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Abstract. An important problem in large symbolic music collections is the low availability of high quality metadata, which is
essential for various information retrieval tasks. Traditionally, systems have addressed this by relying either in costly human
annotations or in rule-based systems at limited scale. Recently, embedding strategies have been exploited for representing latent
factors in graphs of connected nodes. In this work, we propose MIDI2vec, a new approach for representing MIDI files as vectors
based on graph embedding techniques. Our strategy consists of representing the MIDI data as a graph, including the information
about tempo, time signature, programs and notes. Next, we run and optimise node2vec for generating embeddings using random
walks in the graph. We demonstrate that the resulting vectors can successfully be employed for predicting the musical genre and
other metadata such as the composer, the instrument or the movement. In particular, we conduct experiments using those vectors
as input to a Feed-Forward Neural Network and we report good comparable accuracy scores in the prediction with respect to
other approaches relying purely on symbolic music, avoiding feature engineering and producing highly scalable and reusable
models with low dimensionality. Our proposal has real-world applications in automated metadata tagging for symbolic music,
for example in digital libraries for musicology, datasets for machine learning, and knowledge graph completion.

Keywords: music, metadata, metadata prediction, graph embeddings, neural networks

1. Introduction

High-quality metadata is a prerequisite in many mu-
sic information retrieval (MIR) tasks, like accessing
symbolic music collections, music recommender sys-
tems and discovery [1]. Historically, the availability of
this metadata has depended on manual human anno-
tation labour, which is typically costly. Consequently,
several systems have been proposed that automatically
analyse music in order to annotate high-level features,
some being abstract enough to be close to traditional
metadata [2]. Most of this systems target the so-called
symbolic representation of music: this representation
explicitly describes the notes and their properties –
timbre, tempo, velocity, etc. – on individual tracks for

*Corresponding author. E-mail: pasquale.lisena@eurecom.fr.

the different instruments, as opposed to the digital au-
dio which encodes a sampled musical signal (i.e. a
recording). Due to the need of high-quality annotated
datasets, these systems have many real-world applica-
tions. For example, digital libraries for musicology can
use them for automatically tagging metadata, lowering
manual annotation costs and improving results of mu-
sic information retrieval systems. In recently proposed
music knowledge graphs [3], these systems could be
used to complete missing information in the graph.
Another application is in machine learning for music,
which needs large amounts of music data annotations
that could be provided by such systems, for applica-
tions such as data programming [4] or weak supervi-
sion [5] or even music recommender systems based on
similarity.
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In this work, we focus on symbolic music in MIDI
format [6] due to its high availability on the Web and
its popularity in tasks like music generation [7] and
music knowledge graphs [3]. This popularity has also
given birth to large MIDI datasets that need, besides
high-quality annotations, scalable approaches produc-
ing them. Despite their natural fit as a transcription for-
mat for music, MIDI files alone have a number of lim-
itations, all concerning the fact that track information
(instruments, vocals, metadata) is not standardized and
often only implicit [8]. One way of addressing this is
to express MIDI information using RDF and ontolo-
gies [3], allowing for the re-use and standardization of
missing MIDI metadata at Web scale. The Lakh MIDI
dataset [8] is another important MIR benchmark used
in e.g. automatic audio transcription; however, only
31,034 of its 176,581 MIDI files (17.57%) are aligned
with metadata from the Million Song Dataset [9].

Reconstructing this kind of high-level metadata
from symbolic musical content, automatically and at
scale, is a challenging task due to the existing semantic
gap between the desired metadata and low-level mu-
sic descriptors [10]. One way of addressing this is by
analysing the content of the symbolic notation for pre-
dicting higher-level metadata, i.e. identifying symbolic
patterns in melody, harmony, rhythm, structure, etc.
that are characteristic of a certain genre or composer.
So far, research has mainly focused on genre [11, 12],
emotion, and composer [13] classification mainly us-
ing supervised machine learning techniques. However,
traditional machine learning algorithms are limited by
the need to perform some feature selection in the so-
called feature engineering process [14].

In order to overcome this, embedding-based meth-
ods have been proposed. Embeddings are mappings
that transform the symbolic representations of discrete
variables (elements which cannot be naturally ordered
such as words or songs) into numeric vectors. Each
dimension of an embedding vector represents a latent
feature which has been automatically learned. Avoid-
ing more expensive representations such as the one-hot
encoding, embedding vectors are useful at reducing the
dimensionality of the input data of neural networks, a
typical choice to address a learning task such as au-
tomatic classification. Such embedding-based meth-
ods have been successfully applied to textual [15] and
graph data [16] and notably also on MIDI data for
the task of automated music generation through Recur-
rent Neural Networks (RNN) [17, 18] and self-learning
techniques such as Variational Autoencoders (VAE)
[7]. Graph embeddings have become a widely used and

effective way to represent graph information in a way
neural networks can easily process it [19].

Some latent, hidden features that lie in the data
might be hard, if not impossible, for a human engineer
to discover and model [20]; some music information
tends to be ambiguous and loosely defined (e.g. “Al-
legro”, “Prelude”), and therefore a more fuzzy repre-
sentation can constitute an advantage; besides, current
feature-engineered methods have pitfalls in scalability
with respect to the dataset size and the number of meta-
data classes to predict [21]. However, feature engineer-
ing is still generally faster than learning latent fea-
tures from data, since it is based on given knowledge;
and it is easier to debug because engineered features
are human-understandable. Moreover, embeddings can
certainly overfit models as well [22]. Therefore, one of
the aims of this work is to gain a better understanding
of how feature-based and embedding-based techniques
compare and perform at scale in the task of symbolic
music metadata prediction.

In this paper, we propose MIDI2vec, a method for
representing MIDI data as vector-space embeddings
for automated metadata classification. First, we ex-
press MIDI files as graphs, assigning unique identi-
fiers to specific characteristics and their values such
as tempo, time signature, programs (instruments), and
notes. Therefore, two MIDI files will be connected
in the graph if they share the same resources (e.g.
same instruments, chords, tempo, etc.). Second, we
use graph embedding techniques – and in particular
the node2vec algorithm [16] – to traverse these MIDI
graphs with random walks, and represent the informa-
tion of the traversed paths as numeric vectors. We as-
sume that these traversals will encode not only MIDI
information that is relevant for a given song, but also
additional neighbouring information of similar songs
that can be relevant for metadata classification.1 In
other words, we assume the distributional semantics
hypothesis [23] over MIDI features: notes or groups
of notes used in similar contexts will tend to have simi-
lar meanings, and in particular, will be associated with
similar features, even for high-level metadata such as
genre, composer or instrument. More specifically, our
contributions are:

1We leave the interesting alternative of traversing these MIDI files
sequentially, i.e. following the trail of temporal event occurrence in-
stead of contextual co-occurrence, as future work.
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– the conceptualisation of relevant symbolic fea-
tures (pitch, timbre, tempo, time signature) of
MIDI space into graph space;

– the systematic application of a well-known graph
embedding generation method to generate MIDI
embeddings;

– the use of such learned embeddings to predict
metadata for three datasets, achieving comparable
accuracy to symbolic feature-based approaches
without the need of feature engineering, scaling
to Web-size datasets, and with one order of mag-
nitude less dimensions.

To the best of our knowledge, this is the first time that
graph embedding approaches are used for representing
a whole symbolic music track, and for reliably predict-
ing symbolic music metadata.

The rest of the paper is organised as follows. In
Section 2, we survey related work. In Section 3 we
briefly introduce graph embeddings. In Section 4, we
describe our strategy to extract relevant symbolic data
from MIDI files, to represent them as graphs, and to
use these graphs to build MIDI embeddings. In Sec-
tion 5, we run an experiment to predict genre and other
metadata on three different datasets using the MIDI
embeddings. Finally, we conclude and outline some
future works in Section 6.

2. Related Work

The extraction of high-level metadata from musical
content is a long-standing goal of the MIR community
[1], and one of the purposes of the Essentia library [2].
This is a first task to fulfil towards an automatic re-
construction of music metadata, although the seman-
tic gap [10] between content and metadata shows that
purely bottom-up approaches are hard. Nevertheless,
automating the generation of high-quality metadata
would be a great benefit to tasks like music knowl-
edge graph completion and music emotion detection,
for which MIDI has already been used [3, 24].

In [25], a comprehensive study surveys techniques
for genre classification based on symbolic music. Al-
though the performance scores of the state-of-the-art
set the baseline to outperform, many are computed on
different sets of classes, on monophonic MIDI, or on
genre-specific datasets (e.g. folk music). Nonetheless,
the survey finds a large number of methods based on
machine learning. For example, the unsupervised near-
est neighbours (NN) and k-nearest neighbours (kNN)

is applied to genre prediction from MIDI in [11]. This
work is further extended in [12] with linear discrimi-
nant classifiers (LDN) and by combining MIDI and au-
dio features. Different data sources – audio, symbolic
music, lyrics – are instead combined in [21]. How-
ever, these classical machine learning approaches suf-
fer from the need for feature selection, which is costly
and can overfit models [14].

Recent developments in neural networks have boosted
work in vector space-based music metadata classifi-
cation, using vectors computed from the audio signal.
Some examples are genre-agnostic key classification
[26] and jazz solo instrument classification [27]. How-
ever, these approaches still tackle the classification of
mostly content-based features (e.g. timbre), and not
high-level metadata (e.g. genre).

Both feature engineering – common in pre-deep
machine learning and purely symbolic approaches –
and vector-space based methods have advantages and
limitations. Model overfitting might happen in both
[14, 22]. Because it is based on provided knowledge,
feature engineering is faster than learning features
from data – a process than can be computationally ex-
pensive – and is easily understandable to humans due
to its intrinsic symbolic representation. On the other
hand, vector space representations have the advantage
of capturing latent features that might be hard or im-
possible for humans to describe symbolically; a more
fuzzy representation can constitute an advantage when
music information is ambiguous and loosely defined
(e.g. “Allegro”, “Prelude”). [20]; and scale very well
to large datasets and number of classification classes
[21].

While recent MIR research relies mostly on audio
analysis for metadata prediction, symbolic notation is
largely used for automated music generation with these
kinds of models. An example is MusicVAE [7], a hi-
erarchical variational autoencoder (VAE) that learns a
latent space of musical sequences. Similarly, in [17]
MIDI embeddings are employed for automatic music
generation, representing all the notes played together
at regular time steps. In [18], MIDI files are used for
learning a set of embeddings representing different as-
pects of a pitch, during the training of an RNN for mu-
sic generation. BachProp [28], an approach for music
score generation that relies on an architecture which
combines Gated-Recurrent Units (GRU), receives in
input MIDI notes in the one-hot encoding format.

Vector embedding similarities on various semantic
descriptors are applied in music recommendation in
[29]. These vector space representations, which tie re-
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lated artists, works and performances closer, eventu-
ally surface terminologies and ultimately linked vo-
cabularies for music metadata [30].

While embedding-based approaches provide differ-
ent modes of interactive musical creation, they do
not require feature selection and can be mapped to
other latent spaces – e.g. texts [31] or documents (the
homonym Midi2Vec2) – and none so far address the
task of metadata classification specifically. In a more
related work towards an embedding-based symbolic
music metadata classification, MIDI-glove3 produces
embeddings of notes from monophonic MIDI, but its
consideration of MIDI note values leaves out some in-
formation such as timing and rhythm, therefore pro-
ducing representations of a single feature (pitch) in-
stead of the whole MIDI content.

3. Graph Embeddings

Graph embeddings are the result of the trans-
position of word embedding techniques – notably
word2vec [15] and GloVe [32] – to networks. Accord-
ing to [33], a graph can be defined as a set G = (V, E),
where V is a set of vertices (or nodes) and E is the
set of edges, represented as pairs of directly con-
nected vertices. Graph embedding algorithms produce
a mathematical representation – consisting of a set of
vectors – of the content of the graph, which is much
more compact than other kinds of representation (e.g.
adjacency matrix) and consequently easier and faster
to process with Machine Learning. The effectiveness
of these techniques makes them very popular in differ-
ent applications, from classification to recommenda-
tion, with an interesting number of algorithms devel-
oped for their computation. An extensive survey has
been realised by [34].

In 2014, Perozzi et al. published Deep Walk [35].
The core idea of this work consists in the use of ran-
dom walks in the graph in order to generate sequences
of nodes. The number and the length of link paths be-
tween two nodes impacts on the probability of those
two nodes to be selected together in the random walk.
In other words, the more two nodes share connections4

2https://github.com/TaylorPeer/Midi2Vec
3https://github.com/brangerbriz/midi-glove
4Two nodes are connected if exists one or more paths of edges

between them, of which the two edges represent respectively the first
and the last node involved. A connection can consist of a single edge;
in this case, we can speak about directly connected nodes.

in the graph and the fewer edges compose those con-
nections, the more those nodes will appear together
in several walks. According to the intuition of the au-
thors, we can deal with nodes in sequences as they are
words in sentences, so it is possible to apply word em-
bedding models, and by extension, the distributional
semantics hypothesis, to those sequences. The transi-
tion probabilities between nodes replace the one be-
tween words in the embedding computation. The re-
sult is a vector space in which distances in the graph
are kept.

DeepWalk has been extended by node2vec [16],
with the inclusion of two parameters P and Q, which
rule on the generation of random walks. In particular,
the parameter P impacts on the probability that the ran-
dom walk immediately revisits the previous node. The
parameter Q controls the probability that the random
walk moves towards increasingly further away nodes,
enabling to discover peripheral parts of the graph. In
other words, higher values of P promote random walks
that explore a local neighbourhood around the start-
ing node, while high values of Q encourage walks that
cover wider areas of the graph. Node2vec can be also
applied to weighted graphs, in which the weight of an
edge affects the probability that it participates to the
walk.

Other notable embedding-based techniques have
been proposed for representing nodes in a graph, such
as rdf2vec [19], entity2vec [36] and graph2vec [37] for
graph embeddings, and many others5.

4. Learning MIDI Embeddings

The MIDI format does not present a graph struc-
ture, but it consists of a time-based linear succession
of events, called MIDI messages, detailed in the spec-
ification [6]. Some examples are Note On and Note
Off for representing played notes, Program Change for
setting the instrument, and MTC Quarter Frame Mes-
sage for specifying the playing speed according to the
MIDI Time Code (MTC) protocol. This last informa-
tion impacts on the duration of the interval between
two Song Position Pointers (SPP), which identify the
time at which the message occurs, expressed in MIDI
beats from the beginning of the song (commonly re-
ferred to as ticks). Some of the MIDI messages are re-
ferred to a specific channel (a single device emitting

5A regularly updated list of software for embedding generation is
available at https://github.com/MaxwellRebo/awesome-2vec

https://github.com/TaylorPeer/Midi2Vec
https://github.com/brangerbriz/midi-glove
https://github.com/MaxwellRebo/awesome-2vec


P.L. Lisena et al. / MIDI2vec: Learning MIDI Embeddings 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

music, in other words a single instruments), while oth-
ers can apply to the whole MIDI. Because of this struc-
ture, we first need to convert the MIDI into a graph, on
which embeddings can be computed afterwards.

4.1. MIDI to Graph

We propose a preliminary conversion of a MIDI file
into a graph. As shown in Figure 1, a MIDI node (the
circle) represents the MIDI file and will be connected
to nodes representing different parts of the MIDI con-
tent (i.e. tempo, programs, time signature, notes). A
MIDI node can be linked to one or more nodes for each
type.

In the context of graph embeddings computation,
the practice is to take into account only connections
between entities, that are nodes represented by identi-
fiers. Literal values (text, numbers, etc.) are normally
ignored [19] or some shrewdness is applied such as
the use of contiguity windows [38]. In fact, literals
can increase uncontrollably the number of nodes, in
particular in presence of continuous values or entity-
specific textual annotation. The effect is a very sparse
graph6, causing an exponential increment of the com-
putation time and poor performance [39]. In our case,
the crucial information represented as continuous data
(e.g. the tempo) can not be excluded from the embed-
dings. We opted for partitioning the continuous values
in ranges, in order to insert their information in the
graph, while limiting at the same time the number of
nodes. We provide some details for each type of node
in the following.

Tempo, computed in bpm (beats per minute). This
value is computed from the MIDI tempo field (in mi-
croseconds per beat), according to the formula:

Tempobpm = 60000000/Tempomidi (1)

The continuous values are then discretised in parti-
tions, each one representing a range of 10 bpm. Exam-
ple: tempo-11 represents the range of values 110±5
bpm.

Programs, representing the timbre of the channels,
among the 128 different standard programs7. Example:
program-0 is the Acoustic Grand Piano.

6A graph is considered dense or sparse if its number of edges is
close or far, respectively, to the number of all potential edges con-
necting each pair of vertices [33].

7The full list of MIDI programs is available at https://jazz-soft.
net/demo/GeneralMidi.html

Time signature is the measure of how many beats
are contained in each measure. It is represented as the
concatenation of numerator and denominator. Exam-
ple: is represented as ts-4/4.

Notes, representing the pitches in the MIDI. The in-
formation about duration and co-occurrence of notes
(e.g. in a chord) are not directly represented in the
MIDI file. The duration is extracted by comparing suc-
cessive NoteOn and NoteOff events sharing the same
pitch and located on the same channel. Co-occurring
notes can be detected by comparing the same category
of events among all channels, selecting the ones with
overlapping Song Position Pointers (SPP). To include
this information in the graph while limiting the number
of nodes and edges, we extract all groups of notes start-
ing (i.e. with a NoteOn message) at the same SPP. A
tolerance of 10ms is applied for considering two notes
simultaneous, in order to overcome eventual small dif-
ferences due to MIDI recording. Each group is con-
nected to:

– the maximum duration of the notes in the group,
discretised in classes of 100ms. Example: the id
duration-3 represents the range 300±50 ms.

– their average velocity. Example: velocity-1.
– all the pitches, identified by their standard MIDI

numbers. Example: note-57 is A-3.

Each group has an identifier which is deterministi-
cally computed from its content using a hash function.
These groups are then linked to the relative MIDI node.

MIDI2vec does not encode any information con-
cerning time, in particular about sequences of notes oc-
curring in the same channel. This information is un-
doubtedly relevant and crucial in music representation.
Nevertheless, we decide to not include the time dimen-
sion in this experiment for two main reasons. First, the
inclusion of order and sequentiality in a graph repre-
sentation is not very common and few works addressed
this topic so far [40, 41]. Second, this would require to
make some choices, among them the number of con-
secutive notes to be grouped and the opportunity of
representing pauses in the graph or not. For this rea-
son, we decided to consider the encoding of subse-
quent notes for future work.

The connections between nodes are mostly of type
many-to-many, so that two involved nodes are poten-
tially part of other instance of the same connection.
Taking as an example the connections between Tempo
and MIDI types, this means that a specific Tempo node
may be linked to different MIDI – pieces sharing the
same tempo – and a specific MIDI may be linked to

https://jazz-soft.net/demo/GeneralMidi.html
https://jazz-soft.net/demo/GeneralMidi.html
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different tempos – representing a tempo change in the
track. Some connections can be instead of type one-
to-many: this is the case of the Group of Notes, linked
to exactly one Duration which is, in turn, connected
to several Group of Notes. Two MIDI nodes are never
directly connected. Tempo, programs, and time signa-
ture might change within a file; we register all of them
as equal nodes.

Formally, we realise a graph G = (V, E), where
V = M ∪ C ∪ A. M corresponds to the set of MIDI
files. C corresponds to the first level of MIDI content,
including tempo, programs, time signature, and the set
N ∈ C referring to groups of notes. A corresponds to
the attributes of groups of notes, in particular to dura-
tion, velocity, and pitch. The edges in E = EM ∪ EN

can belong to two types. An edge (m, c) ∈ EM indi-
cates that the MIDI m ∈ M has c ∈ C as part of its con-
tent; this category also includes edges (m, n) linking a
MIDI m to a note group n ∈ N ∈ C. While (n, a) ∈ EN

indicates that the group of notes n ∈ N has the attribute
a ∈ A.

In Figure 2, an excerpt of an example graph is pro-
vided, in particular showing the connections between
MIDI files through complete note groups, single notes,
duration, etc. In this kind of graph, two MIDI tracks
sharing multiple chords (or other elements) will have
more probability to appear in the same random walk.
This representation aims to track at the same time
the presence of specific chords and of quick and long
notes, which can respectively characterise a more vir-
tuous or lyrical composition.

The graph is saved in the edgelist format, which in-
cludes all couples of connected nodes. In the edge-
list, each line of text represent an edge and contains
the identifiers of the two involved nodes separated by
blank spaces. In practice, the MIDI files are read and
messages are sequentially converted and appended to
the edgelist. This edgelist is the output of this first con-
version and feeds the second part of the approach, de-
scribed in the next section.

4.2. Graph to Vectors

Embeddings are computed on the output graph of
the previous process with the node2vec algorithm. As
more extensively written in Section 3, the algorithm
simulates random walks on the graph and computes
the transition probabilities between nodes, which are
mapped into the vector space. In other words, two
MIDI files sharing programs, tempos, note groups are
more likely to be part of the same random walk and

MIDI
Group 

of 
Notes

Pitch

Duration

Program

Time 
Signature

Tempo
Velocity

+

+

+

+

+

Fig. 1. Schema of the graph generated from MIDI. The + indicates
edges representing connections of type many-to-many. The colours
represent different groups of nodes: MIDI M (blue), Content C (or-
ange) among which Notes N have a round shape, and Attributes A
(grey).

consequently are more likely to be close in the com-
puted embedding space.

In practice, each node in the graph is selected as the
starting node for a random walk, occupying its first
slot. The second slot will be occupied by one of the
nodes directly linked to the first node, according to the
probability function. Iteratively, every slot of the ran-
dom walk will be occupied by one of the neighbours of
the previous one. The number of walks to be produced
for each node and their length are given parameters.
These walks are then processed by word2vec as they
are sentences.

Following this procedure, a 100-dimensions embed-
ding vector is computed for each node (vertex) of the
input graph. Each dimension of the vector cannot be
attributed to a specific feature of the described item –
for example, the tempo – but it rather represents la-
tent features learned by the embedding algorithm. We
apply a post-processing step in order to keep only the
vectors m ∈ M representing the MIDI files, excluding
consequently all the nodes that refer to MIDI messages
and attributes.

Such obtained vectors can be then used in input to
any algorithm, in tasks such as classification, cluster-
ing, and others. In the experiment which will be de-
tailed in the following section, we will use such gen-
erated vectors in input to a neural network for clas-
sification. In particular, all vectors used in our exper-
iment have been computed using the following con-
figuration of node2vec: walk length = 10, number of
walks = 40, window size = 5, number of iterations
= 5, p = 0.1, and q=0.1. We also publish as open-
source the library for producing MIDI embeddings at
https://git.io/midi2vec.

5. Evaluation

We evaluate this strategy in relation to three dif-
ferent goals, involving three different MIDI datasets.

https://git.io/midi2vec
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MIDI
#1
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note-42
(F#-2)

note-45
(A-2)
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(A-1)

duration-2
(~200ms)

MIDI
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duration-3
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program-0
(grand piano)

program-40
(violin)

tempo-11
(~110bpm)

timesig-4/4

MIDI
#3

g-87932

Fig. 2. MIDI graph example, showing possible connections between MIDI #1, #2, and #3.

These goals are detailed in next sections and consist
respectively in predicting the genre, some high-quality
metadata, and some user-defined tags.

For each goal, we perform an experiment which re-
lies on a common procedure. MIDI embeddings are
generated on the dataset using MIDI2vec. A Feed-
Forward Neural Network receives the MIDI embed-
dings as input (100 dimensions) in batches of size 32.
The network is detailed in Figure 3. The set of labels
used for training and testing changes according to each
experiment. However, it is worth reminding the reader
that those labels have not been used in the embed-
ding task, and consequently, they are not directly in-
cluded in the embedding information. The neural net-
work consists of 3 dense layers. The hidden layers
count 100 neurons each and use ReLU8 as activation
function. The output layer uses a sigmoid9 as activa-
tion function and has a number of neurons equal to the
dimension of the vocabulary of labels, which is repre-

8A rectified linear unit (ReLU) is a classic activation function in
Deep Learning networks, which return 0 when the input is negative
or the input value itself when it is positive. ReLU is widely used be-
cause of its simplicity and its empirically demonstrated fast conver-
gence.

9The sigmoid function transforms the input x according to the
formula:

hθ(x) =
1

1 + e−θT x

It exists between 0 and 1, so it is widely used when probabilities are
requested in output. Its step curve shape gives it a behaviour similar
to the Heaviside step, but derivable for any input.

sented with one-hot encoding. We performed 10-fold
cross-validation for training the neural network and we
provide as final score the average of the accuracy10

computed on every fold.
For the first two goals (Section 5.1 and 5.2), a fur-

ther experiment requires a preliminary splitting of the
dataset in 10 equal folds, in order to alternatively use
1 of them as test set and the remaining 9 as training
set, implementing a complete 10-fold cross-validation
(CCV). The embeddings are generated using exclu-
sively the training set, while the vectors representing
the MIDI files in the test set are computed a pos-
teriori as the mean of the embeddings of their sib-
ling elements in the graph (tempos, programs, note
groups, time signatures). Even if this approach is not
commonly applied and not equivalent to the result of
an embedding learning, we include this simplification
with the purpose of demonstrating how graph embed-
ding information is generalisable to unseen data. In the
context of this experiment, the reported accuracy refers
to the predictions on the test set generated by the neu-
ral network trained on the training set.

Currently, the library deals with the unpitched notes
in MIDI Channel 10 (reserved to percussion by speci-
fication) as they have a pitch. When we ignore Chan-
nel 10 and use only programs representing pitched in-

10The definition of accuracy is “the closeness of agreement be-
tween a test result and the accepted reference value”, i.e. the true
value (ISO 5725-1).
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struments11, we empirically observe that the average
scores remains substantially unchanged (less than 1%
of difference), while the standard deviation is around
2% higher. For this reason, we report here only the per-
formances obtained considering note events from all
channels.

These experiments are available as notebooks at
https://git.io/midi-embs. Furthermore, all models (em-
beddings) learned for each dataset are also published
for supporting research reproducibility at http://www.
doremus.org/midi/.

...
...

...
...

I1

I2

I100

O1

O10

Fig. 3. Scheme of the neural network.

5.1. Genre Prediction

In [21], McKay et al. perform a genre classifica-
tion task on a contextually published SLAC Dataset12,
which contains 250 MIDI files classified according to
a two levels taxonomy. The first level includes 5 genre
labels (Blues, Classical, Jazz, Rap, Rock), while the
second one further specialises each genre by 2 sub-
genres, for a total of 10 sub-genre labels. The dataset is
perfectly balanced among the classes. Figure 4 shows
a breakdown of the notes, instruments, tempo and time
signature found in MIDIs of the SLAC dataset.

We perform a 5-class genre classification experi-
ment as well as a 10-class experiment on the same
dataset. In [21], the authors use different inputs for pre-
dicting the genre: symbolic music (S) –which is the
MIDI content–, lyrics (L), audio (A), cultural features
(C) (tags extracted from the Web) and the multi-modal
combination of all of these features (SLAC). In par-
ticular, the symbolic information is organised around
111 features (1021 dimensions). Their work has been

11Musical instruments can be classified as pitched, producing
recognisable notes in the musical scale (e.g. the piano), or unpitched,
producing sounds of indefinite pitch (e.g. the cymbals).

12SLAC dataset: http://jmir.sourceforge.net/Codaich.html

Fig. 4. From left to right and top to bottom, notes, instruments,
tempo and time signature of the MIDIs in the SLAC dataset (249
files). The average note is B3 (we have omitted all drum events
in channel 10); the most frequent instruments (peaks) are acoustic
grand piano, string ensemble 1, and distortion guitar. The average
tempo is 203.16 bpm, estimated with [42]. The most common time
signature is 4/4.

extended and improved in a more recent paper [43] in-
cluding, among others, features about chords and si-
multaneous notes, for a total of 172 features (1497 di-
mensions). We will compare our approach with these
works, taking into account these 5 variants of features
being used. The results are reported in Table 1.

Approach 5 classes 10 classes

McKay et al.
2010 [21]

S 85% 66%
L 69% 43%
A 84% 68%
C 100% 86%

SLAC 99% 85%

McKay et al. 2018 [43] 93.2% 77.6%

MIDI2vec + NN

ALL 86.4% (5.4%) 67.2% (7.8%)
*N 81.6% (7.6%) 62.4% (9.9%)
*P 79.6% (6.8%) 61.6% (8.6%)
*T 27.2% (9.5%) 18.8% (9.2%)

*TS 25.6% (9.2%) 15.2% (4.4%)
*300 79.2% (7.0%) 57.2% (12.5%)
CCV 76.8% (9.4%) 55.2% (6.5%)

Table 1
Accuracy of the genre classification. The reported values are the av-
erage (and standard deviation) of the cross-fold validation. In *N, *P,
*T, *TS the embeddings have been computed on the sole notes, pro-
grams, tempos and time signature, while ALL includes all of them
and *300 uses only the first 300 note-groups. Under CCV, the results
of the complete cross-fold validation.

Our approach slightly outperforms [21] when only
symbolic data are used in input (S), with an accuracy of
86% for 5-classes and 67% for 10-classes prediction.

https://git.io/midi-embs
http://www.doremus.org/midi/
http://www.doremus.org/midi/
http://jmir.sourceforge.net/Codaich.html
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In addition, our method outperforms also other vari-
ants, namely lyrics (in both classes) and audio (in the
5-classes). The improvements made in [43] increase
these scores of a few percentage points. We believe that
the combination of melodic and chords features was
crucial in this case and worth to investigate in future
work.

The same Table 1 shows also the accuracy scores
obtained with different variations of the complete
model (ALL); these variations compute the embed-
dings on the sole notes nodes (*N), program nodes
(*P), tempo nodes (*T), and time signature nodes
(*TS). None of these single features reach the accuracy
score of their combination. It is not surprising that *N
reaches the higher accuracy among those models, hav-
ing been computed on a more populated graph – the
number of NoteOn/NoteOff events is higher than any
other kind of event. Moreover, this study proves the
absence of correlation between mono-dimensional fea-
tures (e.g. tempo) and the classes. Finally, we trained
the embeddings on all features, but taking into account
only the first 300 note groups (*300). The experiment
shows that reducing the number of vertex in the graph
causes lower accuracy scores.

Given the close results between the two best varia-
tions (ALL and *N), we studied their statistical signifi-
cance, in order to understand if these two variations are
likely to have the same accuracy mean. In order to do
so, we extracted a t statistic computed on a 10x10-fold
cross-fold validation, according to [44]. Applying this
statistic to a Student’s t-test, we obtain their p-values,
comparing them with the common significance level
α = 0.05. For the 5 classes classification, the p-value
of 0.048 suggests its statistical significance, while this
is not confirmed with p = 0.079 for the 10 classes
case. However, the repeated experiments show always
better results for ALL when looking at the average of
each 10-fold shuffle, while may happen that *N has
punctual higher scores on single folds.

In the complete cross-fold validation (CCV) experi-
ment, the accuracy scores are around 10% lower. This
decrease is mostly due to the difference in computing
the vectors of the nodes in the train set (embedding
algorithm) and the test set (average of other nodes).
However, the results are consistent respect to ALL,
suggesting that the system is learning relevant features
rather than coincidentally building a smart hashing on
the content.

Figure 6 shows the confusion matrix between the
real and the predicted values (configuration ALL).
Even if there are no strong patterns, we can state that

Blues is the genre that attract more negative predic-
tions. This is confirmed by what we see in Figure 5,
which contains a 2D visualisation of the vector space
realised using the t-Distributed Stochastic Neighbor
Embedding (t-SNE) algorithm13 [45]. The final result
is obtained by minimising the differences in this prob-
ability when computed on the low-dimensional space
with respect to the high-dimensional one. In this fig-
ure, items of the same genre look closer in the space,
with the Blues tracks occupying the central part of the
graph, partially overlapping with the area of other gen-
res. Figure 6b confirms that sub-genres belonging to
the same parent genre are easier to be confused.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

10

5

0

5

10

Blues
Classical
Jazz
Rap
Rock

Fig. 5. 2D representation of the embedding space learned by
midi2vec from the SLAC dataset.

5.2. Metadata Prediction

This task consists in predicting a set of metadata
from the MIDI, namely the composer, the genre, the
instrument and the movement.

We started by downloading a corpus of 438 MIDI
files from MuseData14. Those files refer to 139 classi-

13Similarly to Principal Components Analysis (PCA), t-SNE
maps a high-dimensional space into a low-dimensional one. The al-
gorithm computes the probability that a point A would choose point
B as its neighbour, according to a Gaussian probability distribution
centred at A.

14The MuseData dataset is available on the old musedata website:
http://old.musedata.org

http://old.musedata.org
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(b) Sub-genre prediction

Fig. 6. Confusion matrices of midi2vec predictions for the SLAC dataset.

cal music compositions, and each file can represent a
specific movement. Figure 8 shows a breakdown of the
notes, instruments, tempo and time signature found in
MIDIs of the MuseData dataset.

MuseData provides also some metadata, like the
composer name, the scholar catalogue number, a la-
bel for the movement. In order to obtain further infor-
mation (i.e. the genre and the played instruments), we
have interlinked each composition against the DORE-
MUS knowledge base [46], a dataset specialised in
classical music metadata.

The interlinking process consists of three successive
steps:

– interlinking of the composer through the exact
match on the full name. This limits the candidates
for the composition interlinking to the sole com-
positions of the interlinked composer;

– interlinking of the composition through the exact
match on the catalogue number;

– if no catalogue number match is found, the ti-
tles are involved in the process. A title can of-
ten contain other kinds of information, such as
key, instruments, opus number, etc. For example,
the title “Symphony No. 3 in E-flat Major" con-
tains the order number and the key. For this rea-
son, titles are tokenised through empirical meth-
ods based on regular expressions to separate the

different parts of the string, used as input of the
Extended Jaccard Measure. [47]

Every composition can be linked to more than one
MIDI file, in the case of works made of multiple move-
ments. The movement labels have been cleaned by re-
moving the order number, the key, the instruments and
eventual comments in parentheses. For example, “1.
Allegro in E Major" becomes simply “Allegro".

The interlinking gives access to precise metadata,
mostly coming from controlled vocabularies [30], in
particular composers (4 classes, i.e. Bach, Beethoven,
Haydn, and Mozart), genres (10 classes), and instru-
ments. For this last dimension, given the very large
number of possibilities, we decided to reduce the num-
ber of classes to 6, including piano P, instrument (other
than piano, including also small instrument ensembles)
I, voice V, orchestra O, orchestra with voice O+V, and
orchestra with instrumental soloist O+S. For instru-
ment prediction, we excluded from the input, 21 MIDI
with unknown instrumentation and 3 others which did
not fall into any of the previous classes, having a final
source dataset of 414 items.

Furthermore, we consider also the movement label
as a feature to predict, considering only those which
were occurring more than 10 times. Those labels in-
clude tempos (Allegro) and musical forms (Prelude),
for a total of 9 distinct classes on 335 MIDI files. Some
of these categories are loosely defined, but we consider
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Fig. 7. Confusion matrices of midi2vec predictions for the MuseData dataset. For the instrument predictions (c), the labels are Instrument,
Orchestra, Orchestra + Soloist instrument, Orchestra + Voice, Piano, Voice.

them as-is since ambiguity is part of music informa-
tion and therefore also part of the task. The dataset is
not balanced among classes and has a strong presence
of Bach works (76% of the total).

The final accuracy (average of all the fold scores) is
reported in Table 2. The best results are achieved for
composer and genre prediction, and good results can

be observed for all metadata. Looking at the confusion
matrices:

– For the composers, the best results belong to
Bach (the most present in the dataset). The two
Austrian composers Mozart and Haydn are not
surprisingly quite confused with one another,
belonging both to the Classicism, differently
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feature n. items n. classes midi2vec midi2vec CCV jSymbolic
composer 438 4 90.4% (5.8%) 88.9% (15.0%) 78.7% (4.9%)

genre 438 10 71.3% (6.4%) 58.0% (16.6%) 37.9% (9.3%)

instrument 414 6 65.1% (17.5%) 48.6 (19.5%) 46.1% (8.6%)

movement 335 9 68.3% (12.7%) 54.9 (22.7%) 32.4 (6.6%)
Table 2

For each kind of metadata feature, the table reports the number of items, the number of distinct classes, the average (and standard deviation)
accuracy score for midi2vec, midi2vec with complete cross validation, jSymbolic.

Fig. 8. From left to right and top to bottom, notes, instruments,
tempo and time signature of the MIDIs in the MuseData dataset (439
files). The average note is E4 (we have omitted all drum events in
channel 10); the most frequent instruments (peaks) are string ensem-
ble 1, the acoustic grand piano, and the harpsichord. The average
tempo is 188.96 bpm, estimated with [42]. The most common time
signature is 4/4, with 3/4 also relatively frequent.

from Beethoven (Classic-Romantic) and Bach
(Baroque) [48]. The score for Beethoven reflect
its under-representation (only 10 tracks) in the
dataset (Figure 7a);

– The genres are much more specific, with respect
to the ones investigated in Section 5.1. As a con-
sequence, the greatest confusion occurs between
couples of very similar genres, such as [concerto,
symphony] and [prelude, prelude and fugue]
(Figure 7b). Those genre groups are overlapping
also in the t-SNE visualisation in Figure 9;

– While the instrument prediction has great results
in identifying works for orchestra, piano solo or
small ensemble of instruments, it reveals some
unreliable classification for voice-only pieces,
probably due to the under-representation of the
class in the dataset. In the same way, the approach
is not able to distinguish compositions for orches-
tra, orchestra and voice, and orchestra and soloist,
all classified under the class O (Figure 7c);

– Even if the movement labels include heteroge-
neous meaning, the network correctly predicts 7
over 10 items. Some confusion patterns can be
spotted. The Fugue tag is often predicted as Pre-
lude, on the other hand proving a correct genre
prediction. The classes representing tempos (e.g.
Adagio or Tempo di Minuetto) are often confused
with the most represented class among them (Al-
legro). Some confusion is visible also between
the two tags related to singing, Aria and Choral
(Figure 7d).

Also in this case, we loose some accuracy (around
12-15%) when applying the complete cross-validation
strategy. In order to have a comparison, we replicated
the classification experiment described in [43], apply-
ing to Musedata a SVM classifier trained on the feature
vectors computed by jSymbolic15. The results show
how the features extracted from midi2vec are more ca-
pable to discern overlapping classes – e.g. genres of
classical music, movement labels.

All those results should be analysed with a grain of
salt, given the absence of balance between classes in
the dataset.

5.3. Tag Prediction

The Lakh MIDI Dataset (LMD)16 is one of the
biggest collections of MIDI which have been realised
for research purposes [9]. An LMD-matched subset
contains 31,03417 MIDI aligned to entries of the Mil-
lion Song Dataset, providing a set of metadata about
the tracks, the albums and the artists. Figure 10 shows
a breakdown of the notes, instruments, tempo and time
signature found in MIDIs of the Lakh dataset.

15We also used the jSymbolic vectors in combination with a Neu-
ral Network, but obtaining worse performance scores.

16Lakh MIDI Dataset: https://colinraffel.com/projects/lmd/
17The LMD website declares that LMD-matched includes

45,129 MIDIs. However, only 31,034 of them have metadata within
a HDF5 file.

https://colinraffel.com/projects/lmd/
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Fig. 9. 2D representation of the embedding space learned by
midi2vec from the MuseData dataset.

Fig. 10. From left to right and top to bottom, notes, instruments,
tempo and time signature of the MIDIs in the Lakh dataset (31,036
files). The average note is B3 (we have omitted all drum events in
channel 10); the most frequent instruments (peaks) are the acoustic
grand piano, string ensemble 1, and acoustic guitar (steel). The av-
erage tempo is 213.15 bpm, estimated with [42]. The most common
time signature is 4/4; 2/4 is also relatively frequent.

We extracted from LMD-matched two kinds of
tags, coming respectively from MusicBrainz18 and The
Echo Nest19. The former group is a mix of terms which
may refer to genres – i.e. classic pop – or to nationali-
ties – British – while the latter group is more homoge-

18MusicBrainz: https://musicbrainz.org/
19The Echo Nest: http://the.echonest.com/

neous in representing genres. Both kinds of tags refer
more to the artist rather than to the exact track.

Differently from the experiment in Section 5.2, the
size of the dataset allows to further filter the data in
order to extract a balanced dataset. In particular, we
select all distinct classes which are represented by at
least 50 instances. For each of these classes, we ran-
domly select 50 instances. Table 3 shows the accuracy
for the predictions, measured through 10-fold cross-
validation, together with the number of classes (dis-
tinct tags) against which we run the classification. In
addition, in the table are reported the accuracy scores
obtained by an SVM classifier build on top of jSym-
bolic. The comparison of this results reveals that latent
features can largely boost the performance in tag clas-
sification, with evident benefit in real world scenarios
like automatic tag prediction.

The confusion matrices are shown in Figure 11.
Among the most wrongly predicted MusicBrainz
classes, we find a strong presence of nationality tags
(British, Italian, UK, etc.). The consistent number of
classes do not let us detect patterns in the confusion
matrix, in which the best values are however concen-
trated in the diagonal of corrected predictions. In order
to overcome this issue, we report in Table 4 the most
frequent wrong predictions. For MusicBrainz tags, the
list includes loosely defined genres (easy listening,
ccm), one evident error (line 6.), together with couples
of tags which can be considered similar or overlapping
(1., 3., 7.). Looking at EchoNest tags, all pairings are
meaningful, involving similar or related genres. This
data gives us more confidence that the neural network
is learning music-relevant features, which are well rep-
resented through graph embeddings.

6. Conclusion and Future Work

In this paper, we hypothesise that symbolic music
content in MIDI files, and its embedding represen-
tation in vector space, are a powerful tool for auto-
mated metadata classification tasks. Traditionally, ap-
plications of machine learning to this problem have
encountered limitations in feature selection, and more
recent embedding-based techniques have been only
used for other tasks (e.g. music generation) or on dif-
ferent data (e.g. music metadata). In this paper, we
propose MIDI2vec, a method to represent MIDI con-
tent as a graph and, subsequently, in a vector space
through learning graph embeddings. We gather evi-
dence that our hypothesis holds: MIDI2vec embed-

https://musicbrainz.org/
http://the.echonest.com/
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feature n. items n. classes midi2vec jSymbolic
MusicBrainz 2400 48 39.7% (2.8%) 3.7% (1.4%)

EchoNest 6800 136 32.5% (1.9%) 1.4% (0.4%)
Table 3

For each kind of tag feature, the table reports the number of items, the number of distinct classes, the average (and standard deviation) accuracy
score for midi2vec and jSymbolic.
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Fig. 11. Confusion matrices of midi2vec predictions for the Lakh dataset.

tag ground truth predicted %
MusicBrainz 1. ballad folk rock 12

2. blues-rock ccm 12
3. classic rock british invasion 12
4. cool jazz ccm 10
5. easy listening classic rock 12
6. flamenco british invasion 12
7. folk rock ballad 10

EchoNest 8. orchestra requiem 10
9. progressive trance hard trance 10

10. ragtime jazz 10
11. requiem orchestra 10
12. techno tech house 10

Table 4
Most frequent prediction errors for tag classification, with the per-
centage of cases over the total of the class

dings were successful in metadata classification, ob-
taining comparable performances to state-of-art meth-
ods based on feature extraction from symbolic music,
with the added advantages of scalability, automating

feature engineering, and reducing the required dimen-
sions by one order of magnitude.

We plan on improving this work in various ways.
Even if experiments revealed that the impact of un-
pitched notes in Channel 10 is minimal, we intend to
assign a separated branch of the graph to percussion
notes in the future, on order to distinguish them from
the other ones while still taking them into account, in
order to try to improve the overall performance.

Being transformed into a flat graph, the MIDI con-
tent loses in MIDI2vec all time-based information,
with the only exception of simultaneity. Given the im-
portance of melodic patterns in a music piece, future
work would investigate how this work can deal with
note sequences. We plan to investigate a few differ-
ent strategies. First, sequences of notes may be en-
coded similarly to the simultaneous notes groups and
included in MIDI2vec as a fifth node type. A sec-
ond strategy may rely upon the inclusion in the graph
embedding process of sequence embeddings like Se-
quence Graph Transform (SGT), which is capable to
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short- and long- term sequence features [40]. It is pos-
sible to think of MIDI file as a temporal graph, in
which the information (currently played notes, tempo,
playing instruments, etc.) is evolving over time, and
apply to such a graph temporal node embeddings
strategies [41]. Finally, another study may combine
MIDI2vec with other feature extraction techniques –
e.g. the previously cited [43] – in an ensemble system,
in order to exploit the best of the two methods.

A MIDI ontology and a corpus of over 300 thousand
MIDI in RDF format have been presented in [49]. De-
spite being an interesting target for MIDI2vec, the ex-
traction of crucial information (like the duration of a
note) from the dataset is hard. In the current version,
the ontology faithfully reproduces the event structure
of the MIDI files, while significant edges – e.g. among
simultaneous notes or consecutive events – are miss-
ing. Still, the MIDI2vec approach does not exploit
edges between consecutive groups of notes, while they
may potentially impact on the performances. We plan
to extend or map the MIDI ontology in order to solve
this issue and enable MIDI2vec for working on such
corpus, e.g. to perform link discovery and knowledge
graph completion. Moreover, it would be interesting to
extend this approach to other symbolic music notation
formats, namely MusicXML.

According to some intuition from other works in the
genre classification field [12], the computation should
not necessarily involve the full length of the track. Ex-
periments with different time spans or sample sizes
among the graph edges can help in detecting a trade-
off between the performances and the embedding com-
putation time. Recent approaches for including literal
values in graph embeddings [50, 51] could be included
in MIDI2vec, in order to avoid any arbitrary choice
that value-partitioning implies. Finally, we will use
MIDI2vec in more applied contexts, such as the task of
knowledge graph completion in knowledge bases with
incomplete metadata entries [3].
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