
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Building Spatio-Temporal Knowledge Graphs
from Vectorized Topographic Historical Maps
Basel Shbita a,*, Craig A. Knoblock a, Weiwei Duan b, Yao-Yi Chiang b, Johannes H. Uhl c and
Stefan Leyk c

a Information Sciences Institute, University of Southern California, CA, USA
E-mails: shbita@isi.edu, knoblock@isi.edu
b Spatial Sciences Institute, University of Southern California, CA, USA
E-mails: weiweidu@usc.edu, yaoyic@usc.edu
c Department of Geography, University of Colorado Boulder, CO, USA
E-mails: johannes.uhl@colorado.edu, stefan.leyk@colorado.edu

Abstract.
Historical maps provide rich information for researchers in many areas, including the social and natural sciences. These maps

contain detailed documentation of a wide variety of natural and human-made features and their changes over time, such as
changes in transportation networks or the decline of wetlands or forest areas. Analyzing changes over time in such maps can be
labor-intensive for a scientist, even after the geographic features have been digitized and converted to a vector format. Knowl-
edge Graphs (KGs) are the appropriate representations to store and link such data and support semantic and temporal querying
to facilitate change analysis. KGs combine expressivity, interoperability, and standardization in the Semantic Web stack, thus
providing a strong foundation for querying and analysis. In this paper, we present an automatic unsupervised approach to con-
vert vector geographic features extracted from multiple historical maps into contextualized spatio-temporal KGs. The resulting
graphs can be easily queried and visualized to understand the changes in different regions over time. We evaluate our technique
on railroad networks and wetland areas extracted from the United States Geological Survey (USGS) historical topographic maps
for several regions over multiple map sheets and editions. We also demonstrate how the automatically constructed linked data
(i.e., KGs) enable effective querying and visualization of changes over different points in time.

Keywords: Spatio-Temporal Knowledge Graphs, Knowledge Graphs, Linked Spatio-Temporal Data, Linked Data, Semantic
Web, Data Integration, Historical Maps, Digital Humanities

1. Introduction

Historical map archives contain valuable geographic
information on both natural and human-made fea-
tures across time and space [1] and are increasingly
available in systematically acquired digital data for-
mats [2, 3]. The spatio-temporal data extracted from
these documents are important since they can con-
vey when, where and what changes took place [4].
For example, this type of data enables the detection
of long-term changes in railroad networks or study-
ing the evolution of wetlands within the same region

*Corresponding author. E-mail: shbita@isi.edu.

over time and thus can support decision-making re-
lated to the development of transportation infrastruc-
ture or questions related to land conservation, land-
scape ecology, or long-term land development and
human settlement. Many applications assessing geo-
graphic changes over time typically involve searching,
discovering, and manually identifying, digitizing, and
integrating relevant data. This is a difficult and labori-
ous task that requires domain knowledge and familiar-
ity with various data sources, data formats and work-
ing environments, and the task is often susceptible to
human error [5].

Generally, there are two types of geospatial data,
namely, raster data and vector data. Recent technolog-

1570-0844/0-1900/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:shbita@isi.edu
mailto:knoblock@isi.edu
mailto:weiweidu@usc.edu
mailto:yaoyic@usc.edu
mailto:johannes.uhl@colorado.edu
mailto:stefan.leyk@colorado.edu
mailto:shbita@isi.edu

2 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ical advances facilitate the efficient extraction of vec-
torized information from scanned historical maps [1,
2, 4, 6, 7]. Vector data provide a compact way to rep-
resent real-world features within Geographic Informa-
tion Systems (GIS). Every geographic feature can be
represented using one of three types of geometries:
(i) points (depict discrete locations such as addresses,
wells, etc.), (ii) lines (used for linear features such
as roads, rivers, etc.) or (iii) polygons (describe en-
closed areas like waterbodies, islands, etc.). This pa-
per tackles the core problem of detecting how geome-
tries change over time, focusing on linear and polygo-
nal features.

Linked geospatial data has been receiving increased
attention in recent years as researchers and practition-
ers have begun to explore the wealth of geospatial in-
formation on the Web [8, 9]. In addition, the need for
tracing geographic features over time or across docu-
ments has emerged for different applications [4]. Fur-
thermore, growing attention has been paid to the inte-
gration and contextualization of the extracted data with
other datasets in a GIS [10, 11].

To better support analytical tasks and understand
how map features change over time, we need more
than just the extracted vector data from individual
maps. We need to tackle the following challenges:

1. Entity generation and interlinking. Generate
and interlink the geospatial entities (“building-
block” geometries originating from the vector
data) that constitute the desired features (i.e.,
railroad lines or wetland areas) and can exist
across map editions

2. External geo-entity linking. Contextualize and
link the generated entities to external resources
to enable data augmentation and allow users to
uncover additional information that does not ex-
ist in the original map sheets

3. Representation. Represent the resulting data in
a structured and semantic output that can be eas-
ily interpreted by humans and machines, and ad-
heres to the principles of the Semantic Web

Previous work on creating linked data from histor-
ical geospatial information has focused on the prob-
lem of transforming a single instance of a map sheet or
a formatted geospatial data source into Resource De-
scription Framework (RDF) graphs [12–14]. However,
this line of work does not address the issue of entity in-
terlinking that is essential for building linked geospa-
tial data for the task of change analysis with a seman-
tic relationship between geospatial entities across map

editions of the same region, which could be part of
a large collection of topographic map sheets. Similar
work is concerned with only a specific type of geome-
try, such as points, as in [10, 15], or is limited to a spe-
cific physical feature (i.e. flooded areas [16] or wild-
fires [17]). Our work does not impose such limitations.

Our approach is not only helpful in making the
RDF data widely available to researchers but also en-
ables users to answer complex queries in an unsu-
pervised manner, such as investigating the interrela-
tionships between human and environmental systems.
Our approach also benefits from the open and con-
nective nature of linked data. Compared to existing
tools such as PostGIS1, which can only handle queries
related to geospatial entities and relationships within
local databases, linked data can utilize many widely
available knowledge sources in the semantic web, such
as OpenStreetMap (OSM) [18], GeoNames [19], and
LinkedGeoData [20], to enable rich semantic queries.

Providing contextual knowledge can help explain or
reveal interactions of topographic changes to further
spatio-temporal processes. For example, the external-
linking enables augmentation of the contained ge-
ographic information with data from external KBs,
such as historical population estimates. Once we con-
vert the map data into linked data, we can execute
SPARQL queries to identify the changes in map fea-
tures over time and thus accelerate and improve spatio-
temporal analysis tasks. Using a semantic representa-
tion that includes geospatial attributes, we can support
researchers to query and visualize changes in maps
over time and allow the development of data analyt-
ics applications that could have great implications for
environmental, economic, or societal purposes.

This paper is based on our earlier conference and
workshop papers [21, 22]. The paper expands our
methods to support polygon-based geographic fea-
tures, elaborates on the details of the algorithms, and
provides a more extensive evaluation of the methods.
In addition, we use OpenStreetMap instead of Linked-
GeoData as an external KB to obtain the most up-to-
date information and provide a solution that does not
depend on time-sensitive third-party data dumps.

1.1. Problem definition

The task we address here is as follows: Given geo-
graphic vector data extracted from multiple map edi-

1https://postgis.net/

https://postgis.net/

B. Shbita et al. / Building Spatio-Temporal KGs 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. New Albany (OH) and Chicago (IL) railroad system maps in
1886 (left) and 1904 (right)

Fig. 2. Visual representation of the change in the New Albany (OH)
and Chicago (IL) railroad system between the years 1886 and 1904;
additions are in red, removals are in blue

tions of the same region, we aim to automatically con-
struct a knowledge graph depicting all the geographic
features that represent the original data, their rela-
tions (interlinks), and their semantics across different
points in time. Using the constructed knowledge graph,
we enable tackling more specific downstream analysis
tasks. These may include the visualization of feature
changes over time and the exploration of supplemen-
tary information (e.g., population data, elevation data,
etc.) related to the region originating from an external
knowledge base.

As an example, consider the maps in Figure 1 where
changes in the New Albany (OH) and Chicago (IL)
railroad system have occurred between 1886 and 1904.
Figure 2 shows the railroad line changes between the
different map editions. Line segments that have been
added are marked in red and line segments that have
been removed are marked in blue. Assuming we have
the data available as vector data (which can be gener-
ated from scanned maps using approaches such as in
Duan et al. [6]), our task in such a setting would be

to construct a knowledge graph describing the shared
line segments that are shared across these maps or
unique in individual maps with a conventional seman-
tic representation for the railroad line segments in each
map edition. This would include objects from a list
of common geographic features (points, lines, or poly-
gons), their geolocational information, and their tem-
poral coverage to allow easy analysis and visualiza-
tion.

1.2. Contribution

The overall contribution of this paper is a fully auto-
matic and unsupervised end-to-end approach for build-
ing a contextualized spatio-temporal knowledge graph
from a set of vectorized geographic features extracted
from topographic historical maps. We tackle the core
challenges we mentioned earlier by presenting:

1. An algorithm to identify and partition the orig-
inal vector data into interlinked geospatial enti-
ties (i.e., building-block geometries) that consti-
tute the desired geographic features across map
editions (entity generation and interlinking task)

2. A method to identify and retrieve relevant geospa-
tial entities from a publicly available knowledge
base (external geo-entity linking task)

3. A semantic model to describe the resulting
spatio-temporal data in a structured and semantic
output that can be easily interpreted by humans
and machines in a form of a knowledge graph
that adheres to linked data principles (represen-
tation task)

We also present a thorough evaluation for each
of the above and apply our method to five rele-
vant datasets that span two types of geographic fea-
tures: railroads (line-based geometry) and wetlands
(polygon-based geometry), each resulting in an inte-
grated knowledge graph. Finally, we make the source
code, the original datasets, and the resulting linked
data publicly available2.

1.3. Structure of paper

The rest of the paper is organized as follows. Sec-
tion 2 presents our proposed approach and methods.
Section 3 presents an evaluation of our approach by
automatically building a knowledge graph for (i) a se-
ries of railroad networks from historical maps covering

2https://github.com/usc-isi-i2/linked-maps

https://github.com/usc-isi-i2/linked-maps

4 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Pipeline for constructing spatio-temporal linked data from vector data

two different regions from different points in time, and
(ii) a series of wetland data from maps covering three
different regions from different periods. Section 4 re-
views the related work. Section 5 concludes, discusses,
and presents future work.

2. Approach to Building Spatio-temporal
Knowledge Graphs

2.1. Preliminaries

Before we discuss our proposed method, it is es-
sential to define certain preliminaries and the termi-
nology used in this paper. A geographic feature refers
to a collection of geometries (points, lines, or poly-
gons), which together represent an entity or phenom-
ena on Earth. In this paper, a geographic feature is
represented using a collection of “building-block” ge-
ometries. These building-blocks can be either lines
or areas in the case of linear geographic features or
polygon geographic features, respectively. A building
block can represent a part of a geographic feature
shared across maps or unique within a map. For ex-
ample, in Figure 4a, A and B are line building-blocks.
Each building-block may be decomposed into smaller
building-blocks, which may contain continuous or dis-
connected parts (lines or areas). For example, if a part
of A and B represents the same entity, A and B are
decomposed into three building blocks: A’, B’, and
AB. The building block AB represents the shared ge-
ometry detected from A and B. A’ and B’ represent
the unique geometry in their original map. Similarly,
each color area in Figure 5 (A’ in red, B’ in blue, and
AB in green) is an area building-block (giving a total
of three building-blocks). Each building-block geom-
etry is encoded as well-known text (WKT) represen-
tation (MULTILINE or MULTIPOLYGON textual for-
mat) and corresponds to a geospatial entity in our re-
sulting KG.

2.2. Overview of the approach

The unsupervised pipeline we propose for the con-
struction of the knowledge graph consists of several
major steps as illustrated in Figure 3. These steps can
be summarized as follows:

1. Automatically partition the input geographic
feature originating from the vector data into
building-block geometries (i.e., geospatial enti-
ties) using a spatially-enabled database service
(e.g., PostGIS) (see Section 2.3).

2. Perform external entity linking by utilizing a
reverse-geocoding service to map the geospa-
tial entities to existing instances in an open
knowledge base (e.g., OpenStreetMap) (see Sec-
tion 2.4)

3. Construct the knowledge graph by generating
RDF triples following a pre-defined semantic
model using the data we generated in the previ-
ous steps (see Sections 2.5 and 2.6)

Once the RDF data is deployed, users can easily
interact with the building-block geometries (geospa-
tial entities), the geographic features and metadata to
perform queries (Section 2.7). These allow end-users
to visualize the data and support the development of
spatio-temporal downstream applications.

2.3. Generating building-blocks and interlinking

The first task in our pipeline is the generation of
building-block geometries (also referred to as “geospa-
tial entities” in the final resulting KG) that can rep-
resent the various geographic features (e.g., railroad
networks or wetlands) across different maps (same re-
gion, different map editions) in a granular and efficient
fashion. This task can be classified as a common entity
matching/linking and entity “partitioning” task. Given
two geometries from two map editions of the same re-
gion, we want to identify which parts of those geome-

B. Shbita et al. / Building Spatio-Temporal KGs 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(a) Line segments
A and B have
common and dis-
tinct parts

(b) Buffer out and
find the common
parts

(c) Partition line
segments

(d) Line segment
C is added

(e) Final line par-
titioning

Fig. 4. Illustration of the geometry partitioning to building-blocks
for a line geometry: spatial buffers are used to identify the same line
segments considering potential positional offsets of the data

tries coincide and thus represent the same parts of the
feature. This allows us to generate building-block ge-
ometries that are more granular and can be used to rep-
resent the common and the distinct parts (changes) of
the geographic features.

Consider a simplified example consisting of linear
features from two map editions (Figure 4a), where line
A is from an older map edition and line B is from the
latest map edition with a part of the feature that has
been changed.

In order to detect those parts that exist in both fea-
tures, we split each of these lines into several building-
block lines based on the intersection of the lines, as
shown in Figures 4b and 4c, resulting in building-block
lines A′, B′ and AB. When a third source (another map
edition also containing the feature), C, is added, a sim-
ilar partitioning process is executed as shown in Fig-
ures 4d and 4e. Another example is seen in Figure 5,
where we show an illustration of a geometry partition-
ing result for a polygon-based feature (i.e., wetland
data). Similar to the line partitioning process described
above, the polygon partitioning generates a collection
of building-block areas (each block is shown in a dif-
ferent color in Figure 5). Note that similarly to line AB
in Figure 4e, some building-blocks in Figure 5 contain
disconnected geometries, representing the most gran-
ular building-blocks needed in order to represent the
desired feature.

As we mentioned in Section 2.2, we use a spatially-
enabled database service to simplify handling data ma-
nipulations of geospatial objects. PostGIS is a power-
ful PostgreSQL extension for spatial data storage and

Fig. 5. Illustration of a geometry partitioning result for a polygon
geometry: each color represents a different building-block. A single
building-block may contain disconnected areas

Algorithm 1: The feature partitioning and in-
terlinking algorithm
Data: a set M of feature geometries for

different map editions of the same region
(vector data)

Result: a directed acyclic graph G of
building-block geometries (nodes) and
their relations (edges)

1 foreach i ∈ M do
2 Fi = set of geometries in i;
3 G.add(i 7→ Fi);
4 L = list of current leaf nodes in G;
5 foreach k ∈ L do
6 Fk = set of geometries in k;
7 Fα = Fi

⋂
Fk;

8 G.add(α 7→ Fα) ; set i, k as direct
predecessors of α;

9 Fγ = Fk \ Fα;
10 G.add(γ 7→ Fγ) ; set k as direct

predecessor of γ;

11 Fδ = Fi \ (
⋃

j∈L F j);
12 G.add(δ 7→ Fδ) ; set i as direct predecessor

of δ;

query. It offers various functions to manipulate and
transform geographic objects in databases. To handle
our task efficiently and enable an incremental addi-
tion of map sheets over time, we implemented Algo-
rithm 1. The algorithm performs the partitioning task
by employing several PostGIS Application Program-
ming Interface (API) calls over the geometries of our
lines or polygons in the database. In the case of line
geometries, we buffer each line segment to create two-
dimensional areas before applying any geospatial op-
eration described below.

In detail, the procedure works as follows. The for
loop in line 1 iterates over each of the map editions
to extract the feature geometry (as seen in lines 2 and

6 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

stored in Fi) to create the initial “building-block” ge-
ometry (line 3, denoted as node i and added to graph
G, which eventually will hold our final set of building-
blocks and record their relations in a data structure).
Line 4 retrieves the leaf nodes from graph G to list L.
In the first iteration list L is empty. In the next itera-
tions it will include “leaf” nodes. These are nodes that
represent the most fine-grained building-blocks com-
puted so far. A and B in Figure 4a correspond to k and
i respectively (in iteration 2 of the algorithm when ex-
ecuted over the data in the Figure 4). For each “leaf”
node we execute the following steps:

1. Geometry intersection. k’s geometry is stored
in Fk (line 6) and then used to compute the
matched geometry parts between i and k to gen-
erate the geometry Fα (line 7) and create the new
building-block α, a direct successor of nodes i
and k (line 8). α (iteration 2) corresponds to AB
in Figure 4c.

2. Geometry difference (local “subtraction”). In
line 9, we compute the geometry in k that is not in
i, resulting in the geometry Fγ corresponding to
the new building-block γ, now a direct successor
of k (line 10). γ (iteration 2) corresponds to B′ in
Figure 4c.

Geometry union-difference (global “subtraction”).
Once we finish going over the list of leaves, we com-
pute the unique geometries that exist in the newly
added building-block (the last added map edition in
M) by subtracting the union of the geometries of the
leaf node intersections (with previous processed maps)
from the original map block i (as described in line 11),
resulting in the geometry Fδ corresponding to the new
building-block δ, now a direct successor of node i (line
12). δ (iteration 2) corresponds to A′ in Figure 4c.

The relations between the nodes in graph G carry
a semantic meaning between the different building-
blocks (a node is contained in its predecessors and con-
tains its successors) and will play a critical role in the
RDF generation and query mechanism since they rep-
resent the relations between the building-blocks across
different points in time of the same region.

2.4. reverse-geocoding and geo-entity linking

Volunteered geographic information platforms [23]
are used for collaborative mapping activities with users
contributing geographic data. OpenStreetMap is one
of the most pervasive and representative examples of
such a platform and operates with a certain, albeit

somewhat implicit, ontological perspective of place
and geography more broadly. OSM suggests a hierar-
chical set of tags3 that users can choose to attach to its
basic data structures to organize their map data. These
tags correspond to geographic feature types that we
will query (i.e., wetland, railroad, etc.).

Additionally, a growing number of OSM entities
are being linked to corresponding Wikipedia arti-
cles, Wikidata [24] entities and feature identifiers in
the USGS Geographic Names Information Service
(GNIS) database. GNIS is the U.S. federal govern-
ment’s authoritative gazetteer. It contains millions of
names of geographic features in the United States and
Antarctica.

Our proposed method for the enrichment of the gen-
erated geospatial entities (i.e., building-block geome-
tries) with an external resource is built upon a simple
geo-entity linking mechanism with OSM. This is again
a task of entity matching/linking; this time it is with an
entity in an external knowledge base.

The method is based on reverse-geocoding, which
is the process of mapping the latitude and longitude
measures of a point or a bounding box to an address
or a geospatial entity. Examples of these services in-
clude the GeoNames reverse-geocoding web service4

and OSM’s API.5 These services support the identifi-
cation of nearby street addresses, places, areal subdi-
visions, etc., for a given location.

The geo-entity linking process is depicted in Algo-
rithm 2 and illustrated in Figure 6. We start with indi-
vidual building-block geometries of known type (T in
Algorithm 2). In the case of the data we present later in
the evaluation in Section 3, we start with the building-
blocks of geometries of railroads or wetlands (seen
in blue in Figure 6), so we know the feature type we
are searching for. Each input building-block geometry,
s, is an individual node in graph G from Section 2.3.
We first generate a global bounding box for s and ex-
ecute a reverse-geocoding API call to locate instances
of type T on the external knowledge base, as described
in lines 1-2. Some of these instances do not share any
geometry parts with our inspected building-block. As
a heuristic, we randomly sample a small number of co-
ordinate pairs (Points), corresponding to the num-
ber of entities composing s (N ranges from 10 to 85 in
our datasets, as presented in Section 3.1); thus, we gain
more confidence in the detected instances, as seen in

3https://wiki.openstreetmap.org/wiki/Map_features
4http://www.geonames.org/export/reverse-geocoding.html
5https://wiki.openstreetmap.org/wiki/API

https://wiki.openstreetmap.org/wiki/Map_features
http://www.geonames.org/export/reverse-geocoding.html
https://wiki.openstreetmap.org/wiki/API

B. Shbita et al. / Building Spatio-Temporal KGs 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 2: The geo-entity linking algorithm
Data: building-block geometry s, number of

samples N, feature type T
Result: list L of instances on OpenStreetMap

in s
1 Bs = bounding box wrapping s;
2 L = reverse-geocoding(Bs, T); // returns

OpenStreetMap instances of type T in Bs

3 for 1...N do
4 e = randomly sample a Point in s;
5 E = reverse-geocoding(e, T);
6 L.add(E);

7 remove instances with a single appearance in L;
8 return L;

Fig. 6. Our method for acquiring external knowledge base instances

lines 4-6 in Algorithm 2 and in red in Figure 6. Finally,
we reduce the list by removing the matching candi-
dates in the external KB that have a single appearance,
thus filtering out entities that are not likely part of the
enclosed geometry of our geospatial entity. Each one
of the resulting instances is used in later stages to en-
rich the knowledge graph we construct with additional
semantics and metadata from the external knowledge
base.

Figure 7 shows an example of a scanned topographic
map (seen in the background), which we used to ex-
tract its corresponding wetland vector data, alongside
two OSM instances detected using our geo-entity link-
ing method. The labels in Figure 7 (i.e., Four Mile
Cove Ecological Preserve and Six Mile
Cypress Slough Preserve) correspond to the
name attribute (i.e., “human label”) of each entity.
These labels are part of a set of attributes we use to
augment our resulting data with information that did
not exist in the original dataset.

Fig. 7. An example of two OSM instances (enclosed in purple) and
their name labels detected using our geo-entity linking method over
a scanned topographic map (seen in the back)

2.5. Semantic model

As a generic model or framework, RDF can be used
to publish geographic information. Its strengths in-
clude its structural flexibility, particularly suited for
rich and varied forms for metadata required for dif-
ferent purposes. However, it has no specific features
for encoding geometry, which is central to geographic
information. The OGC GeoSPARQL [25] standard
defines a vocabulary for representing geospatial data
on the web and is designed to accommodate sys-
tems based on qualitative spatial reasoning and sys-
tems based on quantitative spatial computations. To
provide a representation with useful semantic meaning
and universal conventions for our resulting data, we
define a semantic model that builds on GeoSPARQL.

Our approach towards a robust semantic model is
motivated by the OSM data model, where each fea-
ture is described as one or more geometries with at-
tached attribute data. In OSM, relations are used
to organize multiple nodes or ways into a single en-
tity. For example, an instance of a bus route running
through three different ways would be defined as a
relation.

Figure 8 shows the semantic model we describe in
this section. In GeoSPARQL, the class type geo:Feature
represents the top-level feature type. It is a superclass
of all feature types. In our model, each instance of this
class represents a single building-block extracted from
the original vector data.

By aggregating a collection of instances of the class
geo:Featurewith a property of type geo:sfWithin
we can construct a full representation for the geome-
try of a specific geographic feature in a given point in
time. Similarly, we can denote the decomposition to
smaller elements using the property geo:sfContains).

8 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. Our semantic model

The use of these properties enables application-specific
queries with a backward-chaining spatial “reasoner” to
transform the query into a geometry-based query that
can be evaluated with computational geometry. Addi-
tionally, we use the property geo:sfOverlapswith
subjects that are instances from the OSM knowledge
base in order to employ the web as a medium for data
and spatial information integration following linked
data principles. Furthermore, each instance has prop-
erties of type dcterms:date, to denote the point in
time of the building-block, and dcterms:created,
to denote the time in which this building-block was
generated to record provenance data. dcterms stands
for the Dublin Core Metadata Initiative6 metadata
model, as recommended by the World Wide Web Con-
sortium (W3C).7

Complex geometries are not human-readable as they
consist of hundreds or thousands of coordinate pairs.
Therefore, we use dereferenceable URIs to represent
the geospatial entity instead. Using a named node in
this capacity means that each entity has its own URI
as opposed to the common blank-node approach often
used with linked geospatial entities. Each URI is gen-
erated using a hash function (the MD5 message-digest
algorithm, arbitrarily chosen) on a plain-text concate-
nation of the feature type, geometry, and temporal ex-
tent, thus providing a unique URI given its attributes.
Each building-block instance (geospatial entity) holds
a property of type geo:hasGeometry with a sub-
ject that is an instance of the class geo:Geometry.
This property refers to the spatial representation of a

6https://www.dublincore.org/specifications/dublin-core/
dcmi-terms/

7https://www.w3.org/

given feature. The class geo:Geometry represents
the top-level geometry type and is a superclass of all
geometry types.

In order to describe the geometries in a compact and
human-readable way we use the WKT format for fur-
ther pre-processing. The geo:asWKT property is de-
fined to link a geometry with its WKT serialization and
enable downstream applications to use SPARQL graph
patterns.

Figure 9 shows how the spatio-temporal data, re-
sulting from the previous steps, is mapped into the
semantic model (from Figure 8) to generate the final
RDF graph. The first column, titled gid, corresponds
to the local URI of a specific node (building-block
geometry). The columns titled predecessor_id
and successor_id correspond to the local URIs
of the nodes composed-of and composing the speci-
fied gid node, respectively. All the three node enti-
ties are of type geo:Feature. The data in the wkt
column contains the geometry WKT representation. It
is linked to the building block node via an entity of
type geo:Geometry, as we described above. The
rest of the attributes (year, time_generated, and
OSM_uri) are stored as literals, following the seman-
tic model we presented in Figure 8.

2.6. Incremental linked data

Linked Data technologies can effectively maximize
the value extracted from open, crowdsourced, and pro-
prietary big data sources. Following the data extrac-
tion and acquisition tasks described in Sections 2.3 and
2.4, and the semantic model described in Section 2.5,
we can now produce a structured standard ontologized
output in a form of a knowledge graph that can be
easily interpreted by humans and machines, as linked
data. In order to encourage reuse and application of our
data in a manageable manner, we need to make sure
that the linked data publication process is robust and
maintainable.

This hierarchical structure of our directed acyclic
graph G (introduced in Algorithm 1) and its metadata
management allows us to avoid an update across all the
existing published geographic vector data (in linked
data) and instead handle the computations incremen-
tally once a new representation of the feature from a
subsequent map edition is introduced.

The approach we present is complete and follows
the principles of Linked Open Data by:

1. Generating URIs as names for things, without the
need to modify any of the previously published

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.w3.org/

B. Shbita et al. / Building Spatio-Temporal KGs 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 9. Mapping of the generated spatio-temporal data into the semantic model

URIs once further vector data from the same re-
gion is available and processed

2. Maintaining existing relations (predicates) be-
tween instances (additional relations may be
added, but they do not break older ones)

3. Generating data as a machine-readable structured
data

4. Using standard namespaces and semantics (e.g.,
GeoSPARQL)

5. Linking to additional resources on the web (i.e.,
OpenStreetMap)

2.7. Querying

The semantic model presented in Section 2.5 and its
structure provide a robust solution enabling a coherent
query mechanism to allow a user-friendly interaction
with the linked data.

In order to elaborate on the query construction idea,
we describe the elements that are needed for a general
query “skeleton” from which we can establish more
complicated queries to achieve different outcomes as
required. Figure 10 shows a query (i.e., the “skele-
ton” query) that retrieves all the leaf node building-
blocks (i.e., the most granular building-blocks). As
shown Figure 10, we first denote that we are interested
in a geo:Feature that has a geometry in WKT for-
mat which gets stored in the variable ?wkt as shown
in lines 3-4 (the variable we visualize in Figures 18,
19, 20, and 21). Line 5 restricts the queried building-
blocks (geo:Features) to leaf nodes only (in graph
G), thus retrieving the most granular building-blocks.
This is done by discarding all the nodes that hold a
predicate of type geo:sfContains, which means
that we retrieve only leaf nodes.

This is important due to the incremental nature (and
the way graph G “grows”): as we mentioned previ-

1 SELECT ?f ?wkt
2 WHERE {
3 ?f a geo:Feature ;
4 geo:hasGeometry [geo:asWKT ?wkt] .
5 FILTER NOT EXISTS { ?f geo:sfContains _:_ } }

Fig. 10. Our SPARQL query “skeleton”

ously, every time we add a new representation of the
feature from a subsequent map edition, we decompose
the existing leaf nodes (most granular building-blocks)
to a new layer of leaf blocks (newer, smaller and more
granular building-blocks, if subject to decomposition)
and its metadata migrates to the lowest level of nodes
(new leaves). This property makes our solution robust
and suggests an efficient way of querying, avoiding the
need to “climb up” the graph for more complicated
(“composed”) building-blocks.

If, for example, we are interested to see the entire
geographic feature in a specific point in time, we can
add the clause {?f dcterms:date <...> .}
inside the WHERE block (lines 2-6). If we are interested
to see the changes from a different time, we can add an
additional clause {MINUS { ?f dcterms:date
<...> . }} as well. The syntax and structure of the
query allows an easy adaptation for additional tasks
such as finding the distinct feature parts from a spe-
cific time or finding the feature parts that are shared
over three, four or even more points in time or map
editions. The nature of our knowledge graph provides
an intuitive approach towards writing simple and com-
plex queries.

3. Evaluation

We evaluate and analyze our methods using quali-
tative and quantitative methods over two types of ge-
ographic features: railroads (line-based geometry) and
wetlands (polygon-based geometry). In this section,

10 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 11. Historical maps of Bray, California from 1950, 1954, 1958, 1962, 1984, 1988 and 2001 (left to right, respectively)

we present the results, measures, and outcomes of our
pipeline when executed on the following datasets:

Railroad data We tested two datasets of vector rail-
road data (encoded as MULTILINEs) extracted from
the USGS historical topographic map archive,8 using
the extraction methods of Duan et al. [6]. Each of
which covers a different region and is available for dif-
ferent points in time. The railroad data originates from
a collection of historical maps for:

1. Bray, California (denoted as CA) from the years
1950, 1954, 1958, 1962, 1984, 1988, and 2001
(the original raster maps are shown in Figure 11).

2. Louisville, Colorado (denoted as CO) from the
years 1942, 1950, 1957 and 1965.

Wetland data We tested three datasets of vector wet-
land data (encoded as MULTIPOLYGONs) that were
similarly extracted from the USGS historical topo-
graphic map. Again, each of these map sheets covers a
different region and spans different points in time. The
wetland data originates from a collection of historical
maps for:

1. Bieber, California (denoted as CA) from the
years 1961, 1990, 1993, and 2018 (the original
raster maps are shown in Figure 12)..

2. Palm Beach, Florida (denoted as FL) from the
years 1956, 1987 and 2020.

3. Duncanville, Texas (denoted as TX) from the
years 1959, 1995 and 2020.

Our primary goal in this section is to show that our
proposal provides a complete, robust, tractable, and ef-
ficient solution for the production of linked data from
vectorized historical maps.

8https://viewer.nationalmap.gov, http://historicalmaps.arcgis.
com/usgs/

Table 1
Partitioning statistics for CA railroads

Year # vecs Runtime (s) # nodes

1954 2382 <1 1
1962 2322 36 5
1988 11134 1047 11
1984 11868 581 24
1950 11076 1332 43
2001 497 145 57
1958 1860 222 85

Table 2
Partitioning statistics for CO railroads

Year # vecs Runtime (s) # nodes

1965 838 <1 1
1950 418 8 5
1942 513 5 8
1957 353 4 10

3.1. Evaluation on the feature partitioning

In order to evaluate the performance of this task,
we look into the runtime and the number of generated
nodes (in graph G) for each region and feature type (ex-
ecuted on a 16 GB RAM machine @ 2.9 GHz Quad-
Core Intel Core i7). The number of vector features in
the geographic feature geometry (column ‘# vecs’),
resulting runtimes (column ‘Runtime’, measured in
seconds) and total number of nodes following each
sub-step of an addition of another map sheet feature
geometry (column ‘# nodes’) are depicted in Ta-
bles 1 (CA) and 2 (CO) for the railroad data, and in
Tables 3 (CA), 4 (FL) and 5 (TX) for the wetland data.

As seen in Tables 1, 2, 3, 4 and 5, we observe that for
both types of geographic features, the building-block
geometries extracted from these maps vary in terms of
“quality”. That is, they have a different number of vec-
tor lines that describe the geographic feature and each

https://viewer.nationalmap.gov
http://historicalmaps.arcgis.com/usgs/
http://historicalmaps.arcgis.com/usgs/

B. Shbita et al. / Building Spatio-Temporal KGs 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 12. Historical maps of Bieber, California from 1961, 1990, 1993 and 2018 (left to right, respectively)

one has a different areal coverage (the bounding box
area for each feature geometry is reported in Table 6).
This is caused by the vector extraction process and is
not within the scope of this paper. We also acknowl-
edge that the quality and scale of the original images
used for the extraction affects these parameters, but we
do not focus on such issues. We treat these values and
attributes as a ground truth for our process.

First, we notice that the growth of the number of
nodes in graph G is tractable due to the way the given
geographic features change in practice and the fact that
each sub-step runs only once when a new set of ge-
ometries is inserted from a new map edition. Further,
the runtime of each sub-step is also tractable. As ex-
pected, the first two map editions (for all areas) gen-
erate results within less than a minute for railroads
and less than three minutes for wetlands, requiring at
most three computations: one geometry intersection
between two building-block geometries and two ad-
ditional subtractions: a local and a global one (as ex-
plained in Section 2.3). The following runtimes show
that our computation cost is not exponential in prac-
tice. By inspecting Tables 1, 2, 3, 4 and 5, we observe
that the partitioning runtime depends mostly on two
factors: the number of vectors in the geometries and
the number of nodes that exist in the graph. The more
geometry elements we have and the more geometries
exist, the more operations we need to run.

These results are not surprising because “leaves” in
the graph will only be partitioned in case it is “re-
quired”, that is, they will be partitioned to smaller
unique parts to represent the geospatial data they need
to compose. With the addition of new map sheet fea-
ture geometries, we do not necessarily add unique
parts since changes do not occur between all map edi-
tions. This shows that the data processing is not neces-
sarily becoming more complex in terms of space and
time, thus, providing a solution that is feasible and sys-
tematically tractable.

Table 3
Partitioning statistics for CA wetlands

Year # vecs Runtime (s) # nodes

1961 12 <1 1
1993 17 <1 5
1990 27 6 11
2018 9 6 24

Table 4
Partitioning statistics for FL wetlands

Year # vecs Runtime (s) # nodes

1987 184 <1 1
1956 531 180 5
2020 5322 1139 13

Table 5
Partitioning statistics for TX wetlands

Year # vecs Runtime (s) # nodes

1959 8 <1 1
1995 6 <1 5
2020 1 1 10

Additionally, by comparing the first three rows in
Tables 1 and 4, we notice that the computation time
over a polygon geometry is significantly slower than
that of a buffer-padded line geometry. This is despite
the railroads having a large number of feature vectors.
Further, by examining Tables 3, 4 and 5, we notice
that a bigger number of feature vectors in the case of a
polygon geometry causes a significant increase in pro-
cessing time. These observations are predictable, as the
computation time is expected to grow when dealing
with more complex geometries like polygons covering
larger areas that may include several interior rings in
each enclosed exterior (similar to “holes in a cheese”),
compared to the simple buffer-padded line geometries
(sort of a “thin rectangle”).

12 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 13. Screenshot of a wetland instance on OpenStreetMap match-
ing an active area corresponding to an instance we generated from
the CA wetland data

3.2. Evaluation on geo-entity linking

In the process of linking our data to OpenStreetMap,
we are interested in the evaluation of the running time
and correctness (precision, recall and F1) of this task.

The running time is linearly dependent on the num-
ber of nodes in graph G, the areal coverage of the cor-
responding geometry, the number of samples using the
OpenStreetMap API, and the availability of the API.
The API response time averages 3 seconds for each
sample. For the railroad data, the execution time for
the set of maps from the CA region took approximately
an hour (85 nodes) and only a few minutes for CO (10
nodes). This is not surprising as the CA region covers
a bigger area and a larger number of nodes. We ob-
serve similar behavior in the wetland data. The FL ex-
ecution time took approximately 2 hours (13 nodes),
as it has the largest areal coverage (as seen in Table 6),
while the other regions (CA, TX) took approximately
30 minutes to finish. This provides a feasible solution
to a process that runs only once for a given set of ge-
ometries from different map editions.

Due to the unsupervised characteristic of the link-
ing task, we had to manually inspect and label the
sets of instances found in each bounding box that we
query for each building-block geometry. The measure
we present here is in terms of entity (instance) cov-
erage. Precision and recall are calculated according to
the labeled (type) instances that are available on Open-
StreetMap and make up the inspected geographic fea-
ture (i.e., railroad or wetland). Figures 13 and 14 show
an example of such instances, with their correspond-
ing tags in OSM’s graphic interface. Figure 13 shows a
wetland instance on OSM marked as a SwampMarsh
(with its corresponding GNIS code) and matching an

Fig. 14. Screenshot of a railroad instance on OpenStreetMap match-
ing an abandoned rail segment corresponding to an instance we gen-
erated from the CA railroad data

Table 6
Geo-entity linking results; Area is in square kilometers

Area Precision Recall F1
R

ai
lr

oa
ds

CA-baseline
420.39

0.193 1.000 0.323
CA 0.800 0.750 0.774
CO-baseline

132.01
0.455 1.000 0.625

CO 0.833 1.000 0.909

W
et

la
nd

s

CA-baseline
224.05

0.556 1.000 0.714
CA 1.000 1.000 1.000
FL-baseline

27493.98
0.263 1.000 0.417

FL 0.758 0.272 0.400
TX* 16.62 - - -

active wetland area in our data (a common building-
block from all the editions of the CA wetland data).
Figure 14 shows a railroad instance on OSM marked
as abandoned and matching an abandoned railroad
segment in our data (a unique building-block from the
1950 edition of the CA railroad data). This shows our
ability to enrich and link our graph to external re-
sources on the web. Moreover, it is worth mentioning
that in terms of detecting which railroad or wetland it
is (“human label”), we are able to achieve 100% ac-
curacy by taking a majority vote (in cases where such
label is present on OSM, as seen in Figure 14, as some
instances do not have such designated “human label”,
as seen in Figure 13).

We have set up a baseline for comparison with our
geo-entity linking method. The baseline approach re-
turns the set of all instances found in the bounding box.
This is the list of candidates we generate in the first
step of our method, without the additional sampling
and removal steps we have described in Section 2.4.

The precision, recall, and F1 scores of each method
over each dataset are shown in Table 6. For each ge-
ographic feature and each region, we report the base-
line result and our method’s result. We also present the

B. Shbita et al. / Building Spatio-Temporal KGs 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

SELECT ?f ?wkt WHERE {
?f a geo:Feature ;

geo:hasGeometry [geo:asWKT ?wkt] ;
dcterms:date 1962^^xsd:gYear ;
dcterms:date 2001^^xsd:gYear .

FILTER NOT EXISTS { ?f geo:sfContains _:_ } }

Fig. 15. Query similar feature geometries in both 1962 and 2001

SELECT ?f ?wkt WHERE {
?f a geo:Feature ;

geo:hasGeometry [geo:asWKT ?wkt] ;
dcterms:date 1962^^xsd:gYear .

FILTER NOT EXISTS { ?f geo:sfContains _:_ }
MINUS { ?f dcterms:date 2001^^xsd:gYear . } }

Fig. 16. Query feature geometries present in 1962 but not in 2001

bounding box area for each dataset (in square kilome-
ters), as it is an important factor in the geo-entity link-
ing evaluation. The bigger the area, the more sampling
points we require. The first 4 rows correspond to the
railroad data (in CA and CO). The rest corresponds to
the wetland data. Note, that results for the TX wetlands
have been omitted in this part of the evaluation due to
a complete absence of labeled data in OSM covering
that area. We will briefly discuss this in Section 5.

Due to the varying geometries, areal coverage, and
available data in the external knowledge base for each
region, and as expected, our measure shows different
scores for each dataset. In 3 out of 4 datasets, our
method achieves much higher F1 scores than the base-
line (0.774 and 0.909 compared to 0.323 and 0.625
respectively in the railroad data; and 1.000 compared
to 0.714 in the CA wetland data) and achieves an ac-
ceptable score for this task. In the FL wetland dataset,
we achieve lower F1 scores for both methods (base-
line and ours). This is not surprising as the area of cov-
erage is significantly bigger than in all other datasets,
requiring us to generate a bigger number of samples
in order to capture all the relevant instances on OSM.
We will expand on this issue in Section 5. Nonetheless,
further examination of the FL wetland results shows
that the low F1 score of the baseline is due to the fact
that it only considers the global bounding box (thus the
high recall, but low precision). On the other hand, our
method achieves a higher precision score but a much
lower recall, compared to the baseline. This is a cru-
cial point in geographic applications, as many systems
consider the precision to be more important than recall
due to a low false-positive tolerance [26].

3.3. Evaluation on querying the resulting data

We execute several query examples over the knowl-
edge graph we constructed in order to measure our

SELECT ?f ?wkt WHERE {
?f a geo:Feature ;
geo:hasGeometry [geo:asWKT ?wkt] ;
dcterms:date 1958^^xsd:gYear .

FILTER NOT EXISTS { ?f geo:sfContains _:_ }
?f dcterms:date ?date . }

GROUP BY ?f ?wkt
HAVING (COUNT(DISTINCT ?date) = 1)

Fig. 17. Query unique feature geometries from 1958

model in terms of query time, validity, and effective-
ness. For the generated railroad data, we had a total
of 914 triples for the CA dataset and 96 triples for the
CO dataset. For the wetland data, we had a total of 270
triples for the CA dataset, 149 for the FL dataset, and
85 for the TX dataset.

The generated RDF triples would be appropriate
to use with any Triplestore. We hosted our triples in
Apache Jena.9 Jena is relatively lightweight, easy to
use, and provides a programmatic environment.

Table 7 shows the query-time performance results
(average, minimum and maximum). In the first type
of query we want to identify the feature parts that re-
main unchanged in two different map editions (dif-
ferent time periods) for each region (e.g., Figure 15).
Each row with a label starting with SIM- in Table 7
corresponds to this type of query (the label suffix deter-
mines the tested region). We executed a hundred iden-
tical queries for each feature type and each area across
different points in time to measure the robustness of
this type of query.

We repeated the process for a second type of query
to identify the parts of the feature that were removed
or abandoned between two different map editions for
each region (i.e., Figure 16). Each row with a label
starting with DIFF- in Table 7 corresponds to this
type of query.

The third type of query retrieves the parts of the fea-
ture that are unique to a specific edition of the map
(i.e., Figure 17). Each row with a label starting with
UNIQ- in Table 7 corresponds to this type of query.

Looking at Table 7, we notice that the average query
times are all in the range of 10-48(ms) and do not seem
to change significantly with respect to the number of
map editions we process or the complexity of the query
we compose. The query time results corresponding to
the wetland data are slightly slower, but not signifi-
cantly, comparing to the railroad data. This may be ex-
plained by the longer literal encoding of the WKT ge-
ometry for polygons, thus slower retrieval time com-
paring the the line encoding.

9https://jena.apache.org/

https://jena.apache.org/

14 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 18. Example of railroad system changes over time: the parts of
the railroad that are similar in 1962 and 2001, marked in red

Fig. 19. Example of railroad system changes over time: the parts
of the railroad that are present in 1962 but are not present in 2001,
marked in blue

In order to evaluate the validity of our graph we ob-
serve the visualized results of the query presented in
Figure 15 when executed over the CA railroad data,
which are shown in Figure 18. The figure shows in
red the unchanged building-block geometries between
the years 1962 and 2001. We notice that the geome-
tries we retrieve qualitatively match what we observe
in the original vector data (the line marked in black
over the maps in Figures 18 and 19 represents the cur-
rent railway, which has not changed since 2001). The
results of the query presented in Figure 16 are shown in
Figure 19, again, when executed over the CA railroad
data. Figure 19 shows in blue the parts of the railroad
that were abandoned between 1962 to 2001. Compa-
rably, we perform a similar type of query and visu-
alization for the CA wetland data, between the years

Fig. 20. Example of wetland changes over time: the parts of the Big
Swamp in Bieber (CA) that are similar in 1961 and 2018, marked in
red

Fig. 21. Example of wetland changes over time: the parts of the Big
Swamp in Bieber (CA) that are present in 1961 but are not present in
2018, marked in dark blue, emphasizing its decline throughout time

1961 and 2018. Figure 20 shows the similar parts in
both editions (in red). Figure 21 shows the parts of the
wetland (swamp) that were present in 1961 but are not
present in 2018 (in dark blue). Again, this matches our
qualitative evaluation based on the original vector files
(the light blue marks that are part of the map’s back-
ground depict the current swamp, thus validating our
results qualitatively).

The query results above establish high confidence in
our model, showing that we can easily and effectively
answer complex queries in a robust manner. Over-
all, we demonstrated that our approach and the pro-
posed pipeline can be effectively used to automatically
construct effective and contextualized open KGs and
linked data from historical and contemporary geospa-
tial data.

B. Shbita et al. / Building Spatio-Temporal KGs 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
Query time statistics (in milliseconds)

avg min max

R
ai

lr
oa

ds

SIM-CA 12 10 18
SIM-CO 11 9 20
DIFF-CA 10 8 20
DIFF-CO 10 9 14
UNIQ-CA 14 8 28
UNIQ-CO 15 9 17

W
et

la
nd

s

SIM-CA 22 18 34
SIM-FL 35 18 55
SIM-TX 21 12 44
DIFF-CA 25 16 43
DIFF-FL 32 18 60
DIFF-TX 21 11 30
UNIQ-CA 24 18 44
UNIQ-FL 48 38 73
UNIQ-TX 14 12 40

4. Related Work

Much work has been done on mapping geospatial
data into RDF graphs. Kyzirakos et al. [13] devel-
oped a semi-automated tool for transforming geospa-
tial data from their original formats into RDF using
R2RML mapping. Usery et al. [14] presented a method
for converting point and other vector data types to RDF
for supporting queries and analyses of geographic
data. The transformation process presented in these pa-
pers does not address linking the data across multi-
ple sources or linking the source data with additional
knowledge bases on the semantic web as described in
this paper.

Annotating geospatial data with external data on the
web is used for contextualization and the retrieval of
relevant information that cannot be found in the source
data. This line of research has been addressed in dif-
ferent studies. Vaisman et al. [15] studied the prob-
lem of capturing spatio-temporal data from different
data sources, integrating these data and storing them
in a geospatial RDF data store. Eventually, these data
were enriched with external data from LinkedGeoData
[20], GeoNames [19], and DBpedia [27]. Smeros et al.
[28] focus on the problem of finding semantically re-
lated entities lying in different knowledge bases. Ac-
cording to them, most approaches on geo-entity link-
ing focus on the search for equivalence between enti-
ties (same labels, same names, or same types), leav-
ing other types of relationships (e.g. spatial, topolog-
ical, or temporal relations) unexploited. They propose

to use spatio-temporal links to improve the process.
However, both of these papers do not address linking
unlabeled geospatial entities (containing only geome-
try data, without any additional attributes), as we do in
this paper.

Current work on geospatial change analysis spans
the construction of geospatial semantic graphs to en-
able easier search, monitoring and information re-
trieval mechanisms. Perez et al. [29] computed vege-
tation indexes from satellite image processing and ex-
posed as the data as RDF triples using GeoSPARQL
[25]. The changes in these indexes are used to sup-
port forest monitoring. Similar to that approach, Kaup-
pinen et al. [30] collected statistical data from open
data sources to monitor the deforestation of the Ama-
zon rainforest by building temporal data series trans-
lated into RDF. Kyzirakos et al. [17] used open knowl-
edge bases to identify hot spots threatened by wild-
fire. However, this line of work does not address an
incremental process of geospatial change over time.
In this paper, we incorporate a temporal dimension to
the geospatial semantic graphs and present an unsuper-
vised pipeline for an automatic incremental geographic
feature analysis over time.

5. Discussion and Future Work

With the increasing availability of digitized geospa-
tial data from historical map archives, better tech-
niques are required to enable end-users and non-
experts to easily understand and analyze geographic
information across time and space. Existing techniques
rely on human interaction and expert domain knowl-
edge. In this paper, we addressed this issue and pre-
sented an automatic unsupervised approach to inte-
grate, relate and interlink geospatial data from digi-
tized resources and publish it as semantic-rich, struc-
tured linked spatial data in a form of a knowledge
graph that follows the Linked Open Data principles.

The evaluation we presented in Section 3 shows that
our approach is feasible and effective in terms of pro-
cessing time, completeness and robustness. The par-
titioning process runs only once for newly added re-
sources, and does not require re-generation of “old”
data since our approach is incremental. In case a new
map edition emerges for the same region, we only need
to process the newly added geometry. Thus, data that
has been previously published will continue to exist
with a proper URI and will be preserved over time.

16 B. Shbita et al. / Building Spatio-Temporal KGs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In a scenario that includes contemporary maps that
change very quickly, we expect our method to require
longer computation time, due to an increased number
of computations, but would still be tractable with re-
spect to the changes happening in the map geometries.
As we mentioned in Section 2.3, the breakdown of the
building-block geometries depends on the complexity
of the actual changes in the original topographic map.
Further, the quality and level of detail of the origi-
nal vector data play a significant role in the final RDF
model as we have observed in Section 3.1.

Our approach has several limitations, one of them is
in a form of a hyper-parameter that governs the buffer
size we use in the process of the partitioning of the
geometries to smaller building-block geometries in the
case of line geometry. We currently set this parameter
manually but we believe such parameter can be learned
from the data or estimated using some heuristics with
respect to additional attributes such as the area of the
geometric object and the quality of the original vector
data extraction.

As we have observed in the geo-entity linking evalu-
ation for the wetland data in TX, in Section 3.2, it is not
always possible to provide complete solutions to some
problems. Given the large volume, and openness of the
OSM schema, there are peculiarities about geographic
information that present particular challenges with re-
spect to the semantic web. One challenge is the vague-
ness that exists in geographic categories. For example,
what makes a wetland a wetland and not mud? Again,
it is worth emphasizing that these peculiarities are not
unique to geography. OSM is open to non-expert users
of geographic data and thus, the tagging attitude is
rather intuitive than based on scientific methodologies
and knowledge. We believe that these types of prob-
lems can be solved by the downstream application by
adjusting the pipeline according to the user’s needs.

Moreover, and as we have seen in Section 3.2, per-
forming geo-entity linking over very large areas (such
as the case of the FL wetland data), can cause poor
performance. In order to achieve better recall, we need
to increase the number of the reverse-geocoding calls
and perform adjustable bulk query calls instead of
an unbounded number of single API calls (which we
avoided due to the policies in using the OSM API).
An additional solution for this issue can come in the
form of a caching mechanism and by using multiple
machines for faster parallel access.

We are currently looking into expanding the abil-
ity to utilize additional knowledge bases such as
Yago2Geo [31]. This knowledge base gathers geospa-

tial entities with their spatial data from different
sources (including OSM). In future work, we also
plan to investigate the possibility of using multiple
machines for faster processing. This is possible since
there are computations in Algorithm 1 that are inde-
pendent of each other and can be executed in parallel
in the same iteration over a single map edition. This
will enable a faster processing time and strengthen the
effectiveness of our solution.

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant Nos. IIS
1564164 (to the University of Southern California) and
IIS 1563933 (to the University of Colorado at Boulder)
and Nvidia Corporation.

References

[1] Y. Chiang, S. Leyk and C.A. Knoblock, A survey of digital
map processing techniques, ACM Computing Surveys (CSUR)
47(1) (2014), 1–44.

[2] J.H. Uhl, S. Leyk, Y. Chiang, W. Duan and C.A. Knoblock,
Automated extraction of human settlement patterns from his-
torical topographic map series using weakly supervised convo-
lutional neural networks, IEEE Access (2019).

[3] J.H. Uhl and W. Duan, Automating information extraction
from large historical topographic map archives: New oppor-
tunities and challenges, in: Werner, M. and Chiang, Y.-Y.
(Eds.): Handbook of Big Geospatial Data, Springer, 2021.
doi:10.1007/978-3-030-55462-0.

[4] Y. Chiang, W. Duan, S. Leyk, J.H. Uhl and C.A. Knoblock,
Using historical maps in scientific studies: Applications, chal-
lenges, and best practices, Springer, 2020.

[5] S. Leyk, R. Boesch and R. Weibel, A conceptual framework
for uncertainty investigation in map-based land cover change
modelling, Transactions in GIS 9(3) (2005), 291–322.

[6] W. Duan, Y. Chiang, C.A. Knoblock, S. Leyk and J.H. Uhl,
Automatic generation of precisely delineated geographic fea-
tures from georeferenced historical maps using deep learning,
in: Proceedings of the AutoCarto, 2018.

[7] N.I. Maduekwe, A GIS-Based Methodology for Extracting
Historical Land Cover Data from Topographical Maps: Il-
lustration with the Nigerian Topographical Map Series, KN-
Journal of Cartography and Geographic Information (2021),
1–16.

[8] S. Athanasiou, D. Hladky, G. Giannopoulos, R.G. Rojas and
J. Lehmann, GeoKnow: Making the web an exploratory place
for geospatial knowledge, ERCIM News 96(12–13) (2014),
119–120.

[9] C. Bone, A. Ager, K. Bunzel and L. Tierney, A geospatial
search engine for discovering multi-format geospatial data
across the web, International Journal of Digital Earth 9(1)
(2016), 47–62.

B. Shbita et al. / Building Spatio-Temporal KGs 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[10] S. Athanasiou, G. Giannopoulos, D. Graux, N. Karagiannakis,
J. Lehmann, A.N. Ngomo, K. Patroumpas, M.A. Sherif and
D. Skoutas.

[11] M. Alirezaie, M. Längkvist, M. Sioutis and A. Loutfi, Semantic
referee: A neural-symbolic framework for enhancing geospa-
tial semantic segmentation, Semantic Web 10(5) (2019), 863–
880.

[12] C. Bernard, C. Plumejeaud-Perreau, M. Villanova-Oliver,
J. Gensel and H. Dao, An ontology-based algorithm for man-
aging the evolution of multi-level territorial partitions, in: Pro-
ceedings of the 26th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, ACM,
2018, pp. 456–459.

[13] K. Kyzirakos, I. Vlachopoulos, D. Savva, S. Manegold and
M. Koubarakis, GeoTriples: a Tool for Publishing Geospatial
Data as RDF Graphs Using R2RML Mappings, in: Terra Cog-
nita, 6th International Workshop on the Foundations, Tech-
nologies and Applications of the Geospatial Web, in conjuction
with ISWC, 2014, pp. 33–44.

[14] E.L. Usery and D. Varanka, Design and development of linked
data from the national map, Semantic Web 3(4) (2012), 371–
384.

[15] A. Vaisman and K. Chentout, Mapping spatiotemporal data to
RDF: A SPARQL endpoint for brussels, ISPRS International
Journal of Geo-Information 8(8) (2019), 353.

[16] K.R. Kurte and S.S. Durbha, Spatio-Temporal Ontology for
Change Analysis of Flood Affected Areas Using Remote Sens-
ing Images., in: JOWO@ FOIS, 2016.

[17] K. Kyzirakos, M. Karpathiotakis, G. Garbis, C. Niko-
laou, K. Bereta, I. Papoutsis, T. Herekakis, D. Michail,
M. Koubarakis and C. Kontoes, Wildfire monitoring using
satellite images, ontologies and linked geospatial data, Journal
of web semantics 24 (2014), 18–26.

[18] M. Haklay and P. Weber, Openstreetmap: User-generated street
maps, IEEE Pervasive computing 7(4) (2008), 12–18.

[19] M. Wick and B. Vatant, The geonames geographical database,
Available from World Wide Web: http://geonames. org (2012).

[20] S. Auer, J. Lehmann and S. Hellmann, Linkedgeodata: Adding
a spatial dimension to the web of data, in: International Se-
mantic Web Conference, Springer, 2009.

[21] B. Shbita, C.A. Knoblock, W. Duan, Y. Chiang, J.H. Uhl and
S. Leyk, Building Linked Spatio-Temporal Data from Vector-
ized Historical Maps, in: European Semantic Web Conference,
Springer, 2020, pp. 409–426.

[22] C. Lin, H. Su, C.A. Knoblock, Y. Chiang, W. Duan, S. Leyk
and J.H. Uhl, Building Linked Data from Historical Maps., in:
SemSci@ ISWC, 2018, pp. 59–67.

[23] M.F. Goodchild, Citizens as sensors: the world of volunteered
geography, GeoJournal 69(4) (2007), 211–221.

[24] D. Vrandečić and M. Krötzsch, Wikidata: a free collaborative
knowledgebase, Communications of the ACM 57(10) (2014),
78–85.

[25] R. Battle and D. Kolas, Geosparql: enabling a geospatial se-
mantic web, Semantic Web Journal 3(4) (2011), 355–370.

[26] G. Nagy and S. Wagle, Geographic data processing, ACM
Computing Surveys (CSUR) 11(2) (1979), 139–181.

[27] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and
Z. Ives, Dbpedia: A nucleus for a web of open data, in: The
semantic web, Springer, 2007, pp. 722–735.

[28] P. Smeros and M. Koubarakis, Discovering spatial and tempo-
ral links among RDF data, in: LDOW@ WWW, 2016.

[29] A.J. Pérez-Luque, R. Pérez-Pérez, F.V. Bonet-García and
P.J. Magaña, An ontological system based on MODIS images
to assess ecosystem functioning of Natura 2000 habitats: A
case study for Quercus pyrenaica forests, International Journal
of Applied Earth Observation and Geoinformation 37 (2015),
142–151.

[30] T. Kauppinen, G.M. de Espindola, J. Jones, A. Sánchez,
B. Gräler and T. Bartoschek, Linked brazilian amazon rainfor-
est data, Semantic Web 5(2) (2014), 151–155.

[31] N. Karalis, G. Mandilaras and M. Koubarakis, Extending the
YAGO2 knowledge graph with precise geospatial knowledge,
in: International Semantic Web Conference, Springer, 2019,
pp. 181–197.

	Introduction
	Problem definition
	Contribution
	Structure of paper

	Approach to Building Spatio-temporal Knowledge Graphs
	Preliminaries
	Overview of the approach
	Generating building-blocks and interlinking
	reverse-geocoding and geo-entity linking
	Semantic model
	Incremental linked data
	Querying

	Evaluation
	Evaluation on the feature partitioning
	Evaluation on geo-entity linking
	Evaluation on querying the resulting data

	Related Work
	Discussion and Future Work
	Acknowledgements
	References

