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Abstract. The information perceived via visual observations of real-world phenomena is unstructured and complex. Computer
vision (CV) is the field of research that attempts to make use of that information. Recent approaches of CV utilize deep learning
(DL) methods as they perform quite well if training and testing domains follow the same underlying data distribution. However,
it has been shown that minor variations in the images that occur when these methods are used in the real world can lead to un-
predictable and catastrophic errors. Transfer learning is the area of machine learning that tries to prevent these errors. Especially,
approaches that augment image data using auxiliary knowledge encoded in language embeddings or knowledge graphs (KGs)
have achieved promising results in recent years. This survey focuses on visual transfer learning approaches using KGs, as we
believe that KGs are well suited to store and represent any kind of auxiliary knowledge. KGs can represent auxiliary knowledge
either in an underlying graph-structured schema or in a vector-based knowledge graph embedding (KGE). Intending to enable
the reader to solve visual transfer learning problems with the help of specific KG-DL configurations we start with a description
of relevant modeling structures of a KG of various expressions, such as directed labeled graphs, hyper-relational graphs, and
hypergraphs. We explain the notion of feature extractor, while specifically referring to visual and semantic features. We provide a
broad overview of KGE-Methods and describe several joint training objectives suitable to combine them with high dimensional
visual embeddings. The main section introduces four different categories on how a KG can be combined with a DL pipeline: 1)
Knowledge Graph as a Reviewer; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer; and 4) Knowledge Graph
as a Peer. To help researchers find meaningful evaluation benchmarks, we provide an overview of generic KGs and a set of image
processing datasets and benchmarks that include various types of auxiliary knowledge. Last, we summarize related surveys and
give an outlook about challenges and open issues for future research.

Keywords: Knowledge Graph, Visual Transfer Learning, Knowledge-based Machine Learning

1. Introduction

Deep learning (DL) as a machine learning (ML)
technique is broadly used to successfully solve com-
puter vision (CV) tasks. Their main strength is their
ability to find complex underlying features in a given
set of images. A common method for training a
deep neural network (DNN) is to minimize the cross-
entropy (CE) loss, which is equivalent to maximizing
the negative log-likelihood between the empirical dis-
tribution of the training set and the probability dis-
tribution defined by the model. This relies on the in-
dependent and identically distributed (i.i.d.) assump-
tions as underlying rules of basic ML, which state that

the examples in each dataset are independent of each
other, that train and test set are identically distributed
and drawn from the same probability distribution [1].
However, if the train and test domains follow differ-
ent image distributions the i.i.d. assumptions are vi-
olated, and DL leads to unpredictable and poor re-
sults [2]. This has been demonstrated by using adver-
sarially constructed examples [3] or variations in the
test images such as noise, blur, and JPEG compres-
sion [4]. Moreover, authors in [5] even claim that any
standard DNN suffers from such an unpredictable dis-
tribution shift when it is deployed in the real world.
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Transfer learning is the area of machine learning
that tries to find approaches that can deal with such an
unpredictable distribution shift [5]. Most of the trans-
fer learning approaches try to solve the problem by in-
ducing a bias into the DNN to overcome data issues.
Especially, approaches that augment image data using
auxiliary knowledge encoded in language embeddings
or knowledge graphs (KGs) have achieved promising
results in recent years. Due to Larochelle et al. [6] aux-
iliary knowledge is not only important to solve transfer
learning problems, but also an opportunity to influence
the way a ML model learns from unstructured data.

In this survey, we focus on visual transfer learn-
ing approaches using KG, as we believe that KGs are
well suited to store and represent any kind of auxiliary
knowledge. KGs can represent auxiliary knowledge ei-
ther in an underlying graph-structured schema or in a
vector-based knowledge graph embedding (KGE). The
ability to transform the graph-based knowledge into
the vector space enables the application of linear op-
erations to KGEs and thus its use in combination with
DNNs. Following the successful application of lan-
guage embeddings, new opportunities are opening up
for the use of KGs for CV tasks.

We pursue the goal of enabling the reader to solve
visual transfer learning problems with the help of spe-
cific KG-DL configurations. Therefore, we first out-
line different types of modeling structures of knowl-
edge such as directed labeled graphs, hyper-relational
graphs, and hypergraphs. Next, we explain the notion
of feature extractor, specifically referring to visual and
semantic features, where the former mainly includes
DL-based visual models and the latter includes lan-
guage models and KGE-Methods. We provide a broad
overview of KGE-Methods and describe several joint
training objectives suitable to combine them with high
dimensional visual embeddings. The main section in-
troduces four different categories on how a KG can be
combined with a DL pipeline: 1) Knowledge Graph as
a Reviewer - the KG is used for post validation of a
visual model; 2) Knowledge Graph as a Trainee - the
KGE is influenced by the visual embedding; 3) Knowl-
edge Graph as a Trainer - the KGE influences the vi-
sual embedding; and 4) Knowledge Graph as a Peer -
the KGE and the visual embedding learn a joint em-
bedding space. Due to the shortage of visual trans-
fer learning approaches for category 3) or 4) and their
similarities to KGEs, we also considered approaches
that use other semantic embedding spaces such as lan-
guage embeddings as auxiliary knowledge. Further-
more, we provide an overview of generic KGs and sev-

eral datasets and benchmarks using various types of
auxiliary knowledge, like attributes, textual descrip-
tions, or graphs. Last, we summarize related surveys
in the field of visual transfer learning and knowledge-
based ML and give an outlook about challenges and
open issues for future research.

Our main contributions in this survey are listed in
the following:

• A categorization of visual transfer learning ap-
proaches using KGs according to four distinct
ways a KG can be combined with a DL pipeline.
• A description of generic KGs and relevant datasets

and benchmarks for visual transfer learning using
KGs for CV tasks.
• A comprehensive summary of the existing sur-

veys on visual transfer learning using auxiliary
knowledge.
• An analysis of research gaps in the area of visual

transfer learning using KGs which can be used as
a basis for future research.

2. Methodology

Our objective is to provide a comprehensive overview
of how KGs can be used in combination with DL to
solve visual transfer learning tasks. To ensure the qual-
ity of the outcome, we followed the process proposed
by Petersen et. al [7, 8] and conducted a initial search
on five scholarly indexing services. We applied in-
clusion and exclusion criteria on our findings and ex-
tended them based on the snowballing approach [9].

2.1. Research Questions

The combination of visual and semantic data seems
to be a promising direction to build models that can
cope with the diversity of the real world. However,
there are major challenges and questions that arise
when combining these modalities.

– RQ1 - How can a knowledge graph be combined
with a deep learning pipeline?

– RQ2 - What are the properties of the respective
combinations?

– RQ3 - Which knowledge graphs already exist,
that can be used as auxiliary knowledge?

– RQ4 - What datasets exist, that can be used in the
combination with auxiliary knowledge to evalu-
ate visual transfer learning?
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RQ1 and RQ2 will be answered in Section 4, where
we categorize and discuss visual transfer learning ap-
proaches based on how the KG is combined with the
DL pipeline. RQ3 and RQ4 will be answered in Sec-
tion 5, where we summarize available KGs, datasets,
and benchmarks that will help to compare approaches
of the field of visual transfer learning using KGs.

2.2. Literature Search

To collect relevant literature, we define a search
string using the following strategy:

– Extract major terms from research questions.
– Use synonyms and alternative terms.
– Combine using OR to include synonyms and al-

ternative terms.
– Combine using AND to join the key terms.

As a result, the following major terms related to the
concepts are derived: Knowledge Graph, Visual Trans-
fer Learning, and connect them by a Boolean AND
operation. Each term contains a set of keywords re-
lated to the respective concept, connected by a Boolean
OR operation. Therefore, the initial search string was
as follows: (("Knowledge Graph" OR "Knowledge
Graph Embedding" OR "Semantic Embedding")
AND ("Visual Transfer Learning" OR "Transfer
Learning" OR "Zero-shot Learning" OR "Deep
Learning" OR "Computer Vision"))

For the primary search process we used five schol-
arly indexing services: Google Scholar1, IEEE Xplore2,
ACM Digital Library3, Scopus4, and DBLP5.

2.3. Literature Selection and Quality Assessment

After literature search we included literature based
on the following criteria:

– Studies using visual features.
– Studies using auxiliary knowledge

Further, we excluded literature based on the follow-
ing criteria:

– Books and news articles.
– Non-English studies.
– Non-public available studies.

1https://scholar.google.com
2https://ieeexplore.ieee.org
3https://dl.acm.org
4https://www.scopus.com
5https://dblp.uni-trier.de

– Duplicate studies.

We reduced the amount of 16,200 studies after ap-
plying the inclusion and exclusion criteria on title and
abstract to 17 relevant surveys and 164 studies (1.12%)
During full-text reading it became obvious that fur-
ther articles should be removed as they were not in
the scope based on the inclusion and exclusion crite-
ria. The remaining articles (106) were used to conduct
backward snowball sampling [9], which led to 22 ad-
ditional studies. On the set of 128 primary studies we
conducted quality assessment on the following ques-
tions:

– Does the study provide a solid assessment?
– Are the results plausible?

Thus, we were able to reduce the number of studies to
124. These studies provide the basis for the survey and
serve to answer the formulated research questions.

3. Background

This section briefly introduces the general term
knowledge in the context of this survey, describes the
fundamentals of KGs, feature extractors, knowledge
grap embeddings, and joint training objectives.

Knowledge is the awareness, understanding, or in-
formation for a phenomenon or a subject that has been
obtained by observations or study6. It can be either
implicit or explicit and stored and represented in dif-
ferent ways. Explicit knowledge is the type of knowl-
edge that can be easily interpreted, organized, man-
aged, and transmitted to others. Implicit knowledge is
the form of knowledge that is gathered through obser-
vations and activities of everyday life. Using various
modeling techniques, complex explicit knowledge can
be formally represented in KGs. On the other hand,
a common method for gathering implicit knowledge
is to use feature extraction methods, that learn latent
knowledge representations, e.g. visual or semantic em-
beddings, from observations [1].

3.1. Knowledge Graph

There exist many ways for expressing, represent-
ing, and storing knowledge. In this survey, we focus
on KGs, a structured representation of facts, consist-
ing of entities, relationships, and semantic descrip-

6https://dictionary.cambridge.org/dictionary/english/knowledge
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tions. A comprehensive definition is given by the au-
thors of [10] where a KG is defined as a graph of
data with the objective of accumulating and conveying
real-world knowledge, where entities are represented
by nodes and relationships between entities are rep-
resented by edges. Knowledge can be expressed in a
factual triple in the form of (head, relation, tail). In
its most basic form, we see a KG as a set of triples
G = H,R,T , where H is a set of entities, T ⊆ E × L,
is a set of entities and literal values and R, set of rela-
tionships which connects H and R.

A graph model is a model which structures the
data, including its schema and/or instances in form of
graphs, and the data manipulation is realized by graph-
based operations and adequate integrity constraints[11].
Each graph model has its own formal definition based
on the mathematical foundation, which can vary ac-
cording to different characteristics, for instance, di-
rected vs undirected, labeled vs unlabeled, etc. The
most basic model is composed of labeled nodes and
edges, easy to comprehend but inappropriate to en-
capsulate multidimensional information. Other graph
models allow for the representation of information uti-
lizing complex relationships in the form of hypernodes
or hyperedges. In the following, we discuss three com-
mon graph models that are used in practice to represent
data graphs.

Directed Labeled Graphs: A directed labeled graph
is comprised of a set of nodes and a set of edges con-
necting those nodes, labeled based on a specific vocab-
ulary. The direction of the edge of two paired nodes
is important, which clearly distinguishes between the
start node and the end node. This intuitively enables
the organization of information via the utilization of
binary relationships.

Hyper-relational Graphs: A hyper-relational graph
is also a labeled directed multigraph where each node
and edge might have several associated key-value pairs
[12]. Internally, nodes and edges are annotated accord-
ing to a chosen vocabulary and have unique identifiers,
making them a flexible and powerful form of modeling
for graph analysis with weighted edges.

Hypergraphs: Hypergraphs extend the definition of
binary edges by allowing the modeling of multiple and
complex relationships. On the other hand, hypernodes
modularize the notion of node, by allowing nesting
graphs inside nodes. In addition, the notion of a hyper-
edge enables the definition of n-ary relations between
different concepts.

Table 1 illustrates the three graph models mentioned
above with some corresponding examples. A KG can
be based on any such graph model utilizing nodes and
edges as a fundamental modeling form.

3.2. Feature Extractor

A feature extractor is a transformation function
from higher dimensional into lower dimensional vec-
tor space, including a vast variety of dimensionality
reduction methods. Since it has been shown that most
downstream tasks can be solved better on a reduced di-
mensionality, feature extractors are also a fundamental
building block of modern systems working on visual
and semantic data.

However, more and more conventional feature ex-
traction methods have been replaced with DNNs. A
DNN is an artificial neural network (NN) with multi-
ple layers between the input and output layers, having
the ability to automatically extract lower dimensional
features from the input data.

Feature Extractor

Embedding

MLP

Input

0.1
0.0

0.1
0.8

ŷg(·)hf(·)x

Fig. 1. A DNN that takes x as input and predicts ŷ can be decou-
pled into a feature extractor f (·) with its embedding space h and a
prediction task g(·).

As depicted in Figure 1, a DNN can be decoupled
in a feature extractor f (·), with its embedding space h
and a prediction task g(·), expressing the function

ŷ = g( f (x)), with f (x) = h. (1)

There are different architectures of DNNs, but they
always consist of the same components: neurons,
synapses, weights, biases, and functions [1]. The most
common architectures that build a DNN are multi-
layer perceptrons (MLP), convolutional neural net-
works (CNN), recurrent neural networks (RNN), and
transformer models. Each architecture has its advan-
tages and is therefore preferred for a particular type of
input data and particular task [1].

Whereas, DNNs are usually trained end-to-end re-
sulting in a task-dependent embedding space h, more
recently, attempts have been made to independently
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Table 1
Various Graph Models. Three common graph models used as underlying structure for knowledge representation in KGs: 1) Directed Labeled
Graphs; 2) Hyper-relational Graphs; and 3) Hypergraphs.

Directed Labeled Graphs Hyper-relational Graphs Hypergraphs
Nodes and
Literals

- Real-world and abstract entities
- Entity’s attribute value

- Real-world and abstract entities
- Entity’s attribute value

- Real-world and abstract entities
- Entity’s attribute value

Relationships - Binary relations between entities
- Relations between an entity and its
attribute’s values

- Binary relations between entities
- Relations between an entity and its
attribute’s values
- Additional information encoded in
relationship (Hyper-relation)

- Binary relations between entities
- Relations between an entity and its
attribute’s values
- Many-to-many relations between en-
tities (Hyperedge)

Semantics Connect two nodes Connect two nodes with additional
contextual information

Connect an arbitrary set of nodes

Example

A

B

E

D

F

C

a
b

f

e

c

A

B

E

F

C

a
b f

e

c

y

x

z

D

A

B

E

F

C

y
x

B,F

C,E

z

f
b,f

b

c,e

c

e

D

a

pre-train the feature extractor that it can be applied
to several visual transfer learning and downstream
tasks [13].

3.2.1. Visual Features Extractor
A visual features extractor fv(·), shown in Figure 2a,

is a transformation function that transform visual input
data xv from an higher dimensional image space into a
lower dimensional visual embedding space hv.

A formal definition is given by

hv = fv(xv), (2)

where the final dimensionality of hv is determined by
the architecture.

Whereas early approaches used traditional visual
features extractors as scale-invariant feature trans-
form (SIFT)[14] or histogram of oriented gradients
(HOG) [15], modern CV methods use almost only
DNN-based approaches.

3.2.2. Semantic Features Extractor
A semantic features extractor fs(·), shown in Fig-

ure 2b, is a transformation function that transform se-
mantic input data xs from an higher dimensional image
space into a lower dimensional semantic embedding
space hs.

A formal definition is given by

hs = fs(xs), (3)

where the final dimensionality of hs is determined by
the architecture.

The term semantic data is here used for both, un-
structured data from language and structured data from
a KG. Although the input data structure differs in its
original format, the output of the semantic features ex-
tractor is always a low dimensional and vector-based
semantic embedding space. This similarity enables a
seamless transfer from hybrid approaches of vision
and language embeddings to hybrid approaches of vi-
sion and KGEs.

3.3. Knowledge Graph Embedding

A knowledge graph embedding method is part of the
semantic features extractors, as shown in Section 3.2.2,
and therefore a continuous vector representation hKG

of a discrete KG. Figure 3 illustrates a KGE-Method
which transforms a KG into a KGE.

In the past, KGE-Methods were often decoupled
from visual tasks and used more in the context of
graph-based tasks such as node classification or link
prediction. Due to the relationship to other semantic
features extractors, such as language embeddings, we
see great potential for KGE-Methods in visual object
classification, detection, or segmentation. It is impor-
tant to introduce several KGE-Methods and their cate-
gories since the final semantic embedding of a KG is
strongly influenced by them.
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Visual Features 
Extractor

Visual Embedding

xv hvfv(·)
(a) Visual features extractor

Semantic Features 
Extractor

Semantic Embedding

fs(·) hsxs

Eh
r t =

h r

t

distance

Text

(b) Semantic features extractor

Fig. 2. Feature extractors transform input data into embedding space: a) a visual features extractor transforms visual input data, i.e. images, into
visual embedding space; and b) a semantic features extractor transforms semantic input data, e.g. text or graphs, into semantic embedding space.

KGE-Method

Squirrel

Eh
r t = Squirrel

h
r

t
distance

DNNs

factorization models

linear/bilinear models

KG Embedding

Fig. 3. A KGE-method transforms a KG into a KG Embedding.

3.3.1. Unsupervised vs. Supervised KGE-Methods
Concerning Ji et al. [16], every KGE-Method can

be categorized based on the representation space (vec-
tor, matrix, and tensor space), the scoring function
(distance-based, similarity-based), the encoding model
(linear/bilinear models, factorization models, neural
networks), and the auxiliary information (text descrip-
tions, type constraints) that is used. However, for pur-
pose of the survey, the categorization of graph embed-
ding algorithms into unsupervised and supervised ap-
proaches proposed by Chami et al. [17] is more appro-
priate.

Unsupervised KGE-Methods only make use of the
graph structure and its node features to form an em-
bedding space. They do not consider task-specific la-
bels for the graph or its nodes. Methods can be divided
into shallow embedding methods, auto-encoders, and
graph neural networks (GNNs). KGE-Methods of the
shallow embedding methods learn a simple embedding
lookup. These methods are transductive and therefore
cannot be extended or transferred to other domains
than the training domain. They can be either distance-
based (TransE [18]), to force nodes that are close in the
graph to be close in the embedding space or similarity-
based, to remain similarities of the nodes using a dot-
product (RESCAL [19]). For further insights, we refer
to the survey of Wang et al. [20]. KGE-Methods us-
ing auto-encoders instead can encode non-linear com-

plex structures of graphs, by using DNN encoder and
decoder functions (SDNE [21]). KGE-Methods based
on GNNs can use node features in addition to the
graph structure. They pass information to neighbor
nodes until some stable equilibrium state is reached
(VGAE [22], DGI [23]).

Supervised KGE-Methods form the embedding space
by using task-specific labels for the graph and its
node features. Methods are categorized into shal-
low embedding methods, graph regularization meth-
ods, and graph convolution methods. Supervised shal-
low embedding methods learn an embedding lookup
likewise to its unsupervised counterpart. However,
their goal is to perform well on downstream tasks
as link prediction or node classification, instead of
learning a good graph representation only (LP [24]).
Rather than learning an embedding lookup, KGE-
Methods of the graph regularization methods learn
the embedding as a parametric function defined over
node features. This enables them to inductive set-
tings, where a learned graph embedding is used on
other domains. They can be further divided into Lapla-
cian methods (ManiReg [25]) and skip-gram methods
(node2vec [26], DeepWalk [27]). A subcategory of
GNNs are graph convolutional networks (GCN [28]).
Spectral graph convolutions apply convolutions in
the spectral domain of the graph Laplacian matrix.
Spectrum-based graph convolutional methods are lim-
ited by their domain dependency and cannot be applied
in inductive settings (SCNN [29]), and spectrum-free
methods require storing the entire graph adjacency ma-
trix, which can be computationally expensive for large
graphs (GCN [28]). Spatial graph convolutional meth-
ods use ideas such as neighborhood sampling and at-
tention mechanisms to overcome challenges posed by
graph irregularities (GAT [30]) None Euclidian graph
convolutional methods yield significant improvements
on graphs with hierarchical structure.
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3.3.2. Hyper-relational Graph and Hypergraph
KGE-Methods

The majority of existing KGE-methods and there-
fore most of the applications in the visual domain
only work with directed labeled graphs, expecting bi-
nary relations in a tripled-based format. However, as
shown in Section 3.1, a basic triplet representation
oversimplifies the complex nature of the information
that can be stored in hyper-relational graphs and hyper-
graphs [31]. Therefore, we provide a broad overview
of the possibilities of transforming more complex KGs
into appropriate KGEs so that they can be used in com-
bination with DNNs. It is always possible to transform
higher-relational graphs or hypergraphs into directed
labeled graphs, so that standard KGE-Methods can be
used. Reification converts more complex graphs into
binary-relation graphs, by creating additional triplets
from a hyper-relational fact and star-to-clique converts
a tuple defined on k entities into

(k
2

)
tuples [32]. How-

ever, these conversions lead to suboptimal and incom-
plete models, since they only convert a set of key-value
pairs, that are unaware of the triplet structure [31, 32].
Therefore, recently standard KGE-Methods have been
adopted to directly operate on hyper-relational graphs
(m-TransH [33], HypE, HSimple [32], RAE [34],
GETD[35], TuckER [36], NaLP[37], HINGE[31],
StarE [38]) and hypergraphs (HEBE [39], HGE [40],
Hyper2vec [41], HNN [42], HCN [43], DHNE [44],
HHNE [45], Hyper-SAGNN [46], HypE [32]).

3.4. Training Objectives for Joint Embeddings

Since visual and semantic information can be en-
coded in a vector-based embedding space, there are
several training objectives to learn a joint repre-
sentation. These objectives and also the DNNs are
optimized mainly using stochastic gradient descent
(SGD). SGD minimizes an objective, that measures
how far apart the ground truth from the predicted prob-
ability distribution or value is. The most common prin-
ciple to derive specific objectives that are good es-
timators for different models is the maximum likeli-
hood principle. Any of these objectives can be seen
as a cross entropy between the empirical distribution
defined by the training set and the probability distri-
bution defined by model [1]. Here we present some
of the basic objectives used in visual transfer learn-
ing using KG, which can be augmented with addi-
tional regularization terms or hyperparameters. Al-
though work [47, 48] showed that the objectives have a
smaller impact on learned DNN than suspected, there

are configurations of visual and semantic embedding
space that only allow certain objectives to be applied.
We define l ∈ RK as the network’s output (“logit”)
vector, and t ∈ 0, 1K as the one-hot encoded vector of
targets, where ‖t‖1 = 1. We refer to visual data as xv

and semantic data as xs, and equally to visual embed-
ding as hv and semantic embedding as hs.

3.4.1. Pointwise Objectives
Softmax Cross-Entropy (CE) [49] is the most com-
mon objective to learn multi-class classification tasks.
The softmax represents a probability distribution over
a discrete variable with K possible values, i.e. classes.
CE learns the DNN end-to-end by comparing the logits
l with the target vector t and is given by

LCE(l, t) = −
K∑

k=1

tk log

(
exp (lk)∑K
j=1 exp (l j)

)
(4)

= −
K∑

k=1

tklk + log

K∑
k=1

exp (lk) (5)

Mean Squared Error (MSE) is the most intuitive way
of attracting two vectors is using the MSE given by

LMS E =
1

K

K∑
k=1

‖hs,k − hv,k)‖2 . (6)

The MSE loss calculates the Euclidean distance and
maps a training image xv,k and its visual feature vector
hv,k) to a semantic embedding vector hs,k, correspond-
ing to the same class k [50].

However, using the Euclidian distance as a metric
fails in high-dimensional space [51]. A more appro-
priate metric in high dimensions is the cosine distance
given by sim(u, v) = u>v/ ‖u‖ ‖v‖.
3.4.2. Pairwise Objectives

Pairwise objectives [52] always rely on the informa-
tion of positive and negative samples. They have the
goal to pull positive visual embedding vectors hv,p to
its corresponding semantic embedding anchor vector
hs,a and push negatives hv,n away [53].

Triplet and Hinge Rank Loss [54] requires an ex-
plicit negative sampling. It uses a margin α as a regu-
larization term and it is given by

Ltri =
∑
n 6=p

max[0, α− sim(hs,a,hv,p)+ sim(hs,a),hv,n].

(7)



8 S. Monka et al. / A Survey on Visual Transfer Learning using Knowledge Graphs

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Contrastive Loss extends the triplet loss by a version
of the softmax and handles multiple positives and neg-
atives at a time and is given by

Lcon = − log
exp (sim(hs,a,hv,p)/τ)∑2N

n=1 1n 6=a exp (sim(hs,a,hv,n)/τ)
(8)

where, 1n 6=a ∈ {0, 1} is an indicator function that re-
turns 1 iff n 6= a, and τ > 0 denotes a temperature
parameter.

4. Visual Transfer Learning using Knowledge
Graphs

Visual transfer learning is presented in [55] as fol-
lows: Given a source domain DS with input data XS ,
a corresponding source task TS with labels YS , as well
as a target domain DT with input data XT and a target
task TT with labels YT , the objective of visual trans-
fer learning is to learn the target conditional probabil-
ity distribution PT (YT |XT ) with the information gained
from DS and TS where DS 6= DT or TS 6= TT . Zero-
Shot Learning and Domain Generalization are visual
transfer learning tasks with labeled source data and un-
labeled target data, where the former aims to extract
implicit knowledge of classes in the source task TS

and transfers this knowledge to unknown classes of the
target task TT , and the latter aims to extract implicit
knowledge of the source domain DS and transfer this
knowledge to an unknown target domain DT . If both
approaches additionally have access to a minimal set
of labeled target data XT , we call the task few-shot
learning or domain adaptation.

Visual Transfer Learning using Knowledge Graphs
has proven to be particularly advantageous compared
to approaches without auxiliary knowledge [50, 56].
Since auxiliary knowledge mitigates the sole depen-
dence on data distribution, it leads to models that are
better generalized and thus more robust and applicable
to new domains [6]. Having various kinds of auxiliary
knowledge, a KG can serve as a universal knowledge
representation. KGs encode the classes either hierar-
chically, organized in superclasses, or flat, using rela-
tionships to other objects or other classes. Section 3.1
presents three distinct modeling structures with differ-
ent levels of expressiveness and Section 3.3 introduces
relevant embedding methods. All approaches that use
a KG in combination with a DNN use the KG to im-
plement some prior assumptions in the data-driven DL

pipeline. A prior assumption induced by the KG, is
the definition of relationships between objects/classes,
so that objects/classes can borrow statistical strength
from other related objects/classes in the graph. These
priors give the CV process a structure that allows us to
make better predictions even when visual data is sparse
or erroneous. However, there are several ways the aux-
iliary knowledge of a KG can be induces into the DL-
Pipeline.

Referring to RQ1, this section provides a catego-
rization of visual transfer learning approaches that
combine KGs with the DL pipeline. As shown in Fig-
ure 4, we categorize the field of visual transfer learning
using knowledge graphs into: 1) Knowledge Graph as
a Reviewer, where the KG expects the visual embed-
ding as input; 2) Knowledge Graph as a Trainee, where
the KG uses the visual embedding as an objective; 3)
Knowledge Graph as a Trainer, where the KG suits as
an objective for the visual model; and 4) Knowledge
Graph as a Peer, where the KG and the visual model
are jointly used as an objective. Due to the shortage of
visual transfer learning approaches for category 3) or
4) and their similarities to KGEs as explained in Sec-
tion 3.2.2, we also consider approaches that use other
semantic embedding spaces such as language embed-
dings as auxiliary knowledge.

Regarding RQ2, we describe the categories and
their approaches in detail and discuss their field of ap-
plication and their properties. A summary of all ap-
proaches and their respective transfer task is given in
Table 2.

4.1. Knowledge Graph as a Reviewer

Figure 5 shows the idea of using a KG as a reviewer.
Visual model and KG are in a sequential order. The
KG acts as a reviewer, using the independent output of
a DNN as input to a graph or graph-based network to
enrich the final prediction with auxiliary knowledge. If
the model is learned end-to-end, the weights of the KG
are optimized based on the visual input and the task,
where the KG is used to reason over the output of a
visual model. However, unlike the other categories, the
KG as a reviewer does not align visual and semantic
embedding space.

Most of the approaches map the output of a visual
features extractor on the corresponding input nodes in
a hierarchical graph, to enrich the output with inter-
class relationships. Lampert et al. [57] train a support
vector machine (SVM) on SIFT features to predict bi-
nary animals with attributes (AwA) dataset attributes.
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Fig. 4. Visual transfer learning using KGs according to the role of the KG are split in four categories: 1) Knowledge Graph as a Reviewer; 2)
Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer; and 4) Knowledge Graph as a Peer.

These class attributes are fed into a hierarchical graph-
based network to predict unknown classes for a zero-
shot learning task. Salakhutdinov et al. [58] introduce
a hierarchical Bayesian classification model [59] that

learns a tree structure of class and super-class relation-
ships. They use their learned graph on top of an SVM,
which classifies HOG features of images. They show
that their method using a learned graph outperforms a
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Fig. 5. Approaches from the category Knowledge Graph as a Re-
viewer use the KG for post validation on an independent DNN or
visual features extractor.

method using a fixed graph based on WordNet7 [60]
and other approaches without hierarchical graph infor-
mation. Deng et al. [61] proposed the DARTS algo-
rithm for zero-shot learning. They pre-train an SVM
on SIFT features of the ImageNet [62] dataset and
map its classification output to WordNet with a re-
ward and an accuracy to maximize the information
gain. Ordonez et al. [63] extend the approach to out-
put human-understandable entry categories for images.
They enrich the output of an SVM-based image clas-
sification model with information from a text-based n-
gram language model by mapping both sources to the
corresponding node in the WordNet graph. Rohrbach
et al. [64] present propagated semantic transfer (PST).
They use WordNet and attribute vectors from the AwA
dataset to perform classification on few-shot learning
classes of ImageNet. PST exploits similarities in visual
embeddings of known classes encoded by an SVM
learning a k-Nearest Neighbor (kNN) graph that helps
to find relationships to new classes. Deng et al. [65]
introduce a hierarchy and exclusion (HEX) graph im-
plemented as a network layer that introduces hierar-
chical concepts. For the HEX graph, they use the hi-
erarchical structure of WordNet extended with addi-
tional specifications and relations to objects, such as
mutual exclusion (e.g., an object cannot be a dog and
a cat), overlap (e.g., a husky can be a puppy and vice
versa), and subsumption (e.g., all huskies are dogs).
In addition, they proposed a probabilistic classification
model using HEX graphs and evaluated their approach
on ImageNet, in object classification, and zero-shot
learning. Gebru et al. [66] use WordNet attributes to
improve fine-grained object classification on the task
of domain generalization with the office [67] and the
large-scale cars dataset [68]. Source and target domain
images are fed through a pipeline with two identical
CNNs and a classification layer that classifies both the
fine-grained classes and the different attribute types.
The Kullback–Leibler divergence is used to compare
the predicted label distributions instead of using CE or

7https://wordnet.princeton.edu/

hard constraints as the HEX graphs [65]. Lee et al. [69]
propose a graph gated neural network (GGNN) that
incorporates a structured KG based on WordNet and
learned edge weights to improve zero-shot learning.
First, an NN is learned that combines the GloVe [70]
language embeddings of the class labels and the pre-
trained visual feature vectors of the images as input to
the GGNN. Second, the GGNN learns to propagate the
information through the KG and outputs a final proba-
bility for each node.

Instead of using hierarchical graphs of WordNet
and class attributes only, other approaches make use
of flat object or class relationships. Their graph con-
sists of specific real-world configurations of objects
and their appearance. Marino et al. [72] improves fine-
grained image classification by creating a KG using
the most common object-attribute and object-object re-
lationships of the Visual Genome [105] dataset and
higher-level semantics from WordNet. The output of
a pre-trained, faster R-CNN [106] object detector is
fed into a graph search neural network (GSNN) which
reasons about relationships of the detected objects.
The final prediction is a combination of the GSNN
output, the visual embedding, and the detections of
the faster R-CNN. Chen et al. [73] propose an object
detection post-processing that connects a local and a
global module via an attention mechanism. The lo-
cal module is based on a convolutional gated recur-
rent unit (GRU) and builds spatial memory of previ-
ously detected objects using the class label and its vi-
sual embedding. The global graph-reasoning module
consists of two paths, a spatial path that uses a region
graph to connect far detected classes, and a seman-
tic path which uses a KG, based on ADE20K [107]
and Visual Genome, to connect classes with semanti-
cally related classes. Jiang et al. [74] extend [73] with
hybrid knowledge routed modules (HKRM) by allow-
ing them to be applied to intermediate feature repre-
sentations and checking the compatibility of auxiliary
knowledge with visual evidence in each image. HKRM
can be divided into an explicit knowledge module
and an implicit knowledge module, whereas the for-
mer contains external knowledge such as shared at-
tributes, co-occurrence, and relationships, and the lat-
ter is built without explicit definitions and forms a
region-to-region graph with constraints over objects,
as spatial knowledge such as layout, size, overlap.
Liu et al. [75] improve object detection by feeding
the final object detections into a GCN which is based
on object relationships and learned from MSCOCO
dataset [108]. Gong et al. [71] propose a human pars-

https://wordnet.princeton.edu/
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Category Sub-Category Task Transfer Domain Transfer Other
Knowledge Graph as a Reviewer [57], [61], [64], [65] [66], [71] [58], [63], [72], [73],

[74], [75], [76]

Knowledge Graph as a Trainee
Semantic-Visual
Transformation Model

[77], [78]

Semantic-Visual
Features Extractor

[56], [79], [80], [81],
[82]

[83]

Knowledge Graph as a Trainer
Visual-Semantic
Transformation Model

[84], [50], [53], [85],
[86], [87]

[88]

Visual-Semantic
Features Extractor

[89] [90], [91]

Knowledge Graph as a Peer
Hybrid
Transformation Model

[92], [93], [94], [95],
[96], [97], [98]

[92] [99], [100], [101],
[102]

Hybrid
Features Extractor

[103] [104]

Table 2
Categories and their tasks: Task transfer refers to the category zero and few-shot learning, domain transfer refers to the category domain gener-
alization and adaptation, and other relates to object classification, object detection and object segmentation on source task and domain only.

ing agent called "Graphonomy" that learns a knowl-
edge graph on a conventional parsing network. It con-
sists of an intra-graph reasoning module in form of a
GCN whose structure uses semantic constraints from
the human body to transfer knowledge within a dataset
due to encoded relationships between nodes, and an
inter-graph reasoning module, that uses handcrafted
relations, a learnable matrix, feature similarities, and
semantic similarities, to transfer semantic information
between different datasets. Liang et al. [76] present
a symbolic graph reasoning (SGR) layer for seman-
tic segmentation and image classification. It consists
of a module that assigns the class features to the cor-
responding nodes of the KG, a graph reasoning over
all previously defined nodes, and a mapping from the
symbolic graph information back to the vector space.
Their graph is based on an object relation graph from
Visual Genome and a hierarchical relation graph from
WordNet.

4.2. Knowledge Graph as a Trainee

As illustrated in Figure 6 visual and semantic model
are organized in a parallel order. Approaches that be-
long to the category Knowledge Graph as a Trainee
leverage auxiliary knowledge by providing a structure
for a semantic model, e.g. GNN, that is learned us-
ing a visual embedding and rely on the idea that se-
mantic similar classes should also have similar visual
embedding vectors. Unlike the Knowledge Graph as
a Reviewer, which uses the visual embedding as in-
put for the KG, approaches from the category Knowl-
edge Graph as a Trainee use the visual embedding

as an objective. The KG acts as a trainee and opti-
mizes its semantic embedding using the supervision
of a visual embedding to a semantic-visual embed-
ding. To combine visual and semantic information,
some approaches either learn a transformation func-
tion, e.g. MLP, on a pre-trained semantic embedding
space, e.g. language embedding, or apply GNNs to
learn a semantic-visual features extractor under super-
vision of a visual embedding. Therefore, the fixed vi-
sual relationship between classes is used to learn the
weights of the semantic relationship between classes.
The advantage of a KG-based semantic-visual feature
extractor is that relationships to other classes can be
explicitly defined after training, so that new classes
can be added without having to retrain the embedding
method. This is enabled by the inductive property of
GNNs, and is mostly used in zero-shot learning tasks.
However, most of the approaches use a combination of
fixed and dynamic semantic embeddings by initializ-
ing the nodes of the GNN using a language embedding
and learning the weights of the GNN using the output
of the visual embedding of the visual features extrac-
tor. Nevertheless, we count these methods as semantic-
visual features extractors.

Semantic-Visual Transformation Models: As shown
in Figure 6a, the pre-trained semantic features extrac-
tor is fixed over the whole training process and an addi-
tional transformation function, e.g. MLP, is learned to
transform semantic information, e.g. class label names,
into the semantic-visual embedding space. Approaches
that use language models as fixed embeddings, could
be replaced by KGEs, e.g. using shallow embedding
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Fig. 6. Approaches that belong to the category Knowledge Graph as a Trainee learn semantic visual embedding space supervised by a visual
embedding. They either learn a) a transformation function, e.g. MLP, on top of a pre-trained semantic embedding space or b) a semantic-visual
features extractor that learns the final embedding directly.

methods as defined in Section3.3. We claim that the
lack of methods using KG embeddings is precisely due
to their novelty, and KGEs could further improve the
following approaches.

Rochan et al. [77] used a fixed language embedding
to define relationships between classes, that unknown
classes in a zero-shot learning task can borrow their vi-
sual embeddings from a linear combination of known
related classes. Zhang et al. [78] extends the idea and
suggests using the visual space, instead of the seman-
tic space, as the main embedding space, to reduce the
hubness problem that occurs in high dimensions.

Semantic-visual features extractors: As illustrated in
Figure 6b the semantic-visual features extractor di-
rectly learns the semantic-visual embedding using the
supervision of the visual embedding space.

Instead of a fixed semantic embedding, approaches
belonging to this category use KGE-Methods that can
adapt their embedding to the task, here the visual em-
bedding space. Therefore, as defined in Section 3.3,
most approaches use supervised embedding methods,
as GNNs. Wang et al [56] build a GCN on the struc-
ture of WordNet and optimize it to predict ImageNet
pre-trained visual classifiers. Based on the learned re-
lations in the GCN they are able to transform informa-
tion to novel class nodes to perform zero-shot learn-
ing. A similar principle is used by Chen et al. [83]
for multi-label image recognition. However, instead
of using a hierarchical graph, the approach uses an
object-relation graph which reflects the different rela-
tions between objects in a scene. They build their graph
based on the occurrence probabilities of different ob-
jects in the MSCOCO dataset since some objects are
more likely to occur together. Kampffmeyer et al. [79]
claim that multi-layer GNN architectures, which are

required to propagate knowledge to distant nodes in
the graph, dilute the knowledge by performing exten-
sive Laplacian smoothing at each layer and thereby
consequently decrease performance. They propose a
dense graph propagation (DGP) module with direct
links among distant nodes to exploit the hierarchical
graph structure of the KG. They tested their approach
on zero-shot learning tasks as 21K ImageNet dataset
and AWA2. Gao et al. [80] designed a two-stream
GCN (TS-GCN) to perform zero-shot action recogni-
tion (ZSAR). Their GCN architectures are based on
the ConceptNet 5.5 KG, which contains information
from various knowledge bases such as WordNet and
DBpedia. The first classifier branch uses the language
embedding vectors of all classes as input for a GCN
and then generates the classifiers for each action cat-
egory. The second instance branch feeds video seg-
ments into a DNN and outputs object scores, which
are combined with attribute vectors from the classi-
fier branch using a post-processing GCN to form an
attribute feature space. The final objective is then de-
fined by a comparison of the attribute feature space and
the output of the classifier branch. Peng et al. [81] pro-
pose a knowledge transfer network (KTN), which ex-
tends [56] with a vision-knowledge fusion model. This
vision-knowledge fusion model is used to combine the
final prediction output of the GCN with the output of
a DNN, as they claim that semantic embeddings and
visual embeddings are complementary and therefore
cannot be combined with a single inner product. They
pre-train their visual feature learning module using co-
sine similarity on image data, use a subgraph of Word-
Net for their knowledge transfer module, and language
embeddings of the class labels as the initial state of the
nodes of the GCN. Chen et al. [82] present the knowl-
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edge graph transfer network (KGTN). The knowledge
graph transfer module incorporates a GGNN, which
supports knowledge transfer of classes through a KG.
To train GGNN, they fix the weights of a pre-trained
visual features extractor and examine three different
similarity metrics, such as inner product, cosine sim-
ilarity, and person correlation coefficient, to compare
the output of the DNN and the GGNN. They show that
the accuracy of the model benefits from a reasoning
process and the auxiliary knowledge from a KG.

4.3. Knowledge Graph as a Trainer

As shown in Figure 7 visual and semantic model
are organized in a parallel order. Methods belonging to
the Knowledge Graph as a Trainer category leverage
auxiliary knowledge by influencing DNNs in learn-
ing specific visual features. Therefore, the KG acts
as a trainer and supervises the training of the DNN
using its semantic embedding space, rather than let-
ting the DNN learn an independent visual embedding
space based on the data distribution of the images.
We refer to such an embedding of visual information
learned under the supervision of a semantic embed-
ding as a visual-semantic embedding. To combine se-
mantic and visual information, some approaches either
learn a transformation function, e.g. MLP, on a pre-
trained and fixed visual embedding space, e.g., lan-
guage embedding, or apply pairwise loss functions to
learn a visual-semantic features extractor and thus a
visual-semantic embedding space. Therefore, the fixed
semantic relationship between classes is used to learn
the weights of the visual relationship between classes.
The advantage of a visual-semantic feature extractor is
that the semantic embedding also influences the type
of learned visual features extracted from the dataset,
which can be helpful in scenarios with changing do-
mains. Although, most of the approaches use language
models as fixed embeddings, KGEs could be applied
straightforwardly, e.g. using shallow embedding meth-
ods as defined in Section 3.3. We claim that the lack
of methods using KG embeddings is precisely due to
their novelty, and KGEs could further improve the fol-
lowing approaches.

Visual-Semantic Transformation Models are learned
via a transformation function, e.g. MLP, from a pre-
trained visual embedding space into the semantic em-
bedding space, as depicted in Figure 7a. One of the first
approaches that use semantic embeddings with NNs is
the work from Mitchell et al. [88]. They use language

embeddings derived from text corpus statistics to gen-
erate neural activity pattern images. Instead of generat-
ing images from text, Palatucci et al. [84] learn a linear
regression model to map neural activity patterns into
language embedding space. Socher et al. [50] present a
model for zero-shot learning that learns a transforma-
tion function between a visual embedding space, ob-
tained by an unsupervised feature extraction method,
and a semantic embedding space, based on a language
model. The authors trained a 2-layer NN with the MSE
loss to transform the visual embedding into the lan-
guage embedding of 8 classes. Frome et al. [53] intro-
duce the deep visual-semantic embedding model De-
ViSE that extends the approach from 8 known and 2
unknown classes to 1,000 known and 20,000 unknown
classes. Therefore, they pre-train their visual features
extractor using ImageNet and their semantic embed-
ding vector using a skip-gram language model [109].
In contrast to Socher et al. [50] they learn a linear
transformation function between the visual embedding
space and the semantic embedding space using a com-
bination of dot-product similarity and hinge rank loss
since they claim that MSE distance fails in high di-
mensional space. Norouzi et al. [85] propose convex
combination of semantic embeddings (ConSE). ConSE
performs a convex combination of known classes in
the semantic embedding space, weighted by their pre-
dicted output scores of the DNN, to predict unknown
classes in a zero-shot learning task. Similarly, Zhang
et al. [86] introduce the semantic similarity embedding
(SSE), which models target data instances as a mix-
ture of seen class proportions. They built a semantic
space that each novel class could be represented as a
probabilistic mixture of the projected source attribute
vectors of the known classes. Akata et al. [87] refer to
their semantic embedding space transformations as la-
bel embedding methods. They compared transforma-
tion functions from the visual embedding space to the
attribute label embedding space, the hierarchy label
embedding space, and the Word2Vec [109] label em-
bedding space.

Visual-semantic features extractors: The approaches
mentioned so far only learn a transformation from vi-
sual embedding to semantic embedding. However, the
parameters of the feature extractors are not affected by
the auxiliary information. Thus, if the feature extractor
cannot detect visual features due to the domain shift
problem, the performance of the final prediction suf-
fers. A conceptual architecture is depicted in Figure 7b
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Fig. 7. Approaches that belong to the category Knowledge Graph as a Trainer learn visual semantic embedding space supervised by a semantic
embedding. They either learn a) a transformation function, e.g. MLP, on top of a pre-trained visual embedding space that suits as a transformation
function or b) a visual-semantic features extractor that learns the final embedding directly.

where the weights of the feature extractor are directly
influenced by the semantic embedding space.

Joulin et al. [90] demonstrate that feature extractors
trained to predict words in image captions learn use-
ful image representations. They converted the title, de-
scription, and hashtag metadata of images into a bag-
of-words multi-label classification task and showed
that pre-training a feature extractor to predict these
labels learned representations which performed simi-
larly to ImageNet-based pre-training on transfer tasks.
Radford et al. [91] claim that state-of-the-art CV
systems are restricted to predict a fixed set of pre-
determined object categories. Therefore, they pro-
pose to use a simple and general pre-training of their
CNN with natural language supervision, i.e. predicting
which caption goes with which image on a dataset of
400 million image-text pairs collected from the inter-
net using the objective of Zhang et al. [104]. Recently,
Monka et. al [89] presented an approach for the task
of domain adaptation that uses a directed labeled KG
of road signs (RoadSignKG). To use the KG in com-
bination with a DNN, the KG is transformed into a
vector-based KGE. They propose a contrastive learn-
ing method that is supervised by the KGE to learn the
weights of the visual features extractor. They show that
their visual features extractor learned using the Knowl-
edge Graph as a Trainer outperforms a conventional
DNN trained with CE and a similar DNN without aux-
iliary information of the KG in visual transfer learning
tasks.

4.4. Knowledge Graph as a Peer

As depicted in Figure 8 visual and semantic model
are organized in a parallel order. Approaches of the
category Knowledge Graph as a Peer leverage auxil-

iary knowledge by influencing semantic and visual em-
bedding equally. Unlike previous approaches, the idea
of a hybrid embedding space is to fuse the visual em-
bedding and semantic embedding to a hybrid embed-
ding space that contains information of both spaces.
The final hybrid embedding space is either a combi-
nation of pre-trained visual and semantic embedding,
learned by a transformation function, e.g. MLP, or a
combination of hybrid-visual and hybrid-semantic fea-
tures extractors, trained using a joint loss function.

Hybrid Transformation Models are learned via a
transformation function from pre-trained visual and se-
mantic embeddings into the hybrid embedding space.
As illustrated in Figure 8a semantic and visual features
extractors are fixed over the whole training process
and additional transformation functions, e.g. MLPs,
are learned to combine both spaces in a hybrid embed-
ding space.

Yang et al. [92] propose a two-sided NN to learn
a combination of a pre-trained visual embedding and
a semantic embedding of attributes and word vec-
tors based on image descriptions to perform zero-shot
learning and domain generalization. To train their NN
they use a Euclidean loss for regression and a hinge
rank loss for classification. Fu et al. [93] try to reduce
the bias of semantic embedding spaces, by propos-
ing a transductive multi-view embedding framework
that aligns novel features with the semantic embed-
ding space for zero-shot learning. The framework first
transforms the semantic embedding space into a joint
embedding space using the unlabeled target data with
a multi-view canonical correlation analysis (CCA) to
alleviate the projection domain shift problem. And
Second, a heterogeneous multi-view hypergraph label
propagation method is used to perform zero-shot learn-
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Fig. 8. Approaches that belong to the category Knowledge Graph as a Peer learn hybrid embedding space as a combination of visual and semantic
embedding space. They either learn a) transformation functions, e.g. MLPs, on top of both pre-trained visual and semantic embedding spaces
that suit as a transformation function or b) hybrid features extractors that learn the final embedding directly.

ing in the transductive embedding space, which com-
bines additional semantic knowledge in the form of at-
tributes and word vectors from related classes. Ba et
al. [94] introduce a flexible zero-shot learning model
that learns to predict unseen image classes using a
language embedding. Therefore, they add two sepa-
rate MLPs on top of the visual embedding and the se-
mantic embedding and train them using the binary-CE
loss, the hinge loss and the Euclidean distance loss.
Karpathy et al. [99] learn a model that generates lan-
guage descriptions for detected objects in an image.
Their objective aligns the output of a pre-trained CNN
applied to image regions, and the output of a bidi-
rectional RNN applied to sentences. Changpinyo et
al. [95] use a set of “phantom” object classes whose co-
ordinates live in both the semantic space and the model
space. To align the two spaces, they view the coordi-
nates in the visual embedding as the projection of the
vertices on the graph from the semantic embedding.
To compute low-dimensional Euclidean space embed-
dings from the weighted graph they propose to use the
algorithm of Laplacian eigenmaps, mapping seman-
tic and visual embedding into a common space de-
fined by the mixture of seen classes proportions. Tsai
et al. [96] propose the approach ReViSE that learns
an unsupervised joint embedding of semantic and vi-
sual features to enable zero-shot learning. As external
knowledge, they experiment with three different em-
bedding methods for their attributes, human-annotated
attributes [110], Word2Vec attributes, and GloVe at-
tributes. Zhao et al. [97] propose a joint model that
combines an image stream and a concept stream via
a joint loss function to preserve concept hierarchy as
well as visual feature similarities. The concept stream
is based on a language embedding with the hierarchi-

cal graph of WordNet and the image stream is a visual
embedding from semantic segmentation DNN. They
compare their approach against the standard CE-based
approach and semantic embedding space transforma-
tions based on Word2Vec. Tang et al. [100] propose
the large scale detection through adaptation (LSDA)
framework to improve object detectors with image
classification DNNs, hence without requiring expen-
sive bounding box annotations. LSDA defines visual
similarity as the distance between pre-trained visual
embedding vectors and semantic similarity as the dis-
tance between pre-trained language embedding vec-
tors of the labels. Jiang et al. [98] introduce their trans-
ferable contrastive network (TCN) explicitly trans-
fers knowledge from the source classes to the target
classes, to counteract the overfitting problem on source
classes. To compute the similarities between classes in
the hybrid embedding space, they design a contrastive
network that automatically judges how well the em-
bedding vector is consistent with a specific class. Li
et al. [101] propose a multi-layer transformer [111]
model as DNN, which uses object tags detected in im-
ages as anchor points to learn a joint embedding of
the detected objects and the language tags, instead of
simply concatenating visual embedding and seman-
tic embedding. Yu et al. [102] propose a knowledge-
enhanced approach, ERNIE-ViL, to learn joint repre-
sentations of vision and language using a transformer
model as DNN. ERNIE-ViL tries to construct the de-
tailed semantic connections across vision and language
while constructing a scene graph parsed from sen-
tences and type prediction tasks, i.e., object prediction,
attribute prediction, and relationship prediction in the
pre-training phase.
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Hybrid Features Extractors are randomly initialized
and trained by supervision of the hybrid embedding
space. Thus there is no additional transformation func-
tion needed, as a hybrid-visual features extractor and
a hybrid-semantic features extractor use the same hy-
brid embedding for visual and semantic input data, as
depicted in Figure 8b.

Zhang et al. [104] use two contrastive pre-training
objectives, contrasting semantic embedding to visual
embedding, and vice versa, on the special domain of
medical imaging to learn a joint feature extractor. In-
stead of previous works that learn transformation func-
tions on top of fixed image trained visual features
extractors they directly supervise the training of the
CNNs with language embedding information. To train
their DNN they use text-image paired data. Recently,
Naeem et. al [103] proposed a method to perform zero-
shot image classification using hybrid features extrac-
tors. An ImageNet pre-trained DNN is used for the vi-
sual features extractor and a GCN in the compositional
graph embedding (CGE) setting is used for the seman-
tic features extractor. However, they learn a joint em-
bedding function that can influence the weights of the
DNN as well as the weights from the GCN. Interest-
ingly, they compare their model against a similar ver-
sion of their model, but with a fixed visual features ex-
tractor where the KG just acts as a trainee (see Sec-
tion 4.2). They use that version for comparison with
related approaches, stating that all other methods are
based on fixed visual features extractors. Moreover,
they show that a hybrid approach with an adaptive vi-
sual features extractor performs better than the other.

5. Visual Transfer Learning Datasets and
Benchmarks

Building expressive knowledge graphs from scratch
can be a quite challenging task. Concerning RQ3, this
Section provides an overview about standard and large
scale KGs that can be used as auxiliary knowledge.
Moreover, as there are no standard datasets and bench-
marks to compare visual transfer learning tasks that
use KGs, we refer to RQ4 and provide a list of datasets
and benchmarks that have been used in the community
of knowledge-based ML and visual transfer learning
in Table 3. These Datasets and Benchmarks include: a)
Attribute augmented image datasets with textual image
or class attribute descriptions; b) Language augmented
image datasets, providing additional textual descrip-
tions of the images; c) Knowledge graph augmented

image datasets, containing meta information of class
relations in a KG; d) Zero-shot datasets without aux-
iliary knowledge, used to prove the ability of an ap-
proach to transfer to novel classes. e) Domain general-
ization datasets without auxiliary knowledge, used to
prove the ability of an approach to transfer to novel
domains.

5.1. Generic Knowledge Graphs

Over the years, several open-access KGs have
been created by various community initiatives. These
graphs contain universal knowledge which potentially
can be used as auxiliary knowledge in various sce-
narios. In the following, some of the most common
generic KGs currently available are described in more
detail. However, for deeper insights, we refer to the
survey of Färber et al. [112].

WordNet [60]: WordNet, firstly released in 1995, is
an online lexical reference system for English nouns,
verbs, and adjectives which are organized into syn-
onym sets (synsets), each representing one underly-
ing lexical concept. WordNet superficially resembles
a thesaurus, in that it groups words based on their
meanings. There are 117,000 synsets, each synset is
linked with other synsets by super-subordinate rela-
tions, forming a hierarchical structure of instances,
concepts and categories whereas all are linked with the
root node, entity.

ConceptNet 5.5 [113]: Is a KG that connects words
and phrases of natural language with labeled edges. Its
knowledge is collected from many sources that include
expert-created resources, crowd-sourcing, and games
with a purpose. It is designed to represent the general
knowledge involved in understanding language, im-
proving natural language applications by allowing the
application to better understand the meanings behind
the words people use. Information within Concept-
Net is modeled as a directed labeled graph (see Sec-
tion 3.1), where concepts are connected via binary re-
lationships. It contains approximately 34 million state-
ments, i.e. edges 8.

DBPedia [114]: Is a community effort to extract
structured information from Wikipedia and to make
this information available on the Web. DBpedia al-
lows you to ask sophisticated queries against datasets
derived from Wikipedia and to link other datasets

8https://conceptnet.io
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Type of Knowledge Task Dataset Auxiliary Knowlege Release Date

Attributes
+

Images

ZSL

AwA textual descriptions (img + cls) 2009
AwA2 textual descriptions (img + cls) 2019
SUN textual descriptions (img + cls) 2012
CUB textual descriptions (img + cls) 2010

Language
+

Images

Other

MS-COCO textual denotation graph 2014
Flickr30K textual denotation graph 2015

SBU Captions textual descriptions (img) 2011
Conceptual Captions textual descriptions (img) 2018

Knowledge Graph
+

Images

ZSL

Visual Genome flat concept graph 2017
ImageNet hierarchical concept graph 2009-2015

miniImageNet hierarchical concept graph 2016
tiredImageNet hierarchical concept graph 2018

Images

ZSL
CIFAR-100 N/A 2009-2015
CIFAR-FS N/A 2016

FC-100 N/A 2016

DG
Office-31 N/A 2009-2015

Office-Home N/A 2016
VisDA2017 N/A 2017

Table 3
Datasets and benchmarks of the field of visual transfer learning and knowledge-based ML are summarized due to type of knowledge, task,
auxiliary knowledge and their release date. ZSL is zero-shot-learning, DG is domain generalization, and other are tasks from image classification,
object detection, object segmentation, and image captioning.

on the Web to Wikipedia data. The underlying struc-
ture of DBpedia is a hypergraph model (see Sec-
tion 3.1) where facts are represented via binary and n-
ary relationships. The English version of the DBpedia
knowledge base describes 4.58 million things, out of
which 4.22 million are classified in a consistent ontol-
ogy, including 1,445,000 persons, 735,000 places, and
411,000 creative works 9.

Wikidata [115]: Is a KG, built collaboratively by hu-
mans or automated agents. It encapsulates facts about
the world entities organized in a form of complex state-
ments. The basic structure comprises items defined
with a label and several aliases. In addition, Wikidata
contains some sense of basic commonsense knowl-
edge [116] which allows for performing several so-
phisticated downstream tasks based on reasoning ca-
pabilities. The facts within Wikidata are represented
as a hyper-relation graph (see Section 3.1) where rela-
tions are enriched with additional information known
as qualifiers [38]. These qualifiers enable the disam-
biguation of complex facts about the same entities in
different contexts. Currently, Wikidata has 92.4 mil-
lion items, where around 6.3 million of them are hu-

9https://wiki.dbpedia.org/about

mans, 2 million administrative entities, 22.5 million
scholarly articles, and so on 10.

5.2. Datasets with Auxiliary Knowledge

Some datasets are built on auxiliary knowledge
bases or intended to use with auxiliary information.
We provide a categorization of the datasets and bench-
marks concerning the type of auxiliary knowledge it is
augmented with.

5.2.1. Attribute Augmented Image Datasets
Attribute augmented image datasets are image datasets

with additional descriptions of image and class at-
tributes, used for knowledge-based ML.

AwA [57]: The Animals with Attributes dataset con-
sists of over 30,000 images with pre-computed refer-
ence features for 50 animal classes, for which a se-
mantic attribute annotation is available from studies in
cognitive science. We hope that this dataset will facili-
tate research and serve as a testbed for attribute-based
classification. However, as AWA images does not have
the public copyright license, only some image features,
i.e. SIFT [14], DECAF [117], VGG19 [118] of AWA

10https://www.wikidata.org/wiki/Wikidata:Statistics, accessed on
02 February 2021

https://www.wikidata.org/wiki/Wikidata:Statistics
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dataset is publicly available, rather than the raw im-
ages. Since image feature learning is an important part
of modern CV, this dataset is of limited use for end-to-
end learned visual models.

AwA2 [119]: The Animals with Attributes 2 dataset
is recently introduced and has roughly the same num-
ber of images all with public licenses, and the same
number of classes and attributes as the AwA dataset.

CUB [120]: The Caltech-UCSD-Birds 200-2011
dataset is a fine-grained and medium scale dataset con-
cerning both the number of images and the number of
classes, i.e. 11, 788 images from 200 different types of
birds annotated with 312 attributes. Akata et al. [87]
introduces the first zero-shot split of CUB with 150
training, 50 validation, and 50 test classes.

SUN [121]: The Scene Categorization Benchmark
is also a fine-grained and medium-sized dataset, both
in terms of the number of images and the number
of classes., i.e. SUN contains 14340 images coming
from 717 types of scenes annotated with 102 attributes.
Lampert et al. [110] use 645 classes of SUN for train-
ing, 65 classes for validation, and 72 classes for test-
ing.

5.2.2. Language Augmented Image Datasets
These datasets are enriched with additional textual

descriptions and captions of images, used to support
DL pipelines. To categorize images based on the tex-
tual descriptions, denotation graphs are introduced and
are available for some datasets.

MS-COCO [108]: MS-COCO includes images of
complex everyday scenes with common objects in
their natural context. It contains a total of 2.5 million
labeled instances of 91 object types, in 328k images,
each accompanied with five human-written captions. It
is used for category detection, instance spotting, and
instance segmentation. Recently, Zhang et. al [122]
released an additionally learned denotation graph for
MS-COCO, which induces a partial ordering over the
textual image descriptions.

Flickr30K [123]: The Flickr30K is a standard bench-
mark for sentence-based image description and was
originally developed for the tasks of image-based and
text-based retrieval. The dataset contains 31K images
collected from the Flickr website, with five textual de-
scriptions per image. Each image is described indepen-
dently by five annotators who are not familiar with the
specific entities and circumstances, resulting in high-
level descriptions such as “Three people setting up a

tent”. The images are under the Creative Commons li-
cense. Moreover, they released a denotation graph for
the dataset [122].

SBU Captions [124] contains a large number of im-
ages from the Flickr website. They are filtered to
produce a data collection containing over 1 million
well-captioned images. The images have rich user-
associated captions from a web-scale captioned image
collection. These text descriptions generally work sim-
ilarly to captions and usually relate directly to some
aspect of the visual image content.

Conceptual Captions [125] consists of an order of
magnitude more images than the MS-COCO dataset
and represents a wider variety of both images and im-
age caption styles. Therefore, they extracted and fil-
tered image caption annotations from billions of inter-
net sources, e.g. webpages.

5.2.3. Knowledge Graph Augmented Image Datasets
These datasets are augmented with an additional KG

describing relations between classes or a scene in an
image.

Visual Genome [105] provides a flat concept graph
model of object relationships in images. Dense anno-
tations of objects, attributes, and relationships within
each image are collected. Specifically, the dataset con-
tains over 100K images where each image has an av-
erage of 21 objects, 18 attributes, and 18 pairwise re-
lationships between objects.

ImageNet [126]: The ImageNet large-scale visual
recognition dataset and Challenge is a benchmark in
object category classification and detection on hun-
dreds of categories and millions of images. The chal-
lenge has been run annually from 2010 to 2015. It con-
tains 1000 classes and more than 1,2 mil train, and
100K test images per class for object classification.
For object detection, it contains 1000 classes and more
than 450K training images with 470K bounding boxes,
50K validation images with 55K bounding boxes, and
40K test images per class.

miniImageNet [127] is a derivative of the ImageNet
dataset and consisting of 60K color images of size 84 ×
84 with 100 classes, each having 600 examples. Since
this dataset fits in memory on modern computers, it is
very convenient for rapid prototyping and experimen-
tation.
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tiredImageNet [128] is a subset of the ImageNet
dataset. It groups classes into broader categories cor-
responding to higher-level nodes in the ImageNet hier-
archy. There are 34 categories in total, with each cate-
gory containing between 10 and 30 classes. These are
split into 20 training, 6 validation, and 8 testing cat-
egories. This ensures that all of the training classes
are sufficiently distinct from the testing classes, unlike
miniImageNet.

5.2.4. Zero-Shot Datasets without Auxiliary
Knowledge

This section introduces datasets without auxiliary
knowledge that have been artificially extended with
KGs or auxiliary knowledge in recent works. However,
they were originally created without additional knowl-
edge.

CIFAR-10 [129] is an object recognition dataset with
10 classes. The dataset contains 80 mil color images
downscaled to 32 × 32 and spread out across 79K
search terms. In addition, it provides an unsupervised
learning subset of about 2 mil unlabeled images.

CIFAR-100 [129]: contains 100 classes for object
recognition and has the same properties as the CIFAR-
10 dataset. It contains 600 images in each of 100
classes. The 100 classes are further grouped into 20
superclasses.

CIFAR-FS [130] is randomly sampled from CIFAR-
100 by using the same criteria with which miniIma-
geNet has been generated. Moreover, the limited orig-
inal resolution of 32×32 makes the task harder and at
the same time allows fast prototyping. Moreover, the
dataset is used for the task of few-shot learning.

FC100 [131]: Fewshot-CIFAR100 is a derivative of
the CIFAR-100 dataset and provides a few-shot learn-
ing split of the full CIFAR-100 dataset. The dataset is
split into the superclasses, rather than into individual
classes to minimize the information overlap. Thus the
train split contains 60 classes belonging to 12 super-
classes, the validation and test contain 20 classes be-
longing to 5 superclasses each.

5.2.5. Domain Generalization Datasets without
Auxiliary Knowledge

In addition, we introduce widely used domain gen-
eralization or domain adaptation datasets without aux-
iliary knowledge.

Office-31 [67] is an object recognition dataset which
contains 31 categories and three domains, that is, Ama-
zon (A), Webcam (W), and DSLR (D). These three do-
mains have 2817, 498, and 795 instances, respectively.
The images in Amazon are the online e-commerce im-
ages taken from Amazon.com. The images in Webcam
are the low-resolution images taken by web cameras.
And the images in DSLR are the high-resolution im-
ages taken by DSLR cameras. In the experiments, ev-
ery two of the three domains are selected as the source
and the target domains, which results in six tasks. The
evaluation contains all 6 cross-domain tasks: A→D,
A→W, D→A, D→W , W→A,W→D.

Office-Home [132]: Office Home contains 15,585
images of 65 categories, collected from 4 domains: a)
Art: 2421 artistic depictions of objects in the form of
sketches, paintings, ornamentation, etc.; b) Clipart: a
collection of 4379 clipart images; c) Product: 4428 im-
ages of objects without a background, akin to the Ama-
zon category in Office dataset; d) Real-World: 4357
images of objects captured with a regular camera. The
evaluation contains all 12 cross-domain tasks.

VisDA2017 [133]: The 2017 Visual Domain Adapta-
tion dataset and challenge is focused on the simulation-
to-reality shift and has two associated tasks: image
classification and image segmentation. The goal in
both tracks is to first train a model on simulated, syn-
thetic data in the source domain and then adapt it to
perform well on real image data in the unlabeled test
domain. VisDA2017 is the largest dataset for cross-
domain object classification, with over 280K images
across 12 categories in the combined training, vali-
dation, and testing domains. The image segmentation
dataset is also large-scale with over 30K images across
18 categories in the three domains.

6. Related Surveys

Since our survey explores approaches that are at the
intersection of visual transfer learning and knowledge-
based machine learning, we look at well-known sur-
veys from both fields in this section. Furthermore, we
provide additional insight into surveys on the topic
of explainable AI, as the field is strongly related to
knowledge-based ML.

Visual Transfer Learning: Pan et al. [134] and Zhang
et al. [135] categorized the task of visual transfer learn-
ing into three main settings: inductive, transductive,
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and unsupervised transfer learning. In inductive trans-
fer learning the task changes from source to target,
whereas the domain stays the same. In transductive
transfer learning, the source and target tasks are the
same, while the source and target domains are differ-
ent. Finally, in the unsupervised transfer learning set-
ting, similar to inductive transfer learning, the target
task is different from but related to the source task.
However, unsupervised transfer learning focuses on
solving learning tasks when no labeled data is available
in the source and the target domain. [136] separated
the field into homogeneous and heterogeneous transfer
learning, whereas approaches of the former are devel-
oped and proposed for handling the situations where
the domains are of the same feature space and the latter
refers to the knowledge transfer process in the situa-
tions where the domains have different feature spaces.
Kaboli et al. [137] reviewed and structured 20 transfer-
learning approaches. Wang et al. [138] investigated the
field from the domain change perspective. If the do-
main change is small they call it homogeneous trans-
fer learning and if the domain change is large they call
it heterogeneous transfer learning. Zhang et al. [139]
further separated the field of transfer learning into 17
different tasks, based on supervision, the amount of
labeled data, and the size of the domain gap. Zhang
et al. [135] categorized transfer learning based on
their adaptation process into weakly supervised learn-
ing, instance re-weighting, feature adaptation, classi-
fier adaptation, deep network adaptation, and adver-
sarial adaptation. Wang et al. [140] provide a compre-
hensive survey about zero-shot learning methods and
their different semantic spaces. These semantic spaces
can either be engineered semantic spaces, generated by
attributes, lexicals, and text-keywords, or learned se-
mantic spaces, as label-embeddings, text-embeddings,
and image-representations. Xian et al. [119] recently
released a survey about zero-shot learning where they
structured the field into methods that learn linear
compatibility, nonlinear compatibility, intermediate at-
tribute classifier, or hybrid models.

Knowledge-Based Machine Learning: Only a few
surveys have investigated the field of knowledge-based
ML. Aditya et al. [141] investigated representative rea-
soning mechanisms, knowledge integration methods,
and their corresponding image understanding applica-
tions. Therefore, they divide auxiliary knowledge used
in CV into knowledge about objects, regions, and ac-
tions, and high-level common-sense knowledge and
provide an overview about frameworks that are capa-

ble of logic operations. Further, they briefly discuss
the knowledge integration in the DL era and catego-
rization approaches into: i) pre-process domain knowl-
edge and augment training samples, ii) vectorize parts
of knowledge base and input to intermediate layers,
iii) inspire neural network architecture from an un-
derlying knowledge graph, iv) post-process and rea-
son with external knowledge. We also include ii) and
iv) in our category Knowledge Graph as a Reviewer
since we see knowledge layers in the DNN as an in-
termediate reviewing and validation process. Category
iii) focuses on knowledge-based teacher models that
inspire a student DNN using knowledge distillation.
We can see similarities of iii) to the category Knowl-
edge Graph as a Trainer. However, we take this one
step further and provide additional categories of com-
bination, based on which type of information inspires
which. The Knowledge Graph as a Trainer, where the
KG inspires the visual DNN, the Knowledge Graph as
a Trainee where the KG gets inspired by the visual
DNN, and the Knowledge Graph as a Peer where both
KG and visual DNN inspire each other. Von Rueden et
al. [142] recently published a survey about knowledge-
based ML under the term informed machine learning.
They structure the field based on the source of the
knowledge, the representation of the knowledge, and
the integration of the knowledge into the ML pipeline.
Further, Gouidis et al. [143] structured the knowledge-
based ML literature into approaches with symbolic
knowledge, commonsense knowledge, and the ability
to learn new knowledge. They give an overview of dif-
ferent works that combines ML with knowledge-based
approaches in the field of CV. They categorized the
approaches due to their CV task, e.g. object detec-
tion, scene understanding, image classification, their
applied ML architecture, e.g. CNN, GNN, RCNN, and
their loss function, e.g. scoring functions, probabilis-
tic programming models, Bayesian Networks. Ding
et al. [144] reviewed all ontology applications in the
field of object recognition. Another research field in
demand is Explainable AI, where knowledge-based
methods and ML approaches are combined. Explain-
able AI refers to methods and techniques of ML such
that the results of the solution can be understood by
humans. Futia et al. [145] investigated the field of ex-
plainable AI using KGs and categorized approaches
into knowledge matching, cross-disciplinary and in-
teractive explanations. Chen et al. [146] and Chari et
al. [147] proposed to use hybrid explanations of a tax-
onomy generated for the end-user, including causal
methods, neuro-symbolic AI systems, and representa-
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tion techniques. Seeliger et al. [148] summarized se-
mantic web technologies that can provide valid expla-
nations for ML models, separating them due to their
ML technique and semantic expressiveness.

Our survey explores the field of visual transfer learn-
ing using KGs. Rather than just structuring the field,
we also aim to provide the necessary tools for using
KGs with DL pipelines to facilitate a straightforward
entry. Therefore, we present different modeling struc-
tures for KGs, concepts about visual and semantic em-
bedding spaces, and different methods for converting
KGs into a vector-based KGE. The main contribution
is a categorization into four individual ways of how a
KG can be used with a DL pipeline for visual trans-
fer learning tasks. To enable fair comparisons for ap-
proaches in the field we summarize available KGs,
datasets, and benchmarks.

7. Challenges and Open Issues

Integrating auxiliary knowledge in form of a KG
into the DL pipeline not only helps in tackling chal-
lenges such as catastrophic forgetting or the need for
a huge amount of data in transfer learning scenar-
ios, it also improves the robustness of DL approaches
against naturally occurring domain shift. However, ex-
ploiting this type of knowledge brings up new chal-
lenges related to knowledge representation and utiliza-
tion, which we are going to discuss in the following.

Relevant Knowledge and its Representation: A ma-
jor challenging task when dealing with modeling the
knowledge for a given domain is to analyze what type
of knowledge is relevant for performing a given task.
Currently, the majority of approaches focus on exploit-
ing only the type of knowledge that is truly irrelevant
to the context. Furthermore, the temporal aspects be-
tween pieces of knowledge are minimally exploited or
not exploited at all. As described in Section 3.1, vari-
ous modeling structures exist that can be used to repre-
sent multidimensional information. However, the dif-
ficulty raised here is keeping the trade-off between the
relevant knowledge and complexity of structures used
to represent that.

Evolving Knowledge: In daily scenarios, CV-related
applications based on ML consume an abundant amount
of data collected from various sensors. Typically, this
information is used for training purposes in form
of vectors performing complex calculations to learn
mathematical functions that best fit downstream tasks.

A crucial challenge here is to extract and integrate het-
erogeneous knowledge that can be managed and re-
fined by humans. Progress in the field of KG construc-
tion by embedding methods of language and informa-
tion extraction has already been achieved. [149–151].
This would enable the definition of different complex
rules and reusable knowledge structures which later
can be incorporated back to the existing or new ML
pipelines.

Knowledge Embedding Methods: As we pointed out
in Section 3.2.2, as a semantic features extractor ei-
ther can be used a knowledge graph embedding model
or a language model to form the respective embed-
ding spaces. With this assumption, we can apply KGEs
in various new domains, where language embeddings
have shown a potential for improving the robustness,
with the advantage that the KGE space can be manu-
ally adapted to our needs. This is done either by refin-
ing the knowledge in a KG or by using a particular em-
bedding method relevant to the graph structure to best
represent the inherent knowledge. The challenge here
is related to find suitable KGs and their modeling tech-
niques to form either task-specific or universal KGE
spaces that support and enhance DL approaches in CV.

Joint Embedding Learning: We have seen that ba-
sic supervised learning methods that use CE tend to
overfit the training data, leading to extensive problems
when applied scenarios with a domain shift. Finding
a good embedding space is crucial which would en-
able it to be applied to multiple downstream tasks. To
learn efficiently on high dimensional spaces, energy-
based functions instead of maximum likelihood seem
to be promising, which should be further investigated
under different requirements, like imbalance distribu-
tion within datasets. As described in Section 3.4, the
quality of the combination of visual and semantic em-
bedding space is highly dependent on the similarity
measure, the training objective, and the optimization
method. It is still an open challenge how to best fit
these three parameters to find accurate combinations
for a joint embedding space. Moreover, learning vi-
sual features extractors directly on semantic embed-
ding spaces with other features, e.g., temporal or con-
textualized embeddings, instead of discrete labels is a
major challenge for future research.

8. Discussion and Conclusion

Visual transfer learning using different types of aux-
iliary knowledge has gained increasing attention in
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research. Since initiatives for building and maintain-
ing generic knowledge graphs host a large research
community, we believe that exploiting them with DL
will improve various applications, especially in visual
transfer learning. The insights gained in this survey can
be useful to conceive solutions for addressing the iden-
tified challenges and open issues.

The survey investigates various forms of how KGs
as a unified representation of auxiliary knowledge can
be used based on a deep analysis of existing ap-
proaches. Different graph models, corresponding em-
bedding methods, and suitable training objectives to
operate on high-dimensional spaces are described in
detail. The major contributions of the survey are for-
mulated in four research questions presented in Sec-
tion 2. The answers to these questions are given as fol-
lows:

– RQ1 - How can a knowledge graph be combined
with a deep learning pipeline?
Approaches of the field of visual transfer learning
using KG can be separated into four distinct cate-
gories based on how the KG is combined with the
DL pipeline:
1) Knowledge Graph as a Reviewer - where the
KG is used for post validation of a visual model;
2) Knowledge Graph as a Trainee - where the
KGE is influenced by the visual embedding;
3) Knowledge Graph as a Trainer - where the
KGE influences the visual embedding; and
4) Knowledge Graph as a Peer - where the KGE
and the visual embedding influence each other.

– RQ2 - What are the properties of the respective
combinations? It can be seen that every category
has its applications in distinct tasks.
1) Knowledge Graph as a Reviewer - approaches
leverage auxiliary knowledge by using it as an in-
dependent post-validation. The KG or the GNN
enables reasoning over the output of the DNN.
However, the modalities are either learned inde-
pendently or in sequential order, so that semantic
and visual embedding space are not directly influ-
enced by each other.
2) Knowledge Graph as a Trainee - approaches
leverage auxiliary knowledge by providing a
structure for a semantic model, e.g. GNN, that
is learned using a visual embedding. Approaches
are used mainly in the zero-shot learning scenario
to extend the learned model to classes that are not
present in the training data, using the inductive

property of GNNs combined with the ability of
DNNs to extract relevant features of images.
3) Knowledge Graph as a Trainer - approaches
leverage auxiliary knowledge by influencing DNNs
in learning specific visual features. The DNN can
learn a image data distribution independent em-
bedding provided by a semantic embedding in-
stead of just using the data distribution. Thus, we
see the advantage of these approaches specifically
in domain generalization scenarios.
4) Knowledge Graph as a Peer - approaches
leverage auxiliary knowledge by influencing se-
mantic and visual embedding equally. Although
it is not clear which modality dominates the other
and therefore the learned embedding, approaches
have yielded quite promising results for zero-shot
learning and domain generalization tasks.

– RQ3 - Which knowledge graphs already exist,
that can be used as auxiliary knowledge? We pro-
vide a short overview of generic KGs that could
be used as a basis to form either specific or gen-
eral approaches for the task of visual transfer
learning using KGs.
WordNet, an online lexical reference system for
English nouns, verbs, and adjectives, often used
to build hierarchical relationship graphs of classes
in the image dataset.
ConceptNet 5.5, a commonsense KG that con-
nects words and phrases of natural language, of-
ten used to provide flat relationships between dif-
ferent classes of the image dataset.
DBPedia, a KG that represents structured infor-
mation from Wikipedia and therefore allows to
extract facts.
Wikidata, a commonsense KG built collabora-
tively by humans or automated agents with rea-
soning capabilities.

– RQ4 - What datasets exist, that can be used in the
combination with auxiliary knowledge to evalu-
ate visual transfer learning? We present several
vision datasets and cluster them based on the type
of auxiliary data they are augmented with.
Attribute Augmented Image Datasets, as Awa,
Awa2, CUB, and SUN.
Language Augmented Image Datasets, as MS-
COCO, Flickr30K, SBU Captions, and Concep-
tual Captions.
Knowledge Graph Augmented Image Datasets, as
Visual Genome, ImageNet, miniImageNet, and
tiredImageNet.
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Zero-Shot Datasets without Auxiliary Knowl-
edge, as CIFAR-10, CIFAR-100, CIFAR-FS, and
FC100.
Domain Generalization Datasets without Auxil-
iary Knowledge, as Office-31, Office-Home, and
VisDA2017.

Future work is directed on conducting extensive ex-
periments using KGs for visual transfer learning tasks
while measuring various metrics, such as precision, re-
call, and accuracy. Furthermore, it will be relevant to
investigate the impact of knowledge structures repre-
sented via the three common graph models, the impact
of different KGE-Methods, and the impact of the four
categories a KG can be combined with the DL pipeline
on the metrics as above. We hope that this survey will
help the reader to combine the technology of KGs and
DL to develop models that can benefit from the appro-
priate combination of visual information with underly-
ing semantic information.
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