
1 / 13

Components.js: Semantic Dependency
Injection

Ruben Taelman , Joachim Van Herwegen , Miel Vander Sande and Ruben Verborgh
IDLab, Department of Electronics and Information Systems, Ghent University – imec

E-mail: ruben.taelman@ugent.be
meemoo, Flemish Institute for Archives

Abstract.
A common practise within object-oriented software, is the use of composition to represent relationships between
objects. Dependency Injection (DI) is a popular technique to manage such compositions, which loosely couples
objects via minimal interfaces, and wires these objects together at runtime based on declarative configuration files.
Configurations for existing DI frameworks typically only have local semantics, which limits their usage in other
contexts. In some cases, such configurations are required outside of their local scope, such as for the reproducibili-
ty of experiments, static program analysis, and semantic workflows. As such, there is a need for globally interop-
erable, addressable, and discoverable configurations, which can be achieved by leveraging the power of Linked
Data. To resolve this need, we introduce Components.js, an open-source semantic DI framework for TypeScript
and JavaScript applications that gives global semantics to its Linked Data-based configuration files. In this article,
we report on the Components.js framework by explaining its architecture and configuration, and we discuss its
impact by mentioning where and how it is being used in other applications. We show that Components.js is a sta-
ble framework that has seen significant uptake during the last couple of years. We recommend it to be used within
software projects that require high flexibility, configuration without code changes, sharing configurations with
others, or using these configurations in other contexts such as experimentation or static program analysis. The
ever-increasing complexity of the world will depend on highly flexible software to manage it, for which frame-
works such as Components.js will be crucial foundations.

1. Introduction

Object-oriented (OO) programming is a highly pop-
ular paradigm within the domain of software engineer-
ing. Considering objects containing data and logic as
primary software elements makes it easy for develop-
ers to understand software, as it makes software re-
semble real-world mechanisms with interacting physi-
cal objects. Most OO languages allow objects to be
instantiated from classes that determine the object’s
type, where inheritance can be used to let classes ex-
tend from other classes, and thereby inheriting their
fields, methods, and type(s). Unfortunately, inheri-

tance is often overused in places where composition
would be better suited [1], where composition of ob-
jects (containment within each other) leads to more
flexibility in terms of object relationships, and thereby
leads to more loosely coupled objects.

A popular technique to manage the composition of
objects is called Dependency Injection (DI) [2]. It as-
sumes that objects are loosely coupled, and that they
only depend on each other via a minimal and generic
interface, without depending on concrete implementa-
tions of such interfaces. In order to link these inter-
faces to concrete implementations, a generic DI frame-
work can provide specific implementations where
needed based on some external configuration. Since

1 1 2 1

1

2

http://www.rubensworks.net/
https://ruben.verborgh.org/
https://martinfowler.com/articles/injection.html

2 / 13

Experimental research

Static program analysis

Semantic workflows

objects only communicate by strict interfaces, and spe-
cific implementations are derived from an external
configuration, the specific wiring of a software appli-
cation is not hard-coded anymore. Instead, this wiring
can be altered afterwards by modifying the configura-
tion file, which makes the application more flexible.

Configurations for existing DI frameworks are ei-
ther defined directly within a programming language,
or are defined declaratively within text files with a do-
main-specific language using syntaxes such as JSON
and XML. The latter type of configuration files is bet-
ter suited for use cases where no changes can be made
to existing code –e.g., in the case of pre-compiled lan-
guages–, when the creators of these configuration files
have no programming knowledge, or when configura-
tion files are created automatically from an external
tool –e.g., a visual drag-and-drop interface–. Such de-
clarative configuration files typically have only local
semantics, which means that they are usually only us-
able within the DI framework for which they were cre-
ated, and for the current application only. With the
power of Linked Data [3] and the Semantic Web [4] in
mind, these configurations could move beyond their
local scope, and make them globally interoperable,
addressable, and discoverable.

To this end, we present Components.js, a semantic
DI framework for TypeScript and JavaScript ap-
plications that gives global semantics to software con-
figurations, hence surpassing existing dependency in-
jection frameworks. Components.js thereby enables
highly modular applications to be built that are dy-
namically wired based on semantic configuration files.
The framework is open-source (https:/ /
github.com/LinkedSoftwareDependencies/Compo-
nents.js), available on npm (https:/ /
www.npmjs.com/package/componentsjs), and its com-
plete documentation can be found at https:/ / compo-
nentsjs.readthedocs.io/. Furthermore, it is being ac-
tively used as core technology within popular tools
such as the Solid Community Server (https://github.-
com/solid/community-server/) and Comunica [5].
Within Components.js, software configurations and
modules are described as Linked Data using the Ob-
ject-Oriented Components vocabulary [6] and the Ob-
ject Mapping vocabulary [6]. By publishing such de-
scriptions, the composition of software (and parts
thereof) can be unambiguously identified by IRIs and
retrieved through dereferencing. Components.js auto-
matically instantiates such software configurations,
including resolving the necessary dependencies. As

such, this (de)referenceability of software configura-
tions by IRI is beneficial in use cases such as:

Providing the full prove-
nance trail of used software configurations to produce
experimental results and enable reproducibility.

Discovering conflicts or
compatibility issues of different classes within soft-
ware using RDF tools such as SPARQL query engines
and reasoners.

Automatic wiring of software
using RDF tools to optimally address a specific need.

In this article, we introduce the Components.js
framework as follows. In the next section (Section 2),
we discuss the related work. Next, in Section 3 we ex-
plain the declarative configuration files of Compo-
nents.js, followed by an architectural overview of the
framework itself in Section 4. Then, in Section 5, we
mention some applications where Components.js is
being used. Finally, we conclude in Section 6.

2. Related Work

2.1. Dependency Injection

Inversion of Control
Inversion of Control (IoC) [2] is a general principle

within software engineering that inverts the usual flow
of control within software architectures. This is mostly
done to reduce coupling between software compo-
nents, and make the overall architecture more modular
and extensible. On the one hand, traditional procedural
programming gives the developer direct control of the
flow of logic, where code directly invokes other code.
IoC on the other hand implies the use of a framework
that manages this flow, and allows custom code –that
is supplied by the developer– to be invoked when the
frameworks deems it necessary. This concept is typi-
cally referred to as “The Hollywood Principle: Don’t
call us, we’ll call you”.

A specific technique to achieve IoC is Dependency
Injection (DI) [2]. As mentioned before, DI is based
on the composition of objects to enable relationships
between them (as opposed to inheritance). These com-
posed objects are tied to each other only by a light-
weight interface, where different implementations may
be possible for each interface. Using a DI framework,

https://www.w3.org/DesignIssues/LinkedData.html
https://www-sop.inria.fr/acacia/cours/essi2006/Scientific%20American_%20Feature%20Article_%20The%20Semantic%20Web_%20May%202001.pdf
https://github.com/LinkedSoftwareDependencies/Components.js
https://www.npmjs.com/package/componentsjs
https://componentsjs.readthedocs.io/
https://github.com/solid/community-server/
https://comunica.github.io/Article-ISWC2018-Resource/
https://linkedsoftwaredependencies.org/articles/describing-experiments/
https://linkedsoftwaredependencies.org/articles/describing-experiments/
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html

3 / 13

Constructor injection

Setter injection

Interface injection

specific implementations for such interfaces can be
configured, after which they can be instantiated into
objects, and are injected into each other using the DI
framework’s assembler to complete the wiring of the
software application.

The configuration of such a wiring of objects can
either be done in code, or via external configuration
files. The main motivations for configurations are the
strict boundaries between configuration and logic, en-
abling non-developers to configure the code, and tak-
ing away the need to recompile the code for pre-com-
piled languages. However, when dependencies are de-
fined based on some logic such as external conditions,
configuration via code may be better suited, as this can
become too complex to define in declarative configu-
ration files.

Forms of Injection
In practise, three main forms of DI exist through

which dependencies can be injected into a an object:

Dependency objects are
passed via a class constructor.

Dependencies are passed to an object
by invoking setter methods.

The interface of dependencies ex-
pose a method that –when invoked– injects this depen-
dency into an object that is passed to it. Such passed
objects will typically a setter method for this.

Constructor injection is the simplest and most popu-
lar form. It requires all dependencies to be wired at
construction time, which usually leads to immutable
wiring. Setter injection is more flexible as wiring can
be changed afterwards, but could lead to problems
where not all dependencies have been fully configured
yet. Interface injection is more complex, and is mainly
useful if bidirectional links between dependencies and
dependents need to be configured.

Advantages and Disadvantages
To end this section, we summarize the main advan-

tages and disadvantages of DI.
Advantages:
Classes are loosely coupled, which leads to lower
maintenance effort.
Loose coupling also leads to better testability, as
dependencies with lightweight interfaces can easily
be mocked.
Classes have a single responsibility, which leads to
better understandable code.

Applications are more flexible, as they can be wired
differently by changing a configuration file.
Applications are more extensible, as different inter-
face implementations can be created, and swapped
in or out easily.
Since classes are coded against interfaces of depen-
dencies, they lead to more independent code,
which is beneficial in large teams that work in
parallel.

Disadvantages:
Defining the wiring of an application via configu-
rations can be complex, so good defaults must be
available.
Logic flow is harder to follow when debugging,
which leads to the need of good documentation.
DI frameworks can lead to overhead in terms of
understandability, execution time and software size.

2.2. Semantic Software Description

Configuration-based DI frameworks make use of
some form of software description. Therefore, we in-
troduce the related work around semantic software
descriptions.

Software can be described on several levels of gran-
ularity, going from a high-level package overview to a
low-level description of the actual code. The Software
Ontology (SWO) [7] and Description of a Project
(DOAP) [8] ontology focus on the high-level manage-
ment of software development, enabling the descrip-
tion of tools, resources, contributors and tasks. At a
slightly lower level, SWO includes interfaces, algo-
rithms, versions, and the associated provenance data,
but does not reach the level of detail to describe opera-
tional code.

Ontologies that describe software configuration
from a research workflow perspective are
LODFlow [9], Workflow-Centric Research
Objects [10] with the Wf4Ever Research Object Model
and the Ontologies for Describing the Context of Sci-
entific Experiment Processes [11] with the TIMBUS
Context Model to compliment the Research Objects
model. From a more generic perspective, there exist
the PROV Ontology [12], the OPMW-PROV Ontol-
ogy [13], and the DDI-RDF Discovery
Vocabulary [14]. However, these efforts can only
cover (parts of) the connection between research and
software, which is insufficient for dependency injec-
tion. Such descriptions are however interpretive in that

https://betterprogramming.pub/the-6-benefits-of-dependency-injection-7802b207ec69
https://www.professionalqa.com/dependency-injection
http://usefulinc.com/ns/doap
http://svn.aksw.org/papers/2015/SEMANTICS_LDWPO/public.pdf
https://doi.org/10.1016/j.websem.2015.01.003
https://w3id.org/ro/
http://www.ifs.tuwien.ac.at/~mayer/publications/pdf/may_escience14.pdf
http://www.timbusproject.net/portal/publications/ontologies/
https://www.w3.org/TR/prov-o/
http://www.opmw.org/model/OPMW/
http://rdf-vocabulary.ddialliance.org/discovery.html

4 / 13

any given tool is subject to having multiple descrip-
tions by different users. In contrast to the human-dri-
ven descriptions, our work both enables and acceler-
ates the generation of machine-driven Linked Data de-
scriptions of software modules, their components, as
well as their configurations to be uniformly created.
Consequently, this makes it possible to accurately de-
scribe and instantiate software experiments that can be
reused and compared with unambiguously.

Much more low-level and exact is the Core Soft-
ware Ontology (CSO) [15], which provides a founda-
tional vocabulary that is designed for extensibility.
This includes the distinctive concepts to describe soft-
ware as code, software as object to computational
hardware, and software as a running computational ac-
tivity, but also Interfaces, Classes, Methods, the rela-
tionships between them, and workflow information on
their invocation. Its extension, the Core Ontology of
Software Components (COSC), moves closer to the
topic of this article by describing interfaces and proto-
cols of objects. Similar in scope is the Software Engi-
neering Ontology Network (SEON) [16], which con-
solidates multiple ontologies for the Software Engi-
neering field. It includes a higher Core and Founda-
tional layer, as well as multiple domain-specific on-
tologies. Of particular interest is their Software Ontol-
ogy (SwO) that captures the different artifacts in soft-
ware. In general, both ontologies (or suites) view soft-
ware from a “network of communicating concepts”
perspective. This allows for exhaustive descriptions of
complex software systems, but is not suited for de-
scribing class instances or aspects of modular pro-
gramming (e.g., package dependencies).

2.3. Dependency Injection Frameworks

The large spectrum of existing dependency injection
frameworks indicates a high demand for such systems.
Java likely contains the largest collection of dependen-
cy injection frameworks. Much of this stems from the
strict typing, which makes it difficult to create mock
objects when required for testing if the dependencies
are nested in the implementation.

One of the biggest Java frameworks is Spring,
which amongst many things, also provides dependen-
cy injection. That is one of its advantages though:
many projects already use Spring for other reasons,
reducing the jump required to add the dependency in-
jection framework. It supports two ways to do the in-
jection. The first one is through an external XML con-

figuration file which defines all the classes and how
they are linked together. The other one is with annota-
tions in the actual code that define how the interlink-
ing of classes should work. Google’s Guice is a more
lightweight alternative to Spring; Dagger was created
to be even more lightweight than Guice.

In JavaScript, dependency injection frameworks
tend to be less common because of its flexible nature.
However, with the increasing popularity of TypeScript
–which provides strict typings for JavaScript–, the
need for dependency injection is increasing. Still, mul-
tiple frameworks are available, such as BottleJS, Wire,
and Electrolyte, all backed by rather small communi-
ties. One of the biggest ones, InversifyJS, uses annota-
tions similar to Java frameworks to define possible in-
jections. Unlike standard JavaScript, it requires you to
define interfaces and types via TypeScript, thereby al-
lowing it to make use of this extra information to cor-
rectly handle the linking. Like Guice, it also has a
bindings file to link classes to interfaces.

Components.js differs from most of the aforemen-
tioned frameworks on different aspects, of which the
first one is unique to Components.js:

RDF-based configuration files in order to make
them globally interoperable, addressable, and dis-
coverable.
Decoupling of the dependency injection layer from
the software implementation via separate configura-
tion files.

3. Declarative Configurations

Components.js depends on two levels of configura-
tion for enabling the wiring of software components.
The first level is the creation of components files,
which are the semantic representation of component
(or class) constructors, and can usually be automatical-
ly generated. The second level is the creation of con-
figuration files, which represent the actual instantia-
tion of components based on the generated compo-
nents files.

In this section, we discuss the two main vocabular-
ies that are used within these component files, and
show how configuration files can refer to them for in-
stantiation. Next, we explain how URLs can be minted
for software components, so that they become fully
dereferenceable. Finally, we explain how these com-
ponent files can be generated automatically from ex-
isting TypeScript code.

https://spring.io/
https://github.com/google/guice
https://github.com/google/dagger
https://github.com/young-steveo/bottlejs
https://github.com/cujojs/wire
https://github.com/jaredhanson/electrolyte
https://github.com/inversify/InversifyJS

5 / 13

Module

Component

Configuration

3.1. Object-Oriented Components Vocabulary

Components.js distinguishes between three main
concepts:

a software package containing zero or more
components. This is equivalent to a Node module or
npm package.

a class that can be instantiated by creat-
ing a new instance of that type with zero or more para-
meter values. Parameters are defined by the class
constructor.

a semantic representation of an instan-
tiation of a component into an object instance based
on parameters.

These concepts are described in the programming
language independent Object-Oriented Components
vocabulary (OO) [6]. This vocabulary enables soft-
ware components to be instantiated based on certain
parameters, analog to constructor arguments in object-
oriented programming. This is interpreted in the broad
sense: only classes, objects and constructor parame-
ters are considered. An overview is given in Fig. 1.

A module is considered a collection of components.
Within object-oriented languages, this can correspond
to for example a software library or an application. A
component is typed as oo:Component, which is a sub-
class of rdfs:Class. The parameters to construct the
component can therefore be defined as an
rdfs:Property on a component.

We illustrate the usage of this vocabulary with an
example in Listing 1 using the JSON-LD [17] serial-
ization. This listing shows the definition of a new
module (oo:Module) with compact IRI ex:MyModule.
The name of the module is set with the compact IRI
requireName, which expands to doap:name from the
Description of a Project (DOAP) vocabulary. Further-
more, our module contains a single class component
(oo:Class) with compact IRI
ex:MyModule/MyComponent. Since this is a class com-
ponent (subclass of oo:Component), this means that
this component is instantiatable based on parameters.
Each component can refer to its path within a module
using the oo:componentPath predicate (compacted as
requireElement). Finally, our single component has a
parameter (oo:Parameter) with compact IRI
ex:MyModule/MyComponent#name that can be set when
instantiating this component.

Since components and parameters are defined as
RDFS vocabulary, we can instantiate components easi-
ly using the rdf:type predicate, and by using parame-
ters as predicates on such new instances, as shown in
Listing 2. Instead of passing literals as values to para-
meters, it is also possible to pass other component in-
stances as values, thereby allowing nested component
instantiations to be defined.

Fig. 1: Classes and properties in the Object-Orient-
ed Components vocabulary (OO), with as prefix oo.

{
 "@context": [
 "https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/
 ^4.0.0/components/context.jsonld",
 { "ex": "http://example.org/" }
],
 "@id": "ex:MyModule",
 "@type": "Module",
 "requireName": "my-module",
 "components": [
 {
 "@id": "ex:MyModule/MyComponent",
 "@type": "Class",
 "requireElement": "MyComponent",
 "parameters": [
 {
 "@id": "ex:MyModule/MyComponent#name",
 "unique": true,
 "range": "xsd:string"
 }
]
 }
]
}

Listing 1: A description of a module ex:MyModule
with a single component using the JSON-LD serializa-
tion, compacted with the https:/ /

linkedsoftwaredependencies.org/bundles/npm/com

ponentsjs/^4.0.0/components/context.jsonld

context.

https://linkedsoftwaredependencies.org/vocabularies/object-oriented
https://www.w3.org/TR/json-ld/
https://github.com/ewilderj/doap/wiki
https://linkedsoftwaredependencies.org/vocabularies/object-oriented

6 / 13

3.2. Object Mapping Vocabulary

As shown in the previous section, the OO vocabu-
lary allows modules, components, and parameters to
be defined, so that instances of components can be de-
clared. However, this vocabulary only defines parame-
ter values for component instances, but it does not de-
fine how these parameter values are used to invoke the
constructor of this component. To enable this, we in-
troduce the accompanying Object Mapping vocabu-
lary (OM) (https://linkedsoftwaredependencies.org/vo-
cabularies/object-mapping). Fig. 2 shows an overview
of all its classes and predicates.

The OM vocabulary makes use of the
oo:constructorArguments predicate for the domain
oo:Class, and thereby builds upon the OO vocabulary
via the oo:constructorArguments extension point to
define the class constructor’s behaviour. Concretely,
this new vocabulary defines a mapping between the
component parameters as defined using the OO vocab-
ulary, and the raw objects that are passed into the con-
structor during instantiation.

In essence, this vocabulary enables an (RDF list) of
om:ObjectMapping’s to be passed to the
oo:constructorArguments of an oo:Class. An
om:ObjectMapping represents an object containing
zero or more key-value pairs, which are represented by
om:ObjectMappingEntry. om:ArrayMapping is a spe-
cial type of om:ObjectMapping that represents an ar-

ray, where its elements can be other
om:ObjectMapping’s.

Building upon the OO example from Listing 3, we
illustrate the usage of this vocabulary with an example
in Listing 3, again using the JSON-LD serialization.
The only difference with the previous example, is the
addition of the constructorArguments block, which
expands to oo:constructorArguments that is config-
ured to always contain an RDF list. The constructor
arguments contain a single om:ObjectMapping, which
is implied by the presence of field, which expands to
om:field. Since the field array contains just a single
element (om:ObjectMappingEntry), it represents an
object with a single key and value. The key is defined
by keyRaw (expands to om:fieldName), which contains
the constant name. The value is defined by value (ex-
pands to om:fieldValue), which refers to the
ex:MyModule/MyComponent#name parameter.

The addition of an object mapping to a component
requires no changes as to how a component is instanti-
ated, which means that our component from Listing 3

{
 "@context": [
 "https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/
 ^4.0.0/components/context.jsonld",
 { "ex": "http://example.org/" }
],
 "@type": "ex:MyModule/MyComponent",
 "ex:MyModule/MyComponent#name": "Some name"
}

Listing 2: Instantiation of
ex:MyModule/MyComponent using a value for the para-
meter ex:MyModule/MyComponent#name.

Fig. 2: Classes and properties in the Object Map-
ping vocabulary, with as prefix om.

{
 "@context": [
 "https://linkedsoftwaredependencies.org/bundles/npm/componentsjs/
 ^4.0.0/components/context.jsonld",
 { "ex": "http://example.org/" }
],
 "@id": "ex:MyModule",
 "@type": "Module",
 "requireName": "my-module",
 "components": [
 {
 "@id": "ex:MyModule/MyComponent",
 "@type": "Class",
 "requireElement": "MyComponent",
 "parameters": [
 {
 "@id": "ex:MyModule/MyComponent#name",
 "unique": true,
 "range": "xsd:string"
 }
]
 }
],
 "constructorArguments": [
 {
 "fields": [
 {
 "keyRaw": "name",
 "value": "ex:MyModule/MyComponent#name"
 }
]
 }
]
}

Listing 3: A description of a module ex:MyModule
with a single component having constructor arguments
using the JSON-LD serialization, compacted with the
https:/ /

linkedsoftwaredependencies.org/bundles/npm/com

ponentsjs/^4.0.0/components/context.jsonld

context.

https://linkedsoftwaredependencies.org/vocabularies/object-mapping
https://linkedsoftwaredependencies.org/vocabularies/object-mapping#

7 / 13

can still be instantiated in the exact same way as the
one from Listing 1. The only difference now, is that
we are able to determine how exactly the parameter
values are to be used for invoking the component con-
structor. For example, the instantiation of Listing 2
corresponds to the following code in JavaScript: new
MyComponent({ name: 'Some name' })

3.3. Dereferenceability

In previous work [6] we introduced the Linked Soft-
ware Dependencies (LSD) service (https://linkedsoft-
waredependencies.org/), which makes all resource
URLs within components files fully dereferenceable.

Since our current focus is on enabling dependency
injection for JavaScript, this LSD service provides
Linked Data subject pages for all packages within the
npm package manager (https://www.npmjs.com/) for
JavaScript. For example, the URL https:/ /

linkedsoftwaredependencies.org/bundles/npm/@co

munica/core/1.21.1 is an identifier for the
@comunica/core package at version 1.21.1. Listing 4
shows a snippet of the JSON-LD contents when deref-
erencing this URL.

This LSD service allows creators of components
files to mint LSD-based URLs for their packages,
which will automatically become dereferenceable as
soon as these packages are published to npm. The

LSD service thereby removes the dereferenceability
responsibility from package developers that want to
use dependency injection via Components.js.

3.4. Generation From TypeScript

For larger projects, the manual creation of compo-
nents files for all classes in the project can require sig-
nificant manual effort, and can therefore become error-
prone. For projects that make use of a strongly-typed
language, such as TypeScript, all required information
to create such components files is in fact already avail-
able implicitly via the source code files. In order to
minimize manual effort for such projects, we provide
the open-source tool Components-Generator.js
(https://github.com/LinkedSoftwareDependencies/Comp
Generator.js/) for TypeScript projects.

Concretely, this tool can be installed into any Type-
Script project. When its command-line script is in-
voked, it scans all exported TypeScript classes within
this project, and generates corresponding components
files for them. In doing so, it preserves information
that is important for dependency injection, such as
component extensions via class inheritance relation-
ships and parameter types with constructor arguments
mapping via class constructors.

For example, assuming an npm package named my-
package containing the single TypeScript class from
Listing 5, Components-Generator.js will generate the
components file in Listing 6.

{
 "@context": [
 "https://linkedsoftwaredependencies.org/contexts/npm.jsonld",
 { "lsd": "https://linkedsoftwaredependencies.org/" }
],
 "@type": "doap:Version",
 "@id": "lsd:bundles/npm/%40comunica%2Fcore/1.21.1",
 "name": "@comunica/core",
 "version": "1.21.1",
 "description": "Lightweight, semantic and modular actor framework",
 "dependencies": {
 "@comunica/types": "lsd:bundles/npm/%40comunica%2Ftypes/%5E1.21.1",
 "immutable": "lsd:bundles/npm/immutable/%5E3.8.2"
 },
 "maintainers": [
 {
 "email": "mailto:rubensworks@gmail.com",
 "@id": "lsd:users/npm/rubensworks"
 }
],
 "dcterms:license": {
 "@id": "https://spdx.org/licenses/MIT.html",
 "rdfs:label": "MIT"
 },
 "lsd:scripts/npm/test": {
 "@id": "lsd:bundles/npm/%40comunica%2Fcore/1.21.1/scripts/test"
 }
}

Listing 4: Part of the JSON-LD contents of https:/
/

linkedsoftwaredependencies.org/bundles/npm/@co

munica/core/1.21.1.

/**
 * This is a great class!
 */
export class MyClass extends OtherClass {
 /**
 * @param paramA - My parameter
 */
 constructor(paramA: boolean, paramB: number) {

 }
}

Listing 5: TypeScript class that is used as input to
Components-Generator.js.

https://linkedsoftwaredependencies.org/articles/describing-experiments/
https://linkedsoftwaredependencies.org/
https://www.npmjs.com/
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1
https://github.com/LinkedSoftwareDependencies/Components-Generator.js/
https://linkedsoftwaredependencies.org/bundles/npm/@comunica/core/1.21.1

8 / 13

4. Dependency Injection Framework

Building on top of the declarative configurations
that were explained in previous section, we now dis-
cuss Components.js, which is a system that can inter-
pret these configurations for enabling dependency in-
jection within JavaScript/TypeScript projects. In this
section, we first explain the main architecture, fol-
lowed by the most relevant implementation details.

4.1. Architecture

Internally, the Components.js dependency injection
tool goes through three main phases:

Loading: Initialization of DI components, discovery
of modules, and loading of configuration files.
Preprocessing: Handling of constructor arguments
before construction.
Construction: Instantiation of JavaScript classes
based on configuration files.

These three phases are handled by the
ComponentsManager, which acts as the main entrypoint
of the framework as can be seen in Fig. 3 This manag-

er class is constructed via a static build method, via
which custom options can be passed, such as a call-
back for loading modules and configuration files.

For the sake of clarity, all UML architecture dia-
grams that we include in this article only contain sim-
plified representations of the actual classes. So there
may be minor differences when comparing the dia-
grams with the actual source code.

Hereafter, we explain these three phases in more
detail.

4.1.1. Loading

When the ComponentsManager is being built, the
loading phase will be initiated, which will make use of
the classes within the load package. The most impor-
tant classes within this package are shown in Fig. 4.

The ModuleStateBuilder is a class that is responsi-
ble for scanning the current JavaScript project and its
dependencies. The main objective of this class is to
build an IModuleState, that contains information such
as the paths to available components and
dependencies.

ComponentRegistry and ConfigRegistry are class-
es that are exposed via a callback to invokers of
ComponentsManager.build(). These classes respec-
tively enable modules and configurations to be regis-
tered, after they will be loaded.

4.1.2. Preprocessing

{
 "@context": [
 "https://linkedsoftwaredependencies.org/bundles/npm/my-package/
 ^1.0.0/components/context.jsonld"
],
 "@id": "npmd:my-package",
 "components": [
 {
 "@id": "ex:MyFile#MyClass",
 "@type": "Class",
 "requireElement": "MyClass",
 "extends": "ex:OtherFile#OtherClass",
 "comment": "This is a great class!",
 "parameters": [
 {
 "@id": "ex:MyFile#MyClass_paramA",
 "range": "xsd:boolean",
 "comment": "My parameter",
 "unique": true,
 "required": true
 },
 {
 "@id": "ex:MyFile#MyClass_paramB",
 "range": "xsd:integer",
 "unique": true,
 "required": true
 }
],
 "constructorArguments": [
 { "@id": "ex:MyFile#MyClass_paramA" },
 { "@id": "ex:MyFile#MyClass_paramB" }
]
 }
]
}

Listing 6: Components file that is generated by
Components-Generator.js from the TypeScript file
from Listing 5.

Fig. 3: UML diagram of the classes within the main
package, which contains the main entrypoint of the
framework.

Fig. 4: UML diagram of the classes within the load
package, which are responsible for loading compo-
nents and configurations.

9 / 13

Before a configuration is instantiated during the
construction phase, it always goes through a prepro-
cessing phase. Concretely, this involves processing all
parameters and constructor arguments, for which the
most relevant classes and interfaces are shown in
Fig. 5.

IConfigPreprocessor is an interface that represents
a preprocessing algorithm for a configuration, and can
have multiple implementations.

ConfigPreprocessorComponent is a preprocessor
that is able to determine what component is being in-
stantiated within a configuration. It will check if the
linked component exists, and it will validate all passed
parameters. For this parameter validation, the
ParameterHandler class is used, which works based
on a list of IParameterPropertyHandler’s. For in-
stance, parameter property handlers exist for validat-
ing the range of parameters, checking the uniqueness,
handling default values, and more.

ConfigPreprocessorComponentMapped is another
preprocessor that builds upon
ConfigPreprocessorComponent, so that it additionally
handles constructor arguments as defined by the Ob-
ject Mapping vocabulary. Concretely, after validating
parameters, it will handle the constructor arguments
recursively using a list of
IConstructorArgumentsElementMappingHandler’s.
These handlers can handle specific types of construc-
tor arguments and parameters, such as the conversion
of om:ObjectMapping to an object, and the conversion
of om:ArrayMapping to an array.

The end-result of the preprocessing phase is a con-
figuration that represents the raw constructor call of a
class, together with the required arguments.

4.1.3. Construction

The construction phase is responsible for instantiat-
ing a configuration. The main classes for this are
shown in Fig. 6.

ConfigConstructorPool is the main entrypoint that
is used when a user instantiates a configuration via
ComponentsManager.instantiate(). Before actually
instantiating a config, it will first check if it had been
instantiated before, in which case it returns it from a
cache. This may occur for nested configurations that
reuse the same component in different places. If the
config has not been instantiated before, it will first go
through the preprocessing phase as explained in the
previous section, after the processed config will be
passed on to the ConfigConstructor.

The ConfigConstructor is able to convert the rep-
resentation of a class constructor call into an actual
constructor call to obtain an object. For this, the argu-
ments of the constructor are first converted into actual
objects, which is done via a list of
IArgumentConstructorHandler’s. For example, han-
dlers exist to handle primitive values such as strings
and numbers, arrays, and references to other compo-
nents (which requires a recursive call to
ConfigConstructorPool). Once the arguments have
been resolved, the constructor can be applied to obtain
the final instantiated object.

By default, the ConfigConstructor assumes that
configurations are instantiated via the CommonJS
JavaScript standard, which is primarily used by the
Node.js framework. However, Components.js has
been designed to handle different kinds of instantia-
tion, which can be done via different
IConstructionStrategy’s. For instance, this allows
the framework to be compatible with other upcoming
JavaScript standards such as JavaScript modules.

Fig. 5: UML diagram of the classes within the pre-
process package, which are responsible for prepro-
cessing config parameters and constructor arguments.

Fig. 6: UML diagram of the classes within the con-
struct package, which are responsible for instantiating
configs according to a certain strategy.

https://nodejs.org/docs/latest/api/modules.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

10 / 13

4.2. Implementation

Components.js has been implemented in Type-
Script, and is available on GitHub (https:/ /
github.com/LinkedSoftwareDependencies/Compo-
nents.js) under the MIT license. At the time of writing,
the latest release is at version 4.4.1, which is published
via the npm package manager (https:/ / www.npmjs.-
com/package/componentsjs).

Due to the critical nature of this framework, it is be-
ing tested thoroughly. At the time of writing, it con-
sists of 538 unit tests, which reach a test coverage of
100%.

Components.js is being maintained by IDLab via
software projects that make use of this framework. A
sustainability of this project is available on GitHub
(https:/ /
github.com/LinkedSoftwareDependencies/Compo-
nents.js/wiki/Sustainability-Plan).

Finally, in-depth documentation is available (https:/ /
componentsjs.readthedocs.io/en/latest/), which ex-
plains how to create component and configuration
files, and how to invoke the DI tool.

5. Usage

The usage of an open-source project without the use
of any tracking software is a picture that is always in-
complete. Nevertheless, we analyze the usage of Com-
ponents.js in this section on two aspects: empirical us-
age via available metrics, and in-use analysis of spe-
cific projects. We discuss these two aspects hereafter.

5.1. Usage Metrics

As the source code of Components.js is hosted on
GitHub (https://github.com/LinkedSoftwareDependen-
cies/Components.js), it is possible to inspect the usage
of this project within other projects hosted on GitHub.
As of August 2 2021, there are 9 GitHub projects that
depend on Components.js directly, and 268 that de-
pend on it indirectly via transitive dependencies. This
shows that Components.js is primarily used as a core
library to support larger projects that have a broad
usage.

The npm package manager (https://www.npmjs.-
com/package/componentsjs) from which Compo-
nents.js can be installed offers us additional insights.
For the week of July 26 2021 until August 1 2021

there were 5.351 downloads, which is an average
number when comparing it to previous weeks. Howev-
er, there are outliers that have weekly downloads peak
up to around 200.000 downloads.

While these GitHub and npm metrics give us some
insight into the usage of Components.js, they are in-
complete, as projects may be hosted on other source
code platforms such as GitLab, Bitbucket, or even pri-
vate instances. Furthermore, direct downloads from
npm are also incomplete, as downstream users may
use bundling tools such as Webpack to incorporate the
Components.js source code directly within their li-
brary, which makes downloads of that library not go
via the the Components.js npm package anymore.
Therefore, we conclude that the metrics reported here
are merely a lower limit, and the actual usage is ex-
pected to be higher.

5.2. In-Use Analysis

In the previous section, we provided an informed
estimate as to how much Components.js is being used.
In this section, we provide an analysis of in what way
Components.js is being used in four real-world
projects: Solid Community Server, Handlers.js, Digita
Identity Proxy, and Comunica.

5.2.1. Solid Community Server

The Solid Community Server (https:/ /
github.com/solid/community-server/) is a server-side
implementation of the Solid specifications [18], which
provides a basis for the Solid decentralization effort.
When such a server is hosted, it allows users to create
their own personal storage space (pod) and identity, so
that this data can be used within any external Solid ap-
plication. This server is written in TypeScript, and is
being developed by Inrupt and imec, which includes
authors of this article.

This server makes use of dependency injection be-
cause a primary goal of the server is to be as flexible
as possible, so that developers can easily modify the
capabilities of the server, or even add additional capa-
bilities. This is especially useful in the context of re-
search, where new components can be added to the
server for experimentation, before they are standard-
ized and become a part of the Solid specifications. To
enable this level of flexibility, all components within
this server are loosely coupled, and are wired via cus-
tomizable Components.js configuration files.

https://github.com/LinkedSoftwareDependencies/Components.js
https://www.npmjs.com/package/componentsjs
https://github.com/LinkedSoftwareDependencies/Components.js/wiki/Sustainability-Plan
https://componentsjs.readthedocs.io/en/latest/
https://github.com/LinkedSoftwareDependencies/Components.js
https://www.npmjs.com/package/componentsjs
https://webpack.js.org/
https://github.com/solid/community-server/
https://solid.github.io/specification/
https://inrupt.com/
https://www.imec-int.com/en

11 / 13

Since the Solid Community Server makes use of
TypeScript, it is able to make use of the Components-
Generator.js tool as explained before in Section 3,
which avoids the need to manually create components
files, and thereby significantly simplifies the usage of
Components.js within this project. At the time of writ-
ing, this server contains 246 components that can be
customized via specific parameters, and wired togeth-
er to form a server instance with specific capabilities.

5.2.2. Handlers.Js

Handlers.js (https://github.com/digita-ai/handlersjs)
aims to provide a comprehensive collection of generic
logic classes, that can be wired together via the com-
position pattern. While this project is still under devel-
opment, it already provides numerous handlers and
services pertaining to data flows, storage, logging, er-
ror handling, as well as logic about serving data over
HTTP (routing, CORS, content negotiation …). This
project is written in TypeScript, and is being devel-
oped by Digita.

In contrast to the Solid Community Server, Handler-
s.js is not meant to be usable by itself as standalone
tool. Instead, it is an accompanying library that can be
used by other tools. The components within Handler-
s.js are meant to capture common patterns within
projects that depend on composition-based compo-
nents, so that they can be reused by other projects that
make use of DI frameworks such as Components.js.
While Components.js is the primary DI framework
this library was designed for, it does not strictly de-
pend on it thanks to the loosely coupling of the Com-
ponents.js DI layer and software implementations.

Handlers.js also make use of the Components-Gen-
erator.js tool to convert TypeScript classes into com-
ponents files. At the time of writing, this project ex-
poses 40 components that range from abstract logic
flows to specific ones for setting up a simple HTTP
server. Since components within Components.js have
global semantics, these components can be easily
reused across projects.

5.2.3. Digita Identity Proxy

The Digita Identity Proxy (not public at the time of
writing) is a Solid-OIDC (https://solid.github.io/au-
thentication-panel/solid-oidc/)-compliant proxy server
that acts as a modular, and easily configurable compat-
ibility layer for classic OIDC (https://openid.net/con-

nect/) Identity Providers. It enables Solid apps to au-
thenticate at Solid pod servers with these existing
identity services, without any necessary modification.
This project is also written in TypeScript, and is under
development by Digita.

Several components exists that enable additional
functionality of Solid-OIDC, which can be plugged
into the proxy when the need exists. With Compo-
nents.js, these components can be easily configured
and plugged in via a configuration file.

5.2.4. Comunica

Comunica [5] is another project that makes use of
Components.js at its core. Comunica is a highly modu-
lar SPARQL query engine that has been designed to be
a flexible research platform for SPARQL query execu-
tion. It has been written in TypeScript, and is devel-
oped by Ghent University, by authors of this article.

The modular nature of Comunica calls for a depen-
dency injection framework due to its actor-mediator-
bus paradigm. All logic within Comunica is placed
within small actors, which are registered on task-spe-
cific buses following the publish-subscribe pattern. In
order to select a certain actor on a bus for achieving a
certain task, the mediator pattern is applied, which al-
lows different actors to be selected based on different
actions. These actors, buses, and mediators are loosely
coupled with each other, and are wired together via
Components.js configuration files. For example, this
allows users of Comunica to create and plug in a dif-
ferent algorithm for resolving a certain SPARQL
query operator.

At the time of writing, Comunica does not yet make
use of the Components-Generator.js tool, as it was de-
veloped before Components-Generator.js was created.
Therefore, all components files within Comunica are
created manually, which shows that Components.js is
flexible in this regard.

As Comunica is a research platform for research
around query execution, the ability to reproduce ex-
periments is crucial. This is where the benefit of Com-
ponents.js becomes especially apparent. It is often the
case that research articles with experimental results
only report on the used software, without mentioning
the exact version and configuration that was used.
When using a Components.js configuration file, the
necessary semantics for accurately replicating such ex-
periments are available as Linked Data. The repro-
ducibility of experimental results is often considered

https://github.com/digita-ai/handlersjs
https://www.digita.ai/
https://solid.github.io/authentication-panel/solid-oidc/
https://openid.net/connect/
https://openid.net/connect/
https://www.digita.ai/
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.dev/docs/modify/advanced/architecture_core/
https://git.its.aau.dk/CLAAUDIA/teach_reproducibility/raw/commit/dbea465c0d10bca50b0cca23fd93afd0ffea08dc/litt/Wavelab%20and%20reproducible%20research.pdf

12 / 13

to be even more important than the research article it-
self [19], as the article can be considered to be merely
advertising of the scholarship.

6. Conclusions

After more than four years of development, Compo-
nents.js has become a stable Dependency Injection
framework for TypeScript and JavaScript projects, and
has seen a significant uptake by popular tools that
make use of it as core technology. It has been shown
to be useful for enabling the primary tasks of a DI
framework, but thanks to its semantic configuration
files, it also brings with it the power of Linked Data
and the Semantic Web for enabling globally interoper-
able and discoverable configurations. Using the
Linked Software Dependencies service, components
and configurations become dereferenceable and
citable, which allows software configurations to be
shared easily with others, which is for example benefi-
cial for improving the reproducibility of software
experiments.

The previous section has shown that Components.js
provides significant value in real-world applications.
On the one hand, tools such as Solid Community
Server and Comunica allow developers and re-
searchers to rewire these applications based on their
specific needs. On the other hand, applications by
companies such as Digita depend on this flexibility for
making logic changes via configuration files, as they
want to enable their clients to make changes by only
modifying the configuration files, since their clients
are sometimes non-technical people that have limited
programming knowledge.

We can recommend Components.js for
TypeScript/JavaScript projects that have at least a sub-
set of the following characteristics:

Architectures that require high modularity and
flexibility;
Need to modify wiring of components without
changing code;
Need for ability to share wiring configurations
with others;
Managing and including configurations across dif-
ferent projects;
Using configurations in other contexts.

As with all DI frameworks, Components.js comes
with the downside that for large applications, configu-
rations can become complex and logic flow may be
harder to follow. In order to mitigate these risks, we
recommend a structured management of configuration
files, which may involve splitting up configuration
files based on your architecture’s primary subsystems,
which is the approach followed by large projects such
as Solid Community Server and Comunica.

In future work, we do not foresee the need for any
major changes or additions within the Components.js
framework itself, aside from keeping up with new lan-
guage features from JavaScript and TypeScript. How-
ever, all large projects that make use of Components.js
have identified the need for better tooling to create and
manage configuration files. For example, the Comuni-
ca project is developing a graphical user interface
(https://github.com/comunica/comunica-packager) to
visually customize the wiring of the engine, which can
then be exported into a reusable configuration file.
Since Components.js configurations make use of the
Linked Data principles, it is possible to create a gener-
ic user interface to create such configuration files for
any project that makes use of Components.js. Further-
more, since components and configuration files are
largely programming language-independent, it is pos-
sible to create equivalent implementations of Compo-
nents.js for other OO languages such as Java and C#.

In general, Components.js gives us the necessary
foundation for building next-level applications that de-
pend on high flexiblity, such as smart agents. These
applications are crucial for environments such as
Linked Data and the Semantic Web, which require and
benefit from this level of flexibility. Therefore, DI
frameworks such as Components.js pave the road to-
wards a world with more flexible applications.

Acknowledgements

We thank Wouter Termont for sharing his insights
into the usage of Components.js within the products of
Digita. The described research activities were funded
by Ghent University and imec. Ruben Taelman is a
postdoctoral fellow of the Research Foundation –
Flanders (FWO) (1274521N).

https://git.its.aau.dk/CLAAUDIA/teach_reproducibility/raw/commit/dbea465c0d10bca50b0cca23fd93afd0ffea08dc/litt/Wavelab%20and%20reproducible%20research.pdf
https://github.com/comunica/comunica-packager

13 / 13

References

[1] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Pat-
terns, D.: Elements of Reusable Object-Oriented Soft-
ware. Design Patterns. massachusetts: Addison-Wesley
Publishing Company. (1995).

[2] Fowler, M.: Inversion of Control Containers and the
Dependency Injection pattern. https:/ / martinfowler.-
com/articles/injection.html (2004).

[3] Berners-Lee, T.: Linked Data. https:/ / www.w3.org/De-
signIssues/LinkedData.html (2006).

[4] Berners-Lee, T., Hendler, J., Lassila, O., others: The
Semantic Web. Scientific American. 284, 28–37
(2001).

[5] Taelman, R., Van Herwegen, J., Vander Sande, M., Ver-
borgh, R.: Comunica: a Modular SPARQL Query En-
gine for the Web. In: Proceedings of the 17th In-
ternational Semantic Web Conference (2018).

[6] Van Herwegen, J., Taelman, R., Capadisli, S., Ver-
borgh, R.: Describing configurations of software exper-
iments as Linked Data. In: Proceedings of the 1st Sem-
Sci Workshop (2017).

[7] Malone, J., Brown, A., Lister, A.L., Ison, J., Hull, D.,
Parkinson, H., Stevens, R.: The Software Ontology
(SWO): a resource for reproducibility in biomedical
data analysis, curation and digital preservation. Journal
of biomedical semantics. 5, 25 (2014).

[8] Wilder-James, E.: Description of a Project. http:/ / use-
fulinc.com/ns/doap (2017).

[9] Rautenberg, S., Ermilov, I., Marx, E., Auer, S., Ngonga
Ngomo, A.-C.: LODFlow: A Workflow Management
System for Linked Data Processing. In: Proceedings of
the 11th International Conference on Semantic Sys-
tems. pp. 137–144. ACM (2015).

[10] Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Het-
tne, K., Palma, R., Mina, E., Corcho, O., Gómez-Pérez,
J.M., Bechhofer, S., Klyne, G., Goble, C.: Using a suite
of ontologies for preserving workflow-centric research
objects. Web Semantics: Science, Services and Agents
on the World Wide Web. 32, 16–42 (2015).

[11] Mayer, R., Miksa, T., Rauber, A.: Ontologies for De-
scribing the Context of Scientific Experiment Process-
es. In: 10th International Conference on e-Science.
IEEE (2014).

[12] Lebo, T., Sahoo, S., McGuinness, D.: Prov-O: The
PROV Ontology. W3C, https:/ / www.w3.org/TR/prov-
o/ (2013).

[13] Garijo, D., Gil, Y.: OPMW-PROV Ontology. http:/ /
www.opmw.org/model/OPMW/ (2014).

[14] Bosch, T., Cyganiak, R., Wackerow, J., Zapilko, B.:
DDI-RDF Discovery Vocabulary. http:/ / rdf-vocabu-
lary.ddialliance.org/discovery.html (2015).

[15] Oberle, D., Grimm, S., Staab, S.: An ontology for soft-
ware. In: Handbook on ontologies. pp. 383–402.
Springer (2009).

[16] Ruy, F.B., de Almeida Falbo, R., Barcellos, M.P., Cos-
ta, S.D., Guizzardi, G.: SEON: A software engineering
ontology network. In: European Knowledge Acquisi-
tion Workshop. pp. 527–542. Springer (2016).

[17] JSON-LD 1.1: a JSON-based serialization for linked
data. https:/ / www.w3.org/TR/json-ld/

[18] Solid Technical Reports. https:/ / solid.github.io/specifi-
cation/ (2021).

[19] Buckheit, J.B., Donoho, D.L.: WaveLab and Repro-
ducible Research. Stanford University, https:/ / git.it-
s.aau.dk/CLAAUDIA/teach_reproducibility/raw/com-
mit/dbea465c0d10bca50b0cca23fd93afd0ffea08dc/litt/W
(1995).

https://martinfowler.com/articles/injection.html
https://www.w3.org/DesignIssues/LinkedData.html
http://usefulinc.com/ns/doap
https://www.w3.org/TR/prov-o/
http://www.opmw.org/model/OPMW/
http://rdf-vocabulary.ddialliance.org/discovery.html
https://www.w3.org/TR/json-ld/
https://solid.github.io/specification/
https://git.its.aau.dk/CLAAUDIA/teach_reproducibility/raw/commit/dbea465c0d10bca50b0cca23fd93afd0ffea08dc/litt/Wavelab%20and%20reproducible%20research.pdf

