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Abstract. In this survey, we provide a comprehensive description of recent neural entity linking (EL) systems developed since
2015 as a result of the “deep learning revolution” in NLP. Our goal is to systemize design features of neural entity linking sys-
tems and compare their performance to the prominent classic methods on common benchmarks. We distill generic architectural
components of a neural EL system, like candidate generation and entity ranking, and summarize prominent methods for each of
them. The vast variety of modifications of this general neural entity linking architecture are grouped by several common themes:
joint entity recognition and linking, models for global linking, domain-independent techniques including zero-shot and distant
supervision methods, and cross-lingual approaches. Since many neural models take advantage of entity and mention/context
embeddings to catch semantic meaning of them, we provide an overview of popular embedding techniques. Finally, we briefly
discuss applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language
models based on the transformer architecture.

Keywords: Entity Linking, Deep Learning, Neural Networks, Natural Language Processing, Knowledge Graphs

1. Introduction

Knowledge Graphs (KGs), such as Freebase [12],
DBpedia [6], and Wikidata [154], contain rich and pre-
cise information about entities of all kinds, such as
persons, locations, organizations, movies, and scien-
tific theories, just to name a few. Each entity has a set

*Equal contribution. Corresponding author. E-mail:
sevgili@informatik.uni-hamburg.de.

**Equal contribution. Corresponding author. E-mail:
a.shelmanov@skoltech.ru.

of carefully defined relations and attributes, e.g. “was
born in” or “play for”. This wealth of structured in-
formation gives rise to and facilitates the development
of semantic processing algorithms as they can directly
operate on and benefit from such entity representa-
tions. For instance, imagine a search engine that is able
to retrieve mentions in the news during the last month
of all retired NBA players with a net income of more
than 1 billion US dollars. The list of players together
with their income and retirement information may be
available in a knowledge graph. Equipped with this in-
formation, it appears to be straightforward to look up
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mentions of retired basketball players in the newswire.
However, the main obstacle in this setup is the lexi-
cal ambiguity of entities. In the context of this appli-
cation, one would want to only retrieve all mentions
of “Michael Jordan (basketball player)”1 and exclude
mentions of other persons with the same name such as
“Michael Jordan (mathematician)”2.

This is why Entity Linking (EL) – the process of
matching a mention, e.g. “Michael Jordan”, in a tex-
tual context to a KG record (e.g. “basketball player” or
“mathematician”) fitting the context – is the key tech-
nology enabling various semantic applications. Thus,
EL is the task of identifying an entity mention in (un-
structured) text and establishing a link to an entry in a
(structured) knowledge graph.

Entity linking is an essential component of many
information extraction (IE) and natural language un-
derstanding (NLU) pipelines since it resolves the lexi-
cal ambiguity of entity mentions and determines their
meanings in context. A link between a textual mention
and an entity in a knowledge graph also allows us to
take advantage of the information encompassed in a
semantic graph, which is shown to be useful in such
NLU tasks as information extraction, biomedical text
processing, or semantic parsing and question answer-
ing (see Section 5). This wide range of direct applica-
tions is the reason why entity linking is enjoying great
interest from both academy and industry for more than
two decades.

1.1. Goal and Scope of this Survey

Recently, a new generation of approaches for entity
linking based on the neural models and deep learn-
ing emerged, pushing the state-of-the-art performance
on this task to a new level. The goal of this survey is
to provide an overview of this latest wave of models,
emerging from 2015 until now.

Models based on neural networks have managed to
excel in EL as in many other natural language process-
ing tasks due to their ability to learn useful distributed
semantic representations of linguistic data [10, 23,
170]. The state-of-the-art neural entity linking mod-
els have shown significant improvements over “classi-
cal”3 machine learning approaches [20, 72, 121] that
are based on shallow architectures, e.g. Support Vector

1https://en.wikipedia.org/wiki/Michael_Jordan
2https://en.wikipedia.org/wiki/Michael_I._Jordan
3On classical ML vs deep learning: https://towardsdatascience.

com/deep-learning-vs-classical-machine-learning-9a42c6d48aa

Machines, and/or depend mostly on hand-engineered
features. Such models often cannot capture all relevant
statistical dependencies and interactions [44]. In con-
trast, deep neural networks are able to learn sophisti-
cated representations within their deep layered archi-
tectures. This both reduces the burden of manual fea-
ture engineering and enables significant improvements
on EL and other tasks.

In this survey, we systematize recently proposed
neural models, distilling one generic architecture com-
monly used by popular neural EL models (illustrated in
Figures 2 and 5). We describe the models used in each
component of this architecture, e.g. candidate gener-
ation or ranking. Prominent variations of this generic
architecture, e.g. end-to-end EL or global models, are
also discussed. To better structure the sheer amount
of available models, various types of methods are il-
lustrated in the form of taxonomies (Figures 3 and 6)
while notable features of each model are carefully as-
sembled in a tabular form (Table 2).

An important component of neural entity linking
systems is entity vector representations and entity en-
coding methods. It has been shown that encoding the
KG structure (entity relationships), entity definitions,
or textual information in large annotated corpora in
low-dimensional vectors, improves the generalization
capabilities of EL models [44, 59]. We summarize
novel methods for entity encoding, as well as con-
text/mention encoding techniques.

Many natural language processing systems take
advantage of deep pre-trained language models like
ELMo [113], BERT [29], and their modifications. EL
made its path into these models as a way of introduc-
ing information stored in KGs, which helps to adopt
word representations to some text processing tasks. We
discuss this novel application of EL and how it can be
further developed.

As with all surveys, we had to draw the line some-
where. The main criteria for including papers into this
survey was that they have been published in or after
2015 and they primarily address the task of EL, i.e. re-
solving textual mentions to entries in KGs, and its ap-
plications. We explicitly exclude related work e.g. on
(fine-grained) entity typing (see [3]), which also en-
compasses a disambiguation task, and work that em-
ploys KGs for other tasks than EL. Because of the
sheer amount of work, it was not possible for us to try
software if available, and to compare approaches on
further parameters, such as computational complexity,
run-time, and memory requirements.

https://en.wikipedia.org/wiki/Michael_Jordan
https://en.wikipedia.org/wiki/Michael_I._Jordan
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
https://towardsdatascience.com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
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WalesWales_national_football_team beat San
MarinoSan_Marino_national_footbal_team 4-0 in under-21
match.  BarryBarry,_Vale_of_Glamorga, WalesWales 1996 08
30 WalesWales_national_under-21_football_team beat San
MarinoSan_Marino_national_footbal_team 4-0 (halftime 2-0) in a
EuropeanEurope under-21 soccer match on friday. Scorers:
WalesWales_national_under-21_football_team - John
HartsonJohn_Hartson (12th, 56th and 83rd minutes), Scott
YoungScott_Young_(Welsh_footballer) (24th) attendance: 1,800

Input Plain Text Text with Entities Linked to the KG

Entity Linking

Entity-labelled Text

Fig. 1. The entity linking task. EL model takes a raw textual input and enriches it with entity mention links in a KG. Commonly the task is split
into entity recognition and entity disambiguation sub-tasks.

1.2. Previous Surveys

One of the first surveys on EL is prepared by Ling
et al. [80], in 2015. They aim at providing (1) a stan-
dard problem definition to reduce a confusion that ap-
pears due to existence of variant similar tasks related
to EL (e.g., Wikification [92] and named entity linking
[57]), and (2) a clear comparison of models and their
various aspects. In the same year, Shen et al. [133] pub-
lished a survey covering the main approaches to en-
tity linking, its applications, evaluation methods, and
future directions.

There are also other surveys, which address a wider
scope. The work of Martínez-Rodríguez et al. [88],
published in 2020, involves information extraction
models and semantic web technologies. Namely, they
consider named entity recognition, entity linking, ter-
minology extraction, keyphrase extraction, topic mod-
eling, topic labeling, and relation extraction tasks for
information extraction side. In a similar vein, Al-
Moslmi et al. [2], released in 2020, overview the re-
search in named entity recognition and named entity
disambiguation/linking published between 2014-2019.

Another recent survey paper by Oliveira et al. [105],
published in 2020, analyses and summarizes EL ap-
proaches that exhibit some holism. This viewpoint lim-
its the survey to the works that exploit various peculiar-
ities of the EL task: additional metadata stored in spe-
cific input like microblogs, specific features that can be
extracted from this input like geographic coordinates
in tweets, timestamps, interests of users posted these
tweets, and specific disambiguation methods that take
advantage of these additional features.

Previous surveys on similar topics (a) do not cover
many recent publications [80, 133], (b) broadly cover
numerous topics [2, 88], or (c) are focused on the spe-
cific types of methods [105]. There is not yet, to our
knowledge, a detailed survey specifically devoted to
recent neural entity linking models. The previous sur-

veys also do not address the topics of entity and con-
text/mention encoding, applications of EL to deep pre-
trained language models, and cross-lingual EL. We are
also the first to summarize the domain-independent ap-
proaches to EL, several of which are based on zero-
shot techniques.

1.3. Contributions

More specifically, this article makes the following
contributions:

– a survey of state-of-the-art neural entity linking
models;

– feature tables for neural EL methods;

– a description of entity and context/mention em-
bedding techniques;

– a discussion of recent domain-independent (zero-
shot) and cross-lingual EL approaches;

– a survey of EL applications to modeling word rep-
resentations.

The structure of this survey is the following. We
start with defining the task of EL in Section 2. In Sec-
tion 3.1, the common architecture of neural entity link-
ing systems is presented. Modifications and variations
of this basic pipeline are discussed in Section 3.2. In
Section 4, we summarize the evaluation results for EL
and entity representation models. Section 5 is dedi-
cated to the application of EL by highlighting recently
emerged applications for improving neural language
models. Finally, Section 6 summarizes the survey and
suggests a prominent direction of future work in neural
entity linking.
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Fig. 2. General architecture for neural entity linking. EL contains two main steps: Entity Recognition, mentions in a plain text are distin-
guished, and Entity Disambiguation, a corresponding entity is predicted for the given mention. Entity Disambiguation is further divided into
two steps: Candidate Generation, possible entities are produced for the mention, and Entity Ranking, a score between context/mention and a
candidate is computed through the representations.

2. Task Description

2.1. Informal Definition

Consider the example presented in Figure 1 with an
entity mention Scott Young in a soccer game related
context. Literally, this common name can at least refer
to an American football player, Welsh football player,
or a writer. The EL task is to (1) correctly determine
the mention in the text, e.g. determining Wales rather
than Wales beat as a mention, (2) resolve its ambiguity,
and ultimately provide a link to a corresponding en-
tity entry in a KG, e.g. providing link for Scott Young
as a Welsh footballer4 instead of a writer5 in this con-
text. To achieve this goal, commonly the task is decom-
posed into two stages, as illustrated in Figure 1: Entity
Recognition (ER) and Entity Disambiguation (ED).

2.2. Formal Definition

2.2.1. Knowledge Graph (KG)
KG contains entities, relations, and facts, where

facts are denoted as triples (i.e. head entity, relation,
tail entity) as defined in Ji et al. [65]. Formally, as de-
fined by Färber et al. [37], a KG is a set of RDF triples
where each triple (s, p, o) is an ordered set of the fol-
lowing terms: a subject s ∈ U ∪ B, a predicate p ∈ U,
and an object o ∈ U ∪ B ∪ L. An RDF term is either
a URI u ∈ U, a blank node b ∈ B, or a literal l ∈ L.
This RDF representation can be considered as a multi-
relational graph6 G = (E,A = {A0, A1, ..., Am ⊆
(E× E)}), where E is a set of all entities of a KG, and

4https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
5https://en.wikipedia.org/wiki/Scott_Young_(writer)
6Multi-relational graphs: https://www.slideshare.net/slidarko/

multirelational-graph-structures-from-algebra-to-application-3879972

A is a family of typed edge sets of length m. For exam-
ple, A0 is the “occupation” predicate adjacency matrix,
A1 is the “founded” predicate adjacency matrix, etc.

There is also an equivalent three-way tensor repre-
sentation of a KG A ∈ {0, 1}n×m×n, where

Ai,k, j =

{
1 if (i, j) ∈ Ek : k 6 m
0 otherwise

(1)

2.2.2. Entity Recognition (ER)
The goal of entity recognition is to identify an entity

mention span, while entity disambiguation performs
linking of found mentions to entries of a KG. We can
consider the entity recognition task as determining a
ER function that takes as input a textual context ci ∈ C
(e.g. a document in a document collection) and outputs
a sequence of n mentions (m1, . . .mn) in this context
mi ∈ M, where M is a set of all possible text spans in
the context:7

ER : C −→ Mn. (2)

2.2.3. Entity Disambiguation (ED)
The entity disambiguation task can be considered as

determining a function ED that given a sequence of n
mentions in a document and their contexts (c1, . . . , cn)
outputs an entity assignment (e1, . . . , en), ei ∈ E,
where E is a set of entities in a KG:

ED : (M,C)n −→ En. (3)

To learn a mapping from entity mentions in a con-
text to entity entries in a KG, EL models use super-
vision signals like manually annotated mention-entity

7We adopt and extend notation presented by Ganea et al. [45].

https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
https://en.wikipedia.org/wiki/Scott_Young_(writer)
https://www.slideshare.net/slidarko/multirelational-graph-structures-from-algebra-to-application-3879972
https://www.slideshare.net/slidarko/multirelational-graph-structures-from-algebra-to-application-3879972
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pairs. The size of KGs vary; they can contain hundreds
of thousands or even millions of entities. Due to their
large size, training data for EL would be extremely un-
balanced; training sets can lack even a single example
for a particular entity or mention, e.g. as in the popular
AIDA training set [57]. To deal with this problem, EL
models should have wide generalization capabilities.

Despite KGs are usually large, they are incomplete.
Therefore, some mentions in text cannot be correctly
mapped to any KG entry. Determining such unlinkable
mentions, which usually is designated as linking to a
NIL entry, is one of EL challenges. Methods that ad-
dress this problem provide a separate function for it or
extend the set of entities in the disambiguation func-
tion with this special entry:

ED : (M,C)n −→ (E ∪ NIL)n. (4)

2.3. Terminological Aspects

More or less the same technologies and models are
sometimes called differently in the literature. Namely,
Wikification [19] and entity disambiguation are con-
sidered as subtypes of EL [97]. To be comprehensive
in this survey, we assume that the entity linking task
encompasses both entity recognition and entity disam-
biguation. However, only few studies suggest models
that perform ER and ED jointly, while the majority of
papers on EL focus exclusively on ED and assume that
mention boundaries are given by an external entity rec-
ognizer [125] (which may lead to some terminologi-
cal confusions). Numerous techniques that perform ER
only without disambiguation are considered in many
previous surveys [48, 96, 132, 161] and are out of the
scope of this work.

Entity linking in the general case is not restricted to
linking mentions to graph nodes, but rather to concepts
in a knowledge base. However, most of the modern
widely-used knowledge bases organize information in
the form of a graph [6, 12, 154], even in particular do-
mains, like e.g. the scholarly domain [27]. Alas, a basic
statement in a data/knowledge base usually can be rep-
resented as a subject-predicate-object tuple (s, p, o),
e.g. (John_Lennon, occupation, singer) or (New_York_City,
founded, 1624). A set of such tuples can be represented
as a multi-relational graph. This formalism helps to
efficiently organize knowledge for many applications
ranging from search engines to question answering and
recommendation systems [58, 65]. Therefore, in this
article, the terms Knowledge Graph (KG) and Knowl-
edge Base (KB) are used interchangeably.

3. Neural Entity Linking

We start the discussion of neural entity linking ap-
proaches from the most general structure of pipelines
and continue with various specific modifications like
joint entity recognition and linking, using global con-
text, domain-independent approaches including zero-
shot methods, and cross-lingual models.

3.1. General Architecture

Some of the attempts to EL based on neural net-
works treat it as a multi-class classification task, in
which entities correspond to classes. However, the
straightforward approach results in a large number of
classes, which leads to suboptimal performance with-
out task sharing [68]. The streamlined approach to EL
is to treat it as a ranking problem. We present the gen-
eralized EL architecture in Figure 2, which is appli-
cable to the majority of neural approaches. Here, the
entity recognition model identifies the mention bound-
aries in text, e.g. determining Scott Young as a men-
tion but not attendance in this context. The next step is
to produce a short list of possible entities (candidates)
for the mention, e.g. producing Scott_Young_(writer) as
a candidate rather than a completely random entity.
Then, the mention encoder produces a semantic vec-
tor representation of a mention in a context. The en-
tity encoder produces a set of vector representations of
candidates. Finally, the entity ranking model compares
mention and entity representations and estimates en-
tity matching scores. An optional step is to determine
unlinkable mentions, for which KGs do not contain a
corresponding entity. The categorization of each step
in the general neural EL architecture is summarized in
Figure 3.

3.1.1. Candidate Generation
An essential part of EL is candidate generation. The

goal of this step is given an ambiguous entity mention,
such as “Scott Young”, to provide a list of its possible
“senses” as specified by entities in a KG. EL is anal-
ogous to the Word Sense Disambiguation (WSD) task
[94, 97] as it resolves lexical ambiguity. Yet in WSD,
each sense of a word can be clearly defined by Word-
Net [38], while in EL, KGs do not provide such an ex-
act mapping between mentions and entities [94, 97].
Therefore, a mention potentially can be linked to any
entity in a KG, resulting in large search space, e.g.
“Big Blue” referring to IBM. To address this issue,
candidate generation is performed, which is effectively
a preliminary filtering of the entity list.
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3.1 - General Architecture

3.1.1

Candidate Generation

3.1.2

Context-Mention Encoding

3.1.3

Entity Encoding
3.1.5 - Unlinkable

Mention Prediction

surface form matching
[74, 93]
expansion using aliases
[112, 143]

prior probability [142]

recurrent architecture
[52, 70, 137]

self attention [83, 160, 166]

unstructured text based
[44, 93, 176]
relational information based
[13, 111, 162]

other information based (e.g.
description pages) [41, 46, 52]

no candidate [137, 148]

threshold [72, 114]

NIL predictor [70]

separate model [89, 93]

Fig. 3. Reference map of general architecture for neural EL. The categorization of each step in the general neural EL architecture with
alternative design choices and sample references illustrating each of the choices.

Table 1
Candidate generation examples. Five sample candidate entities for the example mention “Big Blue” for different methods. The highlighted are
“correct” candidates assuming that given mention refers to the IBM corporation and not a river, e.g. Big_Blue_River_(Kansas).

Method 5 sample candidate entities for the example mention “Big Blue”
surface form matched based

on DBpedia names
Big_Blue_Sky, Big_Blue_(Old_Dominion), Big_Blue_Crane_collapse,

Dexter_Bexley_and_the_Big_Blue_Beastie, Big_Bluegrass
expansion using aliases

on YAGO means
Big_Blue_River_(Indiana), Big_Blue_River_(Kansas),

Big_Blue_(crane), Big_Red_(drink), IBM
probability + expansion using aliases

on [44]:Anchor prob. + CrossWikis + YAGO
IBM, Big_Blue_River_(Kansas), The_Big_Blue
Big_Blue_River_(Indiana), Big_Blue_(crane)

Formally, given a mention mi, a candidate genera-
tor provides a list of probable entities, e1, e2, ..., ek, for
each of n entity mentions in a document.

CG : M −→ (e1, e2, ..., ek) (5)

Candidates can be generated in several ways, as also
discussed in the previous surveys [2, 133]. There are
three common candidate generation methods in neu-
ral EL: (1) based on surface form matching, (2) based
on expansion using aliases, and (3) based on a prior
probability computation. In the first approach, a candi-
date list is composed of entities that match various sur-
face forms of mentions in the text [74, 93, 176]. There
are many heuristics for generation of mention forms
and matching criteria like the Levenshtein distance, n-
grams, and normalization. For the example mention of
“Big Blue”, this approach would not work well, as the
referent entity “IBM” or its long form “International
Business Machines” does not contain a mention string.
Examples of candidate entity sets are presented in Ta-
ble 1, where we searched a name matching of the men-

tion “Big Blue” in the titles of the all Wikipedia arti-
cles present in DBpedia8.

In the second approach, a dictionary of additional
aliases is constructed using KG metadata like dis-
ambiguation/redirect pages of Wikipedia [36, 176] or
using a dictionary of aliases and/or synonyms (e.g.
“NYC” stands for “New York City”). This helps to
improve the candidate generation recall as substrings
cannot possibly catch such cases. Pershina et al. [112]
expand the given mention to the longest mention in a
context found with coreference resolution. The enti-
ties are then selected as a candidate if an entity title
matches with the longer version of mention or it ex-
ists in disambiguation/redirect pages of this mention.
This resource is used in many EL models [16, 89, 101,
106, 117, 130, 137, 162]. Another well-known alterna-
tive is the YAGO ontology [143] – automatically con-
structed from Wikipedia and WordNet. Among many
other relations, it provides ‘means’ relations between
mentions and entities, and this mapping is utilized as
a candidate generator [44, 57, 130, 137, 162]. In this

8http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.
ttl.bz2

http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
http://downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
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technique, the external information would help to dis-
ambiguate “Big Blue” as “IBM”. In Table 1, sample
candidate entity sets of the YAGO-means based can-
didate mapping dataset9 used in Hoffart et al. [57] are
shown.

The third approach to candidate generation is based
on pre-calculated prior probabilities of correspondence
between certain mentions and entities, p(e|m). Many
studies rely on mention-entity priors computed based
on Wikipedia entity hyperlinks. A URL of a hyper-
link to an entity page of Wikipedia determines a candi-
date entity, and anchor text of the hyperlink determines
a mention. Another widely-used option is CrossWikis
[142], which is an extensive resource that leverage the
frequency of mention-entity links in web crawl data
[44, 52].

It is common to apply multiple approaches to can-
didate generation at once. For example, the resource
constructed by Ganea and Hofmann [44] and used in
many other EL methods [70, 75, 114, 131, 166] relies
on prior probabilities obtained from entity hyperlink
count statistics from CrossWikis [142] and Wikipedia,
as well as on entity aliases obtained from the “means”
relationship of the YAGO ontology Hoffart et al. [57].
The example mention string “Big Blue” can be labeled
as its referent entity “IBM” with this methodology, as
shown in Table 1.

Recent zero-shot models [46, 83, 160] perform can-
didate generation without external knowledge. Section
3.2.3 describes them in detail.

3.1.2. Context-mention Encoding
To correctly disambiguate an entity mention, it is

crucial to thoroughly capture the information from its
context. The current mainstream approach is to con-
struct a dense contextualized vector representation of
a mention ym using an encoder network.

mENC : (C,M)n −→ (ym1
, ym2

, ..., ymn
) (6)

Several early techniques in neural EL utilize a con-
volutional encoder [41, 103, 141, 144], as well as at-
tention between candidate entity embeddings and em-
beddings of words surrounding a mention [44, 75].
However, in recent models, two approaches prevail: re-
current networks and self-attention [152].

A recurrent architecture with LSTM cells [56] that
has been a backbone model for many NLP applica-

9http://resources.mpi-inf.mpg.de/yago-naga/aida/download/
aida_means.tsv.bz2

tions, is adopted to EL in [36, 52, 70, 74, 89, 137] in-
ter alia. Gupta et al. [52] concatenate outputs of two
LSTM networks that independently encode left and
right contexts of a mention (including the mention it-
self). In the same vein, Sil et al. [137] encode left and
right local contexts via LSTMs but also pool the re-
sults across all mentions in a coreference chain and
postprocess left and right representations with a ten-
sor network. A modification of LSTM – GRU [22] – is
used by Eshel et al. [33] in conjunction with an atten-
tion mechanism [7] to encode left and right context of
a mention. Kolitsas et al. [70] represent an entity men-
tion as a combination of LSTM hidden states included
in the mention span. Le and Titov [74] simply run a
bidirectional LSTM network on words complemented
with embeddings of word positions relative to a tar-
get mention. Shahbazi et al. [131] adopt pre-trained
ELMo [113] for mention encoding by averaging men-
tion word vectors.

Encoding methods based on self-attention have re-
cently become ubiquitous. The EL models presented in
[83, 114, 160, 166] rely on the outputs from pre-trained
BERT layers [29] for context and mention encoding.
In Peters et al. [114], a mention representation is mod-
eled by pooling over word pieces in a mention span.
The authors also put an additional self-attention block
over all mention representations that encode interac-
tions between several entities in a sentence. Another
approach to modeling mentions is to insert special tags
around them and perform a reduction of the whole en-
coded sequence. Wu et al. [160] reduce a sequence by
keeping the representation of the special pooling sym-
bol ‘[CLS]’ inserted at the beginning of a sequence.
Logeswaran et al. [83] mark positions of a mention
span by summing embeddings of words within the
span with a special vector and use the same reduction
strategy as Wu et al. [160]. Yamada et al. [166] con-
catenate text with all mentions in it and jointly encode
this sequence via a self-attention model based on pre-
trained BERT.

3.1.3. Entity Encoding
To make EL systems robust, it is essential to con-

struct distributed vector representations of entity can-
didates ye in such a way that they capture semantic re-
latedness between entities in various aspects.

eENC : Ek −→ (ye1 , ye2 , ..., yek
) (7)

For instance, in Figure 4, the most similar entities
for Scott Young in the Scott_Young_(American_football)

http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
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Scott Young (writer)

Max Braithwaite

Trillium Lakelands District School Board

Harry J. Boyle

Trent Frayne

Eric Duhatschek

Scott Young (American football)

Shawn Murphy (American football)
Garett Bolles

Jim MolinaroTim Tyrrell
Patrick Scales (American football)

Scott Young (Welsh footballer)

AFC Porth

Lee Jones (footballer, born 1973) Danny Thomas (footballer, born 1985)

Waynne Phillips

Horace Blew

Fig. 4. Visualization of entity embeddings. Entity embedding space for entities related to the ambiguous entity mention “Scott Young”. Three
candidate entities from Wikipedia are illustrated. For each entity, their most similar 5 entities are shown in the same colors. Entity embeddings
are visualized with t-SNE, which is utilized to reduce dimensionality (in this sample, to 2D), using pre-trained embeddings provided by Yamada
et al. [164].

sense are related to American football, whereas Scott_-
Young_(writer) sense is in the proximity of writers re-
lated entities10.

There are three common approaches to entity en-
coding in EL: (1) entity representations learned using
unstructured texts and algorithms like word2vec [91]
based on co-occurrence statistics and developed orig-
inally for embedding words; (2) entity representations
constructed using relations between entities in KGs
and various graph embedding methods; (3) training a
full-fledged neural encoder to convert textual descrip-
tions of entities and/or other information into embed-
dings.

In the first category, Ganea and Hofmann [44] col-
lect entity-word co-occurrences statistics from two
sources: entity description pages from Wikipedia; text
surrounding anchors of hyperlinks to Wikipedia pages
of corresponding entities. They train entity embed-
dings using the max margin objective that exploits the
negative sampling approach like in the word2vec al-
gorithm, so vectors of co-occurring words and enti-
ties lie closer to each other compared to vectors of

10We used the English 100D embeddings from https://
wikipedia2vec.github.io/wikipedia2vec/pretrained

random words and entities. Some other methods di-
rectly replace or extend mention annotations (usually
anchor text of a hyperlink) with an entity identifier and
straightforwardly train on the modified corpus a word
representation model like word2vec [93, 148, 163,
176]. In [44, 93, 101, 148, 163], entity embeddings are
trained in a such a way that entities become embed-
ded in the same semantic space as words. For exam-
ple, Newman-Griffis et al. [101] propose a distantly-
supervised method that expands the word2vec objec-
tive to jointly learn words and entity representations in
the shared space. The authors leverage distant super-
vision from terminologies that map entities and their
surface forms (Wikipedia page titles and redirects or
terminology from UMLS [11]).

In the second category of entity encoding methods
that use relations between entities in a KG, Huang et al.
[59] train a model that generates dense entity represen-
tations from sparse entity features (e.g. entity relations,
descriptions) based on the entity relatedness. Several
works expand their entity relatedness objective with
functions that align words (or mentions) and entities in
a unified vector space [16, 35, 117, 135, 162, 164], just
like the methods from the first category.

https://wikipedia2vec.github.io/wikipedia2vec/pretrained
https://wikipedia2vec.github.io/wikipedia2vec/pretrained
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Context-mention Encoder: 
               - LSTM 
               - BERT, ...

Entity Encoder:
- Graph embedding model 
- Neural network encoder, ...

Local scores

"Scott	Young	played	for	the	Cleveland	Browns."

Scott_Young_(American_football)

Mention
vector

Candidate 
entity vectors

FFNN:

Scott_Young_(writer)
Scott_Young_(Welsh_footballer)

Similarity:
- Dot product
- Cosine, ...

Mention-entity prior, ...

Mention Context

Feed-forward Neural Network

*

Fig. 5. Entity ranking. A generalized entity candidate ranking neural architecture: entity candidates are ranked according their appropriateness
for a particular mention in the current context.

Recently, knowledge graph embedding has become
a prominent technique and facilitated solving various
NLP and data mining tasks [157] from KG comple-
tion [13, 98, 159] to entity classification [104]. For en-
tity linking, two major graph embedding algorithms
are widely used: DeepWalk [111] and TransE [13].

The goal of the DeepWalk [111] algorithm is to pro-
duce embeddings of vertices that preserve their prox-
imity in a graph [49]. It first generates several ran-
dom walks for each vertex in a graph. The gener-
ated walks are used as a training data for the skip-
gram algorithm. Like in word2vec for language mod-
elling, given a vertex, the algorithm maximizes proba-
bilities of its neighbors in generated walks. Parravicini
et al. [110], Sevgili et al. [129] leverage DeepWalk-
based graph embeddings built on DBPedia [6] for en-
tity linking. Parravicini et al. [110] use entity embed-
dings to compute cosine similarity scores of candidate
entities in global entity linking. Sevgili et al. [129]
show that combining graph and text-based embeddings
can slightly improve the performance of entity linking
when compared to using only text-based embeddings.

The goal of the TransE [13] algorithm is to con-
struct embeddings of both vertices and relations in
such a way that they are compatible with the facts in
a KG [157]. Consider the facts in a KG represented
in the form of triples (i.e. head entity, relation, tail
entity). If a fact is contained in a KG, the TransE
margin-based ranking criterion facilitates the presence
of the following correspondence between embeddings:
head + relation ≈ tail. This means that the relation-
ship in a KG should be a linear translation in the em-
bedding space of entities. At the same time, if there is

no such fact in a KG this functional relationship should
not hold. The TransE-based entity representations con-
structed on Wikidata [154] and Freebase [12] have
been used for entity representation in language mod-
eling [174] and in several works on EL [9, 100, 141].
Banerjee et al. [9], Sorokin and Gurevych [141] utilize
Wikidata-based entity embeddings as an input compo-
nent of neural models along with other types of infor-
mation about entities. The ablation study conducted by
Banerjee et al. [9] show that the TransE entity embed-
dings are the most important features for their entity
linking model. They attribute this finding to the fact
that graph embeddings contain rich information about
the KG structure. Similarly, Sorokin and Gurevych
[141] find that without knowledge graph structure in-
formation, their entity linker experiences a big perfor-
mance drop. Nedelchev et al. [100] integrate knowl-
edge graph embeddings built on Freebase and word
embeddings in a single end-to-end model that solves
entity and relation linking tasks jointly. The quantita-
tive analysis shows that their KG embeddings-based
method helps to pick correct entity candidates.

There are many other techniques for KG embed-
ding: [28, 50, 104, 147, 159, 167] inter alia and very
recent 5*E [99], which is designed to preserve com-
plex graph structures in the embedding space. How-
ever, they are not widely used in entity linking right
now. A detailed overview of all graph embedding al-
gorithms is out of the scope of the current work. We
refer the reader to the previous surveys on this topic
[15, 49, 127, 157], which we consider as a prominent
research direction for future EL approaches.
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In the last category, we place methods that produce
entity representations using other types of informa-
tion like entity descriptions and entity types. Often,
entity encoder is a full-fledged neural network, which
is a part of an entity linking architecture. Sun et al.
[144] use a neural tensor network to encode interac-
tions between surface forms of entities and their cate-
gory information from a KG. In the same vein, Francis-
Landau et al. [41] and Nguyen et al. [103] construct
entity representations by encoding titles and entity de-
scription pages with convolutional neural networks. In
addition to a convolutional encoder for entity descrip-
tions, Gupta et al. [52] also include an encoder for fine-
grained entity types. Gillick et al. [46] construct entity
representations by encoding entity page titles, short en-
tity descriptions, and entity category information with
feed-forward networks. Le and Titov [74] use only en-
tity type information from a KG and a simple feed-
forward network for entity encoding.

Recent works leverage deep language models like
BERT [29] or ELMo [113] for encoding entities. Lo-
geswaran et al. [83] and Wu et al. [160] use BERT to
create representations of entities from Wikipedia en-
tity description pages. Yamada et al. [166] propose a
masked entity prediction task, where a model based
on the BERT architecture learns to predict randomly
masked input entities. The proposed task makes the
model to learn how to generate entity representations
along with standard word representations. Shahbazi
et al. [131] introduce E-ELMo that extends the ELMo
model [113] with an additional objective. The model is
trained in a multi-task fashion: to predict next/previous
word, as in a standard bidirectional language model,
and to predict the target entity when encountering its
mentions. As a result, besides the model for mention
encoding, entity representations are obtained.

3.1.4. Entity Ranking
The goal of this stage is given a list of entity candi-

dates (e1, e2, ..., ek) from a KG and a context C with a
mention M to rank these entities assigning a score to
each of them, as in Equation 8, where n is a number of
entity mentions in a document, k is a number of candi-
date entities. Figure 5 depicts the typical architecture
of the ranking component.

RNK : ((e1, e2, ..., ek),C,M)n −→ Rn×k (8)

The mention representation ym generated in the
mention encoding step is compared with candidate en-
tity representations yei

(i = 1, 2, . . . , k) according to

the similarity measure s(m, ei). Entity representations
can be pre-trained (see Section 3.1.3) or generated
by another encoder as in some zero-shot approaches
(see Section 3.2.3). The BERT-based model of Yamada
et al. [166] simultaneously learns how to encode men-
tions and entity embeddings in the unified architecture.

Most of the state-of-the-art studies compute similar-
ity s(m, e) between representations of a mention m and
an entity e using a dot product as in [44, 52, 70, 114,
160]:

s (m, ei) = ym · yei
; (9)

or cosine similarity as in [41, 46, 144]:

s (m, ei) = cos(ym, yei
) =

ym · yei

‖ym‖ · ‖yei
‖
. (10)

The final disambiguation decision is inferred via a
probability distribution P(ei|m), which is usually ap-
proximated by a softmax function over the candidates.
The calculated similarity score or probability can be
combined with mention-entity priors obtained during
the candidate generation phase [41, 44, 70] or other
features f (ei,m) such as various similarities, a string
matching indicator, and entity types [41, 130, 131, 137,
168]. One of the common techniques for that is to use
an additional one or two-layer feedforward network
φ(·, ·) [41, 44, 131]. The obtained local similarity score
Φ(ei,m) or the probability distribution can be further
utilized for global scoring (see Section 3.2.2).

P(ei|m) =
exp(s(m, ei))∑k

i=1 exp(s(m, ei))
(11)

Φ(ei,m) = φ(P(ei|m), f (ei,m)) (12)

There are several approaches to frame a training ob-
jective in the literature on EL. Consider that we have
k candidates for the target mention m, one of which is
a true entity e∗. In some works, the models are trained
with the standard negative log likelihood objective like
in classification tasks [83, 160]. However, instead of
classes, negative candidates are used:

L (m) = −s (m, e∗)+log

k∑
i=1

exp (s (m, ei)) (13)

Instead of the the negative log likelihood, some
works use variants of a ranking loss. The idea behind
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such an approach is to enforce a positive margin γ > 0

between similarity scores of mentions to positive and
negative candidates [44, 70, 114]:

L(m) =
∑

i

`(ei,m), where (14)

`(ei,m) = [γ − Φ (e∗,m) + Φ(ei,m)]+ (15)

or

`(ei,m) ={
[γ − Φ(ei,m)]+ , if ei equal e∗
[Φ(ei,m)]+ , otherwise

(16)

3.1.5. Unlinkable Mention Prediction
The referent entities of some mentions can be absent

in the KGs, e.g. there is no Wikipedia entry about Scott
Young as a cricket player of the Stenhousemuir cricket
club.11 Therefore, an EL system should be able to pre-
dict the absence of a reference if a mention appears
in specific contexts, which is known as NIL prediction
task.

NILp : (C,M)n −→ {0, 1}n (17)

The NIL prediction task is essentially a classifica-
tion with a reject option [42, 54, 55]. There are four
common ways to perform NIL prediction. Sometimes
a candidate generator does not yield any correspond-
ing entities for a mention; such mentions are trivially
considered unlikable [137, 148]. One can set a thresh-
old for the best linking probability (or a score), below
which a mention is considered unlinkable [72, 114].
Some models introduce an additional special ‘NIL’ en-
tity in the ranking phase, so models can predict it as
the best match for the mention [70]. It is also possi-
ble to train an additional binary classifier that accepts
mention-entity pairs after the ranking phase, as well as
several additional features (best linking score, whether
mentions are also detected by a dedicated NER sys-
tem, etc.), and makes the final decision about whether
a mention is linkable or not [89, 93].

11Information about Scott Young as a cricket player:
https://www.stenhousemuircricketclub.com/teams/171906/player/
scott-young-1828009

3.2. Modifications of the General Architecture

This section presents the most notable modifications
and improvements of the general architecture of neural
entity linking models presented in Section 3.1 and Fig-
ures 2 and 5. The categorization of each modification
is summarized in Figure 6.

3.2.1. Joint Entity Recognition and Disambiguation
While it is common to separate the entity recogni-

tion (cf. Equation 2) and entity disambiguation stages
(cf. Equation 3) as illustrated in Figure 1, a few sys-
tems provide a joint solution for entity linking where
entity recognition and disambiguation are done at the
same time by the same model. Formally, the task be-
comes to detect a mention mi ∈ M and predict an en-
tity ei ∈ E for a given context ci ∈ C, for all n entity
mentions in the context:

EL : C −→ (M, E)n. (18)

Undoubtedly, solving these two problems simulta-
neously makes the task more challenging. However,
the interaction between these steps can be beneficial
for improving the quality of the overall pipeline due to
their natural mutual dependency. While first compet-
itive models that provide joint solutions were proba-
bilistic graphical models [85, 102], we focus on purely
neural approaches proposed recently [14, 26, 70, 89,
114, 141].

The main difference of joint models is the neces-
sity to produce also mention candidates. For this pur-
pose, Kolitsas et al. [70] and Peters et al. [114] enu-
merate all spans in a sentence with a certain maximum
width, filter them by several heuristics (remove men-
tions with stop words, punctuation, ellipses, quotes,
and currencies), and try to match them to a pre-built
index of entities used for the candidate generation. If a
mention candidate has at least one corresponding en-
tity candidate, it is further treated by a ranking neu-
ral network that can also discard it by considering it
unlinkable to any entity in a KG (see Section 3.1.4).
Therefore, the decision during the entity disambigua-
tion phase affects entity recognition. In a similar fash-
ion, Sorokin and Gurevych [141] treat each token n-
gram up to a certain length as a possible mention can-
didate. Sorokin and Gurevych [141] use an additional
binary classifier for filtering candidate spans, which is
trained jointly with an entity linker. Banerjee et al. [9]
also enumerates all possible n-grams and expands each
of them with candidate entities, which results in a long

https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
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the General Architecture

3.2.1 - Joint Entity

Recognition and Disam-

biguation Architecture

3.2.2

Global Context Architecture

3.2.3 - Domain Inde-

pendent Architecture

3.2.4

Cross-lingual Architecture

candidate based [70, 114]

multitask learning [89]

sequence labeling [14]

random walk based [51,
112, 176]
maximization of CRF poten-
tials [44, 73]
sequential decision task [36,
166, 168]
neural model component
[17, 47, 70]

distant learning [74, 75]

zero-shot [46, 83, 160]

representation based
[109, 148]

zero-shot [137, 150]

Fig. 6. Reference map of the modifications of the general architecture for neural EL. The categorization of each modification with various
design choices and sample references illustrating each choice. Sections 3.2.3 and 3.2.4 are categorized based on their EL solutions, here.

sequence of points corresponding to a candidate entity
for a particular mention n-gram. This sequence is fur-
ther processed by a single-layer BiLSTM pointer net-
work [153] that generates index numbers of potential
entities in the input sequence.

Martins et al. [89] describe the approach with a
tighter integration between recognition and linking
phases via multi-task learning. The authors propose a
stack-based bidirectional LSTM network with a shift-
reduce mechanism and attention for entity recogni-
tion that propagates its internal states to the linker net-
work for candidate entity ranking. The linker is supple-
mented with a NIL predictor network. The networks
are trained jointly by optimizing the sum of losses
from all three components.

Broscheit [14] goes further by suggesting a com-
pletely end-to-end method that deals with entity recog-
nition and linking jointly without explicitly executing
a candidate generation step. They formulate the task
as a sequence labeling problem, where each token in
the text is assigned an entity link or a NIL class. They
leverage a sequence tagger based on pre-trained BERT
for this purpose. This simplistic approach does not su-
persede [70] but outperforms the baseline, in which
candidate generation, entity recognition, and linking
are performed independently.

De Cao et al. [26] recently have proposed a gen-
erative approach to performing entity recognition and
disambiguation jointly. Their model, which is based
on BART [79], performs a sequence-to-sequence au-
toregressive generation of text markup that contains
information about mention spans and links to entities
in a KG. The generation process is constrained by a

markup format and a candidate set, which is retrieved
from standard pre-built candidate resources. Most of
the time, the network works in a copy-paste regime
when it copies input tokens into the output. When it
finds a beginning of a mention, the model marks it
with a square bracket, copies all tokens of a mention,
adds a finishing square bracket and generates a link
to an entity. Although this approach to EL, at the first
glance, is counterintuitive and completely different
from the solutions with a standard bi-encoder archi-
tecture, this model achieves state-of-the-art results for
joint ER and ED and competitive performances on ED-
only benchmarks. However, as it is shown in the pa-
per, to achieve such impressive results, the model had
to be pre-trained on a large annotated Wikipedia-based
dataset [160]. The authors also note that the memory
footprint of the proposed model is much smaller than
that of models based on the standard architecture.

3.2.2. Global Context Architectures
Two kinds of contextual information are available

in entity disambiguation: local and global. In local ap-
proaches to ED, each mention is disambiguated inde-
pendently based on the surrounding words, as in the
following function:

LED : (M,C) −→ E (19)

Global approaches to ED take into account semantic
consistency (coherence) across multiple entities in a
context. In this case, all q entity mentions in a group
are disambiguated interdependently: a disambiguation
decision for one entity is affected by decisions made
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Wales

... Scorers: Wales - John
Hartson (12th, 56th and 83rd
minutes), Scott Young (24th)
attendance: 1,800 ...

Candidates for "Scott Young"

Candidates for "Wales" Candidates for "John Hartson"

Scott_Young_
(Welsh_footballer)

Scott_Young_
(politician)

Scott_Young_
(writer)

Scott_Young_
(Welsh_football)

Wales_UKWales NY

John Hartson

John Hartson

Wales_national under
21 football team

Wales_national under
21 football team

Scott_Young_
(American_footballer)

Globally-linked entities
Input text with three

ambiguous entity mentions

John Hartson

Scott Young

Fig. 7. Global entity disambiguation. The global entity linking resolves all mentions simultaneously based on entity coherence. Bolder lines
indicate higher degrees of entity-entity similarity.

for other entities in a context as illustrated in Figure 7
and Equation 20.

GED : ((m1,m2, ...,mq),C) −→ Eq (20)

In the example presented in Figure 7, the consis-
tency score between correct entity candidates: the na-
tional football team sense of Wales and the Welsh foot-
baller sense of Scott Young and John Hartson, is ex-
pected to be higher than between incorrect ones.

Besides involving consistency, the considered con-
text of a mention in global methods is usually larger
than in local ones or even extends to the whole doc-
ument. Although modelling consistency between en-
tities and the extra information of the global context
improves the disambiguation accuracy, the number of
possible entity assignments is combinatorial, which
results in a high time complexity of disambiguation
[44, 168]. Another difficulty is an attempt to assign an
entity its consistency score, since this score is not pos-
sible to compute in advance due to the simultaneous
disambiguation [162].

The typical approach to global disambiguation is
to generate a graph containing candidate entities of
mentions in a context and perform random walk algo-
rithms, e.g. PageRank [108], over it to select highly
consistent entities [51, 112, 176]. In this category,
Globerson et al. [47] introduce a model with an atten-
tion mechanism that takes into account only the sub-
graph of the target mention, instead of all the mention
candidates in a document.

Some works approach global ED by maximizing the
Conditional Random Field (CRF) potentials, where the
first component Φ represents a local entity-mention
score, and the other component Ψ measures coherence
among selected candidates [44, 45, 73, 75]:

g(e,m, c) =

n∑
i=1

Φ(ei,mi, ci)+
∑
i< j

Ψ(ei, e j). (21)

However, model training and its exact inference are
NP-hard. Ganea and Hofmann [44] adapt loopy belief
propagation [45, 47] with message passing iterations
using pairwise entity scores to reduce the complexity.
Le and Titov [73] expand it by modelling coreference
relations of mentions as latent variables (the mentions
are coreferent if they refer to the same entity). Shah-
bazi et al. [130] develop a greedy beam search strat-
egy, which starts from a locally optimal initial solution
and that is improved by searching possible corrections
with the focus on the least confident mentions.

Despite the optimizations proposed in the aforemen-
tioned works, taking into account coherence scores
among candidates of all mentions at once can be pro-
hibitively slow. It also can be malicious due to erro-
neous coherence among wrong entities [36]. For ex-
ample, if two mentions have coherent erroneous can-
didates, this noisy information can mislead the final
global scoring. To resolve this issue, some studies de-
fine the problem as a sequential decision task, where
the disambiguation of new entities is based on the al-
ready disambiguated ones with high confidence. Fang
et al. [36] train a policy network for sequential selec-
tion of entities using reinforcement learning. The dis-
ambiguation of mentions is ordered according to the
local score, so the mentions with high confident en-
tities are resolved earlier. The policy network takes
advantage of output from the LSTM global encoder
that maintains the information about earlier disam-
biguation decisions. Yang et al. [168] also use rein-
forcement learning to determine ordering for mention
disambiguation. They also use an attention model to
leverage knowledge from previously linked entities.
The model dynamically selects the most relevant en-
tities for the target mention and calculates the coher-
ence scores. Yamada et al. [166] iteratively predict en-
tities for yet unresolved mentions with a BERT model,
while attending on the previous most confident en-
tity choices. Yamada et al. [162] and Radhakrishnan
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et al. [117] measure the similarity first based on unam-
biguous mentions and then predict entities for complex
cases.

Many studies rely on the idea of attaching an entity
coherence component to the local scoring model and
train their parameters jointly. In this case, local mod-
els can directly benefit from the pairwise coherence
score without a necessity of handling the optimization
of the global objective. The coherence component of
Kolitsas et al. [70] is an additional feed-forward neural
network that uses the similarity score between the tar-
get entity and an average embedding of the candidates
with a high local score. Fang et al. [35] use the simi-
larity score between the target entity and its surround-
ing entity candidates in a specified window as feature
for the disambiguation model. In the same vein, Ya-
mada et al. [162] and Radhakrishnan et al. [117] treat
the global coherence as a feature for the final disam-
biguation model. Instead of computing entity coher-
ence scores, Tsai and Roth [148] directly use embed-
dings of previously linked entities as features for the
disambiguation model. Distinctively, Cao et al. [17]
integrate a graph convolutional network into a disam-
biguation model that takes advantage of the knowledge
provided by a subgraph of candidate entities in a doc-
uments. Nguyen et al. [103] use an RNN to store in-
formation about previously seen mentions and corre-
sponding entities. They leverage the hidden states of
the RNN to reach this information as a feature for com-
putation of the global score.

Another approach that can be considered as global
is to make use of a larger context to capture the coher-
ence implicitly instead of explicitly designing an entity
coherence component [16, 41, 52, 72, 93, 114, 137].

3.2.3. Domain-Independent Architectures
Domain independence is one of the most desired

properties of EL systems. Annotated resources are
very limited and exist only for a few domains. Obtain-
ing labeled data in a new domain requires much la-
bor. Earlier, this problem is tackled by few domain-
independent approaches based on unsupervised [16,
101, 156] and semi-supervised models [72]. Recent
studies provide solutions based on distant learning and
zero-shot methods.

Le and Titov [74, 75] propose distant learning tech-
niques that use only unlabeled documents. They rely
on the weak supervision coming from a surface match-
ing heuristic, and the EL task is framed as binary
multi-instance learning. The model learns to distin-
guish between a set of positive entities and a set of ran-

dom negatives. The positive set is obtained by retriev-
ing entities with a high word overlap with the men-
tion and that have relations in a KG to candidates of
other mentions in the sentence. While showing promis-
ing performance, which in some cases rivals results
of fully supervised systems, these approaches require
either a KG describing relations of entities [74] or
mention-entity priors computed from entity hyperlink
statistics extracted from Wikipedia [75].

Recently proposed zero-shot techniques [83, 160]
tackle problems related to adapting EL systems to new
domains. In the zero-shot setting, the only entity in-
formation available is its description. As well as in
other settings, texts with mention-entity pairs are also
available. The key idea of zero-shot methods is to train
an EL system on a domain with rich labeled data re-
sources and apply it to a new domain with only mini-
mal available data like descriptions of domain-specific
entities. One of the first studies that proposes such a
technique is Gupta et al. [52] (not purely zero-shot
because they use entity typings). Existing zero-shot
systems do not require such information resources as
surface form dictionaries, prior entity-mention proba-
bilities, KG entity relations, and entity typing, which
makes them particularly suited for building domain-
independent solutions. However, the limitation of in-
formation sources raises several challenges.

Since only textual descriptions of entities are avail-
able for the target domain, one cannot rely on pre-
built dictionaries for candidate generation. All zero-
shot works rely on the same strategy to tackle can-
didate generation: pre-compute representations of en-
tity descriptions (sometimes referred as caching), com-
pute a representation of a mention and calculate its
similarity with all the description representations. Pre-
computed representations of descriptions save a lot of
time at the inference stage. Particularly, Logeswaran
et al. [83] use the BM25 information retrieval formula
[66], which is a similarity function for count-based
representations.

A natural extension of count-based approaches is
embeddings. The method proposed by Gillick et al.
[46], which is a predecessor of zero-shot approaches,
uses average unigram and bigram embeddings fol-
lowed by dense layers to obtain representations of
mentions and descriptions. The only aspect that sep-
arates this approach from pure zero-shot techniques
is the usage of entity categories along with descrip-
tions to build entity representations. Cosine similarity
is used for comparison of representations. Due to com-
putational simplicity of this approach, it can be used in
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a single stage fashion where candidate generation and
ranking are identical. For further speedup, it is pos-
sible to make this algorithm two-staged. In the first
stage, approximate search can be used for candidate
set retrieval. In the second stage, the retrieved smaller
set can be used for exact similarity computation. In-
stead of simple embeddings, Wu et al. [160] suggest
using a BERT-based bi-encoder for candidate genera-
tion. Two separate encoders generate representations
of mentions and entity descriptions. Similarly to the
previous work, the candidate selection is based on the
score obtained via a dot-product of the representations.

Zero-shot approaches use descriptions for entity
ranking as well. Surprisingly, a very simple embedding-
based approach [46] described above shows very com-
petitive scores on the TAC KBP-2010 benchmark, out-
performing some complex neural architectures. The
recent studies of Logeswaran et al. [83] and Wu et al.
[160] utilize a BERT-based cross-encoder to perform
joint encoding of mentions and entities. The cross-
encoder takes a concatenation of a context with a
mention and an entity description to produce a scalar
score for each candidate. The cross-attention helps to
leverage the semantic information from the context
and the definition on each layer of the encoder net-
work [60, 123]. In both studies, cross-encoders achieve
superior results compared to bi-encoders and count-
based approaches.

Evaluation of zero-shot systems requires data from
different domains. Logeswaran et al. [83] proposes
the Zero-shot EL12 dataset, constructed from several
Wikias13. In the proposed setting, training is per-
formed on one set of Wikias while evaluation is per-
formed on others. Gillick et al. [46] construct the
Wikinews dataset. This dataset can be used for evalua-
tion after training on Wikipedia data.

Clearly, heavy neural architectures pre-trained on
general-purpose open corpora substantially advance
the performance of zero-shot techniques. As high-
lighted by Logeswaran et al. [83] further unsupervised
pre-training on source data, as well as on the target data
is beneficial. Development of better approaches to uti-
lization of unlabeled data might be a fruitful research
direction. Furthermore, closing the performance gap of
entity ranking between a fast representation based bi-
encoder and a computationally intensive cross-encoder
is an open question.

12https://github.com/lajanugen/zeshel
13https://www.wikia.com

3.2.4. Cross-lingual Architectures
Abundance of labeled data for EL in English lan-

guage contrasts with amount of data available in other
languages. At the same time, such a unique source of
supervision as Wikipedia is available for a variety of
languages. However, there is still a big gap between
resource-rich Wikipedia languages and low-resource
ones.

The cross-lingual EL methods [64] aim at overcom-
ing the lack of annotation for some languages by lever-
aging supervision coming from their high-resource
counterparts. The inter-language links in Wikipedia is
one of the most widely used sources of cross-lingual
supervision. These links map pages to equivalent pages
in another language.

Challenges in cross-lingual EL start at candidate
generation and entity recognition steps, since the low-
resource language can lack mappings between mention
strings and entities. In addition to the standard meth-
ods with mention-entity priors [137, 148, 150], candi-
date generation can be approached by mining a trans-
lation dictionary [109], training a translation and align-
ment model [149], or applying a neural character-level
string matching model [124]. The latter relies on train-
ing on a high-resource pivot language, similar to the
target low-resource one. The neural string matching
approach can be further improved with simpler aver-
age n-gram encoding and extending entity-entity pairs
with mention-entity examples [175]. For entity recog-
nition, the transfer of BiLSTM-CRF with a character
encoding network from a similar high-resource pivot
language can be applied [24].

There are several approaches to candidate ranking
that take advantage of cross-lingual data for dealing
with the lack of annotated examples. Pan et al. [109]
uses the Abstract Meaning Representation (AMR) [8]
statistics in English Wikipedia and mention context for
ranking. To train an AMR tagger, pseudo-labeling [76]
is used. Tsai and Roth [148] train monolingual embed-
dings for words and entities jointly by replacing ev-
ery entity mention with corresponding entity tokens.
Using the inter-language links, they learn the projec-
tion functions from multiple languages into the En-
glish embedding space. For ranking, context embed-
dings are averaged, projected into the English space,
and compared with entity embeddings. The authors
demonstrate that this approach helps to build better
entity representations and boosts the EL accuracy in
cross-lingual setting by more than 1% for Spanish
and Chinese. Sil et al. [137] propose a method for
zero-shot transfer from a high-resource language. The

https://github.com/lajanugen/zeshel
https://www.wikia.com
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authors extend the previous approach with the least
squares objective for embedding projection learning,
the CNN context encoder, and a trainable re-weighting
of each dimension of context and entity representa-
tions. The proposed approach demonstrates improved
performance as compared to previous non-zero-shot
approaches. Upadhyay et al. [150] argues that the suc-
cess of zero-shot cross-lingual approaches [137, 148]
might be largely originating from a better estimation
of mention-entity prior probabilities. Their approach
extends [137] with global context information and in-
corporation of typing information into context and en-
tity representations (the system learns to predict typ-
ing during the training). The authors report a signif-
icant drop in performance for zero-shot cross-lingual
EL without mention-entity priors, while showing state-
of-the-art results with priors. They also show that train-
ing on a high-resource language might be very benefi-
cial for low-resource settings.

Existing techniques of cross-lingual entity linking
heavily rely on pre-trained multilingual embeddings
for entity ranking. While being effective in settings
with at least prior probabilities available, the perfor-
mance in realistic zero-shot scenarios drops drasti-
cally. Along with recent success of zero-shot multilin-
gual transfer of large pre-trained language models, this
might be a motivation to utilize powerful multilingual
self-supervised models.

3.3. Summary

We summarize design features for neural EL mod-
els in Table 2. The mention encoders have made a shift
to self-attention architectures and start using deep pre-
trained models like BERT. The majority of studies still
rely on external knowledge for the candidate genera-
tion step. There is a surge of models that tackle the do-
main adaptation problem in a zero-shot fashion. How-
ever, the task of zero-shot joint entity recognition and
linking has not been addressed yet. It is shown in sev-
eral works that the cross-encoder architecture is supe-
rior compared to models with separate mention and en-
tity encoders. The global context is widely used, but
there are few recent studies that focus only on local
EL.

Each column in Table 2 corresponds to a model fea-
ture. The encoder type column presents the architec-
ture of the mention encoder of the neural entity linking
model. It contains the following options:

– n/a – a model does not have a neural encoder for
mentions / contexts. It can be a simplistic embed-

ding averaging method or a feature-engineering
approach.

– CNN – an encoder based on convolutional layers
(usually with pooling).

– Tensor net. – an encoder that uses a tensor net-
work.

– Atten. – means that an encoder uses an attention
mechanism.

– GRU – an encoder based on a recurrent neural
network and gated recurrent units [22].

– LSTM – an encoder based on a recurrent neural
network and long short-term memory cells [56]
(might be also bidirectional).

– FFNN – an encoder based on a simple feedfor-
ward neural network.

– ELMo – an encoder based on a pre-trained ELMo
model [113].

– BERT – an encoder based on a pre-trained BERT
model [29].

Note here that, theoretical complexity of various
types of encoders is different. As discussed by Vaswani
et al. [152], complexity per layer of self-attention is
O(n2 ·d), as compared to O(n·d2) for a recurrent layer,
and O(k ·n·d2) for a convolutional layer, where n is the
length of input sequence, d is the dimensionality, and k
is the kernel size of convolutions. At the same time, the
self-attention allows for a better parallelization than
the recurrent networks as the number of sequentially
executed operations for self-attention requires a con-
stant number of sequentially executed operations of
O(1), while a recurrent layer requires O(n) sequential
operations. Overall, estimation of computational com-
plexity of training and inference of various neural net-
works is certainly beyond the scope of the goal of this
survey. The interested reader may refer to [152] and
specialized literature on this topic, e.g. [82, 107, 138].

The global column shows whether a system uses
a global solution (see Section 3.2.2). The recogni-
tion column refers to joint entity recognition and dis-
ambiguation models, where recognition and disam-
biguation of entities are performed collectively (Sec-
tion 3.2.1). The NIL prediction column points out
models that also label unlinkable mentions. The entity
embedding column presents which resource is used to
train entity representations based on the categorization
in Section 3.1.3, where

– n/a – a model does not have a neural encoder for
entities.
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Table 2
Features of neural EL models. Neural entity linking models compared according to their architectural features. (The footnotes in the table are
explained in the text.)

Models Encoder Type Global
Recog-
nition

NIL
Pred.

Ent. Encoder
Source based on

Candidate
Generation

Learning Type
for Disam.

Cross-
lingual

Sun et al. (2015) [144] CNN+Tensor net. ent. specific info.
surface match+

aliases
supervised

Francis-Landau et al. (2016) [41] CNN 84 ent. specific info. surface match+prior supervised
Fang et al. (2016) [35] n/a 8 relational info. prior1 supervised
Yamada et al. (2016) [162] n/a 8 relational info. aliases supervised

Zwicklbauer et al. (2016) [176] n/a 8 8 unstructured text
surface match+prior
+nearest neighbors

unsupervised7

Tsai and Roth (2016) [148] n/a 8 8 unstructured text prior supervised 8

Nguyen et al. (2016) [103] CNN 8 8 ent. specific info. surface match+prior supervised

Cao et al. (2017) [16] n/a 8 relational info. aliases
supervised or
unsupervised

Eshel et al. (2017) [33] GRU+Atten. unstructured text2 aliases supervised

Ganea and Hofmann (2017) [44] Atten. 8 unstructured text prior+aliases supervised

Moreno et al. (2017) [93] n/a 84 8 unstructured text
surface match+

aliases
supervised

Gupta et al. (2017) [52] LSTM 84 ent. specific info. prior supervised6

Sorokin and Gurevych (2018) [141] CNN 8 8 relational info. surface match supervised
Shahbazi et al. (2018) [130] Atten. 8 unstructured text prior or aliases supervised
Le and Titov (2018) [73] Atten. 8 unstructured text prior supervised
Newman-Griffis et al. (2018) [101] n/a unstructured text aliases unsupervised
Radhakrishnan et al. (2018) [117] n/a 8 relational info. aliases supervised
Kolitsas et al. (2018) [70] LSTM 8 8 unstructured text prior+aliases supervised

Sil et al. (2018) [137] LSTM+Tensor net. 84 8 ent. specific info. prior or aliases supervised5 8

Upadhyay et al. (2018) [150] CNN 8 ent. specific info. prior supervised5 8

Cao et al. (2018) [17] FFNN 84 relational info. prior+aliases supervised
Raiman and Raiman (2018) [119] n/a 8 n/a prior+type classifier supervised 8

Mueller and Durrett (2018) [95] GRU+Atten.+CNN unstructured text2 aliases supervised

Shahbazi et al. (2019) [131] ELMo unstructured text
prior+aliases

or aliases
supervised

Logeswaran et al. (2019) [83] BERT ent. specific info. BM25 zero-shot
Gillick et al. (2019) [46] FFNN ent. specific info. nearest neighbors supervised6

Peters et al. (2019) [114]3 BERT 84 8 8 unstructured text prior + aliases supervised

Le and Titov (2019) [74] LSTM ent. specific info. surface match
weakly-

supervised

Le and Titov (2019) [75] Atten. 8 unstructured text prior+aliases
weakly-

supervised
Fang et al. (2019) [36] LSTM 8 unstructured text prior+aliases supervised
Martins et al. (2019) [89] LSTM 8 8 unstructured text aliases supervised
Yang et al. (2019) [168] Atten. or CNN 8 unstructured text prior supervised

Broscheit (2019) [14] BERT 8 n/a n/a supervised
Onoe and Durrett (2020) [106] ELMo+Atten.+CNN n/a prior or aliases supervised

Wu et al. (2020) [160] BERT ent. specific info. nearest neighbors zero-shot
Yamada et al. (2020) [166] BERT 8 unstructured text prior+aliases supervised

Banerjee et al. (2020) [9] n/a 8 relational info. surface match supervised
De Cao et al. (2021) [26] BART 8 8 n/a prior supervised
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Table 3
Evaluation datasets. Descriptive statistics of the evaluation datasets used in this survey to compare the models.

Corpus Text Type # of Docs # of Mentions

AIDA-B [57] News 231 4485

MSNBC [25] News 20 656

AQUAINT [92] News 50 727

ACE2004 [121] News 36 257

CWEB [43, 51] ClueWeb & Wikipedia 320 11154

WW [43, 51] ClueWeb & Wikipedia 320 6821

TAC KBP 2010 [63] News & Web 1013 10201

TAC KBP 2015 Chinese [64] News & Forums 166 11066

TAC KBP 2015 Spanish [64] News & Forums 167 5822
1 # of mention/entity pairs

– unstructured text means that the entity represen-
tations constructed based on unstructured text
and approaches based on co-occurrence statistics
developed originally for word embeddings like
word2vec [91];

– relational info. denotes that the model uses rela-
tions between entities in KGs;

– ent. specific info. denotes that the encoder uses
other types of entity information, like entity de-
scriptions, types, or categories.

In the candidate generation column, the candidate
generation methods are noted (Section 3.1.1). It con-
tains the following options:

– n/a – the solution presented by Broscheit [14]
does not have an explicit candidate generation
step;

– surface match – surface match heuristics;
– aliases – a supplementary aliases for entities in a

KG;
– prior – filtering candidates with pre-calculated

mention-entity prior probabilities or frequency
counts;

– type classifier – Raiman and Raiman [119] filter
candidates using a classifier for an automatically
learned type system;

– BM25 – Logeswaran et al. [83] a variant of TF-
IDF to measure similarity between a mention and
a candidate entity based on description pages;

– nearest neighbors – the similarity between men-
tion and entity representations is calculated, and
entities that are nearest neighbors of mentions are
retrieved as candidates. Wu et al. [160] train a
supplementary model for this purpose.

The learning type for disambiguation column
shows whether a model is ‘supervised’, ‘unsuper-
vised’, ‘weakly-supervised’, or ‘zero-shot’. The cross-
lingual column refers to models that provide cross-
lingual EL solutions (Section 3.2.4).

Besides, the following superscript notations are used
to denote specific features of methods shown as a note
in the Table 2:

1. In classification, the prior is checked by a thresh-
old. This can be considered as a candidate selec-
tion step.

2. These works use only entity description pages,
however, they are labeled as in first category (un-
structured text) since their training is based on
word2vec.

3. The authors provide EL as a subsystem of lan-
guage modeling.

4. These solutions do not rely on global coherence
but are marked as “global”, because they use
document-wide context or multiple mentions at
once for resolving entity ambiguity.

5. These works are zero-shot in terms of model
adaptation to a new language using English anno-
tated data, while the other zero-shot works solve
the problem of model adaptation to a new domain
without switching the language.

6. These studies are domain-independent as dis-
cussed in Section 3.2.3.

7. Zwicklbauer et al. [176] may not be accepted as
purely unsupervised since they have some param-
eters in the disambiguation algorithm.
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4. Evaluation

In this section, we present evaluation of the models
on the entity linking and entity relatedness tasks over
the commonly used datasets.

4.1. Entity Linking

4.1.1. Experimental Setup
The evaluation results are reported based on two dif-

ferent evaluation settings. The first setup is entity dis-
ambiguation (ED) where the systems have an access
to the mention boundaries. The second setup is entity
recognition and disambiguation (ER+ED) where the
inputs for the systems that perform ER and ED jointly
are plain text. We stated their results in separate tables
since the scores for the joint models accumulate the
errors made during the in entity recognition phase.

Datasets For the purposes of evaluation of the mod-
els we used widely-used datasets for evaluation of
EL: AIDA [57], TAC KBP 2010 [63], MSNBC [25],
AQUAINT [92], ACE2004 [121], CWEB [43, 51], and
WW [43, 51]. Among them, CWEB and WW are large
datasets that are annotated automatically, while AIDA
is also a large dataset, but annotated manually [44]. For
AIDA, we report the results calculated for the test set
(AIDA-B).

The cross-lingual EL results are reported for the
TAC KBP 2015 [64] Spanish (es) and Chinese (zh)
datasets. The descriptive statistics of the datasets and
their data sources are presented in Table 3 according
information reported in [32, 44, 46, 64].

Evaluation Metrics For the ED setting, we report mi-
cro F1 or accuracy scores achieved by the systems.
Since mentions are provided as an input, the number of
mentions predicted by the model is equal to the num-
ber of mentions in the ground truth [133], and so F1
score equals precision, recall and accuracy score in dis-
ambiguation models [133]:

F1 = Acc =
# o f correctly disamb. mentions

# o f total mentions

(22)

For the ER+ED setting, where joint models are eval-
uated, we report micro F1 scores based on strong an-
notation matching. The formulas to compute F1 scores
are shown below as described in Shen et al. [133] and
Ganea et al. [45]:

P =
# o f correctly detected and disamb. mentions

# o f predicted mentions by model
(23)

R =
# o f correctly detected and disamb. mentions

# o f mentions in ground truth
(24)

F1 =
2 · P · R
P + R

(25)

GERBIL [126] is a benchmarking platform used
by multiple papers described in this survey. It imple-
ments various experimental settings, e.g. entity dis-
ambiguation (ED), denoted as D2KB, combination of
entity recognition and disambiguation (ER+ED) de-
noted as A2KB among other setups. It provides the re-
quired evaluation metrics, i.e. micro-macro precision,
recall, and F-measure. Besides, it stores the evaluation
datasets in the standartized way along with the annota-
tions.

Baseline Models While our goal is to perform a sur-
vey of neural entity linking systems, we also report re-
sults of several indicative and prominent classic non-
neural systems as baselines to underline the advances
yielded by neural models.

More specifically, we report results of DBpedia
Spotlight (2011) [90], AIDA (2011) [57], Ratinov
et al. (2011) [121], WAT (2014) [115], Babelfy (2014)
[94], Lazic et al. (2015) [72], Chisholm and Hachey
(2015) [20], and PBOH (2016) [45].

For each system, we present the best scores reported
by the authors and, for baseline systems, the results are
presented as reported in Kolitsas et al. [70] and Ganea
and Hofmann [44].

4.1.2. Discussion of Results
Entity Disambiguation Results We start our presen-
tation of results from the disambiguation only mod-
els (for which entity boundaries are already provided).
Figure 8 shows how performance of the entity disam-
biguation models improved during the course of the
last decade and how the best classic models correspond
to the recent neural state-of-the-art models for entity
linking. As one may observe the models based on deep
learning substantially improve the performance push-
ing the state of the art by around 10 points. AIDA is the
most widely used dataset (but also one of the largest),
but we also report results on other datasets in Table 4.
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Table 4
Entity disambiguation evaluation. Micro F1/Accuracy scores of neural entity disambiguation as compared to the selected classic models on
common evaluation datasets.

AIDA-B KBP’10 MSNBC AQUAINT ACE-2004 CWEB WW KBP’15 (es) KBP’15 (zh)

Accuracy Accuracy Micro F1 Micro F1 Micro F1 Micro F1 Micro F1 Accuracy Accuracy

Non-Neural Baseline Models

DBpedia Spotlight (2011) [90] 0.561 - 0.421 0.518 0.539 - - - -

AIDA (2011) [57] 0.770 - 0.746 0.571 0.798 - - - -

Ratinov et al. (2011) [121] - - 0.750 0.830 0.820 0.562 0.672 - -

WAT (2014) [115] 0.805 - 0.788 0.754 0.796 - - - -

Babelfy (2014) [94] 0.758 - 0.762 0.704 0.619 - - - -

Lazic et al. (2015) [72] 0.864 - - - - - - - -

Chisholm and Hachey (2015) [20] 0.887 - - - - - - - -

PBOH (2016) [45] 0.804 - 0.861 0.841 0.832 - - - -

Neural Models

Sun et al. (2015) [144] - 0.839 - - - - - - -

Francis-Landau et al. (2016) [41] 0.855 - - - 0.899 - - - -

Fang et al. (2016) [35] - 0.889 0.755 0.852 0.808 - - - -

Yamada et al. (2016) [162] 0.931 0.855 - - - - - - -

Zwicklbauer et al. (2016) [176] 0.784 - 0.911 0.842 0.907 - - - -

Tsai and Roth (2016) [148] - - - - - - - 0.824 0.851

Nguyen et al. (2016) [103] 0.872 - - - 0.897 - - - -

Cao et al. (2017) [16] 0.851 - - - - - - - -

Eshel et al. (2017) [33] 0.873 - - - - - - - -

Ganea and Hofmann (2017) [44] 0.922 - 0.937 0.885 0.885 0.779 0.775 - -

Gupta et al. (2017) [52] 0.829 - - - 0.907 - - - -

Shahbazi et al. (2018) [130] 0.944 0.879 - - - - - - -

Le and Titov (2018) [73] 0.931 - 0.939 0.884 0.899 0.775 0.780 - -

Radhakrishnan et al. (2018) [117] 0.930 0.896 - - - - - - -

Kolitsas et al. (2018) [70] 0.831 - 0.864 0.832 0.855 - - - -

Sil et al. (2018) [137] 0.940 0.874 - - - - - 0.823 0.844

Upadhyay et al. (2018) [150] - - - - - - - 0.844 0.860

Cao et al. (2018) [17] 0.800 0.910 - 0.870 0.880 - 0.860 - -

Raiman and Raiman (2018) [119] 0.949 0.909 - - - - - - -

Shahbazi et al. (2019) [131] 0.962 0.883 - - - - - - -

Gillick et al. (2019) [46] - 0.870 - - - - - - -

Le and Titov (2019) [74] 0.815 - - - - - - - -

Le and Titov (2019) [75] 0.897 - 0.922 0.907 0.881 0.782 0.817 - -

Fang et al. (2019) [36] 0.943 - 0.928 0.875 0.912 0.785 0.828 - -

Yang et al. (2019) [168] 0.946 - 0.946 0.883 0.901 0.756 0.788 - -

Onoe and Durrett (2020) [106] 0.859 - - - - - - - -

Wu et al. (2020) [160] - 0.940 - - - - - - -

Yamada et al. (2020) [166] 0.950 - 0.963 0.935 0.919 0.789 0.892 - -

De Cao et al. (2021) [26] 0.933 - 0.943 0.899 0.901 0.773 0.874 - -
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Fig. 8. Entity disambiguation progress. Performance of the classic entity linking models (black circle) with the more recent neural models
(fill-colored other shapes) on the AIDA dataset shows an improvement (around 10 points of accuracy). The colors refer to the feature of Encoder
Type in the Table 2 and the shapes denote another feature, a type of Entity Encoder Source as explained in the Table 2.

Table 5
Evaluation of joint NER-ED models. Micro F1 scores for joint
entity recognition and entity disambiguation evaluation on AIDA-B
and MSNBC datasets.

AIDA-B MSNBC

Non-Neural Baseline Models

DBpedia Spotlight (2011) [90] 0.578 0.406

AIDA (2011) [57] 0.728 0.651

WAT (2014) [115] 0.730 0.645

Babelfy (2014) [94] 0.485 0.397

Neural Models

Kolitsas et al. (2018) [70] 0.824 0.724
Martins et al. (2019) [89] 0.819 -

Peters et al. (2019) [114] 0.744 -

Broscheit (2019) [14] 0.793 -

De Cao et al. (2021) [26] 0.837 0.737

Among local models for disambiguation, the best
results are reported by Shahbazi et al. [130] and Wu
et al. [160]. It is worth noting that the latter model can
be used in a zero-shot setting. Shahbazi et al. [131] has
the best score on AIDA-B among other models. How-
ever, this is due to the use of less-ambiguous resource
of Pershina et al. [112] for candidate generation, while
many of other works use the YAGO-based resource
provided by Ganea and Hofmann [44], which typically
yields lower results.

The common trend is that the global models (those
trying to disambiguate several entity occurrences at
once) outperform the local ones (relying on a single
context). The global model of Yamada et al. [166] pro-
duce results that are consistently better as compared
to other solutions including the results of Shahbazi
et al. [131] reported for the YAGO-based resource. The
performance improvements are explained by the au-
thors by the novel masked entity prediction objective
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that helps to fine-tune pre-trained BERT for producing
contextualized entity embeddings and the multi-step
global disambiguation algorithm.

Joint Entity Recognition and Disambiguation Table
5 presents results of the joint ER and ED models. Only
a fraction of the models presented in above is capable
of performing both entity recognition and disambigua-
tion; thus, the list of results is much shorter. Among
the joint recognition and disambiguation solutions, the
top-performing system at the time of writing is De Cao
et al. [26]. This system and others that solve also the
ER task fall behind the disambiguation-only systems,
since they rely on noisy mention boundaries produced
by themselves. In the joint setting, the neural models
also substantially (up to 10 points) outperform the clas-
sic models.

On Effect of Hyperparameter Search As explained
above, we report the best scores reported by authors
for neural models, in Table 4 and Table 5. In princi-
ple, each neural model can be further tuned as shown
by Reimers and Gurevych [122], but also the vari-
ance of neural models is rather high in general. There-
fore, it may be possible to further optimize meta-
parameters of one (possibly simpler) neural model so
that it outperforms a more complex (but tuned in a less
optimal way) model. One common example of such
case is RoBERTa [81], which is basically the original
BERT model, which was carefully and robustly opti-
mized. This model outperformed many successors of
the BERT model, showing the new state-of-the-art on
various tasks, while keeping the original architecture.

4.2. Entity Relatedness

In this section, evaluation of entity relatedness
is discussed. This evaluation is different from any
pipeline in EL and its focus is on entity relatedness
only.

4.2.1. Experimental Setup
The evaluation data is provided by Ceccarelli et al.

[18] using the dataset of Hoffart et al. [57]. It is in the
form of queries, where the first entity is accepted as
correctly linked and the second entity is the candidate
[44].

Entity representation performance can be evaluated
through an entity relatedness task. Namely, the task
is to rank entities for the target one, which is usually
performed based on a similarity of entity representa-
tions except for two studies: Milne and Witten [92] in-

troduce a Wikipedia hyperlink-based measure, known
as WLM, and recently, El Vaigh et al. [31] provide a
weighted semantic relatedness measure.

The evaluation of ranking quality is performed with
a normalized discounted cumulative gain (nDCG) [61]
and a mean average precision (MAP) [171]. nDCG is
commonly used in information retrieval and provides
a fair evaluation by measuring the position impres-
siveness. Similarly, MAP measures how accurately the
model performs for the target entity.

4.2.2. Discussion of Results
In Table 6, the entity relatedness scores are reported.

The highest score is reported by Huang et al. [59] and
the reason would be that they use different sources of
entity information, like entity types [44]. Ganea and
Hofmann [44] and Cao et al. [16] achieve good scores,
and recently, Shi et al. [135] also present an excellent
performance by using various data sources based on
textual and KG, like types provided by a category hi-
erarchy of a knowledge graph.

5. Applications of Entity Linking

In this section, we first give a brief overview of es-
tablished applications of the entity linking technology
and then discuss recently emerged use-cases specific to
neural entity linking based on injection of these mod-
els as a part of a larger neural network, e.g. in a neural
language model.

5.1. Established Applications

Text Mining An EL tool is a typical building block
for text mining systems. Extracting and resolving am-
biguity of entity mentions is one of the first steps in
a common information extraction pipeline. The ambi-
guity problem is especially crucial for such domains
as biomedical and clinical text processing due to vari-
ability of medical terms, complexity of medical on-
tologies such as UMLS [11], and scarcity of annotated
resources. There is a long history of development of
EL tools for biomedical literature and electronic health
record mining applications [5, 71, 84, 128, 140]. These
tools have been successfully applied for summariza-
tion of clinical reports [87], extraction of drug-disease
treatment relationships [69], differential diagnosis [4],
patient screening [34], and many other tasks. Besides
medical text processing, EL is widely used for min-
ing social networks and news. For example, Twitci-
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Table 6
Entity relatedness evaluation. Reported results for entity relatedness evaluation on the dataset of Ceccarelli et al. [18] .

nDCG@1 nDCG@5 nDCG@10 MAP

Milne and Witten (2008) [92] 0.540 0.520 0.550 0.480

Huang et al. (2015) [59] 0.810 0.730 0.740 0.680

Yamada et al. (2016) [162] 0.590 0.560 0.590 0.520

Ganea and Hofmann (2017) [44] 0.632 0.609 0.641 0.578

Cao et al. (2017) [16] 0.613 0.613 0.654 0.582

El Vaigh et al. (2019) [31] 0.690 0.640 0.580 -

Shi et al. (2020) [135] 0.680 0.814 0.820 -

dent [1] uses the DBpedia Spotlight [90] EL system
for mining Twitter messages for small scale incidents.
Provatorova et al. [116] leverage a recently proposed
EL toolkit REL [151] for mining historical newspa-
pers for people, places, and other entities in the CLEF
HIPE 2020 evaluation campaign [30]. Luo et al. [86]
automatically construct a large-scale dataset of images
and text captions that describe real and out-of-context
news. They leverage REL for linking entities in image
captions, which helps to automatically measure incon-
sistency between images and their text captions.

Knowledge graph population EL is one of necessary
steps of knowledge graph population algorithms. Be-
fore populating a KG with new facts extracted from
raw texts, we have to determine mentioned concepts in
these texts and link them to the corresponding graph
nodes. A series of evaluation workshops TAC14 pro-
vides a forum for KG population tools (TAC KBP),
as well as benchmarks for various subsystems includ-
ing EL. For example, Ji and Grishman [62] and El-
lis et al. [32] overview various successful systems for
knowledge graph population participated in the TAC
KBP 2010 and 2015 tasks. Shen et al. [134] pro-
pose a knowledge graph population algorithm that not
only uses the results of EL, but also helps to improve
EL itself. It iteratively populates a KG, while the EL
model benefits from added knowledge and continu-
ously learns to disambiguate better.

Information retrieval and question-answering EL is
also widely used in information retrieval and question-
answering systems. EL helps to complement search
results with additional semantic information, to re-
solve query ambiguity, and to restrict the search space.
For example, Lee et al. [78] use EL to complement
the results of a biomedical literature search engine
with found entities: genes, diseases, drugs, etc. COVI-

14https://tac.nist.gov/2019/index.html

DASK [77], a real-time question answering system
that helps researchers to retrieve information related to
coronavirus, uses the BioSyn model [145] for process-
ing COVID-19 articles and linking mentions of drugs,
symptoms, diseases to concepts in biomedical ontolo-
gies. Links to entity descriptions help users to navigate
the search results, which enhances usability of the sys-
tem. Yih et al. [169] apply EL for pruning the search
space of a question answering system. For the query:
“Who first voiced Meg on Family Guy?”, after linking
“Meg” and “Family Guy” to entities in a KG, the task
becomes to resolve the predicates to the “Family Guy
(the TV show)” entry rather than all entries in the KG.
Shnayderman et al. [136] develop a fast EL algorithm
for pre-processing large corpora for their autonomous
debating system [139] with the goal to conduct an ar-
gumentative dialog with an opponent on some topic
and to prove a predefined point of view. The system
uses the results of entity linking for corpus-based ar-
gument retrieval.

5.2. Novel Applications: Neural Entity Linking for
Training of Neural Language Models

In addition to aforementioned applications, neural
EL models have unlocked the new category of appli-
cations that have not been available for classical ma-
chine learning methods. Namely, neural models allow
the integration of an entire entity linking system in-
side a larger neural network such as BERT. As they
are both neural networks, such kind of integration be-
comes possible. After integrating an entity linker into
another model’s architecture, we can also expand the
training objective with an additional EL-related task
and train parameters of all neural components jointly:

LJOINT = LBERT + LEL-related . (26)

Neural entity linkers can be integrated in any other
networks. The main novel trend is the use of EL in-
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formation for representation learning. Several studies
have shown that contextual word representations could
benefit from information stored in KGs by incorporat-
ing EL into deep language models (LMs) for transfer
learning.

KnowBERT [114] injects one or several entity link-
ers between top layers of the BERT architecture and
optimizes the whole network for multiple tasks: the
masked language model (MLM) task and next sen-
tence prediction (NSP) from the original BERT model,
as well as EL:

LBERT = LNSP + LMLM. (27)

LKnowBert = LNSP + LMLM + LEL . (28)

The authors adopt the general end-to-end EL ar-
chitecture of [70] but use only the local context for
disambiguation and use an encoder based on self-
attention over the representations generated by under-
lying BERT layers. If the EL subsystem detects an en-
tity mention in a given sentence, corresponding pre-
built entity representations of candidates are utilized
for calculating the updated contextual word represen-
tations generated on the current BERT layer. These
representations are used as input in a subsequent layer
and can also be modified by a subsequent EL subsys-
tem. Experiments with two EL subsystems based on
Wikidata and WordNet show that presented modifica-
tions in KnowBERT help it to slightly surpass other
deep pre-trained language models in tasks of relation-
ship extraction, WSD, and entity typing.

ERNIE [174] expands the BERT [29] architecture
with a knowledgeable encoder (K-Encoder), which
fuses contextualized word representations obtained
from the underlying self-attention network with en-
tity representations from a pre-trained TransE model
[13]. EL in this study is performed by an external tool
TAGME [39]. For model pre-training, in addition to
the MLM task, the authors introduce the task of restor-
ing randomly masked entities in a given sequence
keeping the rest of the entities and tokens. They refer
to this procedure as a denoising entity auto-encoder
(dEA):

LERNIE = LNSP + LMLM + LdEA . (29)

Using English Wikipedia and Wikidata as training
data, the authors show that introduced modifications
provide performance gains in entity typing, relation
classification, and several GLUE tasks [155].

Wang et al. [158] train a disambiguation network
named KEPLER using the composition of two losses:
regular MLM and a Knowledge Embedding (KE) loss
based on the TransE [13] objective for encoding graph
structures:

LKEPLER = LMLM + LKE. (30)

In the KE loss, representations of entities are ob-
tained from their textual descriptions encoded with a
self-attention network [81], and representations of re-
lations are trainable vectors. The network is trained on
a dataset of entity-relation-entity triplets with descrip-
tions gathered from Wikipedia and Wikidata. Although
the system exhibits a significant drop in performance
on general NLP benchmarks such as GLUE [155], it
shows increased performance on a wide range of KB-
related tasks such as TACRED [173], FewRel [53], and
OpenEntity [21].

Yamada et al. [165] propose a deep pre-trained
model called “Language Understanding with Knowledge-
based Embeddings” (LUKE). They modify RoBERTa
[81] by introducing an additional pre-training objec-
tive and an entity-aware self-attention mechanism. The
objective is a simple adoption of the MLM task to enti-
tiesLMLMe, instead of tokens, the authors suggest to re-
store randomly masked entities in an entity-annotated
corpus.

LLUKE = LMLM + LMLMe. (31)

Although the corpus used in this work is constructed
from Wikipedia by considering hyperlinks to other
Wikipedia pages as mentions of entities in a KG, al-
ternatively, it can be generated using an external entity
linker.

The entity-aware attention mechanism helps LUKE
differentiate between words and entities via intro-
ducing four different query matrices for matching
words and entities: one for each pair of input types
(entity-entity, entity-word, word-entity, and the stan-
dard word-word). The proposed modifications give
LUKE exceptional performance improvements over
previous models in five tasks: Open Entity (entity
typing) [21], TACRED (relation classification) [173],
CoNLL-2003 (named entity recognition) [146], ReCoRD
(cloze-style question answering) [172], and SQuAD 1.1
(reading comprehension) [120].

Févry et al. [40] propose a method for training
a language model and entity representations jointly,
which they call Entities as Experts (EaE). The model
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is based on the Transformer architecture and is similar
to KnowBERT [114]. However, in addition to trainable
word embedding matrix, EaE features a separate train-
able matrix for entity embeddings referred to as “mem-
ory”. The standard Transformer is also extended with
an “entity memory” layer, which takes the output from
the preceding Transformer layer and populates it with
entity embeddings of mentions in text. The retrieved
entity embeddings are integrated into token represen-
tations by summation before layer normalization. To
avoid dependence at inference on an external mention
detector, the model applies a classifier to the output of
Transformer blocks as in a sequence labeling model.

Analogously to [165], the EaE is trained on a cor-
pus annotated with mentions and entity links. The final
loss function sums up of three components: the stan-
dard MLM objective, mention boundary detection loss
as in a sequence labeling model LNER, and an entity
linking objective that facilitates entity representations
generated in the model to be close to entity embedding
of an annotated entity.

LEaE = LMLM + LNER + LEL. (32)

This approach to integrating knowledge about en-
tities into LMs provides a significant performance
boost in open domain question answering. EaE hav-
ing only 367 million of parameters outperforms the
11 billion parameter version of T5 [118] on the Triv-
iaQA task [67]. The authors also show that EAE con-
tains more factual knowledge than a comparably-sized
BERT model.

The considered works demonstrate that the integra-
tion of structured KGs and LMs usually helps to solve
knowledge-oriented tasks: question answering (includ-
ing open-domain QA), entity typing, relation extrac-
tion, and others. A high-precision supervision signal
from KGs either leads to notable performance im-
provements or allows to reduce the number of trainable
parameters of a LM while keeping the similar perfor-
mance. Entity linking acts as a bridge between highly
structured knowledge graphs and more flexible lan-
guage models. We expect this approach to be crucial
for construction of the future foundation models.

6. Conclusion

In this survey, we have analyzed recently proposed
neural entity linking models, which generally perform
the task with higher accuracy than classical methods

scores. We provide a generic neural entity linking ar-
chitecture, which is applicable for most of the neural
EL systems, including the description of its compo-
nents e.g. candidate generation, entity ranking, men-
tion and entity encoding. The various modifications
of general architecture are grouped into four com-
mon directions: (1) joint entity recognition and linking
models, (2) global entity linking models, (3) domain-
independent approaches including zero-shot and dis-
tant supervision methods, and (4) cross-lingual tech-
niques. Taxonomy figures and feature tables are pro-
vided to explain the categorization and to show which
prominent features are used in each method.

The majority of studies still rely on external knowl-
edge for the candidate generation step. The mention
encoders have made a shift from convolutional and
recurrent models to self-attention architectures and
start using pre-trained contextual language models like
BERT. There is a current surge of methods that tackle
the problem of adapting a model trained on one do-
main to another domain in a zero-shot fashion. These
approaches do not need any annotated data in the tar-
get domain, but only descriptions of entities from this
domain to make such adaptation. It is shown in several
works that the cross-encoder architecture is superior as
compared to models with separate mention and entity
encoders. The global context is widely used, but there
are few recent studies that focus only on local EL.

Among the joint recognition and disambiguation so-
lutions, the leadership is owned by De Cao et al. [26].
Among published local models for disambiguation, the
best result is reported by Wu et al. [160]. It is worth
noting that this model can be used in a zero-shot set-
ting. The global models outperform the local ones. The
work of Yamada et al. [166] reports results that are
consistently better in comparison to all other solutions.
The performance improvements are attributed to the
masked entity prediction mechanism for entity embed-
ding and to the usage of the pre-trained model based
on BERT with a multi-step global scoring function.

7. Future Directions

We identify four promising directions of future work
in entity linking listed below:

1. End-to-end models including the candidate
generation step: The candidate generation step
requires to collect information from a large amount
of data, as described in the Section 3.1.1. Al-



26 Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

though the models could create a domain-independent
architecture, they are still based on data from a
candidate generator. Therefore, a possible direc-
tion would be to handle the candidate generation
step without the requisite of external data or di-
rectly eliminate this step. There are some studies,
which use either the representations [46, 160] or
BM25 scores computed from entity descriptions
[83] to find out candidates. However, these mod-
els do not provide complete end-to-end solutions.
Thus, future approaches could tackle the chal-
lenge of a complete end-to-end solution without
a candidate generator.

2. Further development of zero-shot approaches
to address emerging entities: We also expect
that zero-shot EL will rapidly evolve, engaging
other features like global coherence across all en-
tities in a document, NIL prediction, joining ER
and EL steps together, or providing completely
end-to-end solutions. The latter would be an es-
pecially challenging task but also a fascinating re-
search direction. To allow for a proper compari-
son, more standardized benchmarks and evalua-
tion processes for zero-shot methods are dearly
needed.

3. More use-cases of EL-enriched language mod-
els: Some studies [114, 158, 174] have shown im-
provements over contextual language models by
including knowledge stored in KGs. They incor-
porate entity linking into these deep models to use
information in KGs. In the future work, more use-
cases are expected to enhance language models
by using entity linking. The enriched represen-
tations would be used in downstream tasks, en-
abling improvements there.

4. Integration of EL loss in more neural models:
It may be interesting to integrate EL loss in other
neural models distinct from the language mod-
els, but in the similar fashion as the models de-
scribed in Section 5.2. Due to the fact that an end-
to-end EL model is also just a neural network,
such integration with other networks is techni-
cally straightforwards and may be useful to in-
ject information about entities contained in an EL
model into other, possibly specialized, architec-
tures.

Acknowledgements

The work was partially supported by a Deutscher
Akademischer Austauschdienst (DAAD) doctoral stipend

and the DFG-funded JOIN-T project BI 1544/4. The
work of Artem Shelmanov in the current study (prepa-
ration of sections related to application of entity link-
ing to neural language models, entity ranking, context-
mention encoding, and overall harmonization of the
text and results) is supported by the Russian Science
Foundation (project 20-11-20166). Finally, this work
was partially supported by the joint MTS-Skoltech lab-
oratory.

References

[1] Fabian Abel, Claudia Hauff, Geert-Jan Houben, Richard
Stronkman, and Ke Tao. Twitcident: Fighting Fire with Infor-
mation from Social Web Streams. In Proceedings of the 21st
International Conference on World Wide Web, WWW ’12
Companion, page 305–308, New York, NY, USA, 2012. As-
sociation for Computing Machinery. ISBN 9781450312301.
. URL https://doi.org/10.1145/2187980.2188035.

[2] Tareq Al-Moslmi, Marc Gallofré Ocaña, Andreas L. Op-
dahl, and Csaba Veres. Named entity extraction for knowl-
edge graphs: A literature overview. IEEE Access, 8:32862–
32881, 2020. URL https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=8999622.

[3] Rami Aly, Andreas Vlachos, and Ryan McDonald. Lever-
aging type descriptions for zero-shot named entity recogni-
tion and classification. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1516–1528, On-
line, August 2021. Association for Computational Linguis-
tics. . URL https://aclanthology.org/2021.acl-long.120.

[4] Hadi Amiri, Mitra Mohtarami, and Isaac Kohane. Atten-
tive multiview text representation for differential diagnosis.
In Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume
2: Short Papers), pages 1012–1019, Online, August 2021.
Association for Computational Linguistics. . URL https:
//aclanthology.org/2021.acl-short.128.

[5] Alan R Aronson and François-Michel Lang. An overview of
MetaMap: historical perspective and recent advances. Journal
of the American Medical Informatics Association, 17(3):229–
236, 2010.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. DBpedia: A
nucleus for a web of open data. In Proceedings of the 6th In-
ternational The Semantic Web and 2nd Asian Conference on
Asian Semantic Web Conference, ISWC’07/ASWC’07, page
722–735, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
3540762973.

[7] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. In 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San-Diego, California, USA, 2015.
URL http://arxiv.org/abs/1409.0473.

https://doi.org/10.1145/2187980.2188035
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8999622
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8999622
https://aclanthology.org/2021.acl-long.120
https://aclanthology.org/2021.acl-short.128
https://aclanthology.org/2021.acl-short.128
http://arxiv.org/abs/1409.0473


Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[8] Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer, and Nathan Schneider. Ab-
stract meaning representation for sembanking. In Proceed-
ings of the 7th linguistic annotation workshop and inter-
operability with discourse, pages 178–186, Sofia, Bulgaria,
2013. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W13-2322/.

[9] Debayan Banerjee, Debanjan Chaudhuri, Mohnish Dubey,
and Jens Lehmann. PNEL: Pointer Network Based End-
To-End Entity Linking over Knowledge Graphs. In Jeff Z.
Pan, Valentina Tamma, Claudia d’Amato, Krzysztof Janow-
icz, Bo Fu, Axel Polleres, Oshani Seneviratne, and Lalana Ka-
gal, editors, The Semantic Web – ISWC 2020, pages 21–38,
Cham, 2020. Springer International Publishing. ISBN 978-3-
030-62419-4.

[10] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Chris-
tian Janvin. A neural probabilistic language model. J. Mach.
Learn. Res., 3(null):1137–1155, March 2003. ISSN 1532-
4435.

[11] Olivier Bodenreider. The Unified Medical Language System
(UMLS): integrating biomedical terminology. Nucleic Acids
Research, 32(suppl_1):D267–D270, 01 2004. ISSN 0305-
1048. . URL https://doi.org/10.1093/nar/gkh061.

[12] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge,
and Jamie Taylor. Freebase: A collaboratively created graph
database for structuring human knowledge. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, page 1247–1250, New
York, NY, USA, 2008. Association for Computing Machin-
ery. ISBN 9781605581026. URL https://doi.org/10.1145/
1376616.1376746.

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data.
In Advances in neural information processing sys-
tems, volume 26, pages 2787–2795, Stateline, Nevada,
USA, 2013. URL https://papers.nips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[14] Samuel Broscheit. Investigating entity knowledge in BERT
with simple neural end-to-end entity linking. In Proceedings
of the 23rd Conference on Computational Natural Language
Learning (CoNLL), pages 677–685, Hong Kong, China, 2019.
Association for Computational Linguistics. URL https://
www.aclweb.org/anthology/K19-1063.

[15] H. Cai, V. W. Zheng, and K. Chang. A comprehensive survey
of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge & Data Engineering, 30
(09):1616–1637, sep 2018. ISSN 1558-2191. .

[16] Yixin Cao, Lifu Huang, Heng Ji, Xu Chen, and Juanzi Li.
Bridge text and knowledge by learning multi-prototype en-
tity mention embedding. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1623–1633, Vancou-
ver, Canada, 2017. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/P17-1149.

[17] Yixin Cao, Lei Hou, Juanzi Li, and Zhiyuan Liu. Neural col-
lective entity linking. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 675–686,
Santa Fe, New Mexico, USA, 2018. Association for Compu-

tational Linguistics. URL https://www.aclweb.org/anthology/
C18-1057.

[18] Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raf-
faele Perego, and Salvatore Trani. Learning relatedness mea-
sures for entity linking. In Proceedings of the 22Nd ACM
International Conference on Information & Knowledge Man-
agement, CIKM ’13, pages 139–148, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2263-8. URL http://doi.acm.
org/10.1145/2505515.2505711.

[19] Xiao Cheng and Dan Roth. Relational inference for Wikifi-
cation. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1787–1796,
Seattle, Washington, USA, 2013. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/
D13-1184.

[20] Andrew Chisholm and Ben Hachey. Entity disambiguation
with web links. Transactions of the Association for Com-
putational Linguistics, 3:145–156, 2015. URL https://www.
aclweb.org/anthology/Q15-1011.

[21] Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettlemoyer.
Ultra-fine entity typing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 87–96, Melbourne, Aus-
tralia, 2018. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P18-1009.

[22] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and
Yoshua Bengio. Empirical evaluation of gated recurrent neu-
ral networks on sequence modeling. In NIPS 2014 Work-
shop on Deep Learning, Montréal, Canada, 2014. URL
https://arxiv.org/abs/1412.3555.

[23] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural lan-
guage processing (almost) from scratch. Journal of machine
learning research, 12(Aug):2493–2537, 2011.

[24] Ryan Cotterell and Kevin Duh. Low-resource named entity
recognition with cross-lingual, character-level neural condi-
tional random fields. In Proceedings of the Eighth Inter-
national Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 91–96, Taipei, Taiwan, 2017.
Asian Federation of Natural Language Processing. URL
https://www.aclweb.org/anthology/I17-2016.

[25] Silviu Cucerzan. Large-scale named entity disambigua-
tion based on Wikipedia data. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 708–716, Prague, Czech Repub-
lic, 2007. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D07-1074/.

[26] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio
Petroni. Autoregressive entity retrieval. In International Con-
ference on Learning Representations, 2021.

[27] Danilo Dessì, Francesco Osborne, Diego Reforgiato Recu-
pero, Davide Buscaldi, and Enrico Motta. Generating knowl-
edge graphs by employing natural language processing and
machine learning techniques within the scholarly domain.
Future Generation Computer Systems, 116:253–264, 2021.
ISSN 0167-739X. . URL https://www.sciencedirect.com/
science/article/pii/S0167739X2033003X.

[28] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Se-
bastian Riedel. Convolutional 2D Knowledge Graph Embed-
dings. In Proceedings of AAAI Conference on Artificial In-

https://www.aclweb.org/anthology/W13-2322/
https://www.aclweb.org/anthology/W13-2322/
https://doi.org/10.1093/nar/gkh061
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://www.aclweb.org/anthology/K19-1063
https://www.aclweb.org/anthology/K19-1063
https://www.aclweb.org/anthology/P17-1149
https://www.aclweb.org/anthology/C18-1057
https://www.aclweb.org/anthology/C18-1057
http://doi.acm.org/10.1145/2505515.2505711
http://doi.acm.org/10.1145/2505515.2505711
https://www.aclweb.org/anthology/D13-1184
https://www.aclweb.org/anthology/D13-1184
https://www.aclweb.org/anthology/Q15-1011
https://www.aclweb.org/anthology/Q15-1011
https://www.aclweb.org/anthology/P18-1009
https://arxiv.org/abs/1412.3555
https://www.aclweb.org/anthology/I17-2016
https://www.aclweb.org/anthology/D07-1074/
https://www.sciencedirect.com/science/article/pii/S0167739X2033003X
https://www.sciencedirect.com/science/article/pii/S0167739X2033003X


28 Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

telligence, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17366.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, 2019. Association for
Computational Linguistics. URL https://www.aclweb.org/
anthology/N19-1423.

[30] Maud Ehrmann, Matteo Romanello, Alex Flückiger, and Si-
mon Clematide. Overview of CLEF HIPE 2020: Named
entity recognition and linking on historical newspapers. In
International Conference of the Cross-Language Evaluation
Forum for European Languages, pages 288–310. Springer,
2020.

[31] Cheikh Brahim El Vaigh, François Goasdoué, Guillaume
Gravier, and Pascale Sébillot. Using knowledge base se-
mantics in context-aware entity linking. In Proceedings
of the ACM Symposium on Document Engineering 2019,
DocEng ’19, New York, NY, USA, 2019. ACM. ISBN
9781450368872. . URL https://doi.org/10.1145/3342558.
3345393.

[32] Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi
Song, Ann Bies, and Stephanie M Strassel. Overview
of Linguistic Resources for the TAC KBP 2015 Eval-
uations: Methodologies and Results. In Proceed-
ings of the 2015 Text Analysis Conference, TAC 2015,
Gaithersburg, Maryland, USA, 2015. NIST. URL
https://tac.nist.gov/publications/2015/additional.papers/
TAC2015.KBP_resources_overview.proceedings.pdf.

[33] Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul
Markovitch, Ikuya Yamada, and Omer Levy. Named
entity disambiguation for noisy text. In Proceedings of
the 21st Conference on Computational Natural Language
Learning (CoNLL 2017), pages 58–68, Vancouver, Canada,
2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/K17-1008.

[34] Hannah Eyre, Alec B Chapman, Kelly S Peterson, Jianlin Shi,
Patrick R Alba, Makoto M Jones, Tamara L Box, Scott L Du-
Vall, and Olga V Patterson. Launching into clinical space with
medspaCy: a new clinical text processing toolkit in Python.
arXiv preprint arXiv:2106.07799, 2021.

[35] Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen, and
Ming Li. Entity disambiguation by knowledge and text jointly
embedding. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning, pages
260–269, Berlin, Germany, 2016. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/
K16-1026.

[36] Zheng Fang, Yanan Cao, Qian Li, Dongjie Zhang, Zhenyu
Zhang, and Yanbing Liu. Joint entity linking with deep re-
inforcement learning. In The World Wide Web Conference,
WWW ’19, pages 438–447, New York, NY, USA, 2019.
ACM. ISBN 978-1-4503-6674-8. URL http://doi.acm.org/10.
1145/3308558.3313517.

[37] Michael Färber, Frederic Bartscherer, Carsten Menne, and
Achim Rettinger. Linked Data Quality of DBpedia, Freebase,
OpenCyc, Wikidata, and YAGO. Semantic Web, 9(1):77–129,
2018.

[38] Christiane Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA, 1998. ISBN 978-0-
262-06197-1.

[39] Paolo Ferragina and Ugo Scaiella. TAGME: On-the-
Fly annotation of short text fragments (by wikipedia en-
tities). In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management,
CIKM ’10, page 1625–1628, New York, NY, USA, 2010.
ACM. ISBN 9781450300995. URL https://doi.org/10.1145/
1871437.1871689.

[40] Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald,
Eunsol Choi, and Tom Kwiatkowski. Entities as Experts:
Sparse Memory Access with Entity Supervision. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4937–4951, Online,
November 2020. Association for Computational Linguistics.
. URL https://aclanthology.org/2020.emnlp-main.400.

[41] Matthew Francis-Landau, Greg Durrett, and Dan Klein. Cap-
turing semantic similarity for entity linking with convolu-
tional neural networks. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
pages 1256–1261, San Diego, California, USA, 2016. URL
https://www.aclweb.org/anthology/N16-1150.

[42] Giorgio Fumera, Fabio Roli, and Giorgio Giacinto. Reject
option with multiple thresholds. Pattern recognition, 33(12):
2099–2101, 2000.

[43] Evgeniy Gabrilovich, Michael Ringgaard, and Amarnag Sub-
ramanya. FACC1: Freebase annotation of ClueWeb corpora,
version 1 (release date 2013-06-26, format version 1, correc-
tion level 0), 2013. Note: http://lemurproject.org/clueweb09/.

[44] Octavian-Eugen Ganea and Thomas Hofmann. Deep joint en-
tity disambiguation with local neural attention. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2619–2629, Copenhagen, Den-
mark, 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D17-1277.

[45] Octavian-Eugen Ganea, Marina Ganea, Aurelien Lucchi,
Carsten Eickhoff, and Thomas Hofmann. Probabilistic bag-
of-hyperlinks model for entity linking. In Proceedings
of the 25th International Conference on World Wide Web,
WWW ’16, pages 927–938, Republic and Canton of Geneva,
Switzerland, 2016. International World Wide Web Confer-
ences Steering Committee. ISBN 978-1-4503-4143-1. URL
https://doi.org/10.1145/2872427.2882988.

[46] Daniel Gillick, Sayali Kulkarni, Larry Lansing, Alessan-
dro Presta, Jason Baldridge, Eugene Ie, and Diego Garcia-
Olano. Learning dense representations for entity retrieval.
In Proceedings of the 23rd Conference on Computational
Natural Language Learning (CoNLL), pages 528–537, Hong
Kong, China, 2019. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/K19-1049.

[47] Amir Globerson, Nevena Lazic, Soumen Chakrabarti, Amar-
nag Subramanya, Michael Ringgaard, and Fernando Pereira.
Collective entity resolution with multi-focal attention. In Pro-
ceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
621–631, Berlin, Germany, 2016. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/
P16-1059.

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.1145/3342558.3345393
https://doi.org/10.1145/3342558.3345393
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://www.aclweb.org/anthology/K17-1008
https://www.aclweb.org/anthology/K16-1026
https://www.aclweb.org/anthology/K16-1026
http://doi.acm.org/10.1145/3308558.3313517
http://doi.acm.org/10.1145/3308558.3313517
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/1871437.1871689
https://aclanthology.org/2020.emnlp-main.400
https://www.aclweb.org/anthology/N16-1150
https://www.aclweb.org/anthology/D17-1277
https://doi.org/10.1145/2872427.2882988
https://www.aclweb.org/anthology/K19-1049
https://www.aclweb.org/anthology/P16-1059
https://www.aclweb.org/anthology/P16-1059


Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[48] Archana Goyal, Vishal Gupta, and Manish Kumar. Recent
Named Entity Recognition and Classification techniques: A
systematic review. Computer Science Review, 29:21–43,
2018. ISSN 1574-0137. . URL https://www.sciencedirect.
com/science/article/pii/S1574013717302782.

[49] Palash Goyal and Emilio Ferrara. Graph embedding tech-
niques, applications, and performance: A survey. Knowledge-
Based Systems, 2018. ISSN 0950-7051. . URL http://www.
sciencedirect.com/science/article/pii/S0950705118301540.

[50] Aditya Grover and Jure Leskovec. Node2vec: Scalable Fea-
ture Learning for Networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 855–864, New York, NY,
USA, 2016. Association for Computing Machinery. ISBN
9781450342322. . URL https://doi.org/10.1145/2939672.
2939754.

[51] Zhaochen Guo and Denilson Barbosa. Robust named en-
tity disambiguation with random walks. Semantic Web, 9(4):
459 – 479, 2018. URL https://content.iospress.com/articles/
semantic-web/sw273.

[52] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via
joint encoding of types, descriptions, and context. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 2681–2690, Copenhagen, Den-
mark, 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D17-1284.

[53] Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. FewRel: A large-scale su-
pervised few-shot relation classification dataset with state-
of-the-art evaluation. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 4803–4809, Brussels, Belgium, 2018. Association
for Computational Linguistics. URL https://www.aclweb.org/
anthology/D18-1514.

[54] Martin E Hellman. The nearest neighbor classification rule
with a reject option. IEEE Transactions on Systems Science
and Cybernetics, 6(3):179–185, 1970.

[55] Radu Herbei and Marten H Wegkamp. Classification with
reject option. The Canadian Journal of Statistics/La Revue
Canadienne de Statistique, pages 709–721, 2006.

[56] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[57] Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordino,
Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, Bilyana
Taneva, Stefan Thater, and Gerhard Weikum. Robust disam-
biguation of named entities in text. In Proceedings of the
Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP ’11, pages 782–792. Association for Com-
putational Linguistics, 2011. ISBN 978-1-937284-11-4. URL
http://dl.acm.org/citation.cfm?id=2145432.2145521.

[58] Aidan Hogan, Eva Blomqvist, Michael Cochez, Clau-
dia d’Amato, Gerard de Melo, Claudio Gutierrez, José
Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,
Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo,
Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Se-
queda, Steffen Staab, and Antoine Zimmermann. Knowledge
graphs, 2021. URL https://arxiv.org/abs/2003.02320.

[59] Hongzhao Huang, Larry Heck, and Heng Ji. Leveraging
deep neural networks and knowledge graphs for entity dis-
ambiguation. arXiv preprint arXiv:1504.07678, 2015. URL
https://arxiv.org/abs/1504.07678.

[60] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Ja-
son Weston. Poly-encoders: Architectures and pre-training
strategies for fast and accurate multi-sentence scoring. In In-
ternational Conference on Learning Representations, 2019.

[61] Kalervo Järvelin and Jaana Kekäläinen. Cumulated Gain-
Based Evaluation of IR Techniques. ACM Trans. Inf. Syst.,
20(4):422–446, October 2002. ISSN 1046-8188. URL https:
//doi.org/10.1145/582415.582418.

[62] Heng Ji and Ralph Grishman. Knowledge base population:
Successful approaches and challenges. In Proceedings of the
49th annual meeting of the association for computational lin-
guistics: Human language technologies, pages 1148–1158,
2011.

[63] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and
Joe Ellis. Overview of the TAC 2010 knowledge base popula-
tion track. In Third Text Analysis Conference (TAC), Gaithers-
burg, Maryland, USA, 2010. URL https://blender.cs.illinois.
edu/paper/kbp2010overview.pdf.

[64] Heng Ji, Joel Nothman, Ben Hachey, and Radu Florian.
Overview of TAC-KBP2015 tri-lingual entity discovery and
linking. In Proceedings of the 2015 Text Analysis Con-
ference, TAC 2015, pages 16–17, Gaithersburg, Maryland,
USA, 2015. NIST. URL https://tac.nist.gov/publications/
2015/additional.papers/TAC2015.KBP_Trilingual_Entity_
Discovery_and_Linking_overview.proceedings.pdf.

[65] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and
Philip S. Yu. A survey on knowledge graphs: representation,
acquisition, and applications. IEEE Transactions on Neural
Networks and Learning Systems, April 2021. ISSN 2162-
237X. . Publisher Copyright: IEEE Copyright: Copyright
2021 Elsevier B.V., All rights reserved.

[66] Karen Spärck Jones, Shelia Walker, and Stephen E. Robert-
son. A probabilistic model of information retrieval: De-
velopment and comparative experiments part 2. Informa-
tion Processing & Management, 36(6):809–840, 2000. ISSN
0306-4573. . URL https://doi.org/10.1016/S0306-4573(00)
00016-9.

[67] Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettle-
moyer. TriviaQA: A large scale distantly supervised chal-
lenge dataset for reading comprehension. In Proceedings
of the 55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages 1601–
1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. . URL https://aclanthology.org/
P17-1147.

[68] Rijula Kar, Susmija Reddy, Sourangshu Bhattacharya, Anir-
ban Dasgupta, and Soumen Chakrabarti. Task-specific rep-
resentation learning for web-scale entity disambiguation. In
The Thirty-Second AAAI Conference on Artificial Intelli-
gence, pages 5812–5819, New Orleans, Louisiana, USA,
2018. AAAI Press. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/viewFile/17281/16144.

[69] Ritu Khare, Jiao Li, and Zhiyong Lu. LabeledIn: cataloging
labeled indications for human drugs. Journal of biomedical
informatics, 52:448–456, 2014. .

[70] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hof-
mann. End-to-End Neural Entity Linking. In Proceedings
of the 22nd Conference on Computational Natural Language
Learning, pages 519–529, Brussels, Belgium, 2018. Asso-
ciation for Computational Linguistics. URL https://www.
aclweb.org/anthology/K18-1050.

https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://www.sciencedirect.com/science/article/pii/S1574013717302782
http://www.sciencedirect.com/science/article/pii/S0950705118301540
http://www.sciencedirect.com/science/article/pii/S0950705118301540
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/2939672.2939754
https://content.iospress.com/articles/semantic-web/sw273
https://content.iospress.com/articles/semantic-web/sw273
https://www.aclweb.org/anthology/D17-1284
https://www.aclweb.org/anthology/D18-1514
https://www.aclweb.org/anthology/D18-1514
http://dl.acm.org/citation.cfm?id=2145432.2145521
https://arxiv.org/abs/2003.02320
https://arxiv.org/abs/1504.07678
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://blender.cs.illinois.edu/paper/kbp2010overview.pdf
https://blender.cs.illinois.edu/paper/kbp2010overview.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://doi.org/10.1016/S0306-4573(00)00016-9
https://doi.org/10.1016/S0306-4573(00)00016-9
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17281/16144
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17281/16144
https://www.aclweb.org/anthology/K18-1050
https://www.aclweb.org/anthology/K18-1050


30 Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[71] Zeljko Kraljevic, Thomas Searle, Anthony Shek, Lukasz Ro-
guski, Kawsar Noor, Daniel Bean, Aurelie Mascio, Leilei
Zhu, Amos A. Folarin, Angus Roberts, Rebecca Ben-
dayan, Mark P. Richardson, Robert Stewart, Anoop D.
Shah, Wai Keong Wong, Zina Ibrahim, James T. Teo, and
Richard J.B. Dobson. Multi-domain clinical natural language
processing with MedCAT: The Medical Concept Annota-
tion Toolkit. Artificial Intelligence in Medicine, 117:102083,
2021. ISSN 0933-3657. . URL https://www.sciencedirect.
com/science/article/pii/S0933365721000762.

[72] Nevena Lazic, Amarnag Subramanya, Michael Ringgaard,
and Fernando Pereira. Plato: A selective context model for
entity resolution. Transactions of the Association for Com-
putational Linguistics, 3:503–515, 2015. URL https://www.
aclweb.org/anthology/Q15-1036.

[73] Phong Le and Ivan Titov. Improving entity linking by model-
ing latent relations between mentions. In Proceedings of the
56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1595–1604, Mel-
bourne, Australia, 2018. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/P18-1148.

[74] Phong Le and Ivan Titov. Distant learning for entity linking
with automatic noise detection. In Proceedings of the 57th
Annual Meeting of the Association for Computational Lin-
guistics, pages 4081–4090, Florence, Italy, 2019. Association
for Computational Linguistics. URL https://www.aclweb.org/
anthology/P19-1400.

[75] Phong Le and Ivan Titov. Boosting entity linking performance
by leveraging unlabeled documents. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, pages 1935–1945, Florence, Italy, 2019. Asso-
ciation for Computational Linguistics. URL https://www.
aclweb.org/anthology/P19-1187.

[76] Dong-Hyun Lee. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation
learning, ICML, volume 3, page 2, Atlanta, USA, 2013.
JMLR. URL http://deeplearning.net/wp-content/uploads/
2013/03/pseudo_label_final.pdf.

[77] Jinhyuk Lee, Sean S. Yi, Minbyul Jeong, Mujeen Sung, Won-
Jin Yoon, Yonghwa Choi, Miyoung Ko, and Jaewoo Kang.
Answering questions on COVID-19 in real-time. In Pro-
ceedings of the 1st Workshop on NLP for COVID-19 (Part
2) at EMNLP 2020, Online, December 2020. Association for
Computational Linguistics. . URL https://www.aclweb.org/
anthology/2020.nlpcovid19-2.1.

[78] Sunwon Lee, Donghyeon Kim, Kyubum Lee, Jaehoon Choi,
Seongsoon Kim, Minji Jeon, Sangrak Lim, Donghee Choi,
Sunkyu Kim, Aik-Choon Tan, and Jaewoo Kang. BEST:
Next-Generation Biomedical Entity Search Tool for Knowl-
edge Discovery from Biomedical Literature. PLOS ONE, 11
(10):1–16, 10 2016. . URL https://doi.org/10.1371/journal.
pone.0164680.

[79] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvinine-
jad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. BART: Denoising sequence-to-
sequence pre-training for natural language generation, trans-
lation, and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational Linguis-
tics, pages 7871–7880, Online, July 2020. Association for

Computational Linguistics. . URL https://aclanthology.org/
2020.acl-main.703.

[80] Xiao Ling, Sameer Singh, and Daniel S. Weld. Design
challenges for entity linking. Transactions of the Associa-
tion for Computational Linguistics, 3:315–328, 2015. URL
https://www.aclweb.org/anthology/Q15-1023/.

[81] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. RoBERTa: A ro-
bustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019. URL https://arxiv.org/abs/1907.
11692.

[82] Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the
computational efficiency of training neural networks. In Pro-
ceedings of the 27th International Conference on Neural In-
formation Processing Systems - Volume 1, NIPS’14, page
855–863, Cambridge, MA, USA, 2014. MIT Press.

[83] Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee,
Kristina Toutanova, Jacob Devlin, and Honglak Lee. Zero-
shot entity linking by reading entity descriptions. In Pro-
ceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3449–3460, Florence, Italy,
2019. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P19-1335.

[84] Daniel Loureiro and Alípio Mário Jorge. Medlinker: Medi-
cal entity linking with neural representations and dictionary
matching. In Joemon M. Jose, Emine Yilmaz, João Ma-
galhães, Pablo Castells, Nicola Ferro, Mário J. Silva, and
Flávio Martins, editors, Advances in Information Retrieval,
pages 230–237, Cham, 2020. Springer International Publish-
ing. ISBN 978-3-030-45442-5.

[85] Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Zaiqing Nie.
Joint entity recognition and disambiguation. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 879–888, Lisbon, Portugal,
2015. URL https://www.aclweb.org/anthology/D15-1104/.

[86] Grace Luo, Trevor Darrell, and Anna Rohrbach. NewsCLIP-
pings: Automatic Generation of Out-of-Context Multimodal
Media. arXiv preprint arXiv:2104.05893, 2021.

[87] Sean MacAvaney, Sajad Sotudeh, Arman Cohan, Nazli Go-
harian, Ish Talati, and Ross W. Filice. Ontology-aware clini-
cal abstractive summarization. In Proceedings of the 42nd In-
ternational ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR’19, page 1013–1016,
New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450361729. . URL https://doi.org/10.
1145/3331184.3331319.

[88] José L. Martínez-Rodríguez, A. Hogan, and I. López-
Arévalo. Information extraction meets the Semantic Web: A
survey. Semantic Web, 11(2):255–335, 2020.

[89] Pedro Henrique Martins, Zita Marinho, and André F. T. Mar-
tins. Joint learning of named entity recognition and entity
linking. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics: Student Research
Workshop, pages 190–196, Florence, Italy, 2019. Association
for Computational Linguistics. URL https://www.aclweb.org/
anthology/P19-2026.

[90] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and
Christian Bizer. DBpedia Spotlight: Shedding Light on the
Web of Documents. In Proceedings of the 7th International
Conference on Semantic Systems, I-Semantics ’11, pages 1–8,

https://www.sciencedirect.com/science/article/pii/S0933365721000762
https://www.sciencedirect.com/science/article/pii/S0933365721000762
https://www.aclweb.org/anthology/Q15-1036
https://www.aclweb.org/anthology/Q15-1036
https://www.aclweb.org/anthology/P18-1148
https://www.aclweb.org/anthology/P19-1400
https://www.aclweb.org/anthology/P19-1400
https://www.aclweb.org/anthology/P19-1187
https://www.aclweb.org/anthology/P19-1187
http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
https://www.aclweb.org/anthology/2020.nlpcovid19-2.1
https://www.aclweb.org/anthology/2020.nlpcovid19-2.1
https://doi.org/10.1371/journal.pone.0164680
https://doi.org/10.1371/journal.pone.0164680
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://www.aclweb.org/anthology/Q15-1023/
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://www.aclweb.org/anthology/P19-1335
https://www.aclweb.org/anthology/P19-1335
https://www.aclweb.org/anthology/D15-1104/
https://doi.org/10.1145/3331184.3331319
https://doi.org/10.1145/3331184.3331319
https://www.aclweb.org/anthology/P19-2026
https://www.aclweb.org/anthology/P19-2026


Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0621-8.
URL http://doi.acm.org/10.1145/2063518.2063519.

[91] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeffrey Dean. Distributed representations of
words and phrases and their compositionality. In Pro-
ceedings of the 26th International Conference on Neu-
ral Information Processing Systems - Volume 2, NIPS’13,
page 3111–3119, Red Hook, NY, USA, 2013. Curran As-
sociates Inc. URL https://papers.nips.cc/paper/2013/file/
9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[92] David Milne and Ian H. Witten. Learning to link with
Wikipedia. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pages
509–518, New York, NY, USA, 2008. ACM. ISBN 978-
1-59593-991-3. URL http://doi.acm.org/10.1145/1458082.
1458150.

[93] Jose G. Moreno, Romaric Besançon, Romain Beaumont, Eva
D’hondt, Anne-Laure Ligozat, Sophie Rosset, Xavier Tan-
nier, and Brigitte Grau. Combining word and entity embed-
dings for entity linking. In Extended Semantic Web Confer-
ence (1), volume 10249 of Lecture Notes in Computer Sci-
ence, pages 337–352, 2017. URL https://perso.limsi.fr/bg/
fichiers/2017/combining-word-entity-eswc2017.pdf.

[94] Andrea Moro, Alessandro Raganato, and Roberto Navigli.
Entity Linking meets Word Sense Disambiguation: a Unified
Approach. Transactions of the Association for Computational
Linguistics, 2:231–244, 2014. URL https://www.aclweb.org/
anthology/Q14-1019/.

[95] David Mueller and Greg Durrett. Effective use of context
in noisy entity linking. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Process-
ing, pages 1024–1029, Brussels, Belgium, 2018. Association
for Computational Linguistics. URL https://www.aclweb.org/
anthology/D18-1126.

[96] David Nadeau and Satoshi Sekine. A survey of named entity
recognition and classification. Lingvisticae Investigationes,
30(1):3–26, 2007. URL https://nlp.cs.nyu.edu/sekine/papers/
li07.pdf.

[97] Roberto Navigli. Word sense disambiguation: A survey. ACM
Comput. Surv., 41(2):10:1–10:69, 2009. ISSN 0360-0300.
URL http://doi.acm.org/10.1145/1459352.1459355.

[98] Mojtaba Nayyeri, Sahar Vahdati, Jens Lehmann, and
Hamed Shariat Yazdi. Soft marginal transe for scholarly
knowledge graph completion. CoRR, abs/1904.12211, 2019.
URL http://arxiv.org/abs/1904.12211.

[99] Mojtaba Nayyeri, Sahar Vahdati, Can Aykul, and Jens
Lehmann. 5* Knowledge Graph Embeddings with Projec-
tive Transformations. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(10):9064–9072, May 2021. URL
https://ojs.aaai.org/index.php/AAAI/article/view/17095.

[100] Rostislav Nedelchev, Debanjan Chaudhuri, Jens Lehmann,
and Asja Fischer. End-to-End Entity Linking and Disam-
biguation leveraging Word and Knowledge Graph Embed-
dings. CoRR, abs/2002.11143, 2020. URL https://arxiv.org/
abs/2002.11143.

[101] Denis Newman-Griffis, Albert M. Lai, and Eric Fosler-
Lussier. Jointly embedding entities and text with distant su-
pervision. In Proceedings of The Third Workshop on Rep-
resentation Learning for NLP, pages 195–206, Melbourne,
Australia, 2018. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W18-3026.

[102] Dat Ba Nguyen, Martin Theobald, and Gerhard Weikum. J-
NERD: joint named entity recognition and disambiguation
with rich linguistic features. Transactions of the Associa-
tion for Computational Linguistics, 4:215–229, 2016. URL
https://www.aclweb.org/anthology/Q16-1016/.

[103] Thien Huu Nguyen, Nicolas Fauceglia, Mariano Ro-
driguez Muro, Oktie Hassanzadeh, Alfio Massimil-
iano Gliozzo, and Mohammad Sadoghi. Joint learning
of local and global features for entity linking via neural
networks. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers, pages 2310–2320, Osaka, Japan,
2016. The COLING 2016 Organizing Committee. URL
https://www.aclweb.org/anthology/C16-1218.

[104] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A
three-way model for collective learning on multi-relational
data. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11,
page 809–816, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

[105] Italo L. Oliveira, Renato Fileto, René Speck, Luís P.F. Gar-
cia, Diego Moussallem, and Jens Lehmann. Towards holis-
tic entity linking: Survey and directions. Information Sys-
tems, 95:101624, 2021. ISSN 0306-4379. URL http://www.
sciencedirect.com/science/article/pii/S0306437920300958.

[106] Yasumasa Onoe and Greg Durrett. Fine-grained entity typ-
ing for domain independent entity linking. Proceedings of
the AAAI Conference on Artificial Intelligence, 34(05):8576–
8583, Apr. 2020. . URL https://ojs.aaai.org/index.php/AAAI/
article/view/6380.

[107] Pekka Orponen. Computational Complexity of Neural Net-
works: A Survey. Nordic J. of Computing, 1(1):94–110,
March 1994. ISSN 1236-6064.

[108] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. The PageRank Citation Ranking: Bringing Or-
der to the Web. Technical Report 1999-66, Stanford InfoLab,
November 1999. URL http://ilpubs.stanford.edu:8090/422/.
Previous number = SIDL-WP-1999-0120.

[109] Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman,
Kevin Knight, and Heng Ji. Cross-lingual name tagging and
linking for 282 languages. In Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 1946–1958, Vancou-
ver, Canada, 2017. Association for Computational Linguis-
tics. URL https://www.aclweb.org/anthology/P17-1178/.

[110] Alberto Parravicini, Rhicheek Patra, Davide B. Bartolini, and
Marco D. Santambrogio. Fast and Accurate Entity Linking
via Graph Embedding. In Proceedings of the 2nd Joint Inter-
national Workshop on Graph Data Management Experiences
& Systems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA’19, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450367899. . URL
https://doi.org/10.1145/3327964.3328499.

[111] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk:
Online Learning of Social Representations. In Proceedings of
the 20th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’14, pages 701–710,
New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2956-9.
. URL http://doi.acm.org/10.1145/2623330.2623732.

http://doi.acm.org/10.1145/2063518.2063519
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
http://doi.acm.org/10.1145/1458082.1458150
http://doi.acm.org/10.1145/1458082.1458150
https://perso.limsi.fr/bg/fichiers/2017/combining-word-entity-eswc2017.pdf
https://perso.limsi.fr/bg/fichiers/2017/combining-word-entity-eswc2017.pdf
https://www.aclweb.org/anthology/Q14-1019/
https://www.aclweb.org/anthology/Q14-1019/
https://www.aclweb.org/anthology/D18-1126
https://www.aclweb.org/anthology/D18-1126
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf
https://nlp.cs.nyu.edu/sekine/papers/li07.pdf
http://doi.acm.org/10.1145/1459352.1459355
http://arxiv.org/abs/1904.12211
https://ojs.aaai.org/index.php/AAAI/article/view/17095
https://arxiv.org/abs/2002.11143
https://arxiv.org/abs/2002.11143
https://www.aclweb.org/anthology/W18-3026
https://www.aclweb.org/anthology/Q16-1016/
https://www.aclweb.org/anthology/C16-1218
http://www.sciencedirect.com/science/article/pii/S0306437920300958
http://www.sciencedirect.com/science/article/pii/S0306437920300958
https://ojs.aaai.org/index.php/AAAI/article/view/6380
https://ojs.aaai.org/index.php/AAAI/article/view/6380
http://ilpubs.stanford.edu:8090/422/
https://www.aclweb.org/anthology/P17-1178/
https://doi.org/10.1145/3327964.3328499
http://doi.acm.org/10.1145/2623330.2623732


32 Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[112] Maria Pershina, Yifan He, and Ralph Grishman. Personal-
ized page rank for named entity disambiguation. In Proceed-
ings of the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human
Language Technologies, pages 238–243, Denver, Colorado,
USA, 2015. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/N15-1026.

[113] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep
contextualized word representations. In The Thirty-Second
AAAI Conference on Artificial Intelligence, pages 2227–2237,
New Orleans, Louisiana, USA, 2018. AAAI Press. URL
https://arxiv.org/abs/1802.05365.

[114] Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith.
Knowledge enhanced contextual word representations. In
Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 43–54, Hong Kong, China, 2019. Asso-
ciation for Computational Linguistics. URL https://www.
aclweb.org/anthology/D19-1005.

[115] Francesco Piccinno and Paolo Ferragina. From TagME to
WAT: A New Entity Annotator. In Proceedings of the First In-
ternational Workshop on Entity Recognition |& Disambigua-
tion, ERD ’14, pages 55 – 62, New York, NY, USA, 2014. As-
sociation for Computing Machinery. ISBN 9781450330237.
URL https://doi.org/10.1145/2633211.2634350.

[116] Vera Provatorova, Svitlana Vakulenko, Evangelos Kanoulas,
Koen Dercksen, and Johannes M van Hulst. Named Entity
Recognition and Linking on Historical Newspapers: UvA.
ILPS & REL at CLEF HIPE 2020. In CLEF (Working Notes),
2020.

[117] Priya Radhakrishnan, Partha Talukdar, and Vasudeva Varma.
ELDEN: Improved entity linking using densified knowledge
graphs. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1844–1853, New Orleans, Louisiana, 2018. As-
sociation for Computational Linguistics. URL https://www.
aclweb.org/anthology/N18-1167.

[118] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.org/papers/
v21/20-074.html.

[119] Jonathan Raiman and Olivier Raiman. DeepType: Multi-
lingual Entity Linking by Neural Type System Evolution.
In AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA., 2018. URL https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/17148.

[120] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy
Liang. SQuAD: 100,000+ questions for machine compre-
hension of text. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages
2383–2392, Austin, Texas, November 2016. Association for
Computational Linguistics. . URL https://aclanthology.org/
D16-1264.

[121] Lev Ratinov, Dan Roth, Doug Downey, and Mike Anderson.
Local and global algorithms for disambiguation to Wikipedia.
In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 1375–1384, Portland, Ore-
gon, USA, 2011. Association for Computational Linguistics.
ISBN 978-1-932432-87-9. URL http://dl.acm.org/citation.
cfm?id=2002472.2002642.

[122] Nils Reimers and Iryna Gurevych. Reporting score distri-
butions makes a difference: Performance study of LSTM-
networks for sequence tagging. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Pro-
cessing, pages 338–348, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. . URL
https://aclanthology.org/D17-1035.

[123] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Proceedings
of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Con-
ference on Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China, November 2019. As-
sociation for Computational Linguistics. . URL https://
aclanthology.org/D19-1410.

[124] Shruti Rijhwani, Jiateng Xie, Graham Neubig, and Jaime
Carbonell. Zero-shot neural transfer for cross-lingual en-
tity linking. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6924–6931, Hon-
olulu, Hawaii, USA, 2019. URL https://ojs.aaai.org/index.
php/AAAI/article/download/4670/4548.

[125] Giuseppe Rizzo, Marieke van Erp, and Raphaël Troncy.
Benchmarking the extraction and disambiguation of named
entities on the Semantic Web. In Proceedings of the
Ninth International Conference on Language Resources
and Evaluation (LREC’14), pages 4593–4600, Reykjavik,
Iceland, 2014. European Language Resources Associa-
tion (ELRA). URL http://www.lrec-conf.org/proceedings/
lrec2014/pdf/176_Paper.pdf.

[126] Michael Röder, Ricardo Usbeck, and Axel-Cyrille Ngonga
Ngomo. GERBIL - Benchmarking Named Entity Recogni-
tion and Linking consistently. Semantic Web, 9(5):605–625,
2018. . URL http://www.semantic-web-journal.net/system/
files/swj1671.pdf.

[127] Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla.
You CAN Teach an Old Dog New Tricks! On Training
Knowledge Graph Embeddings. In International Conference
on Learning Representations, 2020. URL https://openreview.
net/forum?id=BkxSmlBFvr.

[128] Guergana K Savova, James J Masanz, Philip V Ogren, Ji-
aping Zheng, Sunghwan Sohn, Karin C Kipper-Schuler, and
Christopher G Chute. Mayo clinical Text Analysis and
Knowledge Extraction System (cTAKES): architecture, com-
ponent evaluation and applications. Journal of the American
Medical Informatics Association, 17(5):507–513, 2010.

[129] Özge Sevgili, Alexander Panchenko, and Chris Biemann. Im-
proving neural entity disambiguation with graph embeddings.
In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research Work-
shop, pages 315–322, Florence, Italy, 2019. Association for
Computational Linguistics. URL https://www.aclweb.org/
anthology/P19-2044/.

https://www.aclweb.org/anthology/N15-1026
https://arxiv.org/abs/1802.05365
https://www.aclweb.org/anthology/D19-1005
https://www.aclweb.org/anthology/D19-1005
https://doi.org/10.1145/2633211.2634350
https://www.aclweb.org/anthology/N18-1167
https://www.aclweb.org/anthology/N18-1167
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
http://dl.acm.org/citation.cfm?id=2002472.2002642
http://dl.acm.org/citation.cfm?id=2002472.2002642
https://aclanthology.org/D17-1035
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://ojs.aaai.org/index.php/AAAI/article/download/4670/4548
https://ojs.aaai.org/index.php/AAAI/article/download/4670/4548
http://www.lrec-conf.org/proceedings/lrec2014/pdf/176_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/176_Paper.pdf
http://www.semantic-web-journal.net/system/files/swj1671.pdf
http://www.semantic-web-journal.net/system/files/swj1671.pdf
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://www.aclweb.org/anthology/P19-2044/
https://www.aclweb.org/anthology/P19-2044/


Sevgili et al. / Neural Entity Linking: A Survey of Models Based on Deep Learning 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[130] Hamed Shahbazi, Xiaoli Fern, Reza Ghaeini, Chao Ma,
Rasha Mohammad Obeidat, and Prasad Tadepalli. Joint neu-
ral entity disambiguation with output space search. In Pro-
ceedings of the 27th International Conference on Computa-
tional Linguistics, pages 2170–2180, Santa Fe, New Mexico,
USA, August 2018. Association for Computational Linguis-
tics. URL https://aclanthology.org/C18-1184.

[131] Hamed Shahbazi, Xiaoli Z Fern, Reza Ghaeini, Rasha Obei-
dat, and Prasad Tadepalli. Entity-aware ELMo: Learning
Contextual Entity Representation for Entity Disambiguation.
arXiv preprint arXiv:1908.05762, 2019. URL https://arxiv.
org/abs/1908.05762.

[132] Rahul Sharnagat. Named entity recognition: A litera-
ture survey. Center For Indian Language Technology,
2014. URL http://www.cfilt.iitb.ac.in/resources/surveys/
rahul-ner-survey.pdf.

[133] Wei Shen, Jianyong Wang, and Jiawei Han. Entity Linking
with a Knowledge Base: Issues, Techniques, and Solutions.
Transactions on Knowledge & Data Engineering, 27(2):443–
460, 2015. URL http://www.computer.org/csdl/trans/tk/2015/
02/06823700-abs.html.

[134] Wei Shen, Jiawei Han, Jianyong Wang, Xiaojie Yuan, and
Zhenglu Yang. SHINE+: A General Framework for Domain-
Specific Entity Linking with Heterogeneous Information Net-
works. IEEE Transactions on Knowledge and Data Engineer-
ing, 30(2):353–366, 2018. .

[135] Wei Shi, Siyuan Zhang, Zhiwei Zhang, Hong Cheng, and Jef-
frey Xu Yu. Joint embedding in named entity linking on sen-
tence level. arXiv preprint arXiv:2002.04936, 2020. URL
https://arxiv.org/abs/2002.04936.

[136] Ilya Shnayderman, Liat Ein-Dor, Yosi Mass, Alon Halfon,
Benjamin Sznajder, Artem Spector, Yoav Katz, Dafna Shein-
wald, Ranit Aharonov, and Noam Slonim. Fast End-to-End
Wikification. arXiv preprint arXiv:1908.06785, 2019.

[137] Avirup Sil, Gourab Kundu, Radu Florian, and Wael Hamza.
Neural cross-lingual entity linking. In The Thirty-Second
AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA., 2018. AAAI Press. URL https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/16501/16101.
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