
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Inferring Resource Types in Knowledge
Graphs using NLP analysis and human
in-the-loop validation: The DBpedia Case
Idafen Santana-Pérez a,* and Mariano Rico b

a Departamento de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran
Canaria, Spain
E-mail: idafen.santana@ulpgc.es
b Departamento de Inteligencia Artificial, Universidad Politécnica de Madrid, Madrid, Spain
E-mail: mariano.rico@upm.es

Abstract. Defining proper semantic types for resources in Knowledge Graphs is one of the key steps on building high quality
data. Often, this information is either missing or incorrect. Thus it is crucial to define means to infer this information. Several
approaches have been proposed, including reasoning, statistical analysis, and the usage of the textual information related to
the resources. In this work we explore how textual information can be applied to existing semantic datasets for predicting the
types for resources, relying exclusively on the textual features of their descriptions. We apply our approach to DBpedia entries,
combining different standard NLP techniques and exploiting complementary information available to extract relevant features
for different classifiers. Our results show that this approach is able to generate types with high precision and recall, above the
state of the art, evaluated both on the DBpedia dataset (94%) as well as on the LDH gold standard dataset (80%). We also discuss
the utility of the web tool we have created for this analysis, NLP4Types, which has been released as an online application to
collect feedback from final users aimed at enhancing the Knowledge graph.

Keywords: DBpedia, Data quality, Knowledge graph, NLP

1. Introduction

Type statements are the most basic and fundamen-
tal piece of information for semantic resources [1–
4]. They allow us to classify resources with differ-
ent levels of granularity and to apply semantic restric-
tions over them. This information can be generated
by different means, during the development of seman-
tic datasets, including manual, automated and semi-
automated approaches. In this paper we cover DBpe-
dia, one of the main dataset in the context of Linked
Data. DBpedia is generated automatically from the in-
formation contained in Wikipedia, using a set of map-
pings, mainly from the entries in tabular format con-
tained in the infoboxes of each Wikipedia page. The in-

*Corresponding author. E-mail: idafen.santana@ulpgc.es.

formation includes types and properties, and it is con-
verted to RDF. As not all pages contain infoboxes it is
not always possible to know the type of a resource. Ac-
cording to our calculation, around a 16% of resources
from Wikipedia do not have any type mapped to DB-
pedia (English). Notice that mappings are manually
create and many DBpedia datasets barely have map-
pings or do not have them at all. Therefore this 16%
is a lower boundary and most DBpedia chapters have
higher values.

We have also to take into account that, even in those
cases in which this information can be generated, it is
not always correct. As mappings are created collabo-
ratively by users, it is often the case that the types as-
signed are either incorrect (e.g. classifying San Fran-
cisco (California) as a Person, instead of as a Place),

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:idafen.santana@ulpgc.es
mailto:mariano.rico@upm.es
mailto:idafen.santana@ulpgc.es

2 I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

or too abstract (e.g. Cristiano Ronaldo as an Athlete,
when it should be stated as a Soccer Player).

This information can be inferred and corrected using
several approaches, as we discuss later in this paper.
Depending on which features are available, different
processes can be defined. In this paper we aim to ex-
plore how to induce types when there is not structured
information available, relying just on the unstructured
description of the resource in the form of text. We ex-
plore how the textual abstracts from the Wikipedia en-
tries can be exploited using NLP techniques to classify
entries into the DBpedia ontology. As our results show,
applying a combination of document-to-term matrix
and Named Entity Recognition produces a system able
to classify resources with high precision and recall
(around 95%).

The reminder of this paper is structured as follows.
In Section 2 we introduce the main approaches in the
field and how they align and differ from the one in-
troduced in this work. Section 3 covers the methodol-
ogy we have applied, which is evaluated in Section 6,
using both DBpedia and a gold standard dataset. Fi-
nally, Section 7 discusses about the main advantages
and drawbacks of our results and how they can be fur-
ther improved.

2. Related Work

The identification of the type of resources on large
datasets is a widely studied problem that has been ad-
dressed during last decade. On this regard, several ap-
proaches have been proposed, being the SDType [4]
system the most prominent one, specially in the con-
text of DBpedia, in which it has been used as part of
the regular data generation process. SDType exploits
the statistical information of the distribution of prop-
erties over resources and types to infer new statements
about the type of a resource. Based on their empirical
evaluation, authors conclude that properties targeting a
resource (so called, ingoing properties) are more use-
ful for inferring types than those with the resource as
subject (i.e. outgoing properties). It also shows that the
more properties a resource have (i.e. ingoing degree)
the more precise results are. As described by authors,
their system has been proven to outperform most of the
existing systems in the area.

In this same way, more recent studies have proposed
the use of machine learning techniques, as we do, for
improving the types of resources in a dataset. Different
contributions have been explored in this context, using

multilabel approaches [5, 6], varying on the algorithms
applied and how the training data is selected. In gen-
eral, all of them define the process of assigning types
as a multilabel classification problem, as several types
are expected for each resource. Approaches that do not
rely on ontologies can be defined as domain-agnostic,
having the advantage of being able to work without
any context information, but not guaranteeing that the
results are consistent with the expected data hierarchy.
They also provide worse results than those including
the taxonomy information. Many of these approaches
are modelled as binary classifiers [7], trained either at
the class level or at a general level. Taxonomy-based
classification approaches use the ontology to divide the
training data into different subsets according to dif-
ferent criteria [8]. According to [9], which provides a
comprehensive discussion on the state of the art, four
main types of hierarchical multilabel approaches can
be defined.

– Global approach: in which the system is trained
with one single set, including the taxonomy, guar-
anteeing that for each type assigned, all its parent
types in the hierarchy are also included, ensuring
taxonomy consistency. Our approach falls in this
category.

– Local Classifier Per Node (LCN): in which bi-
nary classifiers for each type. These classifiers are
similar to general multilabel classifiers, which is
used in the SLCN system [9], providing an scal-
able manner of generating types.

– Local Classifier Per Parent Node (LCPN): in
which for each type a classifier is generated to
classify its direct sub-types, thus only applied to
non-terminal nodes. That is, each trained model
is able to disambiguate and add more specific
knowledge from the next level in the hierarchy.

– Local Classifier Per Level (LCL): in which a
multilabel model is generated for each level of the
hierarchy. LCL approaches have not been fully
explored, as they do not guarantee taxonomy-
consistent results. LCL models generate one type
per level, but not necessarily following the classes
hierarchy.

Both of these two mentioned systems [4, 9] rely on
structured data, extracted from the property statements
from the datasets, to infer resource types. Even when
this approach is valid and has been proven to be suc-
cessful, the main goal of our study is to cover also
those cases in which such information is not available.

I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We pursue an approach able to generate types relying
only on text (unstructured data) rather than on property
assertions (structured data).

In this context, several works have been introduced,
exploiting different NLP-based techniques for type as-
signment based on text. In [10] a hierarchy of Sup-
port Vector Machines (hSVM) is introduced for ap-
plying lexico-syntactic patterns using a bag-of-words
model, extracted from short abstracts and Wikipedia
categories. This work extends the Linked Hypernym
Dataset Framework [11], by the same authors, for ex-
tracting these pattern-based structures. These works
introduce also a gold standard dataset, which we use in
this paper, to measure the performance of our system
and compare it to other existing tools. This gold stan-
dard has been produced, as reported by authors, using
experts to assign types to a subset of the DBpedia re-
sources.

Finally, it is worth to consider other contributions
that provide means for measuring the effectiveness of
type prediction systems, where other gold standards
have been introduced. Through the OKE challenge
series several systems have been proposed [12, 13],
as part of their types inference tasks, being evaluated
against the gold standards provided by organizers.1,2

These tasks are intended to generate new classes and
align them to existing ones, based the textual descrip-
tion of resources. The related gold standards provides
links to such classes and alignments.

In this work, as mentioned before, we focus on the
LHD dataset3, which provides a list of DBpedia re-
sources and a curated list of types from the DBpedia
ontology for each one of them. Data is generated using
crowdsourcing, reaching sufficient consensus for each
type assertion. The gold standard provided are used to
evaluate the performance of the LHD system [10] it-
self, which uses text mining techniques for class in-
ductions, as well as to evaluate how it compares to the
aforementioned SDType. Thus, we will use the LHD
gold standard to evaluate our system, as it provides
means for comparing our contribution to both, hSVM
and SDType.

3. Methodology

In this work we explore how text classification tech-
niques can be applied to infer types on DBpedia en-

1https://github.com/anuzzolese/oke-challenge
2https://github.com/anuzzolese/oke-challenge-2016
3http://ner.vse.cz/datasets/linkedhypernyms/evaluation/

tries. For this, we have implemented a pipeline in
which different NLP techniques are applied. As shown
in Figure 1, this process is composed by eight main
steps, some of which are optional, allowing us to mea-
sure the impact of applying or not some techniques.
These are the main features of these steps:

– Get Abstract text: get the text from available ab-
stracts. All those resources that do not have an
abstract are discarded as they can not be used to
train (or test) our system.

– Named Entity Recognition: using DBpedia Spot-
light [14] the system detects the Named Enti-
ties on the text, obtaining their types. The surface
form of those entities is simply ignored and only
the types (e.g. Person, Organization) are used.
These types are codified as classes from differ-
ent ontologies, including the DBpedia Ontology,
Schema, or FOAF. In this paper we only consider
types belonging to the DBpedia Ontology. As for
the Spotlight configuration, all the requests ex-
posed in this paper are performed with a 0.3 con-
fidence threshold.

– Text pre-process: apply several text normal-
ization techniques on the abstracts. These tech-
niques include stop words removal, lemmatiza-
tion, and stemming. More precisely we have used
the English stop words from the NLTK corpus,
the WordNet Lemmatizer 4, and the well-known
NLTK Porter Stemmer 5 for the stemming pro-
cess.

– Data vectorization: translate textual data into a
vector space model, using a Bag of Words ap-
proach. To increase the classification capability
of our classifier, we apply a TF-IDF metric to
get a more discriminatory score of each token in
a document. The input data for this process de-
pends on the two previous steps, and whether the
Named Enity Recongnition step has been carried
out. In general, the vectorization process com-
bines both the text and the types of the Named
Entities, adding these types as new words to the
input text.

– Training: train the classifier, using the vectorized
data generated before. Depending on the execu-
tion parameters, the amount of data used for train-
ing and the amount reserved for testing varies. In
this paper we have used a Support Vector Ma-

4https://www.nltk.org/_modules/nltk/stem/wordnet.html
5https://www.nltk.org/howto/stem.html

https://github.com/anuzzolese/oke-challenge
https://github.com/anuzzolese/oke-challenge-2016
http://ner.vse.cz/datasets/linkedhypernyms/evaluation/
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://www.nltk.org/howto/stem.html

4 I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Get Abstract Text

No

Yes
NER?

Named Enity
Recognition

(DBpedia Spotlight)

No

Yes

Pre-process?

Text Vectorization

Text Pre-processing

Training Prediction

Cross Validation

Evaluation

Fig. 1. Overall view of the NLP pipeline.

chine classifier from the scikit-learn python li-
brary. Using of SVMs for text classification has
been proven to be efficient, performing at the
state-of-the-art level6.

– Prediction: once our classifier has been trained,
the produced model can be used to predict data.
Either test data, reserved during the training
phase, or new unseen data, can be vectorized and
fed to infer new types. We use these training and
prediction steps when validating our approach
against the gold standard.

– Cross validation: to have a more generalized
view of the performance of the system, reducing
the overfitting effecting the model, we apply a K-
fold cross validation process over the dataset. As
we describe later in Section 6, we have applied a
5-fold evaluation, in which the system is trained
with 80% of the data and tested with the remain-
ing 20% each iteration.

– Evaluation: the final step of the workflow con-
sists on evaluating the results obtained, compar-
ing how the predictions, produced from any of the
steps introduced above, fit the labelled data. The
metrics for calculating how accurate the system is
are introduced in Section 6.1

6https://nlp.stanford.edu/IR-book/html/htmledition/
support-vector-machines-and-machine-learning-on-documents-1.
html

4. System description

The aforementioned workflow has been imple-
mented in Python, including NLTK [15] and scikit-
learn [16] libraries for NLP and machine learning
processing. The system has been designed as a data-
oriented scientific workflow, in which intermediate re-
sults are produced and stored so the execution can be
modular and resumed at any point. The code contain-
ing all these features is available online7.

4.1. Architecture

The system can be decomposed is different mod-
ules, including the training, prediction and user inter-
face modules. Figure 2 displays the structure of these
modules. The main module in the online application is
the user interface, which is implementend and hosted
using a Flask Server8. The usage of this interface is
described in more detail in Section 5.1.

The prediction module is the one in charge of ingest-
ing the text written by the user. It applies the same pro-
cess described in Section 3 to the text, which is always
the same used during the training, including the an-
notation of Named Entities using DBpedia Spoltlight
(this is optional both for training and prediction). The
trained models, obtained during the training phase, are

7https://github.com/idafensp/NLP4Types
8https://github.com/pallets/flask

https://nlp.stanford.edu/IR-book/html/htmledition/support-vector-machines-and-machine-learning-on-documents-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/support-vector-machines-and-machine-learning-on-documents-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/support-vector-machines-and-machine-learning-on-documents-1.html
https://github.com/idafensp/NLP4Types
https://github.com/pallets/flask

I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

 Web User Interface

Flask Server

Predict Module

Trained Model

Feedback Module

Mongo DB

D
Bp

ed
ia

Sp
ot

lig
ht

API

Fig. 2. System architecture.

used by the prediction module to generate the types
shown to the user.

On the right hand side of the figure, the feedback
module is the one in charge of providing all the options
for the user, so he or she can provide feedback on how
good the suggested type is. The results of this process
would be stored in a Mongo database9.

The usage of the interface, including the feedback
process, is further detailed in the following section.

5. Online application

An online web application has been created aimed at
providing a user interface in which anyone can type or
paste textual descriptions. The application returns the
predicted type. This application is available at http://
nlp4types.linkeddata.es. This application uses our best
model for predictions, which applies Named Entity
Recognition but does not include pre-preocessing tech-
niques, as discussed in Section 6.

5.1. User interface

Based on the NLP pipeline introduced above, the
online interface of NLP4Types allows user to predict
types from any free-text sample. The current version of
the tool includes a model trained with all the resources
from DBpedia 2016-10, which is used to predict types.
Currently only types belonging to the DBpedia ontol-
ogy are predicted.

5.2. User feedback

On of the goals of our tool, beyond providing a ser-
vice for users to test the results generated by our pre-
diction module, is to obtain information from them re-
garding how accurate those predictions are. In order to

9https://www.mongodb.com/

obtain this information, we implemented a set of fea-
tures to collect feedback from the user. This informa-
tion could be later used to evaluate the performance of
our system, as well as to improve the quality of our
models.

Once a prediction is obtained, the user can evaluate
the result and provide feedback. As shown in Figure 3,
five different criteria are provided, to specify whether
the prediction is wrong or right, or how it should be im-
proved. Once the user selects one, it is asked for some
extra feedback, including the expected type, user ex-
pertise and text source, as shown in Figure 4. The goal
of this tool is twofold: allowing the user to interact and
test the predictions, as well as to to collect feedback
that would allow us to analyze and improve the system
and its evaluation.

We are currently on the process of collecting feed-
back from users, expecting to collect enough informa-
tion to be used. This information will allow us to un-
derstand when and how our system is being to abstract
(i.e. inferring types that are too generic) or to concrete
(i.e. inferring types that are too precise and wrong).
This would lead to new experimentation processes, in
which we use modified training datasets, using types
that are higher or lower in the DBpedia taxonomy.
Studying the implications of these kind of variations
could lead to interesting discussion on how to over-
come the limitations of working with crowdsourced
Knowledge Graphs. As discussed before, improving
the quality of these kind of datasets if challenging, as
we are limited by the training data contained on them,
which usually contains errors introduced by the com-
munity annotators.

6. Evaluation

To measure the performance of our system we have
implemented two different evaluation setups. The first
one is a K-fold evaluation process, using the DBpedia
dataset for training and testing. For the second evalua-
tion we have used the aforementioned LHD Gold Stan-
dard, to measure how well our model works using ex-
ternal curated data. In both cases we have applied dif-
ferent ways of measuring the performance, using met-
rics that are more suitable for analyzing the results ob-
tained in a hierarchical scenario, such as the ones in
our data.

http://nlp4types.linkeddata.es
http://nlp4types.linkeddata.es
https://www.mongodb.com/

6 I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. A snapshot of the Web interface of NLP4Types.

Fig. 4. Feedback panel.

6.1. Metrics

We have selected four main metrics for evaluating
our results, aimed at providing better insights on how
our classifier works on taxonomical data. In a gen-
eral classification problem, if the predicted label is not
the same as the expected one, the prediction is com-
puted as an error. However, when working with la-

bels structured in a hierarchy, more flexible evalua-
tion metrics can be defined to take this into account.
The DBpedia ontology, for example, classifies Soccer
Player as a subtype of Athlete, and this as a subtype
of Person, which is a subtype of Agent. If we consider
the resource Cristiano Ronaldo as a Soccer Player on
the labeled data, but the prediction says it is an Ath-
lete, it will be counted as a completely erroneous pre-
diction according to the general classification metrics,
whereas it is indeed partially right.

This is discussed in [10], where authors define the
hierarchical precision, recall, and F-measure metrics to
evaluate the performance of different systems over the
same gold standard used in our evaluation. Thus, we
use these metrics, plus the regular accuracy, to eval-
uate our system. Figure 5 illustrates graphically how
hierarchical precision works.

As shown in the figure, the resource has type as
Soccer Player on the labelled data, while the system
predicts the type Athlete for it. From both types we
can extract the full type path, containing all parent
classes (we have omitted owl:Thing for clarity) follow-
ing the rdfs:subClassOf property in the DBpedia ontol-
ogy. With both type paths we can calculate the hierar-
chical metrics. In the example, all the types predicted
by the system were included in the labelled data, thus
is has a perfect hierarchical precision (hP = 1). Con-
cerning recall, the prediction misses the type Soccer
Player, getting only three out of four hits (hR = 0.75).
The hierarchical F-measurement is the harmonic mean
on both.

I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Formula and examples of hierarchical precision, recall and F-measure. White graph on the right represents labelled data and the corre-
sponding type path. The black one represents the predicted specific type and its type path

6.2. DBpedia Evaluation

We have evaluated the English version of the DB-
pedia dataset (2016-10 release10). The data files used
were instance_types_en.ttl, which contains the most
specific type for each resource and long_abstracts_
en.ttl, containing the abstract text extracted from the
corresponding Wikipedia entries. These files contain
5.150.434 types and 4.935.281 abstracts for DBpedia
resources. When both files are combined, joining types
and abstracts by their associated resource, we obtain a
total of 3.048.742 resources. It is worth to clarify that
all the resources that are typed only with owl:Thing are
not considered, as inferring this type is trivial and does
not add any information for the classification problem.

Following the approach described in Section 3, we
trained our system using the type and abstract informa-
tion available. The evaluation comprises a 5-fold pro-
cess, in which each iteration randomly picks 80% of
the data, and reserves 20% for test. The training data
is fed to the classifier on the training phase. We then
used the trained classifier to predict the types for the
test data.

We have executed this approach over three differ-
ent data sizes, to compare how the performance of the
system evolves as more data is available. The results
obtained are depicted in Table 1. As we can see, the
more data we are able to use for training the system,
the more precise it gets, obtaining around a 95% of hi-
erarchical F-measure when using the full training set.

As described in Section 3, the system can be config-
ured to apply different NLP techniques, such as NER
and text pre-processing. Table 1 show how our system
performs on our best setup. Table 2 shows the results

10http://downloads.dbpedia.org/2016-10/core-i18n/en/

Table 1
5-Fold evaluation results.

Resources Accuracy hPrec hRecall hF-measure

10K 0,734 0,894 0,886 0,890

1M 0,825 0,944 0,939 0,942

Full (3M) 0,835 0,952 0,949 0,950

of combining different techniques over the data11. The
three main elements that can be considered are: (1)
the abstract text (ABS), (2) the inclusion of named en-
tity types (NER), and (3) the pre-processing techniques
(PP). As shown in the table, the best results (in bold)
are obtained when combining abstract and named en-
tities extracted from it, without applying any normal-
ization (pre-processing).

The use of NER increases the performance of the
classifier, although the text of the abstract is the most
prominent feature for classifying. If we only use
named entities for classifying, not considering the ab-
stract, results drop from a 94% to a 78% hierarchical
F-measure (as shown in the the last row of the table),
which is reasonable taking into account how much in-
formation we are wasting. It is worth to notice that ap-
plying pre-processing techniques actually reduces the
accuracy of the system. This is most likely due to the
fact that processed tokens are more common among
different documents, having less discriminatory TF-
IDF scores.

6.3. Gold Standard Evaluation

Gold standards provide a benchmark for measuring
the performance of a system and how it compares to

11Due to time restrictions, in this paper we have evaluated our
approaches with one million entries for this comparison

instance_types_en.ttl
long_abstracts_en.ttl
long_abstracts_en.ttl
http://downloads.dbpedia.org/2016-10/core-i18n/en/

8 I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
5-Fold evaluation results from different NLP pipelines for one million entries. Plus (+) denote that the technique has been applied, where minus
(-) indicates that it has not been applied.

Resources
Accuracy hPrec hRecall hF-measure

ABS NER PP

+ + - 0.825 0.944 0.939 0.942
+ + + 0.811 0.937 0.932 0.935
+ - - 0.790 0.937 0.930 0.933
+ - + 0.779 0.929 0.921 0.925
- + - 0.568 0.782 0.782 0.782

other existing ones in the area. In this section we de-
scribe how we have evaluated our system using the
LHD Gold Standard dataset, described in Section 2.
As explained in [10], the gold standard is divided into
three datasets (namely GS1, GS2, and GS3), contain-
ing a total of 2092 resources and their curated types.
The only condition we require for them to be used
in our system is that they have an abstract associated.
From the total of 2.092 resources, 1.825 meet this re-
quirement. This is due to either changes on the URIs
of the resources or due to some of them being removed
in the DBpedia version used in this paper.

For this evaluation, we have trained our system with
the DBpedia dataset, removing the resources from the
gold standard during the training phase, and then ob-
tained the predictions for them. The results obtained
using different amounts of training data, as in the pre-
vious case, are shown in Table 3. As we can see, the
overall results are lower than those obtained in the 5-
fold evaluation. This was expected, as the types in-
cluded in the gold standard are manually curated and
do not necessarily follow the typing schema from DB-
pedia. That is, our system learns from DBpedia data
and produces types mimicking it, including the poten-
tial errors on the type assignment, whereas the man-
ually annotated ones might diverge, thus lowering the
accuracy of the predictions.

By using the gold standard dataset, we can compare
our system to those existing in the state of the art. Ta-
ble 3 includes the results reported in [10], in which
the hSVM and SDType systems are compared12. As
we can see, in general, our system outperforms both
hSVM and SDType over the gold standard resources
when trained with enough resources.

12We have included only the highest results reported, shown in
Table 6 of the cited paper by Kliegr et. al.

Table 3
Gold Standard Evaluation

Resources Accuracy hPrec hRecall hF-measure

10K 0.205 0.669 0.624 0.645
1M 0.420 0.811 0.807 0.809
Full 0.449 0.827 0.822 0.825

hSVM 0.548 0.890 0.665 0.761
SDType 0.338 0.809 0.641 0.715

7. Conclusions and Future Work

In this paper we have explored how NLP analysis
can be used for inferring types over knowledge bases,
applying it to the (English) DBpedia, one of the main
semantic datasets available. We have shown that by
embedding textual data in a vector space model using
a TF-IDF vectorization process, it is possible to guess
types for resources with high precision and recall.

Our results show that the pipeline outlined in this
paper is able to achieve up to a 94% of precision and
recall, and around 82% when using a gold standard for
evaluation, being around 6 points better than relevant
tools in the state of the art. As discussed before, the
test sets used under our k-fold approach were extracted
from DBpedia, whereas the test set used for the gold
standard evaluation is manually generated and curated
one. That is, the system is better at predicting types
over the DBpedia extracted test sets as they are more
similar to the ones used for training, containing the
same kind of type errors, which are common in DB-
pedia [17]. The gold standard set avoid some of those
errors, which make is slightly different from the DB-
pedia one. Thus the performance difference shown in
the results when comparing both types of evaluation.
This results show and interesting behaviour when us-
ing collaboratively annotated data for building system
such as the one presented in this work. We continue

I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

on researching this topic, exploring how to exploit the
advantages of using large datasets, such as DBpedia,
while avoiding the issues related to the inner quality of
the data they contain.

The study carried out shows that, despite using
Named Entity Recognition techniques over resource
abstracts increases the performance of the prediction
system, this improvement is not highly significant.
As well, it shows that applying normalization (pre-
processing) to the input text reduces the overall perfor-
mance. This is due to the fact that processed words are
not so discriminatory when classifying.

This work sets the foundation for more complex fu-
ture systems, in which new steps can be added to the
existing NLP pipeline. In this way, we are currently
exploring how n-grams increases the classification ca-
pabilities of the system, by generating more discrim-
inatory tokens. We are also working on producing a
more comprehensive evaluation in which we tune the
different parameters at the different steps of the pro-
cess, such as the confidence threshold and weights
for named entities, using different tools for text nor-
malization, or comparing TF-IDF with other vector-
ization techniques. In the near future we also plan
to study other classifiers for the prediction task, such
as Maximun Entropy classifiers[18], which has shown
promising result for text classification.

Acknowledgements

This work was partially funded by projects RTC-
2016-4952-7 (esTextAnalytics), and TIN2016-78011-
C4-4-R (Datos4.0), from the Spanish State Investiga-
tion Agency of the MINECO and FEDER Funds.

References

[1] V. Yadav and S. Bethard, A Survey on Recent Advances in
Named Entity Recognition from Deep Learning models, 2019.

[2] M. Habibi, L. Weber, M. Neves, D.L. Wiegandt and U. Leser,
Deep learning with word embeddings improves biomedical
named entity recognition, Bioinformatics 33(14) (2017), i37–
i48. doi:10.1093/bioinformatics/btx228.

[3] H. Paulheim and C. Bizer, Improving the quality of linked data
using statistical distributions, International Journal on Seman-
tic Web and Information Systems (IJSWIS) 10(2) (2014), 63–
86.

[4] H. Paulheim and C. Bizer, Type Inference on Noisy RDF Data,
in: The Semantic Web – ISWC 2013, 2013, pp. 510–525. ISBN
978-3-642-41335-3. doi:10.1007/978-3-642-41335-3_32.

[5] G. Tsoumakas and I. Vlahavas, Random k-Labelsets: An
Ensemble Method for Multilabel Classification, in: Machine
Learning: ECML 2007: 18th European Conference on Ma-
chine Learning, Warsaw, Poland, September 17-21, 2007. Pro-
ceedings, J.N. Kok, J. Koronacki, R.L.d. Mantaras, S. Matwin,
D. Mladenič and A. Skowron, eds, 2007, pp. 406–417. ISBN
978-3-540-74958-5. doi:10.1007/978-3-540-74958-5_38.

[6] M.-L. Zhang and Z.-H. Zhou, Multilabel Neural Networks
with Applications to Functional Genomics and Text Catego-
rization, IEEE Transactions on Knowledge and Data Engineer-
ing 18(10) (2006), 1338–1351. doi:10.1109/TKDE.2006.162.

[7] O. Luaces, J. Díez et al., Binary relevance efficacy for mul-
tilabel classification, Progress in Artificial Intelligence 1(4)
(2012), 303–313. doi:10.1007/s13748-012-0030-x.

[8] P. Ristoski and H. Paulheim, Feature Selection in Hierarchi-
cal Feature Spaces, in: Discovery Science: 17th International
Conference, DS 2014, Bled, Slovenia, October 8-10, 2014.
Proceedings, S. Džeroski, P. Panov, D. Kocev and L. Todor-
ovski, eds, Springer International Publishing, Cham, 2014,
pp. 288–300. ISBN 978-3-319-11812-3. doi:10.1007/978-3-
319-11812-3_25.

[9] A. Melo, J. Völker and H. Paulheim, Type prediction in noisy
RDF knowledge bases using hierarchical multilabel classifica-
tion with graph and latent features, Int. J. on Artificial Intelli-
gence Tools 26(02) (2017).

[10] T. Kliegr and O. Zamazal, LHD 2.0: A text mining approach to
typing entities in knowledge graphs, Web Semantics: Science,
Services and Agents on the World Wide Web 39 (2016), 47–61.

[11] T. Kliegr, Linked hypernyms: Enriching DBpedia with
Targeted Hypernym Discovery, Web Semantics: Science,
Services and Agents on the World Wide Web 31 (2015),
59–69. doi:https://doi.org/10.1016/j.websem.2014.11.001.
http://www.sciencedirect.com/science/article/pii/
S1570826814001048.

[12] A. Gangemi, A.G. Nuzzolese et al., Automatic Typing of
DBpedia Entities, in: International Semantic Web Conference
Proc., 2012, pp. 65–81.

[13] S. Faralli and S.P. Ponzetto, A hearst-like pattern-based ap-
proach to hypernym extraction and class induction, in: Seman-
tic Web Evaluation Challenge, 2016, pp. 48–60.

[14] P.N. Mendes, M. Jakob, A. García-Silva and C. Bizer, DBpe-
dia spotlight: shedding light on the web of documents, in: Pro-
ceedings of the 7th international conference on semantic sys-
tems, ACM, 2011, pp. 1–8.

[15] E. Loper and S. Bird, NLTK: The Natural Language Toolkit,
in: Proceedings of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language Processing and
Computational Linguistics - Volume 1, ETMTNLP ’02, Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA,
2002, pp. 63–70. doi:10.3115/1118108.1118117.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Ma-
chine Learning in Python, Journal of Machine Learning Re-
search 12 (2011), 2825–2830.

[17] M. Rico, I. Santana-Pérez, P. Pozo-Jiménez and A. Gómez-
Pérez, Inferring Types on Large Datasets Applying Ontology
Class Hierarchy Classifiers: The DBpedia Case, in: Knowledge
Engineering and Knowledge Management, C. Faron Zucker,
C. Ghidini, A. Napoli and Y. Toussaint, eds, Springer Interna-

http://www.sciencedirect.com/science/article/pii/S1570826814001048
http://www.sciencedirect.com/science/article/pii/S1570826814001048

10 I. Santana-Pérez and M. Rico / Enhancing KGs inferring Types and human-in-the-loop: The DBpedia case

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

tional Publishing, Cham, 2018, pp. 322–337. ISBN 978-3-030-
03667-6.

[18] A.L. Berger, V.J.D. Pietra and S.A.D. Pietra, A Maximum En-
tropy Approach to Natural Language Processing, Comput. Lin-
guist. 22(1) (1996), 39–71. http://dl.acm.org/citation.cfm?id=
234285.234289.

[19] M. Rico, N. Mihindukulasooriya and A. Gómez-Pérez, Data-
Driven RDF Property Semantic-Equivalence Detection Us-
ing NLP Techniques, in: EKAW Proceedings, LNCS 10024,
Springer International Publishing, 2016, pp. 797–804. ISBN
978-3-319-49004-5. doi:10.1007/978-3-319-49004-5_51.

[20] F. Marini, A.L. Magrì and R. Bucci, Multilayer feed-forward
artificial neural networks for class modeling 88 (2007), 118–
124.

[21] N. Mihindukulasooriya, M. Rico et al., Repairing Hid-
den Links in Linked Data: Enhancing the quality of
RDF knowledge graphs, in: K-CAP proceedings, 2017.
doi:10.1145/3148011.3148020.

[22] K. Gunaratna, K. Thirunarayan, P. Jain, A. Sheth and S. Wi-
jeratne, A Statistical and Schema Independent Approach to
Identify Equivalent Properties on Linked Data, in: Proceedings
of the 9th International Conference on Semantic Systems, I-
SEMANTICS ’13, ACM, New York, NY, USA, 2013, pp. 33–
40. ISBN 978-1-4503-1972-0. doi:10.1145/2506182.2506187.

[23] B. Hachey, W. Radford, J. Nothman, M. Honnibal and
J.R. Curran, Evaluating entity linking with Wikipedia, Artifi-
cial intelligence 194 (2013), 130–150.

[24] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and
S. Auer, Quality assessment for linked data: A survey, Seman-
tic Web 7(1) (2016), 63–93.

[25] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh,
J. Lehmann, E. Mannens, S. Hellmann and R. Van de Walle,
Assessing and refining mappingsto rdf to improve dataset
quality, in: International Semantic Web Conference, Springer,
2015, pp. 133–149.

[26] D. Kontokostas, M. Brümmer, S. Hellmann, J. Lehmann and
L. Ioannidis, NLP data cleansing based on linguistic ontology
constraints, in: European Semantic Web Conference, Springer,
2014, pp. 224–239.

[27] H. Paulheim, Data-driven Joint Debugging of the DBpedia
Mappings and Ontology, in: European Semantic Web Confer-
ence, 2017, pp. 1–15.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann
and I.H. Witten, The WEKA data mining software: an update,
ACM SIGKDD explorations newsletter 11(1) (2009), 10–18.

[29] D. Fleischhacker, H. Paulheim, V. Bryl, J. Völker and C. Bizer,
Detecting errors in numerical linked data using cross-checked
outlier detection, in: International Semantic Web Conference,
Springer, 2014, pp. 357–372.

[30] H. Paulheim, Identifying Wrong Links between Datasets by
Multi-dimensional Outlier Detection., in: WoDOOM, 2014,
pp. 27–38.

[31] J. Debattista, S. Londoño, C. Lange and S. Auer, Quality
assessment of linked datasets using probabilistic approxima-
tion, in: European Semantic Web Conference, Springer, 2015,
pp. 221–236.

[32] J. Debattista, C. Lange and S. Auer, A Preliminary Investiga-
tion Towards Improving Linked Data Quality Using Distance-
Based Outlier Detection, in: Joint International Semantic Tech-
nology Conference, Springer, 2016, pp. 116–124.

[33] D. Gerber, D. Esteves, J. Lehmann, L. Bühmann, R. Usbeck,
A.-C.N. Ngomo and R. Speck, DeFacto—Temporal and mul-
tilingual Deep Fact Validation, Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 35 (2015), 85–101.

[34] P.N. Mendes, H. Mühleisen and C. Bizer, Sieve: linked data
quality assessment and fusion, in: Proceedings of the 2012
Joint EDBT/ICDT Workshops, ACM, 2012, pp. 116–123.

[35] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer and
J. Lehmann, Crowdsourcing linked data quality assessment,
in: International Semantic Web Conference, Springer, 2013,
pp. 260–276.

[36] M. Ketterl, L. Knipping, N. Ludwig, R. Mertens, J. Waitelo-
nis, N. Ludwig, M. Knuth and H. Sack, Whoknows? evaluating
linked data heuristics with a quiz that cleans up dbpedia, Inter-
active Technology and Smart Education 8(4) (2011), 236–248.

[37] N. Mihindukulasooriya, M. Poveda-Villalón, R. García-Castro
and A. Gómez-Pérez, Collaborative Ontology Evolution and
Data Quality-An Empirical Analysis, in: International Expe-
riences and Directions Workshop on OWL, Springer, 2016,
pp. 95–114.

[38] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and
Z. Ives, DBpedia: A Nucleus for a Web of Open Data, The
Semantic Web (2007), 722–735.

[39] M. Nickel, K. Murphy, V. Tresp and E. Gabrilovich, A Re-
view of Relational Machine Learning for Knowledge Graphs,
in: Proceedings of the IEEE, Vol. 104, IEEE, 2015, pp. 11–33.

[40] M.-L. Zhang and Z.-H. Zhou, A review on Multi-Label Learn-
ing Algorithms, IEEE Transactions on Knowledge and Data
Engineering (2014), 1819–1837.

[41] P. Probst, Q. Au, G. Casalicchio, C. Stachl and B. Bischl,
Multilabel Classification with R Package mlr, arXiv preprint
arXiv:1703.08991 (2017).

[42] L. Breiman, Random Forests, Machine Learning 45(1) (2001),
5–32.

[43] K.P. Murphy, Naive bayes classifiers, University of British
Columbia (2006).

[44] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.
ISBN 1-55860-238-0.

[45] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Mo-
toda et al., Top 10 algorithms in data mining, Knowledge and
information systems 14(1) (2008), 1–37.

[46] S. Faralli and S.P. Ponzetto, DWS at the 2016 open knowl-
edge extraction challenge: a hearst-like pattern-based approach
to hypernym extraction and class induction, in: Semantic Web
Evaluation Challenge, Springer, 2016, pp. 48–60.

[47] N. Mihindukulasooriya, M. Rico et al., An Analysis of the
Quality Issues of the Properties Available in the Spanish DB-
pedia, in: 16th Conference AEPIA, 2015, pp. 198–209.

http://dl.acm.org/citation.cfm?id=234285.234289
http://dl.acm.org/citation.cfm?id=234285.234289

	Introduction
	Related Work
	Methodology
	System description
	Architecture

	Online application
	User interface
	User feedback

	Evaluation
	Metrics
	DBpedia Evaluation
	Gold Standard Evaluation

	Conclusions and Future Work
	Acknowledgements
	References

