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Abstract. Various knowledge bases (KBs) have been constructed via information extraction from encyclopedias, text and tables,
as well as alignment of multiple sources. Their usefulness and usability is often limited by quality issues. One common issue
is the presence of erroneous assertions and alignments, often caused by lexical or semantic confusion. We study the problem of
correcting such assertions and alignments, and present a general correction framework which combines lexical matching, context-
aware sub-KB extraction, semantic embedding, soft constraint mining and semantic consistency checking. The framework is
evaluated using three representative large scale KBs: DBpedia, an enterprise medical KB and a music KB constructed by aligning
Wikidata, Discogs and MusicBrainz.

Keywords: Knowledge Base, Assertion Correction, Alignment Correction, Semantic Embedding, Constraints

1. Introduction

Knowledge Bases (KBs) whose variants are now
often known as Knowledge Graphs [21] are playing
an increasingly important role in applications such as
search engines, question answering, common sense
reasoning and data integration. They include general
purpose KBs such as Wikidata [59], DBpedia [2] and
NELL [37], as well as domain specific KBs such as
Discogs and MusicBrainz. Such KBs may be con-
structed via methods such as extraction from web re-
sources (e.g., DBpedia and NELL) and crowdsourcing
(e.g., Wikidata) as well as bespoke knowledge engi-
neering [64], and they often include knowledge from
multiple sources that has been integrated via some
alignment procedure [6, 66]. Notwithstanding their im-
portant role, these KBs still suffer from various quality
issues, including constraint violations and erroneous

assertions [14, 45], that negatively impact their use-
fulness and usability. These issues may be due to the
knowledge itself (e.g., the core knowledge source of
DBpedia, Wikipedia, is estimated to have an error rate
of 2.8% [63]), or may be introduced by the knowledge
extraction and alignment process.

Existing work on KB quality issues covers not only
error detection and assessment, but also quality im-
provement via completion, canonicalizaiton and so
on [45]. Regarding error detection, erroneous asser-
tions can be detected by various methods, including
consistency checking with defined, mined or external
constraints [27, 47, 55], prediction by machine learn-
ing or statistical methods [9, 34, 46], and evaluation
by query templates [28]; see Section 2.1 for more de-
tails. However, erroneous assertions are typically dis-
carded [8, 41] or reported to curators for manual cor-
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rection. Manual curation is expensive and sometimes
unfeasible especially when the KB is very large. Ac-
tually most KB refinement works focus on completion
and error detection, but very few methods or toolkits
have been developed to correct the errors [45].

Lertvittayakumjorn et al. [29] and Melo et al. [33]
found that most erroneous assertions are due to confu-
sion or lexical similarity leading to entity misuse; for
example confusion between Manchester_United and
Manchester_City, two football clubs based in Manch-
ester, UK, can lead to facts about Manchester_United
being incorrectly asserted about Manchester_City.
Such errors are common not only in general KBs
like DBpedia and Wikidata but also in domain spe-
cific KBs like the medical KB used in our evaluation.
When aligning multiple KBs by either naive heuristics
(e.g., name matching) or state-of-the-art systems (e.g.,
LogMap [23]), erroneous alignments (i.e., mapping as-
sertions) are also often caused by confusion or lexical
similarity. Both [29] and [33] proposed to find an en-
tity to replace either the subject or the object of an er-
roneous assertion; however, subject replacement used
a simple graph metric and keyword matching, which
fails to capture the contextual semantics of the asser-
tion, while object replacement relies on Wikipedia dis-
ambiguation pages, which may be inaccessible or non-
existent, and again fail to capture contextual semantics.

Other work has focused on quality improvement, for
example by canonicalizing literal assertions which are
those assertions whose objects are literals that repre-
sent entities (i.e., entity mentions) [5]; for example,
the literal object in the assertion 〈Yangtze_River, pass-
esArea, “three gorges district”〉. Replacing this literal
with the entity Three_Gorges_Reservoir_Region en-
riches the semantics of the assertion, which can im-
prove query answering. Such literal assertions are per-
vasive in wiki-based KBs such as DBpedia [2] and
Zhishi.me [43], and in open KBs extracted from text;
they may also be introduced when two KBs are aligned
or when a KB evolves. According to the statistics in
[18], DBpedia (ca. 2016) included over 105,000 such
assertions using the property dbp:location alone. Cur-
rent methods can predict the type of the entity repre-
sented by the literal [18], which is useful for creating
a new entity, and can sometimes identify candidate en-
tities in the KB [5], but they do not propose a general
correction method; see Section 2.2 for a more details.

In this paper, we propose a general method for cor-
recting (i) assertions whose objects are either erro-
neous entities or literals in an individual KB, and (ii)

erroneous alignments in a heterogeneous KB as a re-
sult of aligning multiple KBs. To this end, we have
developed a general framework that exploits related
entity estimation, assertion prediction and constraint-
based validation, as shown in Figure 2. Given a set of
target assertions (i.e., assertions that have been iden-
tified as erroneous), it uses semantic relatedness and
heuristic rules to identify candidate entities for substi-
tution, extracts a multi-relational graph from the KB
(sub-graph) that can model the context of the target as-
sertions, and learns an assertion prediction model us-
ing both semantic embeddings and observed features.
The model predicts the assertion likelihood for each
candidate substitution, and filters out those that lead to
unlikely assertions. The framework further verifies the
candidate substitutions by checking their consistency
w.r.t. property range and cardinality constraints mined
from the global KB. The framework finally makes a
correction decision, returning a corrected assertion or
reporting failure if no likely correction can be identi-
fied.

Briefly, this paper makes the following main contri-
butions:

– It proposes a general framework that can correct
erroneous entity assertions and literal assertions
in an individual KB, and erroneous alignments of
multiple KBs;

– For each correction the framework estimates the
related entities via various approaches and ex-
tracts a context-aware sub-graph, leading to a
smaller number of candidates and higher effi-
ciency, thus enabling it to deal with large scale
KBs;

– The framework utilizes both semantic embed-
dings and observed features to capture the lo-
cal context for correction prediction, and com-
plements the prediction with consistency against
“soft” property constraints mined from the global
KB;

– It presents an evaluation of the framework with
erroneous entity assertions from a medical KB
mainly extracted from text, literal assertions from
DBpedia, and erroneous alignments in matching
artists from Wikidata, Discogs and MusicBrainz.

It is worth noting that for KB quality assurance, de-
tection and correction of erroneous assertions are two
critical, challenging and detachable tasks; this study
focuses on the correction task. This paper is a substan-
tial extension of a conference paper presented at The
Web Conference (WWW) 2020 [4] as it (i) adds the
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correction of mapping assertions in KB alignment; (ii)
enhances the techniques to deal with large scale KBs
(e.g., extracting a task-specific sub-graph), and evalu-
ates their efficiency and scalability; (iii) improves the
related entity estimation and assertion prediction for
higher robustness; and (iv) extends the evaluation with
experiments on an additional KB.

The remaining of the paper is organized as follows.
Section 2 reviews related work. Section 3 formalises
what we mean by a KB and the problem we are ad-
dressing. Section 4 presents the technical details of the
proposed framework. Section 5 presents an evaluation
of the framework. Section 6 concludes with a discus-
sion and some ideas for future work.

2. Related Work

In this section we survey existing work related to
assertion validation, which includes erroneous asser-
tion detection, assertion prediction with semantic em-
beddings and observed features, canonicalization, as-
sertion correction, and repair in KB alignment.

2.1. Assertion Validation

In our work we do not directly address the issue of
how to determine the validity of KB assertions, but
this is clearly an important consideration, and may
suggest directions for correction. One way to identify
likely invalid assertions is to check consistency against
logical constraints or rules. Explicitly stated KB con-
straints can be directly used, but these are often weak
or even non-existent. Thus, before using the DBpedia
ontology to validate assertions, Topper et al. [55] en-
riched it with class disjointness, and property domain
and range costraints, all derived via statistical analy-
sis; Paulheim and Gangemi [47] enriched it via align-
ment with the DOLCE-Zero foundational ontology.
Various constraint and rule languages such as Shapes
Constraint Language (SHACL) [27], Rule-Based Web
Logics [1] and SPARQL query templates [28], have
also been proposed so that external knowledge can be
encoded and applied. Similarly, Kharlamov et al. [26]
proposed to interpret (a subset of) ontology axioms as
(datalog) integrity constraints to assess the complete-
ness of the KB.

As machine learning has developed, various meth-
ods have been proposed to encode the semantics of en-
tities and relations into vectors for prediction [61]. The
observed features are typically indicators (e.g., paths)

extracted for a specific prediction problem. They often
work together with other learning and prediction algo-
rithms, including supervised classification (e.g., PaTy-
BRED [33]), autoencoder (e.g., RDF2Vec [51]), statis-
tical distribution estimation (e.g., SDValidate [46]) and
so on. PaTyBRED and SDValidate directly detect erro-
neous assertions, while RDF2Vec utilizes graph paths
to learn intermediate entity representations that can be
further used to validate assertions via supervised clas-
sification.

In contrast to observed features, which often rely
on ad-hoc feature engineering, semantic embeddings
(vectors) can be learned by minimizing an overall loss
with a score function for modeling the assertion’s like-
lihood [61]. They can be directly used to estimate the
assertion likelihood. State-of-the-art methods include
those geometric or translation-based models such as
TransE [3], TransH [62], TransR [31], and those de-
composition or latent factor models such as DistMult
[67] and ComplEx [57]. They can also be combined
with algorithms such as outlier detection [9] and su-
pervised classification [38] to deal with assertion vali-
dation in specific contexts.

On the one hand, the aforementioned methods were
mostly developed for KB completion and erroneous
assertion detection, and few have been applied in as-
sertion correction, especially the semantic embedding
methods. On the other hand, they suffer from various
shortcomings that limit their application. Consistency
checking depends on domain knowledge of a specific
task for constraint and rule definition, while the mined
constraints and rules are often weak in modeling lo-
cal context for disambiguation. Semantic embedding
methods are good at modeling contextual semantics
in a vector space, but are computationally expensive
when learning from large KBs [44] and suffer from low
robustness when dealing with real world KBs that are
often noisy and sparse [49].

2.2. Canonicalization

Recent work on KB canonicalization is relevant to
our related entity estimation. Some of this work fo-
cuses on the disambiguation of entity mentions in an
open KB extracted from textual data [15, 58, 65];
CESI [58], for example, utilizes side information (e.g.,
WordNet), semantic embedding and clustering to iden-
tify equivalent entity mentions. However, these meth-
ods cannot be directly applied in our correction frame-
work as they focus on equality while we aim at esti-
mating relatedness. The contexts are also different as,
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unlike entity mentions, literals can only be the object
of a triple and usually have fewer links with entities.

Chen et al. [5] and Gunaratna et al. [18] aimed at
the canonicalization of literal objects used in assertions
with DBpedia object properties (whose objects should
be entities). Instead of correcting the literal with an ex-
isting entity, they focus on the typing of the entity that
the literal represents, which is helpful when a new en-
tity is created for replacement. Although [5] also tried
to identify an existing entity to substitute the literal,
it suffers from some limitations: the predicted type is
used as a constraint for filtering, which is not a robust
and general correction method; the related entity esti-
mation is ad-hoc and DBpedia specific; and the type
prediction itself only uses entity and property labels,
without any other contextual semantics.

2.3. Assertion Correction

We focus on recent studies concerning the automatic
correction of erroneous assertions. Some are KB spe-
cific. For example, Dimou et al. [11] refined the (rela-
tional data to RDF) mappings between Wikipedia data
and DBpedia knowledge to correct errors during DB-
pedia construction, while Pellissier et al. [48] mined
correction rules from the edit history of Wikidata to re-
solve its constraint violations. In contrast, our frame-
work is general and does not assume any additional
KB meta information or external data.

Regarding more general approaches, some aim at
eliminating constraint violations. For example, Chortis
et al. [7, 54] defined and added new properties to avoid
violating integrity constraints. These methods ensure
KB consistency, but they can neither correct the knowl-
edge itself nor deal with those wrong assertions that
satisfy the constraints. Lertvittayakumjorn et al. [29]
and Melo et al. [33] both correct assertions by replac-
ing the objects or subjects with correct entities. The
former found the substitute by either keyword match-
ing or a simple graph structure metric, while the latter
first retrieved candidate substitutes from the Wikipedia
disambiguation page (which may not exist, especially
for KBs that are not based on Wikipedia) and then
ranked them by lexical similarity. Both methods, how-
ever, only use simple graph structure or lexical sim-
ilarity to identify the substitute, and ignore the link-
age incompleteness of a KB. In contrast, our method
utilizes semantic embeddings to exploit the local con-
text within a sub-graph to predict assertion likelihood,
and at the same time uses global property constraints
to validate the substitution.

2.4. Alignment Repair

There have been some works for KB alignment re-
pair. Although some ontology alignment systems can
also repair instance mappings (e.g., LogMap [23]),
most of them focus on concept (class) mappings for
expressive ontologies. They usually aim to minimize
the undesired logical consequences caused by the map-
pings (e.g., unsatisfiabilities), by removing some map-
pings [23, 32, 50, 52, 53, 60] or modifying some ax-
ioms of the input ontologies [22] with heuristic, ad-
hoc, iterative or interactive methods. The study [8] also
removes some identity mappings that lead to constraint
violations but focuses on sameAs links of Linked Data.
Instead of removing some mappings, Euzenat [13] pro-
posed to generate new but less confident mappings af-
ter the faulty mappings are discarded. According to
the experiment, the solution achieves a high overall
precision and more coherent alignments. These repair
works aim at maximize logical consistency, but ig-
nore the truth of each mapping. They often adopt some
metrics, e.g., the principles of consistency and con-
servativity proposed by Jimenez-Ruiz et al. [25], to
assess the logical consequences. However, in dealing
with real world KB alignments, especially those entity
alignments with limited logic constraints in the input
KBs, erroneous mappings often do not lead to any in-
consistency. In contrast, our correction method aims at
maximising the “truth” of a mapping and can deal with
erroneous mappings that are detected by any method,
including logical inconsistency, third party applica-
tions or human beings. Moreover, to the best of our
knowledge, we are among the first to consider entity
mapping repair for large scale KBs.

3. Background

3.1. Knowledge Base

In this study we consider KBs that follow Seman-
tic Web standards including RDF (Resource Descrip-
tion Framework), RDF Schema, OWL (Web Ontology
Language)1 and the SPARQL Query Language [12].
A KB is assumed to be composed of a TBox (ter-
minology) and an ABox (assertions). The TBox usu-
ally defines classes (concepts), a class hierarchy (via
rdfs:subClassOf ), properties (roles), and property do-

1There is a revision of the Web Ontology Language called
OWL 2, for simplicity we also refer to this revision as OWL.
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mains and ranges. Each class or property is represented
by an Internationalized Resource Identifier (IRI). It
may also use a more expressive language such as OWL
to express constraints such as class disjointness, cardi-
nality restrictions and so on [17].

The ABox consists of a set of assertions (facts) de-
scribing concrete entities (individuals), each of which
is represented by an IRI as well. Each assertion is rep-
resented by an RDF triple 〈s, p, o〉, where s is an en-
tity, p is a property and o is either an entity or a literal
(i.e., a typed or untyped data value such as a string or
integer). s, p and o are known as the subject, predicate
and object of the triple. An entity can be an instance
of one or more classes. This is expressed by a special
triple known as class assertion whose predicate is the
built-in rdf:type property and object is a class. In con-
trast, the assertion whose p is not a built-in property
from the reserved vocabulary of RDF, RDFS or OWL
is known as property assertion. KB here also includes
the case where the TBox is empty (i.e., the KB con-
sists only of an ABox), as is often the case in knowl-
edge graphs. Note the definition of entity in OWL in-
cludes class, property and individual. In this paper we
use entity to refer to just individual and directly use the
terms of class and property. This is often adopted in
many knowledge graph works, and makes this paper’s
presentation more clear.

Such a KB can be accessed by SPARQL queries us-
ing a query engine that supports the relevant entailment
regime (e.g., RDFS or OWL) [16]; such an engine
can, e.g., infer 〈e0 rdf:type c2〉, given 〈e0 rdf:type c1〉
and 〈c1 rdfs:subClassOf c2〉. In addition, large-scale
KBs often have a lookup service that enables users to
directly access its entities by fuzzy matching; this is
usually based on a lexical index that is built with en-
tity labels (phrases defined by rdfs:label) and some-
times entity anchor text (short descriptions). DBpedia
builds its lookup service2 using the lexical index of
Spotlight [35], while entities of Wikidata can be re-
trieved, for example, via the backend API of OpenTa-
pioca [10].

3.2. Knowledge Base Alignment

KB alignment refers to the merging of multiple KBs
by establishing mappings between classes, properties
and instances that represent the same entity [24, 66].
The aligned KBs are regarded as a single KB, where

2https://wiki.dbpedia.org/lookup

the TBoxes and ABoxes of the input KBs are (respec-
tively) merged; while the original KBs for alignment
are named as component KBs in this paper. Note that
it is possible that multiple entities/concepts/properties
from different component KBs have the same IRI, and
thus a mapping is not required in these cases.

The mappings are often represented using built-in
OWL properties defined by W3C, such as owl:sameAs,
owl:equivalentClass and owl:equivalentProperty,3 or
bespoke object properties. They are all referred to
as equivalence properties in this paper, while their
associated assertions are named as mapping asser-
tions. These mapping assertions are typically merged
into the TBox and/or ABox of the aligned KB. Fig-
ure 1 illustrates the alignment of three music KBs
that are extracted from Wikidata, Musicbrainz and
Discogs,4 respectively, where the four properties in
blue are equivalence properties. For example, the
equivalence property wd:musicbrainzArtist represents
the mappings of artists and artist groups between Wiki-
data and Musicbrainz; while the assertion 〈wd:Q1299,
wd:musicbrainzArtist, musicbrainz:The_Beatles〉 states
that the subject and the object refer to the same artist
group – the English pop-rock band “The Beatles".

As a single KB often has incomplete knowledge,
especially for enterprise applications in a specific
domain, the alignment of multiple KBs plays an
important role in KB enrichment and curation. A
typical case is aligning a local KB with domain-
specific knowledge and a widely known KB with
general knowledge (e.g., aligning the KB from Mu-
sicbrainz with the KB from Wikidata). In this case,
Musicbrainz has a more comprehensive coverage
of music artists, while Wikidata has more wide-
ranging knowledge regarding the music artists that it
does cover, so the merging can usefully enrich both
sources. Following the above example, we will infer
〈musicbrainz:The_Beatles, wd:P31, wd:Q5741069〉 if
〈wd:Q1299, wd:P31, wd:Q5741069〉 is declared in
the music KB from Wikidata, where wd:P31 repre-
sents the relation “instance of” and wd:Q5741069 rep-

3https://www.w3.org/TR/owl-ref/
4Instead of the whole Wikidata but a part of its entities about

artists artist groups, and their associated assertions are extracted
and used. They are mapped with artists of Musicbrainz KB and
Discogs KB by alignment tools and ad-hoc domain knowledge.
The latter also include assertions (e.g., those associated with
discogs:hasMember) that are extracted from their databases. Ele-
ments (entities, classes and properties) of the three component KBs
are represented with the namespaces of wd, musicbrainz and discogs
respectively.

https://wiki.dbpedia.org/lookup
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resents the concept “rock band”. Moreover, the merg-
ing could reveal conflicting information in the two
source KBs, which could indicate errors in one or both
of the source KBs [21].

3.3. Problem Statement

In this study, we focus on correcting ABox property
assertions, i.e., RDF triples 〈s, p, o〉 where p is not a
property from the reserved vocabulary of RDF, RDFS
or OWL. As mentioned above, if p is an equivalence
property, then we will call the triple a mapping asser-
tion; otherwise, if o is an entity, then we will call the
triple an entity assertion, and if o is a literal then we
will call the triple a literal assertion. Note that in the
case of literal assertions, correction may require more
than simple canonicalization; for example, the asser-
tion 〈Sergio_Agüero, playsFor, “Manchester United”〉
should be corrected to 〈Sergio_Agüero, playsFor,
Manchester_City〉 instead of just being canonicalized
as 〈Sergio_Agüero, playsFor, Manchester_United〉.

We assume that the input is a KB K, and a set E
of assertions that have been identified as incorrect and
whose types (literal assertion, entity assertion or map-
ping assertion) are given. For each literal or entity as-
sertion 〈s, p, o〉 in E , the proposed correction frame-
work aims at either finding an entity e from K as an
object substitute, such that e is semantically related to
o and the new triple 〈s, p, e〉 is “correct” (i.e., seems
to match the true state of affairs in the domain being
modelled), or reporting that there is no such entity e in
K; while for each mapping assertion 〈s, p, o〉 in E , the
substitute e does not need to be semantically related to
o but should be equivalent to s. We focus on correct-
ing the object because most erroneous literal and en-
tity assertions we find in those general KBs from en-
cyclopedias and those industrial domain specific KBs
from text and tabular data are caused by the confusion
over the objects. Nevertheless, our framework can in-
directly correct the subject in the reversed entity asser-
tion, that is, an assertion where subject and object are
exchanged and the inverse of the property is used in-
stead. In the case of the erroneous mapping assertions,
our framework can already be applied to correct the
subject as the equivalence properties in the mapping
assertions are symmetric.

We assume the erroneous assertions E are given.
This is reasonable in real world KB curation, as the
detection and correction are often regarded as two de-
tached tasks in a pipeline. Erroneous literal assertions
can be identified by data type inference and regular ex-

pressions as in [18], while erroneous entity assertions
and mapping assertions can be detected either man-
ually when the KB is applied in downstream appli-
cations or automatically by the methods discussed in
Section 2.1. For example, the erroneous assertions of
the medical KB are fed back by its industrial deploy-
ment in Tencent Technology and users. Specially, erro-
neous mapping assertions are often fed back by a post
processing step involving consistency checking (e.g.,
as in LogMap [23]) and human interaction [30].

It is important to note that if the KB is an OWL
ontology, the set of object properties (which connect
two entities) and data properties (which connect an en-
tity to a literal) should be disjoint. In practice, how-
ever, KBs such as DBpedia and some open KBs ex-
tracted from the text often do not respect this constraint
and some properties are often followed by both enti-
ties and literals. The literal assertions for correction are
based on such properties (e.g., playsFor in the afore-
mentioned erroneous literal assertion example), and it
causes no inconsistency to correct them by just replac-
ing their literal objects with entities without changing
the properties.

4. Methodology

4.1. Framework

As shown in Figure 2, our assertion correction
framework mainly consists of related entity estima-
tion, assertion prediction, constraint-based validation
and correction decision making. Related entity estima-
tion identifies those entities that are related to the cor-
rect object (substitute) of the assertion. Given a target
assertion t = 〈s, p, o〉, its related entities, ranked by
their relatedness, are denoted as REt. They are called
candidate substitutes of the original object o, and the
new assertions when o is replaced are called candi-
date assertions. We adopt two techniques — lexical
matching and word embedding — to measure related-
ness and estimate REt. Note that the aim of this step is
to ensure high recall; precision is subsequently taken
care of via assertion prediction and constraint-based
validation over the candidate assertions.

Assertion prediction estimates the likelihood of
each candidate assertion. Given a target assertion t =
〈s, p, o〉 and its related entities REt, for each entity ei in
REt assertion prediction outputs a score that estimates
the likelihood of 〈s, p, ei〉. To train such an assertion
prediction model, a sub-graph that contains the context
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wd:Artist
(Wikidata)

musicbrainz:Artist

discogs:SoloArtist

discogs:Group

musicbrainz:discogsArtist

musicbrainz:wikidataArtist

wd:discogsArtist

wd:musicbrainzArtistrdfs:label
wd:P31 (Instance of)

wd:P740 (Location of formation)
wd:P495 (Country of origin)

wd:P527 (Has part)
wd:P136 (Genre)

wd:P27 (Country of 
citizenship)

wd:P279 (Subclass of)
. . .

musicbrainz:artist_area
musicbrainz:memberCount
musicbrainz:hasMember
musicbrainz:artist_type
musicbrainz:artist_sort_name
musicbrainz:artist_name
foaf:gender
. . .

discogs:name-real
discogs:name-variation
discogs:name
discogs:url
discogs:style
discogs:genre
discogs:hasMember
discogs:memberCount
. . .

Fig. 1. The Music KB Constructed by Mapping Artists of Wikidata, Discogs and Musicbrainz5

of the correction task (i.e., the target assertions E) is
first extracted, with the related entities, involved prop-
erties and their neighbourhoods; positive and negative
assertions are then sampled for training. State-of-the-
art semantic embeddings (e.g., TransE [3] and Dist-
Mult [67]), as well as some widely used observed fea-
tures (e.g., path and node) are used to build the asser-
tion prediction model.

Constraint-based validation checks whether a can-
didate assertion violates constraints on the cardinality
or (hierarchical) range of the property, and outputs a
consistency score which measures its degree of consis-
tency against such constraints. Such constraints can be
effective in filtering out unlikely assertions, but mod-
ern KBs such as DBpedia and Wikidata often include
only incomplete or weak constraints, or do not respect
the given constraints as no global consistency checking
is performed. Therefore, we do not assume that there
are any cardinality restrictions or range constraints in
the KB TBox,6 but instead use mined constraints, each
of which is associated with a supporting degree (prob-
ability).

Correction decision making combines the results
of related entity estimation, assertion prediction and
constraint-based validation; it first integrates the as-
sertion likelihood scores and consistency scores, and
then filters out those candidate substitutes that have
low scores. Finally, it either reports that no suitable
correction was found, or recommends the most likely
correction.

6Any property range and cardinality constraints that are defined
in the TBox, or that come from external knowledge, can be easily
and directly injected into the framework.

4.2. Related Entity Estimation

For each target assertion t = 〈s, p, o〉 in E , related
entity estimation first extracts its anchor phrases as the
input, and then extracts a list REt containing up to k
most related entities (i.e., |REt| 6 k) by comparing
the KB entities against the anchor phrases. The anchor
phrases of t are o itself if t is a literal assertion; other-
wise, they are the labels and name-like attributes (e.g.,
discogs:name-real in the music KB) of o if t is an en-
tity assertion, and of s if t is an mapping assertion.
For a literal/entity assertion t, REt is extracted from the
whole KB K; while for a mapping assertion t, REt is
extracted from a component KB of K where the ob-
ject o comes from. Our framework supports two lex-
ical matching approaches — traversal based and lex-
ical index (lookup service) based, and one word em-
bedding approach; this allows us to compare the effec-
tiveness of different approaches on different KBs (see
Section 5.2).

4.2.1. Lexical Matching (Traversal Based)
For a target assertion t, the lexical matching based

approach traverses each entity in the KB (or the com-
ponent KB of o if t is a mapping assertion) and ranks
these entities by their relatedness from high to low.
The relatedness between t and an entity is calculated as
follows. The lexical matching based approach calcu-
lates a string similarity score, i.e., normalized Edit Dis-
tance [39], between each anchor phrase of t and each
phrase (including labels and name-like attributes) of
this entity, and finally adopts the highest score among
all the phrase pairs to represent the relatedness of this
entity. The score is a value in [0, 1]; the higher the
score, the more related the entity is. The reason for
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Target	Assertions
e.g.,

<Yangtze_River, passesArea,
“three	gorges	district">

<Sergio_Agüero,	playsFor,	
Manchester_United>

Related Entities
(Candidate	Substitutes)

Sub-graph	&	Samples

Soft	Property	Constraints
(Cardinality	and	Range)

SPARQL 
Query

Related Entity 
Estimation

Assertion
Prediction	Model

Embeddings & 
Observed Features

Assertion
Likelihood	Scores

Consistency
Scores

Candidate 
Assertions

Correction	Decisions
e.g.,

<Yangtze_River,	 passesArea,	
Three_Gorges_Reservoir_Region>

< Sergio_Agüero,	playsFor,	
Manchester_City>

Decision Making 
(Filtering & 
Ensemble)

Consistency 
Checking

Knowledge Base

Constraint
Mining

Fig. 2. The Overall Framework for Assertion and Alignment Correction

adopting the highest score is to ensure a high recall of
the related entities.

4.2.2. Word Embedding
The general procedure of the word embedding based

approach is the same as the above lexical match-
ing based approach, except that it replaces the string
similarity score (i.e., normalized Edit Distance) be-
tween two phrases by the distance-based similarity
score (i.e., cosine similarity) between their embed-
dings (vectors). To calculate the vector of a phrase,
the word embedding based approach (i) tokenizes
the phrase and removes the stop words, (ii) repre-
sents each token as a vector using a word embed-
ding model (e.g., Word2Vec [36]) that is trained us-
ing a large corpus, where tokens out of the model’s
vocabulary are ignored, (iii) calculates the average of
the vectors of all the tokens. Compared with lexical
matching, word embedding considers the semantics
of a word, which assigns a high similarity score to
two synonyms. In the above lookup example, “dis-
trict” becomes noise as it is not included in the label
of dbp:Three_Gorges_Reservoir_Region, but can still
play an important role in the word embedding based
approach due to the short word vector distance be-
tween “district” and “region”. However, in practice,
entity misuse is often not caused by semantic confu-
sion, but by similarity of spelling and token composi-
tion, where the lexical similarity is high but the seman-
tics may be quite different.

4.2.3. Lookup Service Based
For those KBs with a lexical index, the lexical

matching based approach can directly use a lookup
service based on the index, which typically returns a
list of related entities for each anchor phrase, ranked
from higher relatedness (lexical similarity) to lower re-
latedness, but mostly without a relatedness score; see,
e.g., the DBpedia Lookup Service mentioned in Sec-

tion 3.1. However, anchor phrases derived from (er-
roneous) entities or literals are often noisy and am-
biguous, and direct lookup using such phrases often
misses the correct entity. For example, the DBpedia
Lookup service returns no entities when given the in-
put “three gorges district”, which refers to the entity
dbr:Three_Gorges_Reservoir_Region. Thus it is com-
mon that entities by all the original anchor phrases are
less than k. In this case, we retrieve a list of up to k
entities by repeating entity lookup using sub-phrases
of the longest anchor phrase, starting with the longest
sub-phrases and continuing with shorter and shorter
sub-phrases until either k entities have been retrieved
or all sub-phrases have been used. To extract the sub-
phrases, we first tokenize the original phrase, remove
the stop words and then concatenate the tokens in their
original order for sub-phrases of different lengths.

When the lookup service enables the relatedness
score, multiple lists of related entities from different
sub-phrases can be merged by re-ordering the entities
from high relatedness score to low. When there are
no relatedness scores, to merge the entity lists, entities
with a front position in their original list are still ranked
in the front, while entities with the same position in
their original lists are ranked by the following rule: en-
tities by a longer sub-phrase are ranked in the front.
Considering two related entity lists

[
e11, e

1
2, ..., e

1
k

]
and[

e21, e
2
2, ..., e

2
k

]
by two sub-phrases with the first sub-

phrase being shorter than the second sub-phrase, the
merged related entity list is

[
e21, e

1
1, e

2
2, e

1
2, ..., e

2
n , e

1
n

]
.

In comparison with the aforementioned entity traver-
sal with a string similarity score or a word vector sim-
ilarity score, the lexical index based approach is much
more efficient, and makes it easy to utilize multiple
items of textual information, such as labels in multi-
ple languages and the abstract (some descriptions of
an entity), where different names of an entity are often
included. It is worth noting that we can ignore some
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anchor phrases in practice according to the real word
context; e.g., ignoring anchor phrases of non-English
labels if the lexical index is built on English text alone
or the word embedding is trained with an English cor-
pus. On the other hand, some more text can sometimes
be considered as additional anchor phrases, such as the
meaningful entity name in the IRI which often follows
the camel case.

4.3. Assertion Prediction

Given related entities REt of a target assertion t =
〈s, p, o〉, assertion prediction is used to estimate a like-
lihood score for the candidate assertion 〈s, p, ei〉, for
each entity ei in REt. We train an assertion predic-
tion model, i.e., a classifier, to predict whether a candi-
date assertion is true or not with a probability. For effi-
ciency in dealing with very large KBs, we first extract
a multi-relational sub-graph for the context of the task.
We then extract samples with the input of the observed
features or semantic embeddings from the sub-graph,
and finally train the prediction model.

4.3.1. Sub-graph
Given a KB K and a set of target assertions E , the

sub-graph corresponding to E is a set of assertions
(triples) of K, denoted as KE = 〈E, P,T 〉, where T de-
notes the assertions, E and P denote the associated en-
tities and properties (relations) respectively. As shown
in Algorithm 1, the sub-graph is calculated with three
steps: (i) extract the seeds — entities and properties
involved in the target assertions E , as well as related
entities of each assertion in E ; (ii) extract the neigh-
bourhoods — directly associated assertions of each of
the seed properties and entities; (iii) re-calculate the
properties and entities involved in the target assertions
and these neighbourhood assertions as P and E respec-
tively. Note that |= means an assertion is either directly
declared in the KB or can be inferred by the KB with
entailment reasoning. The statements with |= can be
implemented by SPARQL (cf. Section 3.1): Line 13
needs |P| queries each of which retrieves the associ-
ated assertions of a given property, while Line 14 needs
2 × |E| queries each of which retrieves the associated
assertions of a given subject or object.

4.3.2. Sampling
Both positive and negative samples (assertions)

are extracted from the sub-graph KE = 〈E, P,T 〉.
The positive samples are composed of two parts:
Tpos = Tsp ∪ Tpr, where Tsp refers to assertions
whose subjects and properties are among S E (i.e.,

Algorithm 1: Sub-graph Extraction (K, E , REt)

1 Input: (i) The whole KB: K, (ii) The set of target
assertions: E , (iii) The related entities of each
target assertion: REt, t ∈ E

2 Result: The sub-graph: KE = 〈E, P, T〉
3 begin
4 % Step 1: Extract the seeds
5 S E = {s|〈s, p, o〉 ∈ E}% extract subject

entities
6 P = {p|〈s, p, o〉 ∈ E}% extract target

properties
7 RE = ∪t∈EREt % The union of related entities
8 E = S E ∪ RE
9 foreach 〈s, p, o〉 in E do

10 if o is an entity then
11 E = E ∪ {o}% add object entity

12 % Step 2: Extract the neighbourhoods
13 T = {〈s, p, o〉|p ∈ P ∧ K |= 〈s, p, o〉}
14 T =

T ∪ {〈s, p, o〉|o ∈ E ∧ s ∈ E ∧ K |= 〈s, p, o〉}
15 % Step 3: Re-calculate entities and properties
16 E = E ∪ {s|〈s, p, o〉 ∈ T} ∪ {o|〈s, p, o〉 ∈ T}
17 P = P ∪ {p|〈s, p, o〉 ∈ T}
18 return KE = 〈E, P, T〉

those subject entities involved in E) and P respectively
(Tsp = {〈s, p, o〉|s ∈ S E ∧ p ∈ P ∧ 〈s, p, o〉 ∈ T}),
while Tpr refers to those assertions whose objects
and properties are among RE (i.e., those related
entities involved in E) and P respectively (Tpr =
{〈s, p, o〉|p ∈ P ∧ o ∈ RE ∧ 〈s, p, o〉 ∈ T}). Consid-
ering a target assertion set containing 〈Yangtze_River,
passesArea, “three gorges district”〉, one potential as-
sertion in Tsp is 〈Yangtze_River, passesArea, Shang-
hai〉, while one assertion in Tpr is 〈Yangtze_River, has-
Dam, Three_Gorges_Dam〉 where we assume hasDam
is a target property and Three_Gorges_Dam is a re-
lated entities of “three gorges district”. Tsp and Tpr are
calculated by two steps: (i) extract all the associated
assertions of each property p in P from T ; (ii) group
these assertions according to S E and RE. Compared
with an arbitrary assertion in T , the above samples are
more relevant to the candidate assertions for predic-
tion. This can help release the domain adaption prob-
lem — the data distribution gap between the training
and predicting assertions.

The negative samples include two parts as well:
Tneg = T̃sp ∪ T̃pr, where T̃sp is constructed according
to Tsp by replacing the object with a random entity in
E, while T̃pr are constructed according to Tpr by re-
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placing the subject with a random entity in E. Take Tsp

as an example, for each of its assertion 〈s, p, o〉, an en-
tity ẽ is randomly selected from E for a synthetic as-
sertion t̃ = 〈s, p, ẽ〉 such that K 2 t̃, where 2 denotes
that an assertion is neither declared nor can be inferred,
and t̃ is added to T̃sp. Considering the above posi-
tive assertion 〈Yangtze_River, passesArea, Shanghai〉,
one example of its conrresponding negative assertion
is 〈Yangtze_River, passesArea, Three_Gorges_Dam〉.
In implementation, we get K 2 t̃ if t̃ /∈ T , as T is ex-
tracted from the KB with inference. Tpr is constructed
similarly. The size of Tpos and Tneg is balanced.

4.3.3. Observed Features
We extract three kinds of observed features as the

prediction model’s input — (i) the path feature which
represents potential relations that can connect the sub-
ject and object, (ii) the node feature which represents
the likelihood of the subject being the head of the prop-
erty and the likelihood of the object being the tail of
the property, and (iii) the name similarity which rep-
resents degree of equality of two entities w.r.t. their
names. Note that the name similarity is used for cor-
recting mapping assertions.

For the path feature, we limit the path depth to
two, to reduce computation time and feature size,
since both have exponential complexity w.r.t. the
depth. In fact, it has been shown that paths of depth
one are already quite effective. They outperform the
state-of-the-art KB embedding methods such as Dist-
Mult and TransE, together with the node feature
on some benchmarks [56]. Meanwhile the predic-
tive information of a path will vanish as its depth
increases. In calculation, we first extract paths of
depth one: FP1

so and FP1
os, where FP1

so represents
properties from s to o (i.e., {p0|〈s, p0, o〉 ∈ T}),
while FP1

os represents properties from o to s (i.e.,
{p0|〈o, p0, s〉 ∈ T}). Next we calculate paths of depth
two (ordered property pairs) in two directions as well:
FP2

so = {(p1, p2)|〈s, p1, e〉 ∈ T ∧ 〈e, p2, o〉 ∈ T},
FP2

os = {(p1, p2)|〈o, p1, e〉 ∈ T ∧ 〈e, p2, s〉 ∈ T}. Fi-
nally, we merge these paths: FP = FP1

so ∪ FP1
os ∪

FP2
so ∪ FP2

os. The paths of an assertion (sample) are
encoded into a feature vector, denoted as f p, in the fol-
lowing way. We collect and order all the unique paths
from the training assertions as a candidate set, set the
dimension of the feature vector to the number of these
paths, and let one path correspond to one slot of the
feature vector. When an assertion’s FP is encoded into
f p, a slot of the vector is set to 1 if the slot’s corre-
sponding path is in FP and 0 otherwise.

The node feature includes two binary variables:
f n = [vs, vo], where vs denotes the likelihood of the
subject while vo denotes the likelihood of the object.
Namely, vs = 1 if there exists some entity o′ such that
〈s, p, o′〉 ∈ T and vs = 0 otherwise. vo = 1 if there ex-
ists some entity s′ such that 〈s′, p, o〉 ∈ T and vo = 0
otherwise. The name similarity feature, denoted as f s

is the string similarity score (i.e., normalized Edit Dis-
tance) of the names of two entity. As in related entity
estimation, entity labels of different languages as well
as name alike attributes are considered as the name,
and the highest score among all the phrase pairs of two
entities is adopted.

Finally we calculate f p, f n and f s, and concatenate
them for each sample in Tpos∪Tneg, and train an asser-
tion prediction model with a basic supervised classifier
named Multiple Layer Perception (MLP):

Mpns
classifier e.g., MLP←−−−−−−−−−−

Tpos∪Tneg
[ f p, f n, f s] . (1)

Note we can also use f p, f n and f s independently or
with an arbitrary combination for training. The trained
model is denoted by M with the corresponding sub-
scripts.

We also adopt the path-based latent feature learned
by the state-of-the-art algorithm RDF2Vec [51], as a
baseline. RDF2Vec first extracts potential outstretched
paths of an entity by e.g., graph walks, and then learns
embeddings of the entities through the neural language
model Word2Vec. In training, we encode the subject
and object of an assertion by their RDF2Vec embed-
dings, encode its property by a one-hot vector (each
slot of the vector corresponds to one property; the slot
of a specified property is set to 1 while the remain-
ing are set to 0), concatenate the three vectors, and
use the same classifier MLP. The trained model is de-
noted asMr2v.

4.3.4. Semantic Embeddings
A number of semantic embedding algorithms have

been proposed to learn the vector representation of KB
properties and entities. One common way is to define
a scoring function to model the truth of an assertion,
and use an overall loss for learning the semantics of
a KB. We adopt and evaluate five state-of-the-art al-
gorithms — TransE [3], TransH [62] and TransR [31],
DistMult [67] and ComplEx [57]. The former three are
translation-based models, while the latter two are la-
tent factor models. For high efficiency in dealing with
very large KBs, we learn the embeddings from the rel-
evant sub-graph as described in Section 4.3.1.
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TransE tries to learn a vector representation space
such that o is a nearest neighbor of s + p if an as-
sertion 〈s, p, o〉 holds, and o is far away from s + p
otherwise. + denotes the vector add operation. To this
end, the score function of t = 〈s, p, o〉, denoted as g(t),
is defined as d(es + ep, eo), where d is a dissimilarity
(distance) measure such as L2 norm, while es, ep and
eo are embeddings of s, p and o respectively. The em-
beddings have the same dimension, which can be con-
figured, and are initialized by a one-hot encoding. In
learning, a gradient descent optimization algorithm is
used to minimize the following margin-based ranking
loss:

L =
∑

t∈T,t→t̃

[γ + g(t)− g(t̃)]+ (2)

where γ > 0 is a hyper parameter, [·]+ denotes extract-
ing the positive part, and t̃ represents a negative as-
sertion of t, generated by randomly replacing the sub-
ject or object with an entity in E. TransH and TransR
are extensions of TransE. TransH first projects the sub-
ject vector and the object vector to the space of the re-
lation vector, and then calculate the score of a triple.
Namely, g(t) = d(e′s +ep, e′o), where e′s = es−wT

p eswp

and e′o = eo − wT
p eowp denote the projections, wp de-

notes the vector of projection weights to learn. TransR
transforms the subject vector and the object vector into
the space of the relation vector by multiplying them
with a matrix. Namely, g(t) = d(e′s + ep, e′o), where
e′s = Mpes and e′o = Mpeo, Mp denotes the project
matrix to learn.

DistMult is a special form of the bilinear model
which represents a property (relation) by a matrix.
DistMult assumes that the non-diagonal entries in the
relation matrices are zero. The score function of an
assertion is defined as g(t) = eT

s diag(ep)eo, where
diag(·) denotes the matrix’s diagonal elements (a vec-
tor). As TransE, the entity embeddings and property
embeddings are initialized by one-hot encoding, with a
configurable dimension. A similar margin-based rank-
ing loss as Equation (2) is used for training with a
gradient descent optimization algorithm. ComplEx ex-
tends DistMult by introducing complex-valued embed-
dings so as to better model asymmetric relations. Its
score function of an assertion is defined as g(t) =
Re(eT

s diag(ep)ēo), where ēo denotes the complex con-
jugate of eo and Re(·) means taking the real part of a
complex value.

In prediction, the score of an assertion g(t) can be
calculated with the corresponding scoring function and

the embeddings of its subject, property and object.
The lower the score, the more likely the assertion. To
make it consistent with the predicted score by MLP
and observed features, which is in [0, 1] and propor-
tional to the assertion likelihood, we calculate the as-
sertion likelihood score as

yscore =
1

1 + exp(− 1
g(t) )

, (3)

where exp denotes the exponential function. We de-
note the assertion prediction model by TransE, TransH,
TransR, DistMult and ComplEx as Mte, Mth, Mtr,
Mdm andMce respectively.

4.4. Constraint-based Validation

We first mine two kinds of soft constraints — prop-
erty cardinality and hierarchical property range from
the KB, and then use a consistency checking algorithm
to validate those candidate assertions.

4.4.1. Property Cardinality
Given a property p, its soft cardinality is represented

by a probability distribution Dp
car(k) ∈ [0, 1], where

k > 1 is an integer that denotes the cardinality. It is
calculated as follows: (i) get all the property assertions
whose property is p, denoted as T (p), and all the in-
volved subjects, denoted as S (p), (ii) count the num-
ber of the object entities associated with each subject
s in S (p) and p: ON(s, p) = |{o|〈s, p, o〉 ∈ T (p)}|,
(iii) find out the maximum object number: ON p

max =
max {ON(s, p)|s ∈ S (p)}, and (iv) calculate the prop-
erty cardinality distribution as:

Dp
car(k) =

|{s ∈ S (p)|ON(s, p) = k}|
|S (p)|

with k = 1, ...,ON p
max,

(4)

where |·| denotes the size of a set. Specially ON p
max =

0 if T (p) is empty. Dp
car(k > n) is short form of∑ON p

max
i=n+1 Dp

car(k = i), denoting the probability that the
cardinality is larger than n. In implementation, T (p)
can be accessed by one time SPARQL query, while
the remaining computation has linear time complexity
w.r.t. |T (p)|.

The probability of cardinality k is equal to the ra-
tio of the subjects that are associated with k differ-
ent entity objects. For example, considering a prop-
erty hasParent that is associated with 10 different sub-
jects (persons) in the KB, if one of them has one object
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(parent) and the remaining have two objects (parents),
then the cardinality distribution is: Dcar(k = 1) = 1/10

and Dcar(k = 2) = 9/10. Note that although such con-
straints follow Closed Word Assumption and Unique
Name Assumption, they are suitable for our method.
On the one hand, probabilities are estimated to repre-
sent the supporting degree of a constraint by the ABox.
One the other hand, they are used in an approximate
model to validate candidate assertions instead of as
new and totally true knowledge for KB TBox exten-
sion.

4.4.2. Hierarchical Property Range
Given a property p, its range constraint consists

of (i) specific range which includes the most specific
classes of its associated objects, denoted as Cp

sp, and
(ii) general range which includes ancestors of these
most specific classes, denoted as Cp

ge, with top classes
such as owl:Thing being excluded. A most specific
class of an entity refers to one of the most fine grained
classes. The most specific classes of an entity refers to
the most fine grained classes that the entity is an in-
stance of according to the class assertions and class hi-
erarchy in the KB. Namely, given an entity e, a class
c is one specific class of e if 〈e, rdf:type, c〉 and there
exists no class c′ that satisfies c′ 6= c, 〈e, rdf:type, c′〉
and 〈c′, rdfs:subClassOf, c〉. Note that there could be
multiple such classes as the entity could be asserted to
be an instance of multiple classes belonging to inde-
pendent branches of the hierarchy. General classes of
an entity are those that subsume one or more of the
specific classes in the KB via rdfs:subClassOf asser-
tions.

Each range class c in Cp
sp (Cp

ge resp.) has a proba-
bility in [0, 1] that represents its supporting degree by
the KB, denoted as Dp

sp(c) (Dp
ge(c) resp.). Cp

sp, Cp
ge and

the supporting degrees are calculated by the follow-
ing steps: (i) get all the object entities that are associ-
ated with p, denoted as OE(p); (ii) infer the specific
and general classes of each entity oe in OE(p), de-
noted as Csp(p, oe) and Cge(p, oe) respectively, and at
the same time collect Cp

sp as ∪oe∈OE(p)Csp(p, oe) and
Cp

ge as ∪oe∈OE(p)Cge(p, oe); (iii) compute the support-
ing degrees:

{
Dp

sp(c) =
|{oe|oe∈OE(p),c∈Csp(p,oe)}|

|OE(p)| , c ∈ Cp
sp,

Dp
ge(c) =

|{oe|oe∈OE(p),c∈Cge(p,oe)}|
|OE(p)| , c ∈ Cp

ge.

(5)

The degree of each range class is the ratio of the ob-
jects that are instances of the class, as either directly
declared in the ABox or inferred by rdfs:subClassOf.
The implementation needs one time SPARQL query to
get OE(p), and |OE(p)| times SPARQL queries to get
the specific and ancestor classes. The remaining com-
putation has linear time complexity w.r.t. |OE(p)|. As
property cardinality, the range is also used for approx-
imating the likelihood of candidate assertions, with a
consistency checking algorithm introduced bellow.

4.4.3. Consistency Checking
As shown in Algorithm 2, constraint checking acts

as a model to estimate the consistency of an asser-
tion against soft constraints of hierarchical property
range and cardinality. Given a candidate assertion t =
〈s, p, e〉, the algorithm first checks the property cardi-
nality, with a parameter named maximum cardinality
exceeding rate σ ∈ (0, 1]. Line 5 counts the number
of entity objects that are associated with s and p in the
KB, assuming that the correction is made (i.e., t has
been added into the KB). Note that 1 6 n 6 ON p

max+1.
Line 6 calculates its exceeding rate r w.r.t. ON p

max,
where r ∈ (−∞, 1]. In Line 8, ON p

max = 0 indicates
that p is highly likely to be used as a data property
in the KB. This is common in correcting literal asser-
tions: one example is the property hasName whose ob-
jects are phrases of entity mentions but should not be
replaced by entities. In this case, it is more reasonable
to report that the object substitute does not exist, and
thus the algorithm sets the cardinality score ycar to 0.

Another condition of setting ycar to 0 is r > σ. Spe-
cially, when σ is set to 1.0, r > σ (i.e., ON p

max = 1
, n = 2) means that p is a object property with func-
tionality in the KB but the correction violates this con-
straint. Note that n can exceed ON p

max by a small de-
gree which happens when ON p

max is large. For exam-
ple, when σ is set to 0.5, r = 0.25 (i.e., ON p

max = 4 and
n = 5) is allowed. Line 11 to 16 calculate the property
cardinality score ycar as the probability of being a func-
tional property (n = 1), or as the probability of being a
none-functional property (n > 1). Specially, we punish
the score when n > ON p

max (i.e., r > 0) by multiplying
it with a degrading factor 1 − r: the higher exceeding
rate, the more it degrades.

Line 17 to 21 calculate the property range score
yran, by combining the specific range score yran,c and
the general range score yran,g with their importance
weights ωc and ωg. Usually we make the specific
range more important by setting ωc and ωg to e.g.,
0.8 and 0.2 respectively. Line 19 computes yran,c and
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yran,g: the score is higher if more classes of the ob-
jects are among the range classes, and these classes
have higher range degrees. For example, considering
the property bornIn with the following range cardi-
nality: Cp

sp = {City,Town, Place}, Cp
ge = {Place},

Dp
sp(City) = 0.5, Dp

sp(Town) = 0.4, Dp
sp(Place) =

0.05 and Dp
ge(Place) = 0.95, we will have (i) yran,c =

1 − (1 − 0.5)(1 − 0.05) = 0.525 and yran,g = 0.95 if
C(e) = {City, Place}, (ii) yran,c = 0.05 and yran,g =

0.95 if C(e) = {Village, Place}, and (iii) yran,c =

0 and yran,g = 0 if C(e) = {Pro f essor, Person}.
The order of the consistency degree against the prop-
erty range is: {City, Place} > {Village, Place} >

{Pro f essor, Person}.
The algorithm finally returns the property cardinal-

ity score ycar and the property range score yran. The
former model is denoted asMcar while the latter is de-
noted asMran. According to some empirical analysis,
we can multiply or average the two scores, as the final
model of consistency checking, denoted asMcar+ran.

4.5. Correction Decision Making

Given a target assertion t in E , and its top-k related
entities REt, for each entity ei in REt, the correction
framework (i) calculates the assertion likelihood score
yl

i with an assertion prediction model (Mpns, Mte,
Mth,Mtr,Mdm orMce), and the consistency score yc

i

withMcar,Mran orMcar+ran; (ii) separately normal-
izes yl

i and yc
i into [0, 1] according to all the predictions

by the corresponding model for E ; (iii) ensembles the
two scores by simple averaging: yi =

(yl
i+yc

i )
2 ; (iv) fil-

ters out ei from REt if yi < τ. Note ei is always kept if
t is a literal assertion and its literal is exactly equal to
the label of ei. The related entities after filtering keep
their original order in REt, and are denoted as RE′t . τ
is a parameter in [0, 1] that needs to be adjusted with a
developing data set. In the end, the decision procedure
decides that there is no entity in the KB that can re-
place the object of t, if RE′t is empty, or returns the top-
1 entity in RE′t as the object substitute if RE′t is NOT
empty. The ensemble of the assertion prediction score
and constraint-based validation score is not a must. Ei-
ther of them can make a positive impact independently,
while their ensemble can make the performance higher
in most cases, as evaluated in Section 5.4.

Algorithm 2: Consistency Checking (Mran,
Mcar)

1 Input: (i) A candidate assertion: t = 〈s, p, e〉, (ii)
property cardinality constraint:
〈Dp

car,ON p
max〉, (iii) the maximum cardinality

exceeding rate: σ ∈ (0, 1], (iv) hierarchical
property range constraint:
〈Dp

sp,D
p
ge,C

p
sp,C

p
ge〉, (v) weights of the

specific range and general range: 〈ωc, ωg〉
2 Result: ycar: score that t is consistent with the

property cardinality; yran: score that t is
consistent with the property range

3 begin
4 % count the number of object entities
5 n = |{o|K |= 〈s, p, o〉, o is entity} ∪ {e}|;
6 r =

(n−ON p
max)

ON p
max

; % calculate the exceeding rate

7 % no object entities are associated with p in the
KB, or the cardinality exceeds the maximum by
a specific rate

8 if ON p
max = 0 ‖ r > σ then

9 ycar = 0;
10 else
11 if n = 1 then
12 % probability as a functional property
13 ycar = Dp

car(k = 1);
14 else
15 % probability as a none-functional

property
16 ycar ={

Dp
car(k > 1), if r 6 0

(1− r) · Dp
car(k > 1), else

17 C(e) = {c|K |= 〈e, rdf:type, c〉}; % get the
object’s classes

18 % calculate the constraint score of specific and
general ranges

19

{
yran,c = 1−

∏
c∈Cp

sp∩C(e)(1− Dp
ran(c)),

yran,g = 1−
∏

c∈Cp
ge∩C(e)(1− Dp

ran(c));

20 % calculate the overall range constraint score
21 yran = ωc · yran,c + ωg · yran,g;
22 return ycar, yran

5. Evaluation

5.1. Experiment Settings

5.1.1. Data
In our experiment, we correct (i) literal assertions

in DBpedia [2], (ii) entity assertion in an enterprise
medical KB whose TBox is defined by clinic ex-
perts and ABox is extracted from medical articles
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(text) by some open information extraction tools (cf.
more details in [42]), and (iii) mapping assertions in
a music KB that is constructed by aligning artist and
artist group entities in Wikidata and two KBs trans-
formed from Musicbrainz and Discogs databases (cf.
Figure 1). The data are representative of three com-
mon situations: errors of DBpedia are mostly inher-
ited from the source; errors of the medical KB are
mostly introduced by the extraction procedure; while
errors of the music KB are caused by KB alignment.
DBpedia is accessed via its official Lookup service,
SPARQL Endpoint7 and entity label dump (for re-
lated entity estimation with Word2Vec). The medical
KB contains knowledge about disease, medicine, treat-
ment, symptoms, foods and so on, with around 800
thousand entities, 7 properties, 48 classes, 4 million
property assertions. The music KB includes around
89.9 thousand, 1.5 million and 6.4 million entities
of artist and artist group from Wikidata, Musicbrainz
and Discogs, respectively; while its equivalence prop-
erties wd:musicbrainzArtist, wd:discogsArtist, mu-
sicbrainz:wikidataArtis and musicbrainz:discogsArtist
have around 50.9 thousand, 45.3 thousand, 178.3 thou-
sand and 590.1 thousand assertions associated, respec-
tively.

Regarding DBpedia, we reuse the real world literal
assertions proposed by [5, 18]. As our task is not typ-
ing the literal, but replacing it by an entity, literals con-
taining multiple entity mentions are removed, while
properties with insufficient literal objects are comple-
mented with more literals from DBpedia. We annotate
each assertion with a ground truth (GT), which is ei-
ther a correct replacement entity from DBpedia (i.e.,
Entity GT) or none (i.e., Empty GT). Ground truths
are carefully checked using DBpedia, Wikipedia, and
multiple external resources. Regarding the medical KB
and the music KB, we use a set of assertions with er-
roneous entity objects that have been discovered and
collected during deployment of the KB in enterprise
products in Tencent Technology and Oxford Seman-
tic Technology, respectively. For the music KB, we se-
lect two equivalence properties: wd:musicbrainzArtist
which aligns a Wikidata entity to a Musicbrainz entity,
and wd:discogsArtist which aligns a Wikidata entity to
a Discogs entity. The GT annotations of the medical
KB erroneous assertions have been added with the help
of clinical experts, while those of the music KB erro-
neous mapping assertions have been added by check-

7http://dbpedia.org/sparql

ing the links between the web pages of artists and artist
groups (e.g., the link to a Wikidata entity on the Mu-
sicbrainz page of an artist), and detailed information
e.g., an artist’s biography and album. For convenience,
we call the above three target assertion sets DBP-Lit,
MED-Ent and MUS-Map respectively.8 Some statis-
tics are shown in Table 1. Each target assertion set is
randomly splitted into a validation set (10%) for devel-
oping the framework (e.g., hyper parameter adjustion)
and a testing set (90%) for measuring the performance.
Note that no training set is needed since the framework
needs no annotated assertions (the samples for training
the assertion prediction model are extracted from the
existing assertions of the KB itself).

5.1.2. Settings
In the evaluation, we first analyze related entity es-

timation (Section 5.2) and assertion prediction (Sec-
tion 5.3) independently. For related entity estimation,
we report the recall of Entity GTs of different meth-
ods with varying top-k values, based on which a suit-
able method and a suitable k value can be selected
for the framework. A higher recall with a lower k
value means a better approach. For assertion predic-
tion, we compare the performance of different seman-
tic embeddings and observed features, and at the same
time analyze the impact of extracting the sub-KB on
both accuracy and efficiency, using those target as-
sertions whose Entity GTs are recalled in related en-
tity estimation. The related entities of a target asser-
tion are first ranked according to the predicted score,
and then standard metrics including Hits@1, Hits@5
and MRR (Mean Reciprocal Rank)9 are calculated.
Hits@1 (Hits@5 resp.) is the recall of the GT by the
top 1 (5 resp.) entities of the rank, while MRR indi-
cates the position of the GT in the rank. Values of all
these metrics are among [0, 1]; a higher value indicates
a higher performance.

Next we evaluate the overall results of the asser-
tion correction framework (Section 5.4), where sev-
eral baselines (the original DBpedia lookup, DBpedia
lookup with sub-phrases, matching with Edit Distance
and word2vec) are compared with, and the impact of
assertion prediction and constraint-based validation is
analyzed. Three metrics are adopted: (i) Correction
Rate which is the ratio of the target assertions that are
corrected with right substitutes, among all the target

8DBP-Lit data and its experiment codes: https://github.com/
ChenJiaoyan/KG_Curation

9https://en.wikipedia.org/wiki/Mean_reciprocal_rank

http://dbpedia.org/sparql
https://github.com/ChenJiaoyan/KG_Curation
https://github.com/ChenJiaoyan/KG_Curation
https://en.wikipedia.org/wiki/Mean_reciprocal_rank


15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Target Assertions # Target Assertions with Entity GT # Properties # Subjects #

DBP-Lit 725 499 127 668

MED-Ent 272 225 7 200

MUS-Map 200 195 2 200
Table 1

Statistics of DBP-Lit, MED-Ent and MUS-Map.

assertions with Entity GTs; (ii) Empty Rate which is
the ratio of the target assertions that are corrected with
none, among all the target assertions with Empty GTs;
(iii) Accuracy which is the ratio of the truly corrected
target assertions by either substitutes or none, among
all the target assertions. Note that accuracy is an over-
all metric considering both correction rate and empty
rate. Either high (low resp.) correction rate or empty
rate can lead to high (low resp.) accuracy. With the
overall results, we finally analyze the constraint-based
validation with more details. Due to the very simple
range and cardinality of the two target mapping prop-
erties, filtering by constraint-based validation is not ap-
plied in MSU-Map.

The reported results are based on the following set-
ting (unless otherwise specified). In related entity esti-
mation, Word2Vec [36] trained using the Wikipedia ar-
ticle dump in June 2018 is used for word embedding.
In assertion prediction, the hidden layer size of MLP
is set to 150; the embedding size of both entities and
properties is set to 100; TransE, TransH and TransR
are trained by the SGD optimizer, while DistMult and
ComplEx are trained by the Adagrad optimizer; other
hyper parameters such as the number of epochs and the
margin hyper parameter γ are set such that the high-
est MRR are achieved on the validation set of asser-
tions. Regarding the baseline RDF2Vec, pre-trained
versions of DBpedia entities with different settings by
Mannheim University10 are tested, and the results with
the best MRR are reported. In constraint-based valida-
tion, σ, ωc and ωg are set to 1.0, 0.8 and 0.2 respec-
tively, according to the algorithm insight. Some other
reasonable settings explored can also achieve similar
results. The embeddings are trained by GeForce GTX
1080 Ti with the implementation of OpenKE [19],
while the remaining is computed by Intel(R) Xeon(R)
CPU E5-2670 @2.60GHz and 32G RAM.

5.2. Related Entity Estimation

10https://bit.ly/2M4TQOg

We compare different methods and settings used
in related entity estimation. Figure 3 shows the ob-
tained recall w.r.t. Entity GTs by top-k related en-
tities. Lookup∗ denotes our lookup solution with
sub-phrases. Edit Distance and Word2Vec are based
on the entity labels alone for DBP-Lit and MED-
Ent, but adopt both entity labels and name alike at-
tributes (including discogs:name, discogs:name-real
and discogs:name-variation of Discogs entities, mu-
sicbrainz:artist_name and musicbrainz:artist_sort_name
of Musicbrainz entities) for MUS-Map.

First, we find that the lexical matching based meth-
ods (Lookup, Lookup∗ and Edit Distance) have much
higher recall than Word2Vec, on DBP-Lit and MED-
Ent. The reason for DBP-Lit may lie in the Lookup
service provided by DBpedia, which takes not only the
entity label but also the abstract (i.e., some textual de-
scriptions) of an entity into consideration. The latter
provides more semantics, some of which, such as dif-
ferent names and background description, is very help-
ful for recalling the right entity. The reason for MED-
Ent, according to some empirical analysis, is that the
erroneous objects are often caused by lexical confu-
sion, such as misspelling and misusing of an entity
with similar tokens. On MUS-Map, Edit Distance also
has higher recall than Word2Vec as many words of
the artist name are either out of the vocabulary of the
Word2Vec or have no specific meaning. Second, our
lookup solution with sub-phrases, i.e., Lookup∗, as ex-
pected, outperforms the original Lookup. For example,
when both curves are stable, their recalls are around
0.88 and 0.81, respectively,

The target of related entity estimation in our frame-
work is to have a high recall with a k value that is
not too large (so as to avoid additional noise and limit
the size of the sub-graph for efficiency). In real ap-
plication, the method and k value can be set by ana-
lyzing the recall curve of related entities. According
to the recall curves which increase dramatically at the
beginning and then keep stable, our framework uses
Lookup∗ with k = 30 for DBP-Lit, Edit Distance with
k = 76 for MED-Ent, and Edit Distance with k = 40
for MUS-Map.

https://bit.ly/2M4TQOg
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Fig. 3. The recall w.r.t. Entity GTs by top-k related entities

5.3. Assertion Prediction

5.3.1. Impact of Models
The results of different assertion prediction meth-

ods are shown in Table 2, where the sub-graph is used
for training. The baseline Random means randomly
ranking the related entities, while AttBiRNN refers to
the attentive bidirectional Recurrent Neural Networks
that classify the word sequence composed of the la-
bels of the subject, property and object. The sequence
size is fixed, and Word2Vec is used to encode its words.
It was used in [5] for literal object typing, with good
performance achieved. First of all, the results verify
that either latent semantic embeddings or observed fea-
tures with Multiple Layer Perception are effective for
all the three benchmarks: MRR, Hits@1 and Hits@5
are all dramatically improved in comparison with Ran-
dom. AttBiRNN performs poorly on both DBP-Lit and
MED-Ent but well on MUS-Map (better than the se-
mantic embeddings). The is because entity names are
often effective in judging the entity alignment; while
AttBiRNN is good at predicting the semantic equality
of the two sub-sequences.

We also find that concatenating the node feature
and path feature (Node+Path) achieves higher perfor-
mance than the node feature and the path feature alone,
as well as the baseline RDF2Vec which is based on
graph walks. For DBP-Lit, it outperforms RDF2Vec
by 39.9%, 44.1% and 45.5% for MRR, Hits@1 and
Hits@5, respectively. Meanwhile, Node+Path per-
forms better than TransE and DistMult for DBP-Lit,
while for MED-Ent, TransE and DistMult outper-
forms Node+Path. For example, considering the met-
ric of MRR, Node+Path is 71.3% higher than Dist-
Mult for DBP-Lit, but DistMul is 108.8% higher than
Node+Path for MED-Ent. One potential reason is the
difference in the number of properties and sparsity of

the two sub-graphs. DBP-Lit has 127 properties in its
target assertions and 1958 properties in its sub-graph;
while MED-Ent has 7 properties in its target assertions
and 19 properties in its sub-graph. The small number
of properties for MED-Ent leads to quite poor path
feature, which is verified by its independent perfor-
mance (e.g., the MRR is only 0.09). In the sub-graph
of DBP-Lit, the average number of connected entities
per property (i.e., density) is 150.7, while in the sub-
graph of MED-Ent, it is 2739.0. Moreover, a larger ra-
tio of properties to entities also leads to richer path fea-
tures. According to these results, we use Node+Path
for DBP-Lit and DistMult for MED-Ent in our correc-
tion framework.

Regarding MUS-Map, the above observations of
MED-Ent in comparing observed features and em-
bedding models also hold: TransR and TransH out-
perform Path and Node+Path. As MED-Ent, MUS-
Map also has a small number of object properties,
and a higher average number of connected enti-
ties per property. A simple graph structure and a
large number of connected entities per property make
it easier to automatically learn the representations.
What differs from MED-Ent is that Path alone is
also quite effective, as the mapping properties of
Music KG are symmetric and transitive, and they
sometimes lead to a special path that can directly
indicate the equality of two entities. For example,
〈a1,wd:musicbrainzArtist, a2〉 is true if there is a path
composed of two triples 〈a1,wd:discogsArtist, a′〉 and
〈a2,musicbrainz:discogsArtist, a′〉. A new observation
from MUS-Map is that Node+Path+Str achieves the
best performance. This is due to the additional pre-
dictive information from the entity names whose in-
dividual contribution has been verified by AttBiRNN.
Note we do not measure Node+Path+Str for DBP-Lit
and MED-Ent as the name similarity of the subject and
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object is meaningless for judging the likelihood of a
none-mapping assertion.

5.3.2. Impact of The Sub-graph
We further analyze the impact of using the sub-

graph for training the assertion prediction model. Ta-
ble 3 shows the results of some of the models that are
trained with the whole KB, as well as the comparison
against the results when they are trained with the sub-
KB. On the one hand, in comparison with Node+Path
trained purely with the sub-graph, Node+Path with
features from the whole KB actually performs worse.
As all the directly connected properties and entities
of each subject entity, related entity and target prop-
erty have already been included in the sub-graph, us-
ing the sub-graph makes no difference for node fea-
tures and path features of depth one. Thus the above
result is mainly due to the fact that path features of
depth two actually makes limited contribution in this
assertion prediction context. This is reasonable as they
are weak, duplicated or even noisy in comparison with
node features and path features of depth one. One the
other hand, learning the semantic embeddings with the
sub-graph has positive impact on TransE and negative
impact on DistMult for MED-Ent. However the impact
in both cases is quite limited. The results on MUS-Map
also give similar observations which indicate that the
sub-graph extracted can include the effective context
for predicting the likelihood of candidate assertions.

The sub-graph keeps the accuracy, but significantly
reduces the scale, as shown in Table 4. For example,
the sub-graph of MED-Ent has only 36.9% (11.2%
resp.) of the entities (assertions resp.) of the whole
medical KB, and as a result it reduces the training
time of DistMult embeddings from 46.7 minutes to
19.0 minutes. The reduction on the scale and embed-
ding training for DBP-Lit and MUS-Map is even more
significant. Note that the time of MLP training with
the observed features is very little and mostly depends
on the sample size, and thus does not differ from the
whole KB to the sub-graph (we sample a fixed num-
ber of triples for training). The time of using observed
features mostly lies in the extraction of node and path
features, but it is can be very efficiently implemented
by SPARQL queries even on the whole KB, thanks to
efficient and scalable RDF reasoning engines such as
RDFox [40] used in our evaluation.

5.4. Overall Results

Figure 4 presents the correction rate, empty rate and
accuracy of our assertion correction framework with a

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

Correction Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Empty Rate

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 0.2 0.4 0.6 0.8 1

Accuracy

Lookup* Lookup* + AP Lookup* +	CV Lookup* +	AP	+	CV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Correction Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Empty Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8 1

Accuracy

EditDistance EditDistance	+	AP EditDistance	+	CV EditDistance	+	AP	+	CV

0.5

0.55

0.6

0.65

0.7

0.75

0.5 0.6 0.7 0.8 0.9 1

Correction Rate

0

0.1

0.2

0.3

0.4

0.5

0.5 0.6 0.7 0.8 0.9 1

Empty Rate

0.5

0.55

0.6

0.65

0.7

0.75

0.5 0.6 0.7 0.8 0.9 1

Accuracy

EditDistance EditDistance	+	AP

Fig. 4. Overall results of the correction framework for DBP-Lite
[Above], MED-Ent[Middle] and MUS-Map [Below]. + AP and +
CV represent filtering with assertion prediction and constraint-based
validation respectively, with the filtering threshold τ ranging from 0
to 1 with a step of 0.05.

ranging filtering threshold τ. Note that lexical match-
ing without any filtering is close to the existing method
discussed in related work [29]. On the one hand, we
find that filtering with either assertion prediction (AP)
or constraint-based validation (CV) can improve the
correction rate. This is because those candidate substi-
tutes that are lexically similar to the erroneous object
but lead to unlikely assertions are filtered out, while
those that are not so similar but lead to true assertions
are ranked higher. As the empty rate is also definitely
increased after filtering (e.g., improved from 0.252 to
0.867 by Lookup∗ + AP + CV for DBP-Lit), the ac-
curacy of all three data sets is improved in the whole
range of τ. On the other hand, we find that averag-
ing the scores from assertion prediction and constraint-
based validation is effective. It leads to both higher
correction rate and accuracy than either of them for
some values of τ, such as [0.05, 0.1] for DBP-Lit and
[0.85, 0.95] for MED-Ent.

Table 5 presents the optimum correction rate and ac-
curacy for several settings. Note that they are achieved
using a suitable τ setting; in real applications this can
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Methods
DBP-Lit MED-Ent MUS-Map

MRR Hits@1 Hits@5 MRR Hits@1 Hits@5 MRR Hits@1 Hits@5

Random 0.200 0.100 0.275 0.027 0.013 0.066 0.049 0.024 0.122

AttBiRNN 0.251 0.126 0.348 0.255 0.111 0.414 0.806 0.0721 0.903

RDF2Vec 0.419 0.320 0.492 — — — — — —

TransE 0.392 0.266 0.507 0.744 0.652 0.862 0.596 0.546 0.604

TransH 0.508 0.377 0.639 0.748 0.656 0.865 0.824 0.799 0.851

TransR 0.510 0.391 0.632 0.738 0.640 0.823 0.842 0.805 0.883

DistMult 0.424 0.300 0.536 0.752 0.694 0.806 0.619 0.545 0.669

ComplEx 0.468 0.327 0.632 0.708 0.625 0.792 0.640 0.578 0.682

Node 0.495 0.379 0.604 0.338 0.171 0.514 0.004 0.006 0.006

Path 0.473 0.356 0.578 0.090 0.028 0.133 0.812 0.805 0.805

Node+Path 0.586 0.461 0.716 0.360 0.200 0.525 0.810 0.792 0.812

Node+Path+Name — — — — — — 0.943 0.916 0.947
Table 2

Results of the assertion prediction model trained by the sub-graph.

Cases MRR Hits@1 Hits@5 Training Time (min)

Node+Path (DBP-Lit) 0.504 (-0.082) 0.384 (-0.077) 0.611 (-0.105) < 0.5 (≈ 0.0)

TransE (MED-Ent) 0.713 (-0.031) 0.608 (-0.044) 0.834 (-0.028) 28.0 (+19.1)

DistMult (MED-Ent) 0.766 (+0.014) 0.721 (+0.027) 0.822 (+0.016) 46.7 (+27.7)

TransH (MUS-Map) 0.769 (-0.055) 0.816 (+0.017) 0.848 (-0.003) 3846.3 (+3839.7)

Node+Path+Name (MUS-Map) 0.899 (-0.044) 0.902 (-0.014) 0.910 (-0.037) < 0.5 (≈ 0.0)
Table 3

Results of the assertion prediction model trained by the whole KB, and the corresponding increase values w.r.t. the model trained by the sub-graph
(the former minus the latter) in the parentheses.

Methods
DBP-Lit MED-Ent MUS-Map

Entities Facts Entities Facts Entities Facts

Sub-graph 295, 112 449, 387 52, 041 297, 029 204, 471 144, 944

The Whole KB ≈ 38.3 million ≈ 480 million 233, 035 939, 400 ≈ 14.7 million ≈ 90 million
Table 4

The scale of the sub-graph and the original whole KB.

be determined using a validation data set. With these
results, we make the following observations. First, the
optimum results are consistent with our above conclu-
sions regarding the positive impact of assertion predic-
tion, constraint-based validation and their ensemble.
For example, the optimum accuracy of DBP-Lit is im-
proved by 32.6% using constraint-based validation in
comparison with the original related entities by lexical
matching. The correction rate of MED-Ent provides
another example: REE + AP + CV is 1.5% higher than
REE + AP, and 121.4% higher than REE + CV.

Second, lexical matching using either Lookup (for
DBP-Lit) or Edit Distance (for MED-Ent and MUS-
Map) has a much higher correction rate and accuracy
than that using Word2Vec, while our Lookup with sub-
phrases (Lookup∗) has even higher correction rate than
the original Lookup of DBpedia. These overall results
verify the recall analysis on related entity estimation
in Section 5.2. Meanwhile, we find that the overall re-
sults on observed features (Mnp andMnps) and latent
semantic embeddings (Mdm and Mtr) are also con-
sistent with the assertion prediction analysis in Sec-
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tion 5.3:Mnp (Mnps resp.) has a better filtering effect
thanMdm andMtr for DBP-Lit (for MUS-Map resp.),
but worse filtering effect for MED-Ent.

5.5. Constraint-based Validation

Besides the positive impact on the overall results
mentioned above, we get several more detailed obser-
vations about constraint-based validation from Table 5.
On the one hand, the property range constraint plays a
more important role than the property cardinality con-
straint, while their combination is more robust than ei-
ther of them, as expected. Considering the assertion set
of MED-Ent, filtering byMran, for example, leads to
62.6% higher accuracy than filtering by Mcar, while
filtering by Mran+car has 2.9% higher accuracy and
equal correction rate in comparison withMran.

On the other hand, we find constraint-based vali-
dation performs well for DBP-Lit, with higher accu-
racy and equal correction rate in comparison with as-
sertion prediction, but performs much worse for MED-
Ent. This is mainly due to the gap between the seman-
tics of the two target assertion sets and their corre-
sponding KBs: (i) the mined property ranges of DBP-
Lit include 404 hierarchical classes, while those of
MED-DB have only 8 classes in total and these classes
have no hierarchy; (ii) 23 out of 127 target proper-
ties in DBP-Lit have pure functionality (i.e., Dp

car(k =
1) = 1.0) which plays a key role in the consistency
checking algorithm, while none of the target properties
of MED-Ent has such pure functionality. The second
characteristic is also a potential reason why filtering
by constraint-based validation with property cardinal-
ity only achieves a very limited improvement over Edit
Distance for MED-Ent as shown in Table 5.

We additionally present some examples of the
mined soft property constraints in Table 6. Most con-
straints such as the cardinality 1 : 1.000 of the property
dbp:finalteam are consistent with our common sense
understanding of the properties, although some noise is
evident, such as the range classes Person and Agent of
the property dbp:homeTown). Most noise of the mined
constraints is likely caused by erroneous property and
class membership assertions in DBpedia.

6. Discussion and Outlook

In this paper, we present a study of assertion and
alignment correction, an important problem for KB cu-
ration, but one that has rarely been studied. We have

proposed a general correction framework, which does
not rely on any KB meta data or external informa-
tion, and which exploits both semantic embedding and
consistency reasoning to correct erroneous objects, in-
formally annotated literals (entity mentions) as well
as wrong entity mappings in KB alignment. To im-
prove the efficiency in dealing with very large KBs,
it also includes techniques to extract candidate substi-
tutes and sub-graphs. The framework and the adopted
techniques have been evaluated by correcting asser-
tions and mappings in three KBs: DBpedia with cross-
domain knowledge, a medical KB and a music KB
with artists from Wikidata, Musicbrainz and Discogs.
We discuss below several more observations of the
study and possible directions for the future work.

Entity relatedness. Our method follows the princi-
ple of correcting the object by a related entity rather
than an arbitrary entity that leads to a correct assertion.
This dramatically reduces the searching space of the
correction and computation spent on assertion predic-
tion. Relatedness can be due to either lexical or seman-
tic similarity. Currently, the recall for DBP-Lit, MED-
Ent and MUS-Map is 0.882, 0.797 and 0.785 respec-
tively, which is promising, but still leaves space for fur-
ther improvement. One extension for higher recall but
limited noise and sub-graph size is incorporating more
literal attributes and graph structure of the entity.

KB variation. Although both constraint-based vali-
dation and assertion prediction improve overall perfor-
mance, their impact varies from DBpedia to the med-
ical KB. The effectiveness of constraint-based valida-
tion depends on the richness of the KB schema, such
as property functionality, the complexity of property
range, etc. The more complex the schema is, the better
performance constraint-based validation achieves. The
impact of assertion prediction is more complicated:
the path and node features perform better on DBpe-
dia which has many more properties, while the se-
mantic embeddings by DistMult and TransE are more
suitable for the medical KB which has less properties
but higher density. Integrating assertion prediction and
constraint-based validation, even with simple score av-
eraging, can improve performance, but further study is
needed for a better integration method that is adapted
to the given KB.

Property constraints. On the one hand, the eval-
uation indicates that the mined property constraints
are effective for assertion validation and can be inde-
pendently used in other contexts like online KB edit-
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Methods
DBP-Lit MED-Ent MUS-Map

C-Rate Acc C-Rate Acc C-Rate Acc

Lookup or Edit Distance 0.597 0.611 0.149 0.123 0.554 0.540

Lookup∗ 0.635 0.516 — — — —

Word2Vec 0.553 0.410 0.089 0.076 0.426 0.415

REE + AP (Mnp orMnps) 0.677 0.677 0.360 0.327 0.718 0.710

REE + AP (Mtr orMdm) 0.635 0.628 0.600 0.588 0.672 0.655

REE + CV (Mran) 0.671 0.668 0.271 0.239

REE + CV (Mcar) 0.639 0.622 0.164 0.147 —

REE + CV (Mran+car) 0.677 0.684 0.271 0.246

REE + AP + CV 0.701 0.690 0.609 0.599 —
Table 5

The correction rate (C-Rate) and accuracy (Acc). REE denotes Related Entity Estimation: DBP-Lit uses Lookup∗ while MED-Ent uses Edit
Distance. MUS-Map does not adopt constraint-based validation.

Property Cardinality Specific Range General Range

dbp:
homeTown

1 : 0.415
2 : 0.422
3 : 0.163

Location: 0.801, City:
0.280, Country: 0.268,

Person: 0.228, ...

PopulatedPlace: 0.821,
Place: 0.821, Settlement:
0.299, Agent: 0.259, ...

dbp: finalteam 1 : 1.000
BaseballTeam: 0.493,
SportsTeam: 0.154,

SoccerClub: 0.015, ...

Agent: 0.688, Organization:
0.665, SportsTeam: 0.510,

...
Table 6

Soft constraints of two property examples of DBpedia

ing. On the other hand, unlike the assertion predic-
tion model, the constraints as well as the consistency
checking algorithm are interpretable. One benefit is
that explicitly defined or external TBox constraints can
easily be injected into our framework by overwriting or
revising the constraints. For example, the mined spe-
cific range Person: 0.228 in Table 6, which is inap-
propriate for the property dbp:homeTown, can be di-
rectly removed. For another example, if the cardinal-
ity of hasParent is defined as 2, which is quite reason-
able, its probability distribution can be directly set to
Dp

car(k) = 1.0 if k = 2 and 0 otherwise.

Ontology alignment and repair. Traditional ontol-
ogy alignment systems e.g., LogMap often rely on de-
fined logic constraints to correct (usually eliminate)
those mappings that lead to inconsistency. Recently
they are also being extended to entity alignment for
large KBs [20]. In the future work, we will evaluate
our entity alignment correction solution on KBs with
a richer schema (e.g., hierarchical classes and multiple
properties) by analyzing the impact of constraint min-

ing and comparing the results with the above ontology
alignment systems.

Efficiency and scalability. The computation of the
correction framework mainly lies in the following as-
pects: (i) related entity estimation which can be effi-
ciently implemented by lexical indexes (e.g., the DB-
pedia Lookup service), (ii) SPARQL queries and KB
reasoning for sub-graph extraction, node and path fea-
ture calculation, and property constraint mining, (iii)
the training of assertion prediction models, especially
the semantic embeddings, and (iv) the searching of
the correction, i.e., the likelihood prediction and con-
sistency validation of candidate assertions. SPARQL
queries and reasoning can be supported by some effi-
cient and scalable reasoning engines such as RDFox
[40] used for our music KB. The computation for the
last two aspects is dramatically reduced by using the
related entities and the sub-graph, whose size depends
on the related entity estimation algorithm used, and the
data – the KB and the target assertions. We suggest to
correct those related target assertions in one time for
higher efficiency and a more complete context in the
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sub-graph, although the method can work for an arbi-
trary set of target assertions.
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