by the algorithm
that is not found in the test dictionary incorrect, or is
it correct but missing from the test dictionary? Should
the algorithm really be penalized for one of its main
tasks, namely dictionary enrichment, generating valid
translations that humans might have overlooked? The
unequivocal answer to that should be no, and yet pre-
cision and recall as defined here (which we will call
vanilla precision and recall in the remainder of this pa-
per) do penalize the algorithm for this. For instance,
an algorithm which covers, say, 90 of 100 test dictio-
nary translations would end up being considered bet-
ter (precision 0.9, recall 0.9) than one producing not
only those 90, but 30 additional correct ones not in
the test dictionary (precision: 0.75, recall: 0.9). In-fact,
the precision only goes down with additional transla-
tions (which are all considered wrong in the vanilla
precision formula). Clearly, using these vanilla met-
rics would move our algorithms away from the goal of
enrichment.

9.2.1. Both-Word Precision (BWP)
It is clear that precision computed using any T is a

lower-bound on the actual precision of the algorithm,
as T ⊂ A. But this lower-bound can be arbitrarily
loose, depending on both |T | and how close the dis-
tributions of translations in T and P are. We have no
strategic incentive to make P imitate T , as transla-
tions in T , even if chosen to be the most frequently
used ones, may still be insufficient to obtain good text
coverage, which could improve with translations from
A \ T . Therefore, can we come up with a metric more
independent of T?

A predicted translation e ∈ E(P) which is not in
E(T ) can be classified as belonging to one of four cat-
egories:

1. v1(e) ∈ V(T ) and v2(e) ∈ V(T ), that is, both
words are in the test dictionary.

2. v1(e) ∈ V(T ) and v2(e) /∈ V(T ), that is, the
word in L1 is in the evaluation set, but its pro-
posed translation in L2 is not.

3. v1(e) /∈ V(T ) and v2(e) ∈ V(T ), that is, the
word in L2 is in the evaluation set, but its pro-
posed translation in L1 is not.

4. v1(e) /∈ V(T ) and v2(e) /∈ V(T ), that is, neither
word is in the evaluation set.

Categories 2–4 point to a clear insufficiency in the test
dictionary itself. Our algorithm cannot come up with
words on its own, as any word in the output must be-
long to some input dictionary of that language (that is,
∀v ∈ V(P), v ∈ V(I)), and hence the word is a valid
part of that language.

Therefore, we propose measuring precision only
among those predicted translations whose both words
are in the test dictionary. We define this as both-word
precision BWP = |BWT (P)∩E(T)|

|BWT (P)| . 22 While it is theoret-
ically possible that the distribution of inaccuracies in
BWT (P) may not be an accurate representation of the
entire set of predictions in some combination of input
and test dictionaries, it is a necessary approximation.

Note that if the test dictionary has both words but
no edge between them, this could still be due to over-
sight by the creators. The computed BWP is again a
lower-bound for the actual BWP. Using a larger test
dictionary T ′ such that T ⊂ T ′ would never decrease
BWP, and possibly increase it. However, this is defi-
nitely tighter than the original precision as now at least
the test dictionary is aware of the existence of these
words, and perhaps the creators deliberately left out the
translation because of being wrong. One could assume
that this assumption more than counteracts any “over-
estimation” that might have happened due to differ-
ing distributions in BWT (P) and E(P). To conclude,
we propose BWP as a heuristic indicator for the actual
precision, assuming that:

|BWT (P) ∩ E(T )|
|BWT (P)|

≈ |E(P) ∩ E(A)|
|E(P)|

.

It clearly holds as an equality in the limiting case of
T = A, as then BWA(P) = E(P) because A contains
all words, being exhaustive.

9.2.2. Both-Word Recall (BWR)
Achieving a high precision often entails that the pre-

diction set produced has less coverage and hence low
recall. However, this could be due to insufficient input
data or misalignment between the distributions of the
input set and the test dictionary. It can thus be useful to

22See Figure 6 and the corresponding discussion for a visual un-
derstanding of this metric, and the above categories.
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normalize by how much of the test dictionary can pos-
sibly be generated using a given input set by a hypo-
thetically perfect algorithm. Specifically, if for e ∈ T ,
v1(e) /∈ I or v2(e) /∈ I, there is no way any algorithm
could predict e as a valid translation, as it would be
completely unaware about the existence of at least one
of those two words.

It can thus be useful to limit our evaluation set to
those translations for which both words are in the in-
put set. Therefore, we define both-word recall (BWR)
as |BWI(T)∩E(P)|

|BWI(T)| and use it as an indicator. An auxil-
iary benefit of this metric is that we can now gain in-
sights on how performance can be improved further
by comparing it to traditional recall. Specifically, a re-
call significantly lower than BWR signals that the in-
put data is inappropriate to cover the test dictionary. If
the BWR itself is low, the algorithm is too conserva-
tive in predicting translations. In this way, we decouple
input data insufficiency from algorithmic incapability.

Moreover, in our experiments I consists of other
RDF dictionaries. These dictionaries are likely to con-
tain the frequently used words, and evaluation set
translations which do not have the corresponding
words in the input graphs are probably among less fre-
quent, specific words. Thus, BWR can in some tasks
be a measure of how much of the important part of the
left-out language pair we cover.

We would like to note that the BWR metric, while
good at evaluating different modifications to the same
algorithmic pipeline (such as different hyperparame-
ter settings), should be used carefully when comparing
two methods that use different input datasets. This is
because BWI(T ) is by definition a function of I, the
input data. BWR can directly only be used to compare
the data-effectiveness of the algorithms, i.e. how large
a prediction set do they produce considering the input
provided.

9.3. Measuring dictionary enrichment with external
data

While external corpora can be used for evaluating
additional translations, they often have significantly
different properties from the input and target sets. This
can lead to erroneous conclusions due to noisy results.

However, evaluating against additional data is par-
ticularly important in the context of this paper for the
following reasons:

– It is a direct accuracy indicator on the task of en-
richment.

– It can also verify how tight the lower bounds that
BWP provides are, as well as whether BWP is a
good substitute for precision.

– For the case of recall, while computing it against
completely new data is generally not a good idea,
we can verify that the BWR metric is much
more robust to dataset distribution differences
than vanilla recall by computing both on this new
test set.

We use the MUSE dictionaries (see Section 8.4) to
evaluate the quality of additional translations.

9.4. Measuring dictionary enrichment with human
assessment

As a final sanity check of our additional entries,
we took random samples of 150 predicted dictionary
entries that were not present in the test set T . These
belonged to open POS categories, that is, nouns, ad-
jectives, adverbs, verbs and proper nouns, and also
numerals. This was done directly using Apertium
bilingual dictionaries as input data with a rather lib-
eral (recall-oriented) set of hyperparameters: T = 0,
D = 4, Lmax = 8, M = 1.4, C = 0.1. for five
different language pairs (Spanish–English, Spanish–
Catalan, French–Occitan, Esperanto–English, French–
Catalan). We asked bilingual experts to evaluate them,
obtaining a sort of gold standard for each language
pair. 23

As these sets were produced with a different version
of the data and hyperparameters, we took an intersec-
tion between these sets and the additional translations
produced by a different setting that need to be evalu-
ated. While this is not directly a random sample of the
additional translations, it is a good approximation.

10. Results and Discussion

In this section we show and discuss the experimen-
tal results of our evaluation. For the sake of space, we
show here an aggregated view of the results, but we
make all the experimental data available online to al-
low further inspection.24

23We had 3 evaluators for the first 3 language pairs, so we con-
solidated their differences using a simple majority vote to produce
the gold standard. For the last two we had a single evaluator whose
results became the gold standard.

24See https://github.com/shash42/ApertiumBidixGen

https://github.com/shash42/ApertiumBidixGen
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In the following discussion, we define relative size
as |E(P)|
|E(T)| . This metric puts the actual size of the predic-

tion set in context, comparing with the left-out evalua-
tion set.25

Further, we use the BWP and vanilla recall metric
for computing F-scores. We prefer BWP over preci-
sion as it is far more indicative, and the vanilla pre-
cision metric is noisy as shown in Table 5. We have
to choose vanilla recall over BWR as recall uses the
same target set (E(T )) as BWP, whereas BWR picks
a subset of the target set (BWI(T )). This is important
as F-score is also used to compare algorithms, which
may use a different input set (I). Thus, we define F1

score as the harmonic mean between BWP and vanilla
recall. Note that the F1 score reported in this section is
the macro-average of the individual F1 scores over all
language-pairs tested.

We begin by showing our optimal results on the de-
velopment set in Table 10 (first row). Each metric is
averaged across the 11 language pairs. The computa-
tion time differs for each language pair to be generated,
so we report the range (minimum–maximum).

Notice the significant gap between BWR and recall,
showing the scope for improvement in the algorithm’s
results if the input RDF graph is enriched. Since our
procedure itself can iteratively aid such enrichment,
we hope that in the future this gap will be bridged.
Moreover, the BWP is much larger than the precision,
which shows that evaluation schemes based on pre-
cision could be grossly under-estimating the perfor-
mance of algorithms on this task, when the actual in-
sufficiency is in the test data.

We also report statistics in Table 4 for the 9 most
frequent POS. The other POS have too small number
of translations to give reliable results.

Table 4 shows that the transitive closure adopted
produces much more translations of properNouns and
numerals than the existing Apertium dictionaries. Yet,
BWP in figure 4 is quite high for properNouns, and de-
cent for numerals. Moreover, our procedure has high
precision for open POS, and less for closed POS. This
is because the translations of closed POS in Apertium,
and hence RDF, often encode grammatical changes in-
stead of semantic similarity. It might still be helpful to
use more restrictive hyperparameters or a higher confi-
dence threshold when producing translations of closed
POS.

25This can be larger than 100% if the prediction set is larger than
the evaluation set.

10.1. Demonstrating hyperparameter changes

Table 5 shows how decreasing the confidence thresh-
old C while holding all hyperparameters constant
leads to lower BWP and higher BWR, recall and pre-
diction set size as expected. The end-user can tune
this precision-recall tradeoff to their liking (see Sec-
tion 11.1 for a discussion in the context of Apertium),
but we stick to maximizing the F1. However notice the
noisy trend in vanilla precision, which points to how it
is not a reflective metric in many cases.

Table 6 shows that increasing the maximum allowed
cycle length keeping all else constant leads to decreas-
ing BWP, but increasing BWR, recall and time. We
see diminishing returns in the F1 score beyond cycle
length 6, as expected.

Next, Table 7 shows the comparison for proper
nouns and numerals between using the hyperparam-
eter setting used for other POS and the chosen T =
2,D = 4 one. Clearly we achieve much higher BWR,
and recall on using transitivity, with lower but decent
enough BWP. Particularly, the high BWR shows that
this method generates a large portion of the target set
that it possibly could have with the given input data.

To demonstrate the extent of polysemy in the RDF
Graph, we use the T = 2,D = 4 transitive setting
for all POS. The dismal results produced are shown
in Table 8. Despite the extremely large prediction set
produced, vanilla recall remains low. This illustrates a
limitation of vanilla recall: it gives a pessimistic view
of the algorithm performance. In that sense, BWR is
more reflective of the actual performance, given the
data provided.

Finally, we show in table 9 that allowing language
repetition actually improves performance, which led us
to removing the hyperparameter.

10.2. Dictionary generation

In Table 10 we present the results of transferring
the same hyperparameter setting derived in our devel-
opment set to our large set, continuing the dictionary
generation experiment but with a larger graph. It takes
longer to run, but still within one minute for all lan-
guage pairs. Once again, the accuracy metrics reported
are averaged across the 27 language pairs that are left-
out one by one.

The drop in the metrics on the large set compared to
the development set is not necessarily a sign of over-
fitting. The large set has more less-connected, under-
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POS Noun Verb properNoun Adjective Adverb Determiner Numeral Pronoun Preposition

Rel. Sz. 55.04% 57.03% 497.99% 43.44% 43.22% 45.65% 211.28% 59.25% 74.27%

Table 4
Relative size for different parts of speech, averaged across the language pairs in the Development set

Fig. 4. Breakdown by POS of BWP (left bars) and BWR (right bars), averaged across language pairs in the development set

C BWP Prec. BWR Recall F1

0.4 81.60% 46.36% 52.11% 29.96% 50.86%
0.5 85.00% 48.37% 50.96% 29.32% 50.93%
0.6 86.39% 48.93% 48.68% 27.94% 50.25%
0.7 87.80% 48.55% 42.24% 24.19% 47.35%
0.8 89.52% 48.40% 37.98% 21.69% 45.24%

Table 5
Change in results when varying the confidence threshold

resourced language pairs which bring down the aver-
ages.

In Table 11, we demonstrate a significant gain in rel-
ative size across POS when using the large set com-
pared to Table 4 when using the development set. Sim-
ilar trends are observed for BWR in Figure 5.

We show a comparison between the cycle density
algorithm and the transitive baselines in Table 12. We
see that transitive closure tends to increase relative
coverage and recall, but at the cost of a much lower
precision (55% and 13% for the respective baselines
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Lmax BWP BWR Recall F1 Time (s)

4 89.53% 30.50% 15.94% 30.24% 7–9
5 86.69% 49.39% 28.33% 50.43% 8–10
6 85.00% 50.96% 29.32% 50.93% 10–15
7 81.96% 51.56% 29.66% 50.31% 15–22
8 76.67% 52.35% 30.12% 47.92% 30–50

Table 6
Change in results when varying the maximum cycle length

POS T BWP BWR Recall

Proper nouns
0 98.47% 24.75% 11.95%
2 91.81% 78.11% 32.81%

Numerals
0 97.66% 55.64% 35.22%
2 77.17% 90.55% 61.27%

Table 7
Benefit from using transitivity for proper nouns and numerals

BWP BWR Recall Rel. Sz. F1

15.26% 81.11% 46.81% 718.75% 23.94%

Table 8
Average metrics across 11 language pairs in the dev. set when using
T = 2,D = 4 for all POS.

Repetition BWP BWR Recall Rel. Sz. F1

Allowed 85.00% 50.96% 29.32% 75.73% 50.93%
Restricted 86.89% 46.81% 28.49% 73.03% 49.45%

Table 9
Average metrics across 11 language pairs when not allowing lan-
guage repetition compared to when it is allowed.

vs. 84% for cycle density). Depending on the use case,
a balance towards recall might be acceptable, but usu-
ally a decent level of precision is important, which
the transitive procedures don’t provide. As expected,
baseline 2 produces many more candidate translations,
leading to a much larger prediction set but dropping
precision significantly.

In order to measure the impact of graph enrichment
towards improving results, in Table 13 we also re-
strict the averaged metrics to the 11 development set
language pairs, still using the whole large set as in-
put. There is a significant improvement in comparison
with the original development set experiments (see Ta-
ble 10). This demonstrates the advantages of adding
more input data. Notice how in this scenario, due to the
more well-connected nature of the language pairs, the

cycle density algorithm beats the transitive baselines in
terms of the F1-score as well.

In conclusion, our produced translations are on av-
erage 71.39% the size of existing Apertium dictionar-
ies at a high BWP of 84.07% across 27 language pairs
over 13 languages.

10.3. Dictionary enrichment

The coloured bar graph in Figure 6 shows the ratio
of translations that match the test set and contrasts it
with those that do not match, which are further clas-
sified. These are average metrics reported over the 27
language-pairs in the large set.

In particular, it classifies the additional translations
(the left bar) in terms of the common words with the
test set T and classifies the missed translations (the
right bar) of T in terms of the common words with
the input set I. This also provides a way to visualize
the BWP and BWR metrics defined. From bottom to
top, the BWP (resp. BWR) is the ratio of the height of
the first sub-bar to the combined height of the first two
sub-bars in the left (resp. right) bars.

Figure 6 has been shown for reference of the ratios
of number of different additional translations belong-
ing to each class across POS. Almost 30% of predicted
translations have neither word in the test set (demon-
strating the vast scope for enrichment), which is espe-
cially high due to the large relative size in proper nouns
and numerals. On the other hand, while the number
of missed translations with neither word in the input
is low, for many test set translations only one word is
present. This demonstrates the scope for improving re-
call by improving the coverage of the input data for
specific languages.

We now evaluate the additional translations for the 5
language pairs also present in MUSE (see Section 8.4).
In Table 14, we calculate the overall BWP of our ad-
ditional translation set with MUSE as test set. We fur-
ther show the breakdown of the additional translations
in terms of number of words shared with our original
test set, that is, the left-out RDF dictionary. Particu-
larly, nextra(i) denotes the number of additional trans-
lations with i words shared. BWPextra(i) denotes the
BWP with respect to MUSE for these nextra(i) transla-
tions. Notice the declining trend of BWP with increase
in shared words with the test set. This confirms our hy-
pothesis that many additional translations are actually
correct, and if both words are present in the test set
without a translation between them, the prediction is
much less likely to be correct. This shows that BWP
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BWP BWR Recall Rel. Sz. F1 Time Range (sec)

dev set 85.00% 50.96% 29.32% 75.73% 50.93% 10–15

large set 84.07% 40.98% 25.95% 71.39% 35.90% 22-57

Table 10
Results of the cycle density algorithm on average metrics in the development and large sets.

POS Noun Verb properNoun Adjective Adverb Determiner Numeral Pronoun Preposition

Rel. Sz. 70.78% 81.75% 539.29% 59.39% 61.99% 53.48% 241.53% 80.32% 107.10%

Table 11
Relative size for different POS, averaged across the 27 language pairs in the large set

Fig. 5. Breakdown by POS of BWP (left bars) and BWR (right bars), averaged across language pairs in the large set
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BWP BWR Recall Rel. Sz. F1

Cycle Density 84% 41% 26% 71% 36%

Baseline 1 55% 85% 56% 237% 42%

Baseline 2 13% 88% 57% 1038% 19%

Table 12
Comparing the baselines 1 and 2 (D=2 and D=4 respectively) and cycle density algorithm. Metrics have been averaged across the large set for
all the language pairs

BWP BWR Recall Rel. Sz. F1

Cycle Density 81% 56% 36% 94% 51%

Baseline 1 48% 81% 53% 267% 44%

Baseline 2 11% 83% 54% 1176% 17%

Table 13
Comparing the baselines 1 and 2 (D=2 and D=4 respectively) and cycle density algorithm. Metric have been averaged for the 11 pairs in the
development set using the other 26 languages in the large set as input

Fig. 6. Breakdown by POS of precision [left bars] (resp. recall [right bars]) and the different classes in terms of number of shared words of
additional (resp. missed) translations averaged across 27 language pairs in the large set
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with respect to the test set is indeed a tight approxima-
tion, and a much more useful metric than vanilla preci-
sion. These results also show that our method produces
a decent number of additional translations for many
language pairs, with especially encouraging results for
French–Spanish. Note that the BWP for these addi-
tional translations reported using MUSE would again
be a lower bound, and many of those not counted could
possibly be correct, just not present in MUSE.

Table 15 shows a comparison between BWR and
Recall with MUSE as the test set (T ) using the algo-
rithm’s output prediction sets (P) when given the large
set as input (I). While the recall is dismal, the BWR is
much higher, in-fact somewhat similar to the BWR on
the actual test sets in the large experiments, when we
evaluate on the left-out dictionary instead of MUSE.
This shows that the BWR is relatively insensitive to
the dataset distributions and thus a robust metric for
evaluation.

Finally, we report accuracy for the additional trans-
lations predicted during the large experiment on the
human evaluation sets in Table 16. The precision ob-
tained is encouraging, confirming that our procedure
works well for enrichment. Note that the varying sam-
ple size is due to the dataset difference and intersection
taken explained in Section 9.4.26

10.4. Recommending the use of BWP and BWR

BWR should be used as a valuable test metric when
the same input dataset is used, particularly by creators
when tuning and improving a particular algorithm. It
also signifies the data-effectiveness of any proposed
algorithm. It gives a clear picture of the optimization
landscape, growing more consistently than recall as the
prediction set becomes more liberal, as shown in Ta-
ble 8.

BWP can be used be used for comparison across
systems to make evaluation of translation inference
pipelines more accurate. A natural usage scenario for
this metric could be the TIAD shared task. In partic-
ular, the TIAD current evaluation procedure modifies
traditional precision metrics in the same direction as
in this paper by limiting the output set for Precision
to translations for which the word in the source lan-
guage is in the evaluation set. This is somewhat what

26The small sample for eng–cat is potentially due to some sub-
stantial difference in the Apertium bilingual dictionaries and the
Apertium RDF version we use, analyzing which is beyond the scope
of this paper.

we could call one-word-precision, but the key draw-
back is that it is asymmetric. The precision computed
for language pair A → B can be different from lan-
guage pair B → A, even though the choice of source
and target is actually arbitrary. Moreover, as shown in
Table 14, additional translations missed by one-word-
precision are correct far more often than those missed
by BWP. In-fact, past TIAD results show relatively low
precision values (up to a maximum of 0.7) [17], mak-
ing bilingual dictionary inference seem a harder prob-
lem than it actually is. This is unlike our symmetric
definition, which makes the evaluation process simpler
and directly conveys an indicator of the performance
of the algorithm which is independent of the setting.

11. Use cases

In this section we give more details on the applica-
tion of the cycle density algorithm to support gener-
ation and enrichment of dictionaries in the Apertium
framework, and introduce another use case, which is
the discovery of synonym words in the same language.

11.1. Apertium

As mentioned above, Apertium27 [2] is a free/open-
source rule-based machine translation system; that is,
the information it needs to translate from one lan-
guage to another is provided in the form of dictio-
naries and rule sets. Bilingual dictionaries are, there-
fore, a key component of the data used for a language
pair. Apertium language data is all released using the
GNU General Public Licence,28 a free/open-source li-
cence. This has, in particular, made it easy for deriva-
tives of Apertium bilingual dictionaries to be published
such as lexical-markup framework (LMF) dictionar-
ies,29 and the RDF dictionaries mentioned in this pa-
per [3, 4]. Methods like ours can be used to extend or
create Apertium bilingual dictionaries.

It has to be noted though that the LMF and RDF dic-
tionaries do not contain all the information present in
the Apertium bilingual dictionaries, but just the ortho-
graphic representation (spelling) of the lemma and the
POS; Apertium dictionaries may contain additional in-

27http://www.apertium.org
28Versions 2 (https://www.gnu.org/licenses/old-licenses/gpl-2.

0-standalone.html) and 3 (https://www.gnu.org/licenses/gpl-3.
0-standalone.html)

29Such as the LMF Apertium dictionaries in https://repositori.upf.
edu/handle/10230/13034 and https://github.com/apertium-lmf

http://www.apertium.org
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://www.gnu.org/licenses/gpl-3.0-standalone.html
https://repositori.upf.edu/handle/10230/13034
https://repositori.upf.edu/handle/10230/13034
https://github.com/apertium-lmf
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Lang. pair BWP nextra(0) BWPextra(0) nextra(1) BWPextra(1) nextra(2) BWPextra(2)

eng–cat 15.57% 156 80.00% 978 41.99% 2268 6.90%

eng–spa 35.64% 315 94.02% 575 51.89% 374 17.78%

fra–spa 65.97% 2218 94.94% 239 39.83% 105 11.08%

spa–ita 37.88% 108 76.05% 53 32.31% 47 19.34%

spa–por 54.72% 353 78.97% 131 38.98% 31 19.62%

Table 14
BWP for different classes of additional translations based on words shared with original test set evaluated using MUSE

Lang. pair Recall BWR

eng–spa 7.05% 53.24%

eng–cat 8.84% 49.81%

epo–eng 8.76% 59.69%

fra–cat 0.97% 7.94%

oci–fra 2.63% 23.51%

Table 15
Recall v BWR when comparing predictions using the large set with
MUSE dictionaries.

Lang. pair Sample Size Precision

eng–spa 133 78.94%

eng–cat 67 77.61%

epo–eng 146 80.13%

fra–cat 130 69.23%

oci–fra 134 84.32%

Table 16
Accuracy of additional translations based on human evaluation.

formation, for instance, to inform of the fact that the
gender of a word changes (so that, for instance, target-
side gender agreement with adjectives is ensured by an
appropriate rule), as in this Spanish–Catalan entry,

<e a="gema">
<p>

<l>almohada<s n="n"/><s n="f"/></l>
<r>coixí<s n="n"/><s n="m"/></r>

</p>
</e>

where in addition of the fact that the Spanish (left,
l) lemma almohada (‘pillow’) is a noun (n) corre-
sponding to the Catalan (right, r) lemma coixí with
the same part of speech, the entry also encodes the fact
that almohada is a feminine (f) noun and coixí is a
masculine (f) noun. In entries where the gender does
not change, this is usually not indicated. Therefore,
some of the bilingual correspondences predicted by
our tool in its current form may need to be completed

after being validated by an Apertium expert. Work is
in progress to add this information to the RDF graphs
and to improve the method described here to be able
to transfer morphological information to predicted en-
tries directly.

When Apertium experts process each predicted dic-
tionary entry, they first validate its usefulness and then
either discard it or adopt it, perhaps adapting it by
inserting additional information (like gender), before
adding it to the dictionary. The actual time required to
do these operations may be used to inform the weight β
that should be given to recall in an Fβ indicator, which
can in turn be used to determine the confidence thresh-
old. On one hand, if validating and discarding is much
faster than validating, adopting and adapting, perhaps
one could sacrifice precision to improve recall, select-
ing a higher value for β.30 On the other hand, having to
discard a deluge of useless entries may have a fatigue
effect that reduces the expert’s productivity, so β can-
not be too high either. Determining an optimal value
of β would require extensive measuring of actual ex-
pert work, which has not been attempted so far in the
literature.

11.2. Discovering Synonyms

We have until now discussed the usage of our algo-
rithm for creating bilingual dictionaries. The same cy-
cle density procedure however can also be used to gen-
erate edge predictions between words in the same lan-
guage, that is, synonyms. This allows extending from
generating just dictionaries to even creating thesauri.

In fact, some popular translation engines like Google
Translate also provide synonyms to end-users, unlike
Apertium. Automatic synonym generation from Aper-
tium data could thus help create a useful feature. Syn-

30Note that validating and adopting may be done faster than val-
idating and rejecting, as to do the latter operation safely one would
need to think harder about possible contexts.
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Language Prediction set (# pairs) Precision κ

English 9,652 76% 0.4291
Spanish 7,664 88.66% 0.5574
Catalan 10,254 87.33% 0.1581

Table 17
Human evaluation of predicted synonym pairs. κ denotes the Cohen
Kappa as a measure of inter-annotator agreement between the 2 an-
notators for each language.

onymy relations may also be useful represented as lin-
guistic linked data.

The confidence score obtained in our method can
also possibly be used as a measure for conceptual
similarity. Traditional methods based on word co-
occurence suffer from several issues for this task, re-
quiring further augmentation [31]. In-fact, it has even
been shown that having translation information is one
way to improve their performance [32]. Our method
takes that hypothesis to the extreme, relying purely on
translation graphs over documents. Some advantages
of this are as follows:

– Our method does not need large corpora, which
can be hard to obtain for under-resourced lan-
guages. Further it does not require complex aug-
mentation procedures, and requires no training
time.

– Since antonyms often occur in similar contexts in
sentences, they are assigned high similarity by co-
occurrence based methods. Our method does not
appreciably suffer from such problems.

– Co-occurrence based methods ignore polysemy.
They are known [33] to perform suboptimally
when finding synonyms for polysemous words
because they aggregate statistics across the differ-
ent semantic senses [34]. On the other hand, our
approach is explicitly polysemy-aware.

We demonstrate here a preliminary experiment. We
produce synonym pairs for English, Spanish and Cata-
lan using the large set of 27 language pairs as input.
Random samples of 150 words drawn from the 3 pre-
diction sets are evaluated by 2 human annotators each
and we report the results in Table 17. To the evalua-
tors, we pose a similar question as before: “Is there a
context where the two words are replaceable?”.

Note that we took the same hyperparameters and
confidence threshold as the translation setting (see
8.2). Modifications specific to synonym generation
might be required for optimal results. The results
demonstrated are just a proof of concept, more detailed

studies and exact comparisons with existing methods
are left for future work.

12. Conclusions and future work

This paper has explored techniques that exploit the
graph nature of openly available bilingual dictionar-
ies to infer new bilingual entries. It makes the most of
the knowledge that independent developers have sep-
arately encoded in different language pairs. The tech-
niques build upon the cycle density method of [6],
which has been modified (taking advantage of graph-
theoretical features of the dictionary graphs) so that it
is faster and has less hyperparameters to adjust when
applying it to a task. We release our tool as a free/open-
source software which can be applied to RDF graphs
but also directly to Apertium dictionaries.

We further show that existing automatic evaluation
metrics for dictionary inference have limitations. To
this end, we propose novel metrics for automatic eval-
uation of the dictionary inference task, Both-Word-
Precision and Both-Word-Recall, and show exten-
sively how they help to compare and improve existing
dictionary algorithms.

We experiment with a large portion of the Apertium
RDF graph on two bilingual dictionary development
scenarios: dictionary creation for a new language pair,
and dictionary enrichment. The results show how the
progressive enrichment of the translation graph leads
to better results with the cycle density method, and
confirm its superiority with respect to transitive-based
baselines. Further, our evaluations based on external
dictionaries (MUSE) and human assessment show that
a significant amount extra translations, not initially
found in the graph, are correct. We also illustrate that
the algorithm can be used to infer synonyms, unlike
pivot-based methods, and report a human-based evalu-
ation on this.

We highlight the following opportunities for future
work:

– Enrich the cloud of linguistic linked data by ap-
plying the method to other datasets and to connect
Apertium RDF with other families of dictionaries
on the Web.

– Exploit the fine-grained morphological informa-
tion, beyond POS, that is sometimes present in
Apertium bilingual entries.

– Improve the performance of the synonym gener-
ation through more elaborate evaluation and in-
clude it as a feature in Apertium.
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– Explore the ability of k-connectivity to automati-
cally partition the graph into multilingual synsets.

– Use topological methods like the ones highlighted
here to study polysemy from the perspective of
linguistic typology and connect it with studies in
cognitive science that use translation graphs to
study semantic mapping across languages [35].

– Study the feasibility of an iterative approach in
which validated predictions are fed back in each
round to produce additional predictions.

– Explore more optimal methods that directly find
the maximum density cycles under additional
constraints posed by our hyperparameters with-
out having to compute all cycles within a certain
length, perhaps with inspiration from maximum
density subgraph methods [36].

– Study how language pair developers use our tool
to understand their preferences in the precision-
recall trade-off, using these insights to improve
evaluation metrics.

– Participate in upcoming editions of the TIAD task
for more direct comparisons with other systems.

– Explore the complementary use of cycle based
techniques with pivot-based ones like OTIC.
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