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Abstract. Knowledge graphs enable data scientists to learn end-to-end on heterogeneous knowledge. However, most end-to-end
models solely learn from the relational information encoded in graphs’ structure: raw values, encoded as literal nodes, are either
omitted completely or treated as regular nodes without consideration for their values. In either case we lose potentially relevant
information which could have otherwise been exploited by our learning methods. We propose a multimodal message passing
network which not only learns end-to-end from the structure of graphs, but also from their possibly divers set of multimodal node
features. Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different
types of modalities, including numbers, texts, dates, images and geometries, which are projected into a joint representation space
together with their relational information. We implement and demonstrate our model on node classification and link prediction
for artificial and real-worlds datasets, and evaluate the effect that each modality has on the overall performance in an inverse
ablation study. Our results indicate that end-to-end multimodal learning from any arbitrary knowledge graph is indeed possible,
and that including multimodal information can significantly affect performance, but that much depends on the characteristics of
the data.
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1. Introduction

The recent adoption of knowledge graphs by multina-
tionals such as Google and Facebook has made them
interesting targets for various machine learning appli-
cations such as link prediction and node classification.
Already, this interest has lead to the development of
message-passing models which enable data scientists
to learn end-to-end1from any arbitrary graph. To do so,
message-passing models propagate information over
the edges of a graph, and can therefore be used to ex-
ploit the relational information encoded in a graph’s
structure to guide the learning process. The same ap-
proach has also been shown to work quite well on
knowledge graphs, obtaining results that are compa-
rable to dedicated models such as RDF2Vec [1] and
Weisfeiler-Lehman kernels [2]. Nevertheless, by fo-
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cusing on a single modality—the graphs’ structure—
we are effectively throwing away a lot of other infor-
mation that knowledge graphs tend to have, and which,
if we were able to include it in the learning process,
has the potential of improving the overall performance
of our models.

Combining information from multiple modalities is
a topic that is already well studied for information
stored in relational form (for instance in relational
database management systems). Here too, we often
encounter heterogeneous knowledge, containing infor-
mation from a wide variety of modalities (such as lan-
guage, audio, or images). In [3], the case is made that

1In the context of this paper, we define “end-to-end learning” as
the use of machine learning models which operate directly on raw
data, instead of relying on manually engineered features. In end-to-
end learning, any information in the data can, in principle, be used
by the model. See [3] for a more in-depth discussion.
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Fig. 1. A simplified and incomplete example from the Dutch Monuments Graph showing a single monument with several attributes of different
modalities.

to truly learn end-to-end from a collection of hetero-
geneous, multimodal data, we must design machine
learning models that can consume these data in as raw
a form as possible, staying as close as we can to the
original knowledge, and that we need to adopt a data
model which can represent our data in a suitable for-
mat, for which the knowledge graph is a natural choice.
In other words, even when our heterogeneous mul-
timodal data is not initially represented as a knowl-
edge graph, transforming it to this format is a natural
first step in an end-to-end multimodal machine learn-
ing pipeline.

In this paper, we introduce and implement a multi-
modal message passing neural network, based on this
principle, which can directly consume heterogeneous
multimodal data, represented as knowledge graph, and
which itself can learn to extract relevant information
from each modality, based solely on the downstream
task.

With the term knowledge graph we mean any la-
beled multidigraph that is built on top of the Resource
Description Framework (RDF). We consider the re-
lational information of such a graph, encoded in its
structure, as a single modality. Other modalities that
are commonly present in knowledge graphs are of nu-
merical, textual, and temporal nature, such as various
measurements, names, and dates, respectively, and, to
a lesser degree, of visual, auditory, and spatial makeup.
In a knowledge graph about monuments, for example,
we might find that each monument has a detailed de-
scription, a registration number, a year in which it was
built, a few pictures from different angles, and a set of
coordinates (Figure 1). These and other attributes are
encoded as raw values with corresponding datatype an-
notations, called literals, and tell us something about

the objects they are connected to, called entities. How-
ever, most of this information is lost when we re-
duce the literals to identifiers, as is currently common
practice when we apply message passing networks to
knowledge graphs.

By reducing literals to identifiers, we discard any in-
formation that is contained in their contents, retaining
only the relational information encoded by their con-
nections, and placing them on an equal footing with
all other entities. This means that we are effectively
feeding our models a subset of the original and com-
plete knowledge, but also that we are depriving our
models of the ability to compare inputs according to
their modalities: measurements as numbers, descrip-
tions as language, coordinates as geometries, etc. As
a result, our models are unable to distinguish between
literals that are closely together in the value space with
those which are far apart. The name Mary, for exam-
ple, would be seen as (dis)similar to Maria as it would
to Bigglesworth, as would the integer value 47 be to 42
and 6.626068× 10−34. Instead however, we want our
models to use this information to guide their learning
process.

By enabling our models to naturally ingest literal
values, and by treating these values according to their
modalities, tailoring their encodings to their specific
characteristics, we stay much closer to the original and
complete knowledge that is available to us. We believe
that doing so enables our models to create better inter-
nal representations of the entities we are trying to learn
over, potentially resulting in an increase in the overall
performance of our models. By embedding this prin-
ciple in the message passing framework, and by ex-
ploiting Semantic Web standards such as datatype an-
notations, we embrace the idea that this enables us to



learn end-to-end from any heterogeneous multimodal
knowledge, as long as it is represented as a knowledge
graph.

In this work, we propose a multimodal message
passing model which incorporates the information
from a divers set of multimodal node features. Our
model uses dedicated vectorization strategies and
(neural) encoders to naturally learn embeddings for
node features belonging to five different types of
modalities, including images and geometries, which
are projected into a joint representation space together
with their relational information. We demonstrate our
model on node classification and link prediction for
both artificial and real-worlds knowledge graphs, and
evaluate the effect that each modality has on the overall
performance in an inverse ablation study. We also im-
plement and publish our model as Python package ca-
pable of learning from any arbitrary knowledge graph
out of the box, exploiting Semantic Web standards to
automatically infer and incorporate multimodal infor-
mation.

To summarize, the main contributions of this paper
are:

1. A machine learning model, embedded in the
message passing framework, which can learn
end-to-end from a heterogeneous knowledge, en-
coded as a knowledge graph, and which can
naturally ingest literal values according to their
modalities.

2. An investigation of the potential usefulness of
including information from multiple modalities,
and the impact this has on the overall perfor-
mance of our models.

3. An implementation of our model (named the
MR-GCN), which can learn from any arbitrary
knowledge graph, and which exploits Semantic-
Web standards to automatically infer and incor-
porate multimodal information.

Our intent is emphatically not to show that our im-
plementation achieves any kind of state-of-the-art, or
even to measure its performance against related mod-
els. Rather, we aim to demonstrate that 1) by includ-
ing as much of the original knowledge as possible, in
as natural of a fashion as possible, we can, in certain
cases, help our models obtain a better overall perfor-
mance, and that 2) a model can be trained end-to-end
on a heterogeneous knowledge graph such that it learns
purely from the downstream task which patterns to ex-
tract from each modality.

2. Related Work

Machine learning from multimodal sources is a well-
studied problem. A good introduction to this problem
and its many perspectives is given by [4]. According
to their taxonomy, our approach is one of late fusion
by first encoding modalities using dedicated neural en-
coders, after which the resulting encodings are pro-
jected in a joint representation space. Different from
most other research in this field we are not interested
in translation (mapping one modality to another) nor
in alignment (aligning the same subject over multiple
modalities). Rather, information in a given modality is
only ever used to learn node embeddings with the in-
tent to improve the learning process by including as
much of the original knowledge as possible.

2.1. Knowledge Graph Embeddings

Graph embedding techniques aim to represent graphs
in a lower-dimensional space, making them more suit-
able to learn over. Numerous embedding techniques
have been proposed over the years, and typically dif-
fer in which operations they apply between the node
and edge embeddings, and which scoring function they
use. Popular methods are those based on matrix factor-
ization, random walks, translation models, and, more
recently, deep neural networks [5]. Our approach falls
in the latter group of methods, for its use of a message-
passing network. A thorough overview of the different
embedding methods can be found in one of the many
recent survey papers, for example [5] and [6]. Here, we
will limit ourselves to the graph embedding methods
that consider multimodal information.

Various approaches have explored using informa-
tion from one or more additional modalities in ma-
chine learning models for knowledge graphs. In most
cases, only a singly additional modality is included, al-
ways of numerical, textual, or visual nature [7]. This
differs from our method, which also supports tempo-
ral and spatial literals. Our methods also differs from
most other approaches in that we address how infor-
mation from different modalities can be 1) extracted
from a graph, and 2) vectorized with minimal loss of
information.

An early work described in [8] proposes an exten-
sion to the RESCAL [9] tensor factorization method
which can also cope with textual attributes. This is
done by introducing an additional tensor which is fac-
torized together with the tensor holding the relational
information. A similar separation is proposed by [10],



who generate a separate co-occurrence matrix for the
relational and textual information, and which are then
summed to produce the final embeddings. Both these
methods scale well due to their use of basic matrix op-
erations, whereas scalability remains a challenge for
many message-passing models such as the one used in
our approach.

In [11], the authors introduce a learnable function,
called LiteralE, which replaces every entity embed-
ding by a new embedding that is the fusion of the
original entity embedding and its direct numerical at-
tributes. The resulting vector representation can then
be used in an arbitrary translation-based model. The
fusion step is similar to our approach in that the em-
beddings of neighbouring nodes coalesce into the tar-
get entity, except that our model does this for every
node (entity or literal), up to an arbitrary depth (deter-
mined by the number of layers in the message-passing
network), and only after the modalities have been en-
coded according to their specific characteristics.

The authors of [12] propose an extension to LiteralE
that incorporates textual features which they generate
by performing entity resolution on (part of) the iden-
tifiers of entities and relations. The results are then
mapped to integers and passed to LiteralE together
with the corresponding entities.

A slightly different approach is proposed by [13],
who perform a joint optimization of an existing trans-
lation model (TransE [14]) and a regression model
specifically designed by the authors for numerical fea-
tures. The work in [15] uses a similar approach, but
for textual rather than numerical attributes and with a
self-defined translation model instead of a regression
model. Similar to our work, the authors use a CNN as
encoder for textual attributes, but where our model em-
ploys a temporal CNN with one-hot encoded text as
input, the authors here use a language-agnostic CNN
with pretrained word2vec [16] embeddings as input.

Another extension to an arbitrary translation model
is proposed in [17], who use a proven CNN architec-
ture to learn image embeddings, which are then used in
a self-defined translation model. For entities with more
than one image attribute, the images embeddings are
merged into one final embedding which is kept sepa-
rate from the entity embedding to which they belong.
Our model differs in that all neighbouring nodes, and
not just images, coalesce into the corresponding en-
tity embedding: separate image embeddings only exist
prior to fusion.

Different from translation-based approaches is the
work in [18], who propose using a dual network archi-

tecture with a binary classifier to learn relational in-
formation and a regression model to learn numerical
information. A joint optimization is used to train the
model.

More modalities are considered by [19], who incor-
porate numerical and textual literals, as well as im-
ages. The numerical features are encoded using a feed-
forward layer, which projects the values to a higher-
dimensional space. For short strings, the authors em-
ploy a character-based GRU, whereas a language-
aware CNN is used in combination with word se-
quences for longer strings. Finally, for images, the au-
thors use the last hidden layer of a pretrained net-
work on ImageNet [20]. The resulting embeddings are
then paired with their corresponding entity embed-
dings (generated using a feed-forward network) and ul-
timately scored using DistMult. The use of dedicated
neural encoders per modality is similar to our work,
except for numerical features, which we feed directly
to the message-passing network after normalization.
Also similar is the use of different encoders for text of
different lengths, but rather than have completely dif-
ferent models and input requirements, we employ three
temporal CNNs of increasing size for short, medium,
and long strings.

All the reviewed models are simple embedding
models, based on basic matrix operations or on a score
function applied to triples. By contrast, our approach
includes a message passing layer, allowing multimodal
information to be propagated through the graph, sev-
eral hops and from all (direct and indirect) neighbours.

3. Preliminaries

Knowledge graphs and message passing neural net-
works are integral components of our research. We will
here briefly introduce both concepts.

3.1. Knowledge Graphs

For the purposes of this paper we define a knowl-
edge graph G = (V , E) over modalities 1, . . . ,M
as a labeled multidigraph defined by a set of nodes
V = I ∪

⋃
{Lm|m ∈ M} and a set of directed edges

E , and with n = |V|. Nodes belong to one of two
categories: entities I, which represent objects (monu-
ments, people, concepts, etc.), and literals Lm, which
represent raw values in modality m ∈ M (numbers,
strings, coordinates, etc.). We also define a set of rela-



tions R, which contains the edge types that make up
E . Relations are also called predicates.

Information in G is encoded as triples T of the form
(h, r, t), with head h ∈ I, relation r ∈ R, and tail t ∈
I ∪ L1 ∪ . . . ∪ Lm. The combination of relations and
literals are also called attributes or node features.

See Figure 1 for an example of knowledge graph
with seven nodes, two of which are entities and the
rest literals. All knowledge graphs in this paper are
stored in the Resource Description Framework (RDF)
format [21], but our model can be applied to any graph
fitting the above definition.

3.2. Message Passing Neural Networks

A message passing neural network [22] is a graph
neural network model that uses trainable functions to
propagate node embeddings over the edges of the neu-
ral network. One simple approach to message passing
is the graph convolutional neural network (GCN) [23].
The R-GCN [24], on which we build, is a straightfor-
ward extension to the knowledge graph setting.

Let H0 be a n × q matrix of q dimensional node
embeddings for all n nodes in the graph. That is, the
i-th row of H0 is an embedding for the i-th node in
the graph2, The R-GCN computes an updated n × l
matrix H1 of l-dimensional node embeddings by the
following computation (the graph convolution):

H1 = σ

(∑
r∈R

Ar H0Wr

)
(1)

Here, σ is an activation function like ReLU, applied
element-wise. Ar is the row-normalised adjacency ma-
trix for the relation r and Wr is a q× l matrix of learn-
able weights. This operation arrives at a new node em-
bedding for a node by averaging the embeddings of all
its neighbours, and linearly projecting to l dimensions
by Wr. The embeddings are then summed over all re-
lations and a non-linearity σ is applied.

To allow information to propagate in both directions
along an edge, all inverse relations are added to the
predicate set. The identity relation is also added (for
which Ar = I) so that the information in the cur-
rent embedding can, in principle, be retained. To re-
duce overfitting, the weights Wr can be derived from

2The standard R-GCN does not distinguish between literals and
entities. Also, literals with the same value are collapsed into one
node, therefore n 6 |V|.

a smaller set of basis weights by linear combinations
(see the original paper for details).

To use R-GCNs for entity classification with c
classes, the standard approach is to start with one-hot
vectors as initial node embeddings (that is, H0 = I).
These are transformed to h-dimensional node embed-
dings by a first R-GCN layer, which are transformed to
c-dimensional node embeddings by a second R-GCN
layer. The second layer has a row-wise softmax non-
linearity, so that the final node embeddings can be read
as class probabilities. The network is then trained by
computing the cross-entropy loss for the known la-
bels and backpropagating to update the weights. Us-
ing more than two layers of message passing does not
commonly improve performance with current message
passing models.

For link prediction, the R-GCNs can be viewed as
encoder in a graph auto-encoder. In that role, the R-
GCNs learn node embeddings that are used by a de-
coder to reconstruct the edges in the graph. As before,
the standard approach for the R-GCNs is to have one or
two layers, and to start with one-hot vectors as initial
node embeddings. However, because we are now inter-
ested in the node embeddings themselves, the softmax
on the end is replaced with an activation function like
ReLU, applied element-wise. The decoder consists of
a triple scoring function s : V×R×V 7→ R, for which
ideally holds that s(h, r, t) > s(x, y, z) if (h, r, t) exists
and (x, y, z) does not.

In this work, we use DistMult [25] for our de-
coder, which is known to perform well on link pre-
diction tasks while keeping the number of parameters
low [26]. DistMult uses the following bilinear scoring
function:

s(yvi , r,yv j) = yT
vi

diag(Rr)yv j (2)

Here, yvi and yv j are the output of the encoder for
nodes vi, v j ∈ V , and Rr the embedding belonging to
relation r ∈ R. Both encoder and decoder are trained
by minimizing the binary-cross entropy loss3over the
output of Equation 2 for both positive and negative
samples (negative sampling) [24]. The set of negative
samples T − can be obtained by randomly corrupting
the head or tail of a portion ( 15 ) of the triples in T .



Fig. 2. Overview of how our model creates multimodal node em-
beddings for nodes v1 to v5. Solid circles represent entities, whereas
open shapes represent literals of different modalities. The nodes’
feature embeddings are learned using dedicated (neural) encoders
(here f , g, and h), and concatenated to their identity vectors I to form
multimodal node embeddings, which are fed to a message passing
network.

4. A Multimodal Message Passing Network

We introduce our model as an extension to message
passing networks which can learn end-to-end from the
structure of an arbitrary graph, and for which holds that
H0 = I. To do so, we let f (·), g(·), and h(·) be feature
encoders that output feature embeddings of lengths ` f ,
`g, and `h for nodes vi ∈ V . We define F as the n × f
matrix of multimodal feature embeddings with f =
` f + `g + `h, and concatenate F to the identity matrix
I to form multimodal node embeddings:

H0 = [I F] (3)

of size n× q (Fig. 2).
Embedding matrix H0 is fed together with Ar to a

message passing network, such as the R-GCN. Both
encoders and network are trained end-to-end in unison
by backpropagating the error signal from the network
through the encoders all the way to the input.

4.1. Modality Encoders

We consider five different modalities which are com-
monly found in knowledge graphs. We forgo dis-
cussing relational information—the sixth modality—
as that is already extensively discussed in related work
on message passing networks. For numerical informa-
tion, we use a straightforward one-to-one encoding and

3A margin ranking loss is used in the original DistMult paper.

let the message-passing layers handle it further. For
all other modalities we use neural encoders: a feed-
forward neural network for temporal information, and
convolutional neural networks (CNN) for textual, spa-
tial, and visual information. Each of these will be dis-
cussed next. We will also discuss the preceding vector-
ization process, which, if done poorly, can results in a
loss of information.

In the following, we let em
i be the embedding vec-

tor of node vi for modality m. The concatenation of
a node’s identity vector and all its feature embedding
vectors em

i for every m ∈M equals the i-th row of H0.

4.1.1. Numerical Information
Numerical information encompasses the set of real
numbers R, and corresponds to literal values with a
datatype declaration of XSD:double, XSD:float, and
XSD:decimal and any subtype thereof. For these, we
can simply take the normalized values as their embed-
dings, and feed these directly to the message-passing
layers. We also include values of the type XSD:boolean
into this category, but separate their representations
from those of real numbers to convey a difference in
semantics.

More concretely, for all nodes vi ∈ V holds that enum
i

is the concatenation of their numerical and boolean
components, encoded by functions fnum and fbool, re-
spectively. Here, fnum(vi) = vi if vi is a literal node
with a value in R. If vi is a boolean instead, we let
fbool(vi) be 1.0 if vi is true and −1.0 if vi is false. In
both cases, we represent missing or erroneous values
with 0.0 (we assume a normalization between -1 and
1).

4.1.2. Temporal Information
Literal values with datatypes which follow the Seven-
property model4such as XSD:time, XSD:date and
XSD:gMonth, are treated as temporal information. Dif-
ferent from numerical values, temporal values contain
elements that are defined in a circular value space and
which should be treated as such. For example, it is in-
accurate to treat the months December and January as
if they were 11 months apart, as would be implied by
directly feeding the months’ number to our models. In-
stead, we can represent this as

ftrig(φ, ψ) = [sin(
2πφ

ψ
), cos(

2πφ

ψ
)] (4)

with ψ the number of elements in the value space (here
12), φ the integer representation of the element we
want to encode, and ftrig a trigonometric function in



our encoder. This ensures that the representation of
January is closer to that of December than it is to that
of March.

We can use this representation for all other circular
elements, such as hours (ψ = 24) and decades (ψ =
10). When dealing with years however, we represent
smaller changes more granular than larger changes:
years are split into centuries, decades, and (single)
years fragments, with decades and years treated as cir-
cular elements but with centuries as numerical values
(we limit our domain to years between −9999 and
9999).

Once vectorized, the vector representation vi is fed
to a feed-forward neural network ftemp with input and
output dimensions nin and nout, respectively, and for
which holds that nin < nout, such that etemp

i = ftemp(vi).

4.1.3. Textual Information
Vector representations for textual attributes with the
datatype XSD:string, or any subtype thereof, and
XSD:anyURI are created using a character-level encod-
ing, as proposed in [27]. For this purpose, we let Es

be a |Ω| × |s| matrix representing string s using vo-
cabulary Ω, such that Es

i j = 1.0 if s j = Ωi, and 0.0
otherwise.

A character-level representation enables our models
to be language agnostic and independent of controlled
vocabularies (allowing it to cope with colloquialisms
and identifiers for example), as well as provide some
robustness to spelling errors. It also enables us to forgo
the otherwise necessary stemming and lemmatization
steps, which would remove information from the orig-
inal text. The resulting embeddings are optimized by
running them through a temporal CNN fchar with out-
put dimension c, such that etextual

i = fchar(Evi) for ev-
ery node vi with a textual value.

4.1.4. Visual Information
Images and other kinds of visual information (e.g.
videos, which can be split in frames) can be included
in a knowledge graph by either linking to them or by
expressing them as binary string literals5which are in-
corporated in the graph itself (as opposed to storing
them elsewhere). In either case, we first have to obtain
the raw image files by downloading and/or converting
them.

Let imi be the raw image file as linked to or encoded
by node vi. We can represent this image as a tensor Eimi

4https://www.w3.org/TR/xmlschema11-2
5In [28], we advocate the use of KGBench’s base64Image for this

purpose.

of size channels× width× height, which we can feed
to a two-dimensional CNN fim with output dimension
c, such that evisual

i = fim(Eimi) for the image associated
with node vi.

4.1.5. Spatial Information
Spatial information includes points, polygons, and
any other spatial features that consist of one or more
coordinates. These features can represent anything
from real-life locations or areas to molecules or
more abstract mathematical shapes. Literals with this
type of information are commonly expressed us-
ing the well-known text representation (WKT) and
carry the OGC:wktLiteral datatype declaration. The
most elementary spatial feature is a coordinate (point
geometry) in a d-dimensional space, expressed as
POINT(x1 . . . xd), which can be combined to form more
complex types such as lines and polygons.

We can use the vector representations proposed in
[29] to represent spatial features. Let Es f be the |x| ×
|s f | matrix representation for spatial feature s f con-
sisting of |s f | coordinates, and with x the vector repre-
sentation of one such coordinate. Vector x holds all of
the coordinate’s d points, followed by its other infor-
mation (e.g. whether it is part of a polygon) encoded
as binary values. For spatial features with more than
one coordinate, we also need to separate their location
from their shape to ensure that we capture both these
components. To do so, we encode the location in Rd

by taking the mean of all coordinates that makeup the
feature. To capture the shape, we compute the global
mean of all spatial features in the graph, and subtract
this from their coordinates to place their centre around
the origin.

We feed the vector representations using a temporal
CNN fs f with output dimension c, such that espatial

i =
fs f (Evi) for all nodes vi which express spatial features.

5. Implementation

We implement our model using the R-GCN as our
main building block, onto which we stack our vari-
ous encoders. We call this a multimodal R-GCN (MR-
GCN). The R-GCN is a suitable choice for this pur-
pose, as it can learn end-to-end on the structure of re-
lational graphs, taking relation types into account. Our
implementation is available as Python package6, and
can be used with any arbitrary knowledge graph in
RDF format.

6Code available at https://gitlab.com/wxwilcke/mrgcn



In the simplest case, when we are only interested in
learning from the graph’s structure or when no multi-
modal information is present in the graph, we let the
initial node embedding matrix H0 be the nodes’ n× n
identity matrix I (i.e. H0 = I). This reduces the MR-
GCN to a plain R-GCN. To also include multimodal
information in the learning process, we let F be the
n × f feature embedding matrix instead and concate-
nate this to H0 as in Equation 3 to form H0 = [I F].

To accurately determine the most suitable encoder
for each encountered literal, the MR-GCN exploits
Semantic-Web standards to automatically infer this
from the graph’s datatype annotations. Supported
datatypes include many XSD classes, such as numbers,
strings, and dates, as well as OGC’s wktLiteral for
spatial information, and KGbench’s base64Image for
binary-encoded images [28]. These modalities are as-
sumed to be encoded directly in the graph, as opposed
to reading them from separate files.

To cope with the increased complexity brought on
by including node features we optimized the MR-GCN
for sparse matrix operations by splitting up the com-
putation of Equation 1 into the sum of the structural
and feature component. For this, we once again split
H0 into identity matrix HI = I and feature matrix
H0

F = F, and rewrite the computation as

H1 = σ

(∑
r∈R

Ar HIWr
I + Ar H0

FWr
F

)
(5)

Here, Wr
I and Wr

F are the learnable weights for the
structural and feature components, respectively. For
layers i > 0 holds that Hi

F = Hi, and that Ar HIWr
I =

0. Note that because Ar HI = Ar, we can omit this cal-
culation when computing Equation 5, and thus also no
longer need HI as input. Figure 3 illustrates this com-
putation as matrix operations.

To support link prediction, the MR-GCN imple-
ments the DistMult [25] bilinear scoring function,
shown in Equation 2. To reduce the number of param-
eters, we simulate relation embeddings diag(R) by a
|R|×h matrix, with each row representing the diagonal
of a theoretical relation embedding Rr.

5.1. Neural Encoders

The MR-GCN implements neural encoders for all
modalities listed in Section 4.1. For temporal infor-
mation, we use a single layer fully connected feed-
forward neural network of which the dimensions de-

Fig. 3. Graphical depiction of our implementation of Equation 5,
shown as matrix operations. The output of layer i, Hi+1, is com-
puted by summing the structure and node feature components. If
i > 0, then Hi

F = Hi and AHIWI = 0.

Table 1
Configurations of the neural encoder for temporal information with
h hidden nodes and output dimension nout , listed per tested datatype.
Note that nin = h

Datatype h nout

XSD:gYear 6 2
XSD:date 10 4
XSD:dateTime 14 6

pend on the datatype, as shown in Table 1. The
three other neural encoders are all implemented using
CNNs, each initiated usingN (0, 1) and with an output
dimension of 128.

For our visual encoder, we use the efficient Mo-
bileNet architecture from [30], which provides a good
performance with relatively few parameters. For spa-
tial information, we use a temporal CNN similar to that
used in [29], which has 3 convolutional layers, each
followed by ReLU, and 3 dense layers (Table 3). A
similar setup is used for textual information, except
that we use different architectures for short (` < 20),
medium (20 < ` < 50), and long (` > 50) strings, with
` denoting their length. The architecture for medium-
length strings is listed in Table 2, whereas for long
strings we double the number of filters to 128 and let
the first dense layer have 1024 hidden nodes. For short
strings, we omit the last convolutional and dense layer
(layer 4 and 7), and reduce the number of hidden nodes
in the first dense layer to 256.

The output of layer i from all encoders for all nodes
in V are concatenated to form Hi

F , which is passed to
Equation 5 together with Ar.



Table 2
Configuration of the textual encoder for medium-length strings with
4 convolutional layers (top) and 3 dense layers (bottom). For pooling
layers, max(k/s) lists kernel size (k) and stride (s), or max(·) when it
depends on the input sequence length.

Layer Filters Kernel Padding Pool

1 64 7 3 max(2/2)
2 64 7 3 max(2/2)
3 64 7 3 -
4 64 7 2 max(·)

Layer Dimensions

5 512
6 128
7 128

Table 3
Configuration of the spatial encoder with 3 convolutional layers
(top) and 3 dense layers (bottom). For pooling layers, max(k/s) lists
kernel size (k) and stride (s), whereas avg(·) depends on the input
sequence length.

layer filters kernel padding pool

1 16 5 2 max(3/3)
2 32 5 2 -
3 64 5 2 avg(·)

layer dimensions

4 512
5 128
6 128

6. Experiments

We evaluate the MR-GCN on node classification and
link prediction while varying the modalities which are
included in the learning process7. For this purpose,
we compute the performance for each combination of
structure and modality, as well as all modalities com-
bined, and evaluate this against using only the rela-
tional information. To eliminate any confounding fac-
tors in real-world knowledge that might influence the
results, we will first evaluate the MR-GCN on syn-

thetic knowledge (Section 6.1) before testing our im-
plementation on real-world datasets (Section 6.2).

Another dimension that we vary is how much raw
information is already implicitly encoded in the struc-
ture of a graph by having literals nodes with an inde-
gree greater than one. This occurs when literals with
the same value are coalesced into a single node, and is
the standard approach to represent knowledge graphs
in graph form. Encoding this information in a graph’s
structure influences the potential gain in performance
we can obtain by including node features in the learn-
ing process, possibly even masking it. Consider, for ex-
ample, a classification problem in which a small range
of literals perfectly separates our classes: when this
information is already encoded in the structure there
might be little to gain by enabling our models to com-
pare these literals by their values, whereas doing so if
this information is not encoded in the structure might
yield a significant performance boost. In our experi-
ments, we will use the term split literals to refer to the
representation that keeps literals with the same value
as separate nodes (i.e. indegree = 1), and use the term
merged literals to refer to alternative representation in
which literals with the same value are coalesced (i.e.
indegree > 1).

For our node classification experiments we use an
architecture similar to the plain R-GCN (Section 3.2).
Concretely, we employ a two-layered MR-GCN with
32 hidden nodes, and with an element-wise ReLU ac-
tivation function after the first layer. A row-wise soft-
max non-linearity is added to the second layer to out-
put class probabilities. The network is trained by min-
imizing the cross-entropy loss in full batch mode with
Adam for 400 epochs with an initial learning rate of
0.01.

For each configuration we report the mean classifi-
cation accuracy and 95% confidence interval over 10
runs. To check the results on statistical significance,
we use the Stuart-Maxwell marginal homogeneity test
which tests whether two multi-class models have the
same distribution of predictions [31, 32]. To obtain a
single set of predictions per configuration for this pur-
pose, we use a majority vote amongst the ordered out-
put from all 10 runs.

Our link prediction experiments likewise use a
graph auto-decoder architecture similar to the plain
R-GCN (Section 3.2). More specific, we employ a
single-layered MR-GCN with 200 hidden nodes, with

7Datasets available at https://gitlab.com/wxwilcke/mmkg

https://gitlab.com/wxwilcke/mmkg


Fig. 4. Geometries belonging to 10 randomly-sampled entities per
class from the SYNTH dataset. Apart from the number of points
(which our model is agnostic to) the only difference between classes
is the shape.

Fig. 5. Images belonging to entities per class from the SYNTH
dataset, shown here without the noise normally present to ensure
different string representations with a class.

an element-wise ReLU activation function at the end,
and with DistMult as triple scoring function. We train
the network by minimizing the binary cross-entropy
loss in full batch mode with Adam for 1000 epochs
with an initial learning rate of 0.01.

For each configuration we report the filtered mean
reciprocal rank (MRR) and hits@k with k ∈ {1, 3, 10}
over 5 runs, as well as the 95% confidence inter-
val and statistical significance computed over the
MRR8. To check for statistical significance, we use the
computational-intensive randomised paired t-test [33],
as suggested by [34], which tests whether two ordered
sets of ranks have the same distribution of mean differ-
ences. Note that, with this method, the minimal achiev-
able p-value depends on the size of the test set. As
with classification, we obtain a single set of ranks per
configuration by majority vote.

6.1. Evaluation on Synthetic Knowledge

We first evaluate the performance of the MR-GCN on
synthetic data. These data serve as a controlled envi-
ronment which enables us to eliminate any confound-
ing factors in real-world data that would otherwise in-
fluence the results, ensuring that any observed differ-
ence can be confidently attributed to the addition or
removal of a certain modality. For this purpose, we
generated9a synthetic knowledge graph (SYNTH) that
contains strong multimodal signals, but which lacks
relational information. General and modality-specific
statistics are listed in Table 6 and 7, respectively.

The SYNTH dataset consists of 16,384 entities, all
labeled, from two distinctly different classes, and con-
nected by a random graph structure that is generated
using the Watts–Strogatz algorithm. Each entity is pro-
vided with literals of different datatypes, encompass-
ing all five modalities listed in Section 4.1. To ensure
that the learning problem is both manageable and chal-
lenging, the literal values were drawn from two nar-
row and slightly overlapping distributions, with noise
added where necessary. These distributions were gen-
erated with the corresponding modality in mind: num-
bers and years where drawn from Gaussian distribu-
tions, dates and times were sampled around specific
months and hours, respectively, and strings were gen-
erated by combining a class-specific keyword with ran-
domly sampled words from a dictionary. This principle
is also shown in Figure 4 for geometries, which only
differ in shape10to force our model to capture this char-
acteristic. Similarly in Figure 5 for images, which are
unique per class and to an extent robust to transforma-
tions (e.g., scale, rotation, translation).

6.1.1. Node Classification Results
Table 4 reports the mean classification accuracy over
10 runs on SYNTH, together with its 95% confi-
dence interval and corresponding p-values. We use
value_merged [value_split] to express the perfor-
mances in the merged and split configurations, respec-
tively.

Overall, the results indicate that, for all modalities
and literal configurations, including node features con-
siderably increases the performance over that of the

8As the hits@k is derived from the MRR, no new information
is gained by also computing the confidence interval and statistical
significance of the former.

9Code available a https://gitlab.com/wxwilcke/graphsynth
10The neural encoders in our model are agnostic to the number of

points.

https://gitlab.com/wxwilcke/graphsynth


baseline (structure only). When all node features are
taken into account, this performance increase raises the
accuracy from near random (0.616 [0.495]) to near per-
fect (0.995 [0.996]). All reported performance gains
are statistically significant, with as highest p-value
5.21×10−04.

When comparing the performance gain per modal-
ity it is evident that this differs widely between modal-
ities: including just textual or spatial information in-
creases the performance to a near perfect accuracy of
0.995 [0.996] and 0.957 [0.949], respectively, whereas
including only visual information just provides a slight
(although still significant) gain to an accuracy of 0.642
[0.556]. The remaining two modalities—numerical
and temporal information—lie in between these two
extremes and provide a moderate performance boost
with an accuracy of 0.744 [0.785] and 0.763 [0.625],
respectively. When all modalities are included, the per-
formance gain is roughly equal to that of the best sin-
gle modality.

The differences between the merged and split lit-
eral configurations indicate that, despite our best ef-
forts, information from the node features has leaked
into the structure. In the split configuration, the base-
line performance is, as expected, near random with an
accuracy equalling that of a majority class classifier
(0.495). However, in the merged configuration the per-
formance is roughly one-tenth higher than expected
(0.616), indicating that some literals have an indegree
greater than one. Judging from the differences between
modalities, these literals most likely express tempo-
ral or visual information, which drop with roughly the
same amount when moving from merged to split con-
figuration.

6.1.2. Link Prediction Results
Table 5 reports the mean MRR and hits@k over 5
runs on SYNTH, together with its 95% confidence in-
terval and corresponding p-values. We use the same
value_merged [value_split] notation as before to ex-
press the performances in the merged and split config-
urations, respectively.

Overall, the results show that, for most modalities,
including their information considerably improves the
performance when compared to the baseline (struc-
ture only). In all cases, these differences are statisti-
cally significant. When information from all modali-
ties is included, the performance also increases notice-
ably, irrespective of literal configuration, from 0.045
[0.038] to 0.069 [0.057]. However, rather than per-
forming roughly the same as the best performing single

modality (0.084 [0.068] for numerical information),
including all modalities yields a performance that is
slightly lower. This contrasts with our classification re-
sults.

Similar to the classification results there is consid-
erable variation between the performances per modal-
ity: including just numerical information yields a large
boost in performance, both for the merged and split
literal configuration, whereas including textual or spa-
tial information results in a drop in performance to an
MRR of 0.030 [0.035] and 0.034 [0.031], respectively.
Also similar is the limited influence of including vi-
sual information, although a slight but significant gain
to an MRR of 0.050 is still visible in the merged literal
configuration.

A final observation is that there exists a difference in
performance on the baseline of 0.007 between the split
and merged literal configurations, supporting our pre-
vious supposition that some information from the liter-
als is encoded in the graph’s structure. As before, this
effect seems most evident with temporal and visual in-
formation, both of which drop considerably in perfor-
mance from 0.073 to 0.048 and from 0.050 to 0.028,
respectively, when changing from merged to split liter-
als.

6.1.3. Discussion
Our results indicate that, in the most ideal setting, in-
cluding node features in the learning process improves
the performance most or all of the times, depending
on the task. This is most clear for node classification,
which obtains a significance performance boost irre-
spective of the modality we include. With link predica-
tion the results are less clear cut, although most modal-
ities seem to have a positive effect on the overall per-
formance. However, since a perfect score is practically
unobtainable in this setting, it is difficult to gauge how
much these effects actually matter or whether we can
achieve the same by simply running the baseline for
a higher number of epoch. Similarly, the drop in per-
formance for some modalities might just as well be
caused by the increased difficulty of the learning task.
Some support for this supposition might be found with
the drop in performance when either textual or spa-
tial information is included, both of which require a
relatively large number of parameters but still result
in a near perfect score in node classification. Another
possible reason is that this dataset, which is optimized
for classification, lacks properties that make it an ideal
testbed for link prediction.
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Despite the aforementioned differences between
tasks, we would expect to see that each modalities af-
fects the performance roughly similar, especially with
classification since literals from each modality carry
a strong positive signal. As our classification results
show that this is not the case, any difference in per-
formance in this task must have originated in the MR-
GCN and/or the dataset. For numerical and temporal
information the precise cause is unclear and more elab-
orate testing is needed to determine whether the less-
than-perfect performance stems from our encoders, or
their implementation, or whether the fault lies with an
imperfect data generation process. In contrast, since
we use the proven MobileNet architecture for our vi-
sual encoder, it is likely that our image generation pro-
cess is to blame for the lackluster performance when
visual information in included.

When all modalities are included in the learning pro-
cess, the overall performance approaches or equals that
of the best performing single modality. This suggests
that the message-passing network largely succeeds in
learning, by itself, which information to include and
which to ignore. This effect is again more profound
in our classification results, for which including all
modalities yield near perfect accuracy, but is still vis-
ible in the link prediction setting. As before, this dif-
ference between tasks may stem from the focus of the
dataset on classification, resulting in less clear signals
when used for link prediction.

6.2. Evaluation on Real-World Knowledge

Whereas previously we evaluated the MR-GCN on
synthetic knowledge, we here evaluate our implemen-
tation on real-world knowledge graphs from various
domains and with different (combinations of) modali-
ties.

6.2.1. Node Classification
We evaluate the MR-GCN on five real-world knowl-
edge graphs on node classification. General and modality-
specific statistics about each of these are listed in Ta-
ble 6 and 7, respectively. A short description of each
dataset is given next.

AIFB+ The AIFB dataset is a benchmark knowl-
edge graph about scientific publications from a
research group, and about the people working
there [1]. This is the smallest of the datasets in
our experiments, and lacks the datatype annota-
tions needed to accurately determine the literals’

modalities. These annotations were added by us,
creating AIFB+.

MUTAG MUTAG is a benchmark dataset about molecules,
the atoms they consist of, and any mutagenic
properties that they might have [1]. This dataset
only contains a single additional modality, en-
coded by numerical literals.

BGS The BGS dataset contains information about ge-
ological measurements in Great Britain, and in-
cludes rock composition and age [1]. Also present
is spatial information, in the form of point loca-
tions and polygons.

AM+ The Amsterdam Museum dataset (AM) is a
benchmark knowledge graph which contains in-
formation about the collection of a museum in
The Netherlands [1]. We use the AM+ version
from [28] in our experiments, which has been ex-
tended with datatype annotations and images, and
which has a much higher number of labeled sam-
ples.

DMG The Dutch Monument Graph (DMG) is a
benchmark dataset for multimodal entity classifi-
cation [28]. The DMG includes information from
all five modalities listed in Section 4.1 (in addi-
tion to relational information), with a strong em-
phasis on spatial information. The example given
in Figure 1 is from this dataset.

Results Table 8 and 9 list the results of our classi-
fication experiments for merged and split literal con-
figurations, respectively, and report the mean classifi-
cation accuracy over 10 runs on the test sets, together
with its 95% confidence interval. Corresponding p-
values are available in Appendix A. We once again use
the value_merged [value_split] notation to express the
performances in the merged and split configurations,
respectively.

Overall, our classification results show that the ef-
fects of including node features in the learning pro-
cess are considerable, influencing the performance
both positively and negatively, and that these effects
vary greatly between datasets and modalities: includ-
ing temporal information, for example, has a (slight)
positive effect on the performance on AIFB+, from
an accuracy of 0.933 [0.883] to that of 0.939 [0.894],
but including the same form of information with DMG
results in a noticeably performance drop from 0.717
[0.450] to 0.695 [0.400]. Similar effects are observable
for other modalities. Moreover, including all modali-
ties does not necessarily result in a higher accuracy, ir-
respective of dataset and literal configuration: only on



Table 6
Datasets used in our experiments. The AIFB+, MUTAG, and SYNTH datasets are used in both classification and link prediction, DMG, AM+,
and BGS only for classification, and ML100k+ and YAGO3-10+ only for link prediction. Literals with the same value are counted as the same
node in the merged count, whereas they are counted separately in the split count.

Dataset AIFB+ MUTAG YAGO3-10+ SYNTH ML100k+ DMG BGS AM+

Relations 46 24 44 42 13 60 104 33
Entities 2,835 22,540 50,639 16,386 56,204 148,127 103,055 1,026,150
Literals merged 5,468 1,104 20,797 112,319 32,055 195,468 230,790 127,520

split 8,705 11,185 32,448 132,790 115,495 488,745 386,254 799,660

Facts total 29,219 74,567 167,848 181,942 227,399 777,124 916,345 2,521,035
train 21,175 54,547 127,802 141,899 187,393 - - -
test 4,022 10,010 20,023 20,023 20,003 - - -
valid 4,022 10,010 20,023 20,023 20,003 - - -

Classes 4 2 - 2 - 5 2 8
Labeled total 176 340 - 16,384 - 8,399 146 73,423

train 112 218 - 10,484 - 5,394 94 33,423
test 36 68 - 3,278 - 2,001 29 20,000
valid 28 54 - 2,622 - 1,001 23 20,000

Table 7
Distribution of datatypes in the datasets. Numerical information includes all subsets of real numbers, as well as booleans, whereas date, years,
and other similar types are listed under temporal information. Textual information includes strings and its subsets, as well as raw URIs (e.g.
links). Images and geometries are listed under visual and spatial information, respectively.

Dataset AIFB+ MUTAG YAGO3-10+ SYNTH ML100k+ DMG BGS AM+

Numerical 115 11,185 - 29,565 55,058 17,205 12,332 160,959
Temporal 1,227 - 12,447 44,207 55,661 1,800 13 202,304
Textual 7,363 - 10,001 29,540 3,200 398,938 279,940 376,150
Visual - - 10,000 14,758 1,576 46,108 - 58,855
Spatial - - - 14,720 - 20,866 73,870 -
Other - - - - - - 20,098 -

AM+, do we observe an increase when learning on all
modalities, from an accuracy of 0.751 [0.578] to that
of 0.760 [0.598].

Looking at the differences in baseline performance
between the merged and split configurations, it is ev-
ident that all datasets express some information from
the literals in their structure. This is particularly clear
in the case of DMG, which drops considerably in per-
formance from 0.717 to 0.450 when we keep literals
with the same values as separate nodes. However, this
effect does enable us to observe that including tex-
tual and spatial information significantly improves the
accuracy on DMG to 0.518 and 0.511, respectively.
Similar on AM+ for textual information, which im-
proves the performance in the split literal configuration
from 0.578 to 0.606. In both cases, the added value
is masked when part of this information is encoded in

the structure. In contrast, the baseline performance on
BGS stays roughly the same (0.845 [0.849]), suggest-
ing that only few literals share a value.

Finally, our tests indicate that only the results on
DMG and AM+ are statistically significant. This is
most likely the result of the large number of labeled
samples in the test sets of these datasets. Note that the
difference of 0.001 on DMG between the performance
of the baseline and that of including all features in the
split literal configuration is still statistically significant
because the Stuart-Maxwell test compares individual
predictions rather than accuracies.

6.2.2. Link Prediction
We evaluate the MR-GCN for link prediction on four
multimodal real-world datasets. Two of these—AIFB+
and MUTAG— were also used in our node classi-
fication experiments, whereas the remaining two are



Table 8
Entity classification results in accuracy, averaged over 10 runs and with 95% confidence interval, with merged literal configuration. Structure
uses only the relation information whereas Structure + Features also includes information from all supported modalities. The rest provides a
breakdown per modality. Corresponding p-values are reported in Table 12. Statistically significant results are annotated with †.

Dataset AIFB+ MUTAG DMG BGS AM+

Majority Class 0.415 0.621 0.478 0.637 0.300
Structure 0.933 (±0.013) 0.689 (±0.024) 0.717 (±0.001) 0.845 (±0.010) 0.751 (±0.004)
Structure + Features 0.908 (±0.011) 0.658 (±0.001) 0.475 (±0.028)† 0.748 (±0.054) 0.760 (±0.013)†

Structure + Numerical 0.939 (±0.011) 0.664 (±0.015) 0.678 (±0.006)† 0.828 (±0.000) 0.756 (±0.006)†

Structure + Temporal 0.947 (±0.001) - 0.695 (±0.001)† 0.845 (±0.010) 0.765 (±0.004)†

Structure + Textual 0.903 (±0.001) - 0.538 (±0.012)† 0.853 (±0.010) 0.713 (±0.013)†

Structure + Visual - - 0.466 (±0.028)† - 0.764 (±0.011)†

Structure + Spatial - - 0.741 (±0.003)† 0.807 (±0.045) -

Table 9
Entity classification results in accuracy, averaged over 10 runs and with 95% confidence interval, with split literal configuration. Structure
uses only the relation information whereas Structure + Features also includes information from all supported modalities. The rest provides a
breakdown per modality. Corresponding p-values are reported in Table 13. Statistically significant results are annotated with †.

Dataset AIFB+ MUTAG DMG BGS AM+

Majority Class 0.415 0.621 0.478 0.637 0.300
Structure 0.883 (±0.017) 0.662 (±0.000) 0.450 (±0.004) 0.849 (±0.010) 0.578 (±0.004)
Structure + Features 0.865 (±0.001) 0.653 (±0.012) 0.451 (±0.021)† 0.829 (±0.019) 0.598 (±0.018)†

Structure + Numerical 0.869 (±0.011) 0.655 (±0.004) 0.369 (±0.011)† 0.827 (±0.008) 0.560 (±0.004)†

Structure + Temporal 0.894 (±0.001) - 0.400 (±0.002)† 0.841 (±0.010) 0.515 (±0.005)†

Structure + Textual 0.861 (±0.011) - 0.518 (±0.025)† 0.852 (±0.010) 0.606 (±0.012)†

Structure + Visual - - 0.468 (±0.031)† - 0.594 (±0.004)†

Structure + Spatial - - 0.511 (±0.003)† 0.826 (±0.012) -

exclusively used for link prediction. The DMG and
AM+ datasets are not used here, since their relative
large number of facts would translate to exorbitant
long training durations. We also abstain from testing
the MR-GCN on standard link prediction benchmark
datasets, such as FB15k-237 and WN18RR, as these
lack node features.

General and modality-specific statistics about each
of the datasets are listed in Table 6 and 7, respectively.
All training, testing, and validation splits are stratified
on predicate. A short description of two datasets that
are exclusively used for link prediction is given next.
Because of the added complexity accompanying link
prediction, both datasets were subsampled to still al-
low for GPU acceleration.

ML100k+ MovieLens-100k is a well-known bench-
mark dataset about users, movies, and ratings
given to these movies by the users, and contains
various information that includes, amongst oth-
ers, the genders and ages of users, and the release

dates and titles of movies [35]. We use a subset of
the version introduced in [19], which extends the
original dataset with movie posters. This subset
was generated by selecting the 500 users with the
highest rating count, together with all information
to which they are linked.

YAGO-10+ A popular link prediction benchmark
dataset is the YAGO knowledge graph. Empha-
sizing general knowledge, the dataset contains
various information about people, cities, coun-
tries, movies, and organizations [36]. Similar as
with ML100k+, we use a subset of the version
introduced in [19], which enriches the original
graph with images, texts, and dates. The subset
was generated by taking the intersection of all en-
tities with images, texts, and dates, together with
all information to which they are linked.

Results Table 10 and 11 reports the mean MRR
and its 95% confidence interval over 5 runs on the
tests sets. Corresponding p-values and hits@k statis-



tics are available in Appendix A. As before, we use
the value_merged [value_split] notation to express the
performances in the merged and split configurations,
respectively.

Overall, our results indicate that, for link prediction
on real-world knowledge, including node features can
have a profound effect on the performance, and that
this effect can be both positive and negative. For MU-
TAG, this effect results in a considerable performance
boost from an MRR of 0.162 [0.135] to that of 0.225
[0.202], whereas, for the three remaining datasets,
this effect results in a moderate drop in performance
(e.g. AIFB+, from 0.252 [0.215] to 0.215 [0.161])
to a considerable drop (e.g. YAGO3-10+, from 0.053
[0.050] to 0.025 [0.021]). These results are statistically
significant for all datasets and configurations, except
for AIFB+ which, when numerical information is in-
cluded, achieves roughly the same performance as the
baseline. A quick glance at Table 7 shows that AIFB+
only contains few numerical literals, suggesting that
this result is a poor indicator of the effect that including
numerical information has on the overall performance
and can best be ignored.

Similar to our classification results, there appears
to exist no discernible pattern in the performances
amongst modalities. Instead, here too, the results for
individual modalities vary much between datasets.
For MUTAG, for example, adding numerical infor-
mation results in a moderate performance boost from
0.162 [0.135] to 0.192 [0.140], whereas, for ML100k+,
including this form of information results in a de-
crease in performance from 0.124 [0.028] to 0.042
[0.004]. Also similar is that, when including infor-
mation from all modalities, the overall performance
seems to roughly equal the average performance of all
separate modalities combined.

The differences in baseline performance between
the merged and split configurations shows that all
datasets have some information from the literals en-
coded in their structure. This is most evident for
ML100k+, which drops from 0.124 to 0.028 when
this information is lost. In contrast, the drop in perfor-
mance on YAGO3-10+ is only minor (±0.003), indi-
cating that only few literals have an indegree greater
than one. Irrespective, for all datasets and configura-
tion, the performance in the split configuration is the
same or worse than that in the merged setting.

6.2.3. Discussion
Our results on real-world knowledge show that, over-
all, the effects of including node features in the learn-

ing process vary widely: for some datasets, including
information from a certain modality results in a slight
to considerable performance boost, whereas for other
datasets that same modality does little or even results
in a performance drop. This suggests that the poten-
tial gain of including node features strongly depends
on the characteristics of the data and on the strength
of the signals provided by the modalities. Moreover,
when all modalities are included, our results show that
the overall performance stays behind that of the best
performing single modality. This could suggest that
the message-passing model has difficulties ignoring
the negative signals, or that the positive signals lack
sufficient strength in many real-world datasets for the
message-passing model to overcome this.

Comparing the results on AIFB+ and MUTAG from
our node classification and link prediction experiments
shows that the effect of including a modality on the
performance differs between tasks. On AIFB+, for ex-
ample, incorporating temporal information results in
a slight performance gain in the classification setting,
whereas the opposite is true in the link prediction set-
ting. Similar on MUTAG for numerical information,
which provides a considerable gain or drop in perfor-
mance depending on which problem we are trying to
solve. These results suggest that the influence of cer-
tain modalities on one task does not necessarily carry
over to other tasks. A similar observation was made
for our results on artificial knowledge. However, since,
here, none of the classification results on either dataset
is statistically significant, it remain unclear whether
the differences between tasks really matter, or whether
they stem from instabilities caused by the small test
sets.

7. Discussion

Our results show that including node features from var-
ious modalities can have a profound effect on the over-
all performance of our models. However, the direc-
tion and magnitude of this effect differs depending on
which dataset we use, what modalities we include, and
even which tasks we perform.

When learning on on artificial knowledge, our re-
sults indicate that including multimodal information
can significantly improve performance, and that the
underlying message-passing model is capable of learn-
ing, by itself, which features to including and which
to ignore. This contrasts with our results on real-world
knowledge, which show that including node features



Table 10
Mean reciprocal rank (filtered), averaged over 5 runs and with 95% confidence interval, with merged literal configuration. Structure uses only
the relation information whereas Structure + Features also includes information from all supported modalities. The rest provides a breakdown
per modality. Corresponding hits@k and p-values are reported in Appendix A. Statistically significant results are annotated with †.

Dataset AIFB+ MUTAG YAGO3-10+ ML100k+

Structure 0.252 (±0.006) 0.162 (±0.008) 0.053 (±0.002) 0.124 (±0.014)
Structure + Features 0.215 (±0.004)† 0.225 (±0.006)† 0.025 (±0.001)† 0.066 (±0.010)†

Structure + Numerical 0.254 (±0.004) 0.192 (±0.006)† - 0.042 (±0.006)†

Structure + Temporal 0.237 (±0.004)† - 0.042 (±0.001)† 0.111 (±0.012)†

Structure + Textual 0.213 (±0.005)† - 0.021 (±0.002)† 0.125 (±0.010)†

Structure + Visual - - 0.024 (±0.001)† 0.101 (±0.014)†

Structure + Spatial - - - -

Table 11
Mean reciprocal rank (filtered), averaged over 5 runs and with 95% confidence interval, with split literal configuration. Structure uses only the
relation information whereas Structure + Features also includes information from all supported modalities. The rest provides a breakdown per
modality. Corresponding hits@k and p-values are reported in Appendix A. Statistically significant results are annotated with †.

Dataset AIFB+ MUTAG YAGO3-10+ ML100k+

Structure 0.215 (±0.004) 0.135 (±0.009) 0.050 (±0.001) 0.028 (±0.008)
Structure + Features 0.161 (±0.003)† 0.202 (±0.009)† 0.021 (±0.001)† 0.003 (±0.001)†

Structure + Numerical 0.214 (±0.006) 0.140 (±0.007)† - 0.004 (±0.001)†

Structure + Temporal 0.205 (±0.003)† - 0.043 (±0.002)† 0.002 (±0.000)†

Structure + Textual 0.154 (±0.006)† - 0.022 (±0.003)† 0.019 (±0.001)†

Structure + Visual - - 0.022 (±0.002)† 0.003 (±0.001)†

Structure + Spatial - - - -

can have very different effects depending on which
dataset we use and what modalities we include. More-
over, the same message-passing model seemed un-
able to overcome the negative influence of some of
the modalities, sometimes even resulting in an over-
all worse performance with node features than with-
out. This difference between artificial and real-world
knowledge might have been caused by our decision to
abstain from hyperparameter optimization. However,
since the same hyperparameters were effective on ar-
tificial knowledge, this is unlikely to produce such a
large difference. Similar for our choices of (neural) en-
coders, which were unchanged between experiments.
Instead, it is more likely that our chosen message-
passing model has difficulties coping with negative
signals and/or noise. This would explain why weak,
but still positive, signals such as the visual information
in SYNTH pose no problem, whereas the negative sig-
nals in some of the real-world datasets drag the overall
performance down considerably.

A comparison of results between the merged and
split literal configurations shows that the potential per-
formance gain from including node features is influ-

enced by how much information from these features is
already encoded in the structure of a graph. In some
cases, our results show that including the same infor-
mation can have little effect in the merged setting while
providing a considerable performance boost in the split
configuration. This suggests that much of this infor-
mation is already stored as relational information, and
that we gain little by also feeding the raw values to our
model. This is not necessarily a problem if, by nev-
ertheless including this information, the performance
does not decrease either. However, our results show
that, for some datasets and modalities, including node
features results in a drop in performance. This might be
caused by the added complexity that makes the prob-
lem more difficult to solve. Reducing the number of
model parameters might be a first step to alleviate this
problem (See also Section 8.1).

Finally, we observed that only half the datasets used
in our classification experiments—SYNTH, AM+, and
DMG— produced statistically significant results. The
datasets in question have a considerably higher num-
ber of labeled instances, allowing for a more pre-
cise evaluation of the results. To accurately establish



which model architectures performs well in this setting
we need more datasets with similarly sized test sets.
However, the observed difference in statistical signif-
icance between datasets with few and many labeled
instances does suggest that the Stuart-Maxwell test is
suitable to compare classification results with. Simi-
larly, in our link prediction experiments, we observed
only a single result that lacked statistical significance.
A quick inspection suggested that this was justified,
since the dataset—AIFB+—contained only few fea-
tures of the modality being tested. This suggests that
the randomised paired t-test is suitable to validate link
prediction results with. Since most literature in this
field forgoes with statistical testing, we hope that these
results encourage others to use these or similar tests for
machine learning experiments on knowledge graphs.

8. Conclusion

In this work, we have proposed an end-to-end multi-
modal message passing model for multimodal knowl-
edge graphs. By embedding our model in the message
passing framework, and by treating literals as first-
class citizen, we embrace the idea that this enables data
scientists to learn end-to-end from any heterogeneous
multimodal knowledge, as long as it is represented as
a knowledge graph. To test our hypothesis, we have
implemented our model and evaluated its performance
for both node classification and link prediction on a
large number of artificial and real-world knowledge
graphs from various domains and with different de-
grees of multimodality.

Our results indicate that, overall, including informa-
tion from other modalities can have a considerable ef-
fect on the performance of our models, but that the di-
rection and magnitude of this effect strongly depends
on the characteristics of the knowledge. In the most
ideal situation, when the dataset contains little noise
and strong positive signals, incorporating node fea-
tures has the potential to significantly improve perfor-
mance. When faced with real-world knowledge, how-
ever, our results show that this effect can vary consid-
erable between datasets, modalities, and even tasks.

Despite the mixed results on real-world knowledge,
we believe that this work supports our hypothesis that
by enabling our models to naturally ingest literal val-
ues, and by treating these values according to their
modalities, tailoring their encodings to their specific
characteristics, we stay much closer to the original and
complete knowledge that is available to us, potentially

resulting in an increase in the overall performance of
our models.

Learning end-to-end on heterogeneous knowledge
has a lot of promise which we have only scratched the
surface of. A model that learns in a purely data-driven
way to use information from different modalities, and
to integrate such information along known relations,
has the potential to allow practitioners a much greater
degree of hands-free machine learning on multimodal
heterogeneous knowledge.

8.1. Limitations and future work

Our aim has currently been to demonstrate that we
can train a multimodal message passing model end-to-
end which can exploit the information contained in a
graph’s literals and naturally combine this with its re-
lational counterpart, rather than to established that our
implementation reaches state-of-the-art performance,
or even to measure its performance relative to other
published models. We therefore performed little hyper-
parameter tuning in our experiments, ensuring that any
observable difference in performance could be confi-
dently attributed to the inclusion or exclusion of infor-
mation from a certain modality, rather than have been
caused by a particular hyperparameter setting.

To properly establish which type of model architec-
ture performs best in multimodal settings, and whether
message passing models provide an advantage over
more shallow embedding models without message
passing, we require more extensive, high-quality, stan-
dard benchmark datasets with well-defined semantics
(i.e. datatype and/or relation range declarations) and
a large number of labeled instances. Recently, some
datasets have seen the light which are suitable for this
purpose (e.g. [28]). However, to perform more precise
evaluations and more accurate models comparisons,
we need even more datasets from a wide range of do-
mains and with a large number of different modali-
ties. Nevertheless, to determine precisely what kind of
knowledge is most fitting for this form of learning we
are likely to require an iterative process where each
generation of models provides inspiration for the next
generation of benchmark datasets and vice versa.

In other work, currently under submission, we ex-
plore techniques to reduce the overall complexity of a
multimodal model by reducing the number of parame-
ters by merging some of the weight matrices. Our main
motivation for this is the necessity of full batch learn-
ing with many message passing networks—a known
limitation—which makes it challenging to learn from



large graphs; a problem which becomes even more ev-
ident as we start adding multimodal node features. Fu-
ture work will also investigate the other side of the
spectrum by using a separate set of learnable weights
per relation, as opposed to sharing weights amongst
literals of the same modality. While this adds some ad-
ditional complexity, it allows a more natural encoding
of a graph in our model by capturing the semantics per
relation. To illustrate this, compare learning a single
set of weights for age and height, both of which are
numeric, against learning a separate set of weights for
each.

Lastly, a promising direction of research is the use
of pretrained encoders. In our experiments, we show
that the encoders receive enough of a signal from the
downstream network to learn a useful embedding, but
this signal is complicated by the message passing head
of the network, and the limited amount of data. Using
a modality-specific, pretrained encoder, such as GPT-
2 for language data [37] or Inception-v4 for image
data [38], may provide us with good general-purpose
feature at the start of training, which can then be fine-
tuned to the specifics of the domain.
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Appendix A. Detailed Results

The following tables list more detailed results from our
experiments. Tables 12 and 13 list the statistical sig-
nificance for our classification results for merged and
split literal configurations, respectively. For our link
prediction experiments, tables 14, 15, 16, and 17 list
the hits@k and the statistical significance for AIFB+,
MUTAG, YAGO3-10+, and ML100k+ respectively.
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