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Abstract. With the rising popularity of user-generated genealogical family trees, new genealogical information systems have 

been developed. State-of-the-art natural question answering algorithms use deep neural network (DNN) architecture based on 

self-attention networks. However, some of these models use sequence-based inputs and are not suitable to work with graph-

based structure, while graph-based DNN models rely on high levels of comprehensiveness of knowledge graphs that is 

nonexistent in the genealogical domain. Moreover, these supervised DNN models require training datasets that are absent in the 

genealogical domain. This study proposes an end-to-end approach for question answering using genealogical family trees by: 1) 

representing genealogical data as knowledge graphs, 2) converting them to texts, 3) combining them with unstructured texts, 

and 4) training a transformer-based question answering model. To evaluate the need for a dedicated approach, a comparison 

between the fine-tuned model (Uncle-BERT) trained on the auto-generated genealogical dataset and state-of-the-art question-

answering models was performed. The findings indicate that there are significant differences between answering genealogical 

questions and open-domain questions. Moreover, the proposed methodology reduces complexity while increasing accuracy and 

may have practical implications for genealogical research and real-world projects, making genealogical data accessible to experts 

as well as the general public.  
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1.  Introduction 

The popularity of "personal heritage", user-

generated genealogical family tree creation, has 

increased in recent years, driven by new digital 

services, such as online family tree sharing sites, 

family tree creation software, and even self-service 

DNA analysis by companies like Ancestry and My 

Heritage. These genealogical information systems 

allow users worldwide to create, upload and share 

their family tree in a semi-structured graph format 

 
1 https://www.gedcom.org/ 

named GEDCOM (GEnealogical Data 

COMmunication) 1 . Most genealogical information 

systems also provide natural search capabilities (a 

search engine) to find relatives and related family trees. 

While the user interface [4, 10, 56, 75, 103] and user 

interactions [45, 69] with genealogical information 

systems are well researched, to the best of our 

knowledge, there is no research on natural question-

answering in the genealogical domain for genealogical 

information systems. 



As humans, we are accustomed to asking questions 

and receiving answers from others. However, the 

standard search engines and information retrieval (IR) 

systems require users to find answers from a list of 

documents. For example, for the question “How many 

children does Kate Kaufman have?", the system will 

retrieve a list of documents containing the words 

"children" and "Kate Kaufman". Unlike search 

engines and IR systems, natural question answering 

algorithms aim to provide precise answers to specified 

questions [47]. Thus, if a user is searching a 

genealogical database for the family tree of Kate 

Kaufman2, a built-in question answering system will 

not return a list of possible matches but will provide a 

short and precise answer to various natural language 

questions. For instance, for a question such as "Where 

was Kate's father born?", a genealogical question 

answering system will return the answer "Hesse, 

Germany". Genealogical centers and museums seek to 

create a unique and personal experience for visitors 

using chatbots [73] and even holographic projections 

of private or famous people [78]. Hence, one practical 

implication of such a genealogical question answering 

system can be posing natural questions to a museum 

holographic character, or even a holographic 

restoration of a person from a family tree. Imagine 

walking into a genealogical center and talking to your 

great-grandmother, asking her questions about your 

family history and heritage. The underlying 

technology for such a conversation (inter alia) is based 

on the ability to answer natural questions on the 

GEDCOM data of genealogical family trees. The 

current state-of-the-art method for solving such a task 

is based on deep neural networks (DNN). 

DNN models for open-domain natural question 

answering achieved high accuracy in multiple studies 

[15, 102, 116, 118, 119, 120, 127]. Training DNN 

models for question answering requires a golden 

standard dataset constructed from questions, answers, 

and corresponding texts from which these answers can 

be extracted. An extensive golden standard dataset for 

the natural question answering task widely used for 

training such models is Stanford Question Answering 

Dataset (SQuAD) [90, 91]. However, in the field of 

genealogy, there are no standard training datasets of 

questions and answers similar to SQuAD.  

Generating a genealogical training dataset for 

question answering DNN is challenging, since 

genealogical data constitutes a semi-structured 

heterogeneous graph. It contains a mix of a structured 

 
2https://dbs.anumuseum.org.il/skn/en/c6/e2216499

5/Personalities/Kaufman_Kate 

graph and unstructured texts with multiple nodes and 

edge types, where nodes may include structured data 

on a specific person node (e.g., person's birthplace), 

structured data on a specific family node (e.g., 

marriage date), relations between nodes, and 

unstructured text sequences (e.g., bio notes of a 

person). Such a mix of structured heterogeneous graph 

data and unstructured text sequences is not the type of 

input that state-of-the-art models, like BERT [22] and 

other sequence-based DNN models, are designed to 

work with. 

Therefore, the main objective of the proposed study 

is to design and empirically validate an end-to-end 

pipeline and a novel methodology for question-

answering DNN using graph-based genealogical 

family trees combined with unstructured texts.  

The research questions addressed in this study are: 

1. What is the effect of the training corpus 

domain (i.e., open-domain vs. 

genealogical data) and the consanguinity 

scope on the accuracy of neural network 

models in the genealogical question 

answering task? 

2. How to traverse a genealogical data 

graph while preserving the meaning of 

the genealogical relationships and family 

roles? 

3. What is the effect of the question type on 

the DNN models' accuracy in the 

genealogical question answering task? 

The main contributions of the study are: 

1. A new automated method for question 

answering dataset generation derived 

from family tree data, based on the 

knowledge graph representation of 

genealogical data and its automatic 

conversion into a free text; 

2. A new graph traversal method for 

genealogical data; 

3. A fine-tuned question answering DNN 

model for the genealogical domain, 

Uncle-BERT, based on BERT3 [22] that 

outperforms state-of-the-art DNN 

models (trained for answering open-

3 https://huggingface.co/bert-base-uncased 



domain questions) for various question 

types. 

 

2. Related work 

This section covers related work in the fields 

relevant to this research: genealogical family trees, 

neural network architecture, and question answering 

using neural networks. 

2.1. Genealogical family trees 

Genealogical family trees have become popular in 

recent years. Both non-profit organizations and 

commercial companies allow users worldwide to 

upload and update their family tree online. For 

example, commercial enterprises like Ancestry and 

 
4 https://support.ancestry.com/s/article/Searching-

Public-Family-Trees 

My Heritage collect over 100 million4 and 48 million5 

family trees, respectively; FamilySearch is the largest 

non-profit online collection of family trees with over 

a billion6 unique individuals worldwide. Family trees 

can be created from various sources, such as family 

trees uploaded by private users (UGC) [6], clinical 

reports and DNA records [20, 105], biographical 

register [64], and even books [27]. Family tree records 

contain valuable information about individuals and 

their genealogical relationships, information that is 

useful for historical research and preservation [46], 

population and migration research [84], and even 

medical research [124, 126]. The user-generated 

content family trees phenomena, also called "personal 

heritage", combines the study of the history of one's 

ancestors with local and social history [6]. Figure 1 

illustrates the degrees of relationships between two 

people in the genealogical domain [12]. 

 

  

5 https://www.myheritage.co.il/about-myheritage/ 
6 https://www.familysearch.org/en/about 



 

Fig. 1. Relation degrees in genealogy7. 

  

 
7 Figure created by WClarke (https://commons.wikimedia.org/wiki/User:WClarke) based on original by 

User:Sg647112c - Own work. From Wikipedia: https://en.wikipedia.org/wiki/Consanguinity. CC BY-SA 4.0: 

https://creativecommons.org/licenses/by-sa/4.0/  

https://en.wikipedia.org/wiki/Consanguinity
https://creativecommons.org/licenses/by-sa/4.0/


2.1.1. The GEDCOM genealogical data standard 

 

The de facto standard in the field of genealogical 

family trees is the GEDCOM format [36, 56]. The 

standard developed by The Church of Jesus Christ of 

Latter-day Saints in 1984, and the latest released 

version (5.5.1) that was drafted in 1999 and fully 

released in 2019, still dominates the market [42]. 

Other standards have been suggested as replacements, 

but none were extensively adopted by the industry. 

GEDCOM is an open format with a simple lineage-

linked structure, in which each record relates to either 

an individual or a family, and relevant information, 

such as names, events, places, relationships, and dates, 

appears in a hierarchical structure [36]. There are 

several open online GEDCOM databases, including 

GenealogyForum [35], WikiTree 8 , GedcomIndex 9 , 

Anu Museum10, Ancestry.com, and others. 

In GEDCOM format, every person (individual) in 

the family tree is represented as a node that may 

contain known attributes, such as first name, last name, 

birth date and place, death date and place, burial date 

and place, notes, occupation, and other information. 

Two individuals are not linked to one another directly. 

Each individual is linked to a family node as a 

"spouse" (i.e., a parent) or a "child" in the family. 

Figure 2 shows a sub-graph corresponding to a Source 

Person (SP) whose data is presented in the GEDCOM 

file in Figure 3. Each individual and family are 

assigned a unique ID – a number bracketed by @ 

symbols and a class name (INDI – individual, FAM – 

family). The source person is noted as SP (@I137@ 

INDI - Emily Williams in the GEDCOM file), families 

as F and other persons as P. In this example, P3, P4, 

P5, and P6 are the grandparents of SP; P1 and P2 are 

SP's parents in family F1 (@F79@ in the GEDCOM 

file); P7 and P8 are SP's siblings; P10 (@I162@ INDI 

– John Williams in the GEDCOM file) is SP's spouse 

from family F4 (@F73@ in the GEDCOM file), P12 

and P13 are SP's children; and P15, P16, and P17 are 

SP's grandchildren. Moreover, as seen in Figure 3, SP 

was a female, born on 28 MAY 1816 in New York, 

USA, who died on 7 FEB 1899 in Uinta, Wyoming, 

USA, and was buried three days later in the same place. 

Furthermore, SP was baptized on 1 JUN 1832 and was 

endowed on 30 DEC 1845 in TEMP NAUVO (maybe 

Nauvoo Temple11, Illinois). Her husband, P10, John 

Williams, was a male, born on 16 MAY 1826 in 

Indiana, USA, who died on 25 SEP 1912 in Uinta,  

 
8 https://www.wikitree.com/ 
9 http://gedcomindex.com/gedcoms.html 
10 https://dbs.anumuseum.org.il 

 

 

Fig. 2. Family tree structure. 

Wyoming, USA, and was buried three days later in the 

same place. He was baptized on 9 AUG 1877, 

although there is a note stating that it may be on the 12 

of AUG 1877, and he was endowed with his wife. For 

practical reasons, the GEDCOM file example in 

Figure 3 contains only a small portion of the data 

presented in Figure 2.  

11 https://churchofjesuschristtemples.org/nauvoo-

temple/ 



 

Fig. 3. (part of the) GEDCOM family tree file. 

2.2. Question answering using DNN 

A DNN is a computational mathematical model that 

consists of several "neurons" arranged in layers. Each 

neuron performs a computational operation and 

transmits the computed information (calculation 

 
12 A common approach for finding relevant 

passages is reverse indexing [11, 53, 54, 71, 104] 

result) to the neurons in the next layer. The 

information is passed over and changed from layer to 

layer until it becomes the output in the network's last 

layer. The conventional learning method is 

backpropagation, which refers to learning as an 

optimization problem [122]. After each training cycle, 

a comparison between the network prediction (output) 

and the actual expected result is performed, and a 

"loss" (i.e., the gap) is calculated to estimate the 

changes needed in the network operations (the weight 

of neuron's transformation). Changes in the network 

weights are usually performed using the Gradient 

Descent methods [7].  

In recent years, DNNs have become the state-of-

the-art method for text analysis in the cultural heritage 

space [110], and natural language question-answering 

systems based on DNN have become the state-of-the-

art method for solving the question answering task 

[61]. The underlying task of question answering is 

Machine Reading Comprehension (MRC), which 

allows machines to read and comprehend a specified 

context passage for answering a question, similarly to 

language proficiency exams. Question answering, on 

the other hand, aims to answer a question without a 

specific context. These QA systems store a database 

containing a sizeable unstructured corpus and generate 

the context in real-time based on relevant text 

passages to the input question [138]. Due to the 

magnitude of comparisons needed between the query 

and each text passage in the corpus, and due to the 

number of calculations (a large number of 

multiplications of vectors and matrices) when a DNN 

model predicts the answer span for every given text 

passage, DNNs are not applied on the entire database 

of texts, but only on a limited number of passages. 

Hence, when a user asks a question, the system 

searches 12  the database for K passages that are 

relevant to the user question. The system will then use 

the DNN model to predict the answer span (start and 

end positions) for each text passage (from the K 

passages) with a confidence level. The answer with the 

highest confidence level is selected as the answer to be 

presented to the user. Thus, a typical pipeline (shown 

in Figure 4) of DNN for question answering will be a 

compound of (1) two inputs - (a) a text passage (i.e., a 

document) that may contain the answer, and (b) a 

question; and (2) two outputs: (a) the start index of the 

answer in the text passage, and (b) the end index of the 

answer in the text passage. The inputs are encoded into 

vectors using static embeddings methods, such as 



Word2Vec [77] and GloVe [86] or using 

contextualized embeddings of words like 

Bidirectional Encoder Representations from 

Transformers (BERT) [22], Embeddings from 

Language Models (ELMo) [87] and other methods 

[88]. One of the main advantages of contextual 

embeddings is the ability to handle disambiguations of 

words and entities [81, 129]. The input vector is 

transferred through the network, and the final layer 

output vectors are the probability of every word to be 

the start or the end of the span (i.e., answer). The score 

of every span is a combination of the start and end 

tokens’ probabilities. The most probable span is then 

translated back to a sequence of words using the 

embedding method [22] (see section 3.2 for a more 

detailed description). Researchers proposed various 

DNN-based models to solve the task of finding 

(ranking) an answer span (the part of the text that 

contains the answer for the question) in the document 

[22, 97, 118, 119, 133] or a single sentence [34, 62]. 

2.2.1. Natural question answering using DNN 

architecture  

Over the years, different deep learning layers have 

been developed with various abilities. Until recently, 

the typical architecture for natural language questions 

answering was based on Recurrent Neural Networks 

(RNN) such as Long Short Term Memory (LSTM) 

[48] and Gated Recurrent Units (GRU) layers [17]. 

RNN layers allow the network to "remember" 

previously calculated data and thus learn answers 

regarding an entire sequence. These layers are used to 

construct different models, including a sequence-to-

sequence model [112] that uses an encoder-decoder 

architecture [17] that fits the question-answering task. 

This model maps a sequence input to a sequence 

output, like a document (sequence of words) and a 

question (sequence of words) to an answer (sequence 

of words) or to classify words (whatever the word is 

the start or the end of the answer). RNN architecture 

often works with direct and reverse order sequences 

(bidirectional-RNN) [96]. It may also include an 

attention mechanism [115], which "decides" (i.e., 

ranks) which parts in the sequence are more important 

than others during the transformation of a sequence 

from one layer to another.  

Another typical architecture is based on a 

Convolutional Neural Network (CNN). Unlike RNNs, 

CNNs architecture does not have any memory state 

that accumulates the information from the sequence 

data. CNN architecture uses pre-trained static 

embeddings where each CNN channel aggregates 

information from the vectorial representation. 

Channels of different sizes enable it to deal with n-

gram-like information in a sentence [57]. 

Question answering task can also be modeled as a 

graph task (e.g., traversal, subgraph extraction). The 

data can be represented as a knowledge graph 

(KGQA), where each node is an entity, and each edge 

is a relation between two entities. When answering the 

question, the algorithm finds the relevant entities for 

the question and traverses over the relations or uses 

the node’s attributes to find the answer node or 

attribute [13, 24, 134]. To work with graphs, Graph 

Neural Networks (GNN) [94] models have been 

developed that operate directly on the graph structure. 

GNN can be used for resolving answers directly from 

a knowledge graph by predicting an answer node from 

question nodes (i.e., entities) [29, 38, 72, 80, 101, 134]. 

The GNN model is similar to RNN in the sense that it 

uses near nodes and relations (instead of previous and 

next token in RNN) to classify (i.e., label) each node. 

However, these models cannot directly work with 

unstructured or semi-structured data or rely on the 

ability to complete and update the knowledge graph 

from free texts using knowledge graph completion 

tasks, such as relation extraction [8, 82, 128] or link 

prediction [32, 52]. 

An improved approach considered to be the state-

of-the-art in many NLP tasks, including question 

answering, is Transformers architecture [115], which 

uses the attention mechanism with feed-forward layers 

(not RNNs); this kind of attention is also called Self 

Attention Network (SAN). Well-known examples of 

SANs are Bidirectional Encoder Representations from 

Transformers (BERT) [22] and GPT-2 [89] models. 

Several BERT-based models were developed in recent 

years [125], achieving state-of-the-art performance 

(accuracy) in different question answering tasks. 

These include RoBERTa - a BERT model with 

hyperparameters and training data size tuning [70]; 

DistilBERT - a smaller, faster, and lighter version of 

BERT [93]; ELECTRA – a BERT-like model with a 

different training approach [18]. Although standard 

BERT-based models receive textual sequence as input, 

all the above architectures can also be mixed. For 

example, a Graph Convolutional Network (GCN) 

[114] can be utilized for text classification by 

modeling the text as a graph and using the filtering 

capabilities of a CNN [131].  

There are several question-answering DNN 

pipelines based on knowledge graphs that support 

semi-structured data (a mix of a structured graph and 

unstructured texts) [29, 40, 134, 137]. As shown in 

Figure 5, a current state-of-the-art pipeline of this type, 



Deciphering Entity Links from Free Text (DELFT) 

[134], uses the knowledge graph to extract related 

entities and sentences, filters possible textual 

sentences using BERT, and then traverses a filtered 

subgraph using a GNN. The pipeline starts with 

identifying the entities in the question. Then, related 

entities (“candidates”) from the knowledge graph and 

relevant sentences (“evidence relations”) from 

unstructured texts are extracted and filtered using 

BERT. A new subgraph is generated using the 

question entities, the filtered evidence relations, and 

the candidate entities. Using this subgraph, a GNN 

model learns to rank the most relevant node. Thus, the 

model obtains a “trail” from the question nodes to a 

possible candidate node (i.e., answer). The pipeline 

applies two DNN models: a BERT model to rank the 

evidence relations and a GNN model to traverse the 

graph (i.e., predict the answer node).  
However, these methods, using the unstructured 

texts to create or complete the knowledge graph, rely 

heavily on well-defined semantics and fail to handle 

questions with entities completely outside the 

knowledge graph or questions that cannot be modeled 

within the knowledge graph. For example, 

Differentiable Neural Computer (DNC) [38] can be 

used to answer traversal questions ("Who is John's 

great-great-grandfather?"), but not to answer content-

related questions when the answer is written in the 

person's bio notes (e.g., "When did John's great-great-

grandfather move to Florida?"). As part of the 

evaluation experiments in this study, the performance 

of the above mentioned DELFT pipeline, adapted to 

the genealogical domain, was compared to that of the 

proposed pipeline. 

   In summary, the generic question answering 

pipelines described above cannot be applied as-is in 

the genealogical domain, without compromising on 

accuracy, for the following reasons: (1) The raw data 

is structured as graphs, each graph contains more 

information than a DNN model can handle in a single 

inference process (each node is equivalent to a 

document), (2)  A user may ask about different nodes 

and different scopes of relations (i.e., different 

genealogical relation degrees); (3) There is a high 

number of nodes containing a relatively small volume 

of structured data and a relatively large volume of 

unstructured textual data.  In addition, the vast amount 

of different training approaches, hyperparameters 

tuning, and architectures indicate the complexity of 

the models and sensitivity to a specific domain and 

sub-task.  

    The question answering approach proposed in this 

study simplifies the task pipeline by converting the 

genealogical knowledge graph into text, which is then 

combined with unstructured genealogical texts and 

processed by BERT’s contextual embeddings. 

Converting the genealogical graph into text passages 

can be performed using knowledge-graph-to-text 

templates and methodologies [21, 26, 55, 76, 123], and 

knowledge-graph-to-text machine learning and DNN 

models [5, 33, 63, 66, 68, 78, 79, 99, 106].  Template-

based knowledge-graph-to-text methods use 

hardcoded or extracted linguistic rules or templates to 

convert a subgraph into a sentence. Machine learning 

and DNN models can be trained to produce a text from 

knowledge-graph nodes. The input for a knowledge-

graph-to-text model is a list of triples of two nodes and 

their relation, and the output is a text passage 

containing a natural language text with input nodes 

and their relations as syntactic sentences. To this end, 

DNN models are often trained using commonsense 

knowledge graphs of facts, such as ConceptNet [107], 

BabelNet [83], DBpedia [3], and Freebase [85], where 

nodes are entities, and the edges represent the 

semantic relationships between them. Some models 

use the fact that knowledge graphs are language-

agnostic to generate texts in multi-languages (e.g., 

[79]).    

2.3. Questions and answers generation for DNN-

based question answering systems 

Training of a DNN question answering model 

requires a set of text passages and corresponding pairs 

of questions and answers. Multiple approaches exist 

for generation of questions (and answers): knowledge-

graph-to-question template-based methodology 

(similar to the context generation) [67, 98, 136, 140], 

WH  questions (e.g., Where, Who, What, When, Why) 

rule-based approach [80], knowledge graph-based 

question generation [16, 50], and DNN-based models 

for generating additional types of questions [25, 49, 

117, 135]. The rule-based method uses part-of-speech 

parsing of sentences using the Stanford Parser [59], 

creates a tree query language and tree manipulation 

[65], and applies a set of rules to simplify and 

transform the sentences to a question. To guarantee 

question quality, questions are ranked by a logistic 

regression model for question acceptability [44]. The 

DNN question generation models are trained on 

SQuAD [90, 91] or on facts from a knowledge graph 

to predict the question and its correct answer from the 

context (i.e., the opposite task from question 

answering) using bi-directional [96] LSTM [48] 

encoder-decoder [17] model with attention [115]. 



This study adopted the format of the SQuAD 

dataset, which is a well-known benchmark for 

machine learning models on question answering tasks 

with a formal leaderboard 13 . SQuAD is a reading 

comprehension dataset consisting of questions created 

by crowd workers on a set of Wikipedia articles. The 

answers to the questions are segments of text from the 

corresponding reading passage (context), or the 

question might be unanswerable. SQuAD 2.0 

combines 100,000 questions and answers and over 

50,000 unanswerable questions written adversarially 

by crowd workers to look similar to answerable ones. 

To do well on SQuAD 2.0, natural question answering 

models must answer questions when possible and 

determine when no answer is supported by the 

paragraph, in which case they must abstain from 

answering. 

SQuAD 2.0 is a JSON formatted dataset, presented 

in Figure 6, where each topic (a Wikipedia article) has 

a title and paragraphs. Each paragraph contains a 

context (text passage) and questions (qas). Each 

question contains the question text, id, may contain 

answers (if it is answerable), may contain plausible 

answers, or be marked as impossible. Each answer is 

constructed from a text and a start index (the word 

index) of the answer in the text passage.  
 

 
Fig. 4. Typical open-domain question answering pipeline. 

 

  

Fig. 5. Typical knowledge graph question answering pipeline. 

 
13 https://rajpurkar.github.io/SQuAD-explorer/ 



  

Fig. 6. SQuAD 2.0 JSON format example. 

3. Methodology 

While using DNNs for the open-domain question 

answering task has become the state-of-the-art 

approach, automated question answering systems for 

genealogical data is still an underexplored field of 

research. This paper presents a new methodology for 

a DNN-based question answering pipeline for semi-

structured heterogeneous genealogical knowledge 

graphs. First, a training corpus that captures both the 

structured and unstructured information in 

genealogical graphs is generated. Then, the generated 

corpus is used to train a DNN-based question 

answering model.  

3.1. Gen-SQuAD generation and graph traversal 

The first phase in the proposed methodology is to 

generate a training dataset using the text sequence 

 
14 http://www.cidoc-crm.org/ 

encoding with a graph traversal algorithm. This 

dataset should contain questions with answers and free 

text passages from which the model can retrieve these 

answers.  

Generating a training dataset from genealogical 

data is a three-step process. The result of the process 

is Gen-SQuAD, a SQuAD 2.0 format dataset tailored 

to the genealogical domain. As shown in Figure 7, the 

process includes the following steps: (1) decomposing 

the GEDCOM graphs to CIDOC-CRM-based 14 

knowledge sub-graphs, (2) generating text passages 

from the obtained knowledge sub-graphs, and (3) 

generating questions and answers from the text 

passages. Finally, the context and matching questions 

and answers are saved in the SQuAD 2.0 JSON format. 

The following sections present in detail each step of 

the Gen-SQuAD generation process. 

 
  



 

 

Fig. 7. Gen-SQuAD generation.

3.1.1. Sub-graph extraction and semantic 

representation 

While there are some DNN models that can accept 

large inputs [9, 58], due to computational resource 

limitations, many DNN models tend to accept limited 

size inputs, usually ranging from 128 to 512 tokens 

(i.e., words) [141]. However, family trees tend to hold 

a lot of information, from names, places, and dates to 

free-text notes, life stories, and even manifests. 

Therefore, using the proposed methodology, it is not 

practical to build a model that will read an entire 

family tree as an input (sequence), and it is necessary 

to split the family tree into sub-trees (sub-graphs). 

Several generic graph traversal algorithms may be 

suitable for traversing a graph and extracting sub-

graphs, such as Breadth-First-Search (BFS) and 

Depth-First-Search (DFS). BFS’s scoping resembles a 

genealogy exploration process that treats first relations 

between individuals that are at the same depth level 

(relation degree) in the family tree, moving from the 

selected node’s level to the outer level nodes. 

However, the definition of relation degrees in 

genealogy (i.e., consanguinity) is different from the 

pure graph-theory mathematical definition 

implemented in BFS [12]. For example, parents are 

considered first-degree relations in genealogy (based 

on the ontology), while they are considered to be 

second-degree relations mathematically, since there is 

a family node between the parent and the child (i.e., 

the parent and the child are not connected directly), 

with siblings considered to be second-degree relations 

in both genealogy and graph theory. Combined BFS-

DFS algorithms such as Random Walks [39] do not 

take into account domain knowledge and sample 

nodes randomly. In the genealogical research field, 

several traversal algorithms have been suggested for 

user interface optimization [56]. However, these 

algorithms aim to improve interfaces and user 

experience and are not suitable for complete data 

extraction (graph to text) tasks.  

This paper presents a new traversal algorithm, Gen-

BFS, which is essentially the BFS algorithm adapted 

to the genealogical domain. The Gen-BFS algorithm 

is formally defined as follows: 

 



 
Algorithm 1 

Gen-BFS algorithm. 

Input: Node (SP), Depth (D) 

Output: Traverse queue (TQ) 
Initialization: Node queue (NQ), Depth queue (DQ), Current depth 

(CD = 0), Nodes to depth increase (NTDI = 1), Next nodes to depth 

increase (NNTDI = 0)  

1. NQ enqueue SP 

2. while NQ is not empty 
3.       n = NQ dequeue 

4.       DQ enqueue n 

5.       if n is Person 

6.           kn = n→{famchild} union n→{famparent} 

7.       else 

8.           kn = n→{childfam}  union n→{parentfam} 

9.       NNTDI = NNTDI + count (kn not in NQ) 

10.       NTDI = NTDI – 1 

11.       if NTDI = 0 

12.           if n is Person 
13.               CD = CD + 1 

14.                  if CD > D 

15.                      break while 

16.           NTDI = NNTDI 

17.           NNTDI = 0 
18.       for n in kn 

19.           if n not in NQ 

20.               NQ enqueue n 

21. while DQ is not empty 

22.       dn = DQ dequeue 
23.       TQ enqueue dn 

24.       if dn is Person 

25.           for f in dn→{famparent} 

26.               for p in f→{parentfam} 
27.                   if p not in DQ and p not in TQ 

28.                       TQ enqueue p 

29. return TQ 

 

Where each node can be a Person or a Family, each 

Person node has two links (edges) types: famchild 

(FAMC in GEDCOM standard) and famparent (FAMS 

in GEDCOM standard), each Family has the opposite 

edge types: childfam and parentfam. Where {famchild} is 

the collection of all the families in which a person is 

considered a child (biological family and adopted 

families), {famparent} is the collection of all the 

families in which a person is a parent (spouse) (i.e., all 

the person's marriages), {childfam} is a collection of all 

the persons that are considered to be children in a 

family and {parentfam} is a collection of all the persons 

considered to be a parent in a family. For example, the 

SP in Figure 2 is linked to two nodes. The link type to 

F1 is famchild, and the link type to F4 is famparent. The 

family F1 in Figure 2 has two types of links. The link 

 
15 An algorithm step is noted as S. The degree of 

relation is noted as D. Relations are color-coded as 

follows: Zero-degree relation (self) - turquoise, First-

type to SP, P7, P8 is childfam, and the link type to P1 

and P2 is parentfam. 

 
Fig. 8. Gen-BFS algorithm15. 

Figure 8 illustrates the Gen-BFS traversal applied 

to the family tree presented in Figure 2. As shown in 

Figure 8, Gen-BFS is aware of the genealogical 

meaning of the nodes and reduces the tree traversal's 

logical depth. It ignores families in terms of relation 

degree, considers SP's spouses as the same degree as 

SP and SP's parents and children as first degree, and 

keeps siblings and grandparents as second-degree. In 

particular, lines 1-20 in Algorithm 1 represent a BFS-

style traverse over the graph. In lines 5-8, the 

algorithm introduces domain knowledge and adds 

nodes to its queue according to the node type. The 

code in lines 9-17 ensures that the traversal will stop 

at the desired depth level. If the current node is a 

Person (line 12) and the current depth (CD) is about to 

degree relations – black, and Second-degree relations 

– brown. 



get deeper than the required depth (D), then the while 

loop will end (line 14). Otherwise, the Persons and 

Families in the current depth (kn) will be added to the 

node queue (NQ) and may (depending on the stop 

mechanism) be added to the depth queue (DQ). In line 

21, the depth queue (DQ) holds all the Family nodes 

and most of the Person nodes (except for spouses of 

the last depth level’s Person nodes) within the desired 

depth level. For example, traversing with D = 1 over 

the family tree in Figure 2 will result in DQ that 

contains SP and her children and parents (F1, F4, P10, 

P1, P2, P12, and P13). However, according to the 

genealogical definition of depth levels in a family 

relationship, the children’s spouses, P11 and P14 (but 

not the grandchildren, F5 and F6, which belong to D 

= 2) should also be retrieved. Lines 21-28 address this 

issue and add the missing Person nodes, thus logically 

reducing the depth of the graph. 

Each family tree was split into sub-graphs using the 

Gen-BFS algorithm. New sub-graphs were created for 

each person as SP (source person) and its relations at 

different depth levels. Therefore, there is an overlap 

between the sub-graphs (a person can appear in 

several sub-graphs), and the sub-graphs cover all the 

individuals and relations in a given family tree. The 

Gen-BFS traversal algorithm is used both for dataset 

generation and for selecting the scope of the user's 

query in the inference phase (i.e., when answering the 

question). 

Once extracted, each genealogical sub-graph was 

presented as a knowledge graph. This study adopted 

an event-based approach to data modeling presented 

in the past literature ([2, 31, 113]). As in [113], a 

formal representation of the GEDCOM heterogeneous 

graph (excluding the unstructured texts) as a 

knowledge graph was implemented using CIDOC-

CRM, but in a more specific manner (e.g., we used 

concrete events and properties such as birth, brought 

into life as opposed to [113] that used generic 

vocabulary). We chose to use CIDOC-CRM as it is a 

living standard (ISO 21127:2014) for cultural heritage 

knowledge representation. CIDOC-CRM is designed 

as “a common language for domain experts” and 

“allows for the integration of data from multiple 

sources in a software and schema-agnostic fashion” 

[60]. It has been applied as a base model and extended 

in many domains related to cultural heritage, and in 

this study, it was chosen as a basis for defining the 

genealogical domain ontology due to its standard and 

generic nature and event-based structure, that enables 

n-ary rather than binary relationships between entities 

in the ontology, as required for representing 

genealogical and biographic data based on events in 

families and person’s lives (e.g., E67 represents a birth 

event that connects a person, a place and a time span).  

Genealogical graphs contain instances of two explicit 

classes: Person (E21 in CIDOC-CRM) and family that 

can be represented as a Group (E74 in CIDOC-CRM); 

and several implicit classes: Place (E53), Event (E5), 

Death (E69), Birth (E67) and others. These implicit 

classes are not structured as separate entities in the 

GEDCOM standard, but need to be extracted from the 

GEDCOM attributes. Properties matching various 

GEDCOM relations can also be easily found in 

CIDOC-CRM, e.g., the relation of a person to its 

children can be represented using P152 (is parent of).  

 

  

Fig. 9. GEDCOM individual’s knowledge graph in the CIDOC-

CRM-based format. 

Figure 9 is an example of a representation of the 

GEDCOM sub-graph as a knowledge graph. As 

illustrated in the figure, the SP node is an instance of 

the class Person and has a relation (property) to a birth 

event (E21=>P98=>E67) with a relation to the place, 

Paris (E67=>P7=>E53) and a relation to the birth year 

with the value 1950 (E67=>P4=>E52). Representing 

GEDCOM as a knowledge graph is a critical step as 

the dataset generation method is based on well-

established knowledge-graph algorithms, as described 

next. 

3.1.2. Text passage generation 

Next, a textual passage from each sub-graph is 

generated, representing the SP's genealogical data 

based on the graph-to-sequence. Text passages were 



generated using a knowledge-graph-to-text DNN 

model [68] and completed (for low model confidence 

or missing facts) with knowledge-graph-to-text 

template-based methodology [76]. It is important to 

note that converting the obtained genealogical 

knowledge sub-graphs to text is a more 

straightforward task than the open domain knowledge-

graph-to-text or generic commonsense knowledge-

graph-to-text task, since they are well structured and 

relatively limited in their semantics. For example, the 

sub-graph presented in Figure 9 can be converted to a 

sentence with template rules or using DNN models. A 

rule example will be: [First Name] [Last Name] was 

born in [Birth Year] in [Birthplace] = "John Williams 

was born in 1950 in Paris". 

 

Using a knowledge-graph-to-text DNN model [68] 

and a  knowledge-graph-to-text templates 

methodology [76], multiple variations of sentences 

conveying the same facts (comprised of the same 

nodes and edges in the graph) were composed based 

on different templates and combined with the sentence 

paraphrasing using a DNN-based model (the model of 

[63]). Most of the text passages were generated using 

a DNN model. However, the template-based method 

added variations that the DNN model did not capture. 

Table 1 above presents examples of such sentences 

created for the sub-graph in Figure 9.  

Another critical challenge resolved by this 

approach is the multi-hop question answering problem, 

where the model needs to combine information from 

several sentences to answer the question. Although 

there are multi-hop question answering models 

presented in the literature [30, 74], their accuracy is 

significantly lower than a single-hop question 

answering. To illustrate the problem, consider a user 

asking about the SP's (John's) grandfather: "Where 

was John's grandfather born?" or "Where was Tim 

Cohen born?", where Tim Cohen refers to John’s 

grandfather. To answer both questions without multi-

hop reasoning for resolution of multiple references to 

the same person, the graph-to-text template-based 

rules include patterns that encapsulate both the SP's 

relationship type (John's grandfather) and the relative's 

name (Tim Cohen), thus allowing the model to learn 

that Tim Cohen is John's grandfather. There are three 

types of references to a person that allows the DNN 

model to resolve single or multi-hop questions: 1) 

Direct referencing to a person with his/hers first and 

last name (e.g., John Williams), 2) Partial referencing 

to a person with his/hers first or last name (e.g., John), 

and 3) Multi-hop encapsulation, i.e., referencing to a 

person with their relative name to the SP (e.g., 

Alexander's son). 

As a result of the above processing, multiple text 

passages were created for each SP's sub-graph. Since 

each sentence is standalone and contains one fact,  

sentences were randomly ordered within each text 

passage. Thus, even if the passage is longer than the 

neural model's computing capability, the model will 

likely encounter all types of sentences during its 

training process. These text passages were further 

encoded as vectors (i.e., embeddings) to train a DNN 

model that learns contextual embeddings to predict the 

answer (i.e., start and end positions in the text passage) 

for a given question.  

 

  



Table 1 

Genealogical-knowledge-graph-to-text context template example.  

Template-based rule example Result Reference type 

[First Name] [Last Name] was born in [Birth Year] in 
[Birthplace] 

John Williams was born in 1950 in 
Paris 

Direct 

[First Name] was born in [Birth Year] in [Birthplace] John was born in 1950 in Paris Partial 

[Name relative of SP] ([First Name] [Last Name]) was born 
in [Birth Year] in [Birthplace] 

Alexander's son (John Williams) 
was born in 1950 in Paris 

Multi-hop encapsulation 

[First Name] was born in [Birthplace] in [Birth Year] John was born in Paris in 1950 Partial 

[Relative First Name] [Relative Last Name] ([Relation to 
SP]) was born in [Birth Year] in [Birthplace] 

Alexander Williams (John's father) 
was born in 1927 in Nice. 

Multi-hop encapsulation 

In [Birth Year] [First Name] was born In 1950 John was born Partial 

[Birthplace] was [First Name] 's birthplace Paris was John's birthplace Partial 

3.1.3. Generation of questions and answers  

Using the generated text passages (contexts), pairs 

of questions and answers were created. The answers 

were generated first, and then the corresponding 

questions were built for them as follows. Knowledge 

graph nodes and properties (relationships), as well as 

named entities and other characteristic keywords 

extracted from free text passages were used as answers. 

To achieve extensive coverage, multiple approaches 

were used for generation of questions. First, a rule-

based approach was applied for question generation 

from knowledge graphs [140] and a statistical question 

generation technique [44] was utilized for WH 

question generation from the unstructured texts in 

GEDCOM.  

Most of the questions (73%) were created using 

these methods. To identify the types of questions 

typical of the genealogical domain and define rule-

based templates for their automatic generation, this 

study examined the genealogical analysis tasks that 

users tend to perform on genealogical graphs [10]. 

These tasks include: (1) identifying the SP's ancestors 

(e.g., parents, grandparents) or descendants (e.g., 

children, grandchildren), (2) identifying the SP's 

extended family (second-degree relations), (3) 

identifying family events, such as marriages, (4) 

identifying influential individuals (e.g., by occupation, 

military rank, academic achievements, number of 

children), and (5) finding information about dates and 

places, such as the date of birth, and place of marriage 

[4, 10]. These analysis tasks were adopted to define 

characteristic templates for natural language questions 

that a user may ask about the SP or its relatives. Some 

of these questions can be answered directly from the 

structured knowledge graph (e.g., “When was Tim’s 

father born?”), while others can only be answered 

using the unstructured texts attached to the nodes (e.g., 

“Did Tim’s father have cancer?”). 

A DNN-based model for generating additional 

types of questions [25] was used to complement the 

rule-based method. The neural question generation 

model predicted questions from all the unstructured 

texts in the GEDCOM data and produced 24% of the 

questions in the dataset (excluding duplicate questions 

already created using the WH-based and rule-based 

approaches). 
 

Table 2 

Knowledge-graph-to-text question template examples.  

Template-based rule example Result 

How many children did [First Name] 

[Last Name] have? 

How many children 

did John Williams 

have? 

How many grandchildren did 

[Relative First Name] [Relative Last 
Name] ([Relation to SP]) have? 

How many 

grandchildren did 
Alexander Williams 

(John's father) have? 

Was [Birthplace] [First Name] 's 

birthplace? 

Was Paris John's 

birthplace? 

 



Finally, additional rules were manually compiled 

using templates [1, 28] to create questions missed by 

previous methods, mainly quantitative and yes-no 

questions (as illustrated in Table 2). These questions 

were 3% of all the questions in the datasets. All answer 

indexes were tested automatically to ensure that the 

answer text exists in the context passage. A random 

sample of 120 questions was tested manually by the 

researchers as a quality control process, and the 

observed accuracy was virtually 100%. However, it is 

still possible that DNN generated some errors. 

Nevertheless, even in this case, the study’s 

conclusions would not change, as such errors would 

have a similar effect (same embeddings) on all the 

tested models. 

 

3.2 Fine-tuning the BERT-based DNN model for 

question answering  

Fine-tuning a DNN model is the process of adapting 

a model that was trained on generic data to a specific 

task and domain [22]. An initial DNN model is usually 

designed and trained to perform generic tasks on large 

domain-agnostic texts, like Wikipedia. In the case of 

the open-domain question answering, the BERT 

baseline model was pre-trained on English Wikipedia 

and Books Corpus [139] using Masked Language 

Modeling (MLM) and Next Sentence Prediction 

(NSP) objectives [22]. The MLM methodology is a 

self-supervised dataset generation method. For each 

input sentence, one or more tokens (words) are 

masked, and the model's task is to generate the most 

likely substitute for each masked token. In this fill-in-

the-blank task, the model uses the context words 

surrounding a mask token to try to predict what the 

masked word should be. The NSP methodology is also 

a self-supervised dataset generation method. The 

model gets a pair of sentences and predicts if the 

second sentence follows the first one in the dataset. 

MLM and NSP are effective ways to train language 

models without annotations as a basis for various 

supervised NLP tasks. Combining MLM and NSP 

training methods allow modeling languages with both 

word-level relations and sentence-level relations 

understanding. The pre-trained BERT-based question 

answering model was designed with 12 layers, 768 

hidden nodes, 12 attention heads, and 110 million 

parameters. Using such a pre-trained model, DNN 

layers can be added to fit to a specific task [22]. 

As shown in Figure 10, a new BERT-based model, 

Uncle-BERT, was fine-tuned for genealogical 

question answering as follows: (1) adding a pair of 

output dense layers (vectors)  with dimensions of the 

hidden states in the model (S and E), (2) computing 

the probability that each token in these layers (vectors) 

is the start (S) or end (E) of the answer, and finally (3) 

running and tuning the baseline BERT model 

described above for learning S and E. The probability 

of a token being the start or the end of the answer is 

the dot product between the token's numerical 

representation (i.e., embeddings) in the last layer of 

BERT and the new output layers (vectors S or E), 

followed by a softmax activation over all the tokens. 

Then, using the genealogical training dataset, the 

model is trained to solve the task in the study’s domain. 

It should be noted that generation methods for pre-

trained static node embeddings like node2vec [39] or 

TransE [14] treat triples as the training instance for 

embeddings, which may be insufficient to model 

complex information transmission between nodes. 

Therefore, the information is encoded from graph 

nodes into syntactic sentences and then the original 

BERT approach [22] is applied to generate 

comprehensive contextual embeddings from these 

sentences [43]. 

Figure 11 summarizes the developed genealogical 

question answering pipeline. To simplify the task, the 

proposed architecture asks the user to first select the 

family tree from the corpus (future research can 

eliminate this step by embedding the family trees [37] 

and ranking them based on similarity to the question 

[92]). As demonstrated in the figure, the family tree 

corpus (comprised of GEDCOM files) is processed 

into question answering datasets for different scopes. 

The process starts when a user selects a specific person 

from a family tree. Then the user indicates a  scope (a 

genealogical relation degree, as described in Figure 1) 

to ask about (e.g., the SP itself, first-degree relative, 

second-degree relatives) and asks a question ("What 

was Alexander's father's military rank?"). The Gen-

BFS algorithm incorporates the SP and the scope to 

generate a text passage that encapsulates the SP's 

scope aligned with the user intent (equivalent to 

finding the top K text passages in the open-domain 

question answering pipeline). Finally, a fine-tuned 

DNN model, selected based on the requested 

relational degree (i.e., a model trained to predict 

answers on the requested relational degree), predicts 

the answer using the generated text passage and a 

question as inputs. 

  



 

Fig. 10. The DNN model fine-tuning process. 

 

 

Fig. 11. Genealogical question answering pipeline (the proposed architecture).

  



4. Experimental design 

This section describes the experimental dataset and 

training conducted to validate the proposed 

methodology for the genealogical domain. 

4.1. Datasets 

In this research, 3,140 family trees containing 

1,847,224 different individuals from the corpus of the 

Douglas E. Goldman Jewish Genealogy Center in Anu 

Museum 16  were used. The Douglas E. Goldman 

Jewish Genealogy Center contains over 5 million 

individuals and over 30 million family tree 

connections (edges) to families, places, and 

multimedia items. To comply with the Israeli privacy 

regulation17 and the European general data protection 

regulation18 (GDPR), only family trees for which the 

Douglas E. Goldman Jewish Genealogy Center in Anu 

Museum has been granted consent or rights to publish 

online were used in the dataset generation. Moreover, 

as far as possible, all records containing living 

individuals have been removed from the dataset. 

Furthermore, all personal information and any 

information that can identify a specific person in this 

paper's examples, including the examples in the 

figures, have been altered to protect the individuals' 

privacy. 
From the filtered GEDCOM files belonging to the 

above corpus, and after removing some files with 

parsing or encoding errors, three datasets were 

generated: Gen-SQuAD0 using zero relation degree 

(SP and its spouses) with 6,283,082 questions, Gen-

SQuAD1 using first-degree relations with 28,778,947 

questions, and Gen-SQuAD2 using second-degree 

relations with 75,281,088 questions. Although all 

generated datasets contain millions of examples, only 

131,072 randomly selected questions were used from 

each dataset when training the Uncle-BERT models. 

These were enough for the models to converge. 

Therefore, the size of the dataset did not impact the 

training results. 

Each dataset was split into a training set (60%), a 

test set (20%), and an evaluation set (20%). To better 

evaluate the success of the different question 

answering models, the 131,072 questions in each 

dataset were classified into twelve types. Examples of 

questions and their classification types are shown in 

Table 3. Each question may refer to the SP's 

relationship type (e.g., Emily's grandson or by the 

direct name of the relative,e.g., Grace) and target one 

type of ontological entity as an answer (date, place, 

name, relationship type). Questions were classified 

into types based on the template, if generated using the 

template-based method (e.g., templates using place 

attributes were classified as “place”, and date 

attributes as “date”), based on the WH question (e.g., 

When questions were classified as “date”, and Where 
as “place”), if generated using the WH generation 

algorithm, or as general information / named entity, if 

generated by the DNN model. Therefore, the 

information / named entity may also include the other 

types of questions. It is important to note that these 

questions are semantically similar to the open-domain 

questions in SQuAD [90, 91] datasets. 

  

 
16 

https://dbs.anumuseum.org.il/skn/en/c6/e18493701 
17 

https://www.gov.il/BlobFolder/legalinfo/data_securit

y_regulation/en/PROTECTION%20OF%20PRIVAC

Y%20REGULATIONS.pdf 

 
18 https://gdpr-info.eu/ 



Table 3 
Question types.  

Question type / objective Examples Source 

Name What is Emily's full name? 

What is Emily's last name? 

Rule-based 

Rule-based 

Date When was Emily born? 

When did Emily get married? 

Rule-based 

Rule-based 

Place Where was Emily buried? 

Where did Emily live? 

Rule-based 

Rule-based 

Information / named entity Who was Emily's first boyfriend? 

Did Emily go to college? 

DNN 

DNN 

First-degree relation Who was Emily's son? 
Who was Jonathan? 

DNN, rule-based 
DNN 

Second-degree relation How many sisters did Emily have? 

How many brothers did Emily have? 

Rule-based 

Rule-based 

First-degree date When was Emily's husband born? 

When was John born? 

Rule-based 

Rule-based 

First-degree place Where was Emily's father born? 

Where was Alexander born? 

Rule-based 

Rule-based 

First-degree information / named entity What was Emily's father's academic degree? 

What was Alexander's illness? 

DNN 

DNN 

Second-degree date When did Emily's sister die? 
When did Yalma die? 

Rule-based 
Rule-based 

Second-degree place Where was Emily's grandson born? 

Where was Grace born? 

DNN 

Rule-based  

Second-degree information / named entity What was Emily's grandfather's rank in the military? 

Where was Tim's first internship as a lawyer? 

DNN 

DNN 

 

  



4.2. Uncle-BERT fine-tuning 

For fine-tuning Uncle-BERT19, the generated Gen-

SQuAD training datasets were used. Each context in 

the  Gen-SQuAD0, Gen-SQuAD1, and Gen-SQuAD2 

datasets was lowercased and tokenized using 

WordPiece [132]. 
 

 

Fig. 12. Uncle-BERT model input example. 

Figure 12 presents the model's input, where the 

[CLS] tag, which stands for classifier token, is the 

beginning of the input, followed by the first part of the 

input - the question. The [SEP] tag, which stands for a 

separator, separates the first part of the input (i.e., a 

question) and the second part – the context. [CLS] at 

the end indicates the end of the input. 

To evaluate the effect of the depth of the 

consanguinity scope on the model's accuracy, an 

Uncle-BERT model was trained for each of the three 

datasets: Uncle-BERT0 using Gen-SQuAD0, Uncle-

BERT1 using Gen-SQuAD1, and Uncle-BERT2 using 

Gen-SQuAD2. All models were trained with the same 

hyperparameters, that are shown in Table 4. 
Table 4 

Uncle-BERT training hyperparameters.  

Hyperparameters Value 

Max question tokens 64 

Max sequence tokens 512 

Max answer tokens 30 

Doc stride 128 

Batch size 8 

Learning rate 3e-5 

Train size 131,072 

Epocs 20 

 

Max question tokens is the maximum number of 

tokens to process from the question input; if the 

 
19  A link to the code: 

https://github.com/omrivm/Uncle-BERT 

question input length was greater than the Max 

question tokens, it was trimmed. Max sequence tokens 

are the maximum tokens to process from the combined 

context and question inputs.  

If the cumulative context and question length was 

longer than the Max sequence tokens hyperparameter 

value, the context was split into shorter sub-texts using 

a sliding window technique; the Doc stride represents 

the sliding window overlap size. For example, 

consider the following hyperparameters’ values: the 

max sequence tokens hyperparameter is 25, the doc 

stride hyperparameter is 6, and the following training 

example: “[CLS] When was Matt Adler's father born? 

[SEP] Matt's father (Noah Adler) was born in 1950 in 

London, England. Matt's father (Noah Adler) was a 

male. Matt's brother (Joanne Adler) was a male. Matt 

Adler was born in 1975 in London, England. Matt's 

mother (Carol) was born in 1950. [CLS]”; the question 

of the training example contains 7 tokens, and 18 

tokens are left for the context. Therefore, the context 

will be split into three training examples: 1) “[CLS] 

When was Matt Adler's father born? [SEP] Matt's 

father (Noah Adler) was born in 1950 in London, 

England. Matt's father (Noah Adler) was a male [CLS]” 

(i.e., tokens 1 to 18), 2) “[CLS]  When was Matt 

Adler's father born? [SEP] father (Noah Adler) was a 

male. Matt's brother (Joanne Adler) was a male. Matt 

Adler was born in [CLS]” (i.e., tokens 12 to 30), 3) 

“[CLS] When was Matt Adler's father born? [SEP] a 

male. Matt Adler was born in 1975 in London, 

England. Matt's mother (Carol) was born in 1950. 

[CLS]” (i.e., tokens 24 to 42). The model will be 

trained with the same question on the three new 

examples; if the answer span does not exist in an 

example, it is considered unanswerable. 

Max answer tokens is the maximum number of 

tokens that a generated answer can contain. Train size 

is the number of examples used from the dataset 

during the training cycle.  

As is customary with the SQuAD benchmark, an F1 

score was calculated to evaluate Uncle-BERT models: 

 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  

 

Precision equals the fraction of correct tokens out of 

the retrieved tokens (i.e., words that exist in both the 

predicted and the expected answer), and recall equals 

the fraction of the correct tokens in the retrieved 

(predicted) answer out of the tokens in the expected 



answer. This metric allows measuring both exact and 

partial answers. 

5. Results 

To evaluate the accuracy of the proposed fine-tuned 

models, the Gen-SQuAD2 dataset was used to 

represent a real-world use-case in which a user is 

investigating her genealogical roots with the 

genealogical scope of two relation degrees 

(generations)20. To compare the model’s accuracy for 

each type of answer, an F1 score was calculated to 

evaluate every Uncle-BERT model (i.e., Uncle-

BERT0 trained on Gen-SQuAD0, Uncle-BERT1 

trained on Gen-SQuAD1, and Uncle-BERT2 trained on 

Gen-SQuAD2). An overall accuracy evaluation of the 

three models was performed by calculating the F1 

score for a mix of random questions of all types.  

 

Fig. 13. The three Uncle-BERT model’s train loss21. 

 
20 Similar to Anu Museum user interface - 

https://dbs.anumuseum.org.il/skn/en/c6/e8492037/Pe

rsonalities/Weizmann_Chaim 

 

Fig. 14. The three Uncle-BERT model’s train F1 score22. 

Figures 13 and 14 show the training loss and F1 

scores of each of the three models. As expected, the 

more complex the context and questions, the lower the 

F1 score. While on narrow persons’ contexts and 

questions (Gen-SQuAD0), the model achieved an F1 

score of 99.84; on second-degree genealogical 

relations (Gen-SQuAD2), it achieved only an F1 score 

of 80.28. 

Furthermore, as can be observed in Table 5, 

compared to the Uncle-BERT2 model (trained with 

broader contexts of second-degree genealogical 

relations), the Uncle-BERT0, which was trained using 

information about the SP and its spouses, fails to 

answer questions of any kind, including questions 

about the SP alone. We hypothesize that the model 

overfits to narrow contexts and therefore cannot 

handle larger context (Gen-SQuAD2) "noise". This 

emphasizes the importance of the context size in the 

training data. Uncle-BERT1 successfully answers 

most of the question types and even overtakes Uncle-

BERT2 in place-related questions. Except for place-

related questions, it seems that a broader context 

improves the model's accuracy (Uncle-BERT2). 

Next, the best model, Uncle-BERT2, was compared 

to several state-of-the-art open-domain question-

answering DNN models. To this end, all the following 

models were trained using SQuAD 2.0 [90]: BERT 

[22], Distilbert [93], RoBERTa [70], Electra [18], 

DELFT [134]. Furthermore, to evaluate the 

effectiveness of the proposed genealogical question 

answering pipeline compared to the state-of-the-art 

knowledge graph-based pipeline, the genealogical 

adaptation of the DELFT model, Uncle-DELFT2, was 

21 x-axis: number of epochs, y-axis: loss 
22 x-axis: number of epochs, y-axis: F1 score 

https://dbs.anumuseum.org.il/skn/en/c6/e8492037/Personalities/Weizmann_Chaim
https://dbs.anumuseum.org.il/skn/en/c6/e8492037/Personalities/Weizmann_Chaim


created. Uncle-DELFT2, based on BERT combined 

with the GNN graph traversal, was trained on Gen-

SQuAD2. 

As can be observed in Table 6, the baseline BERT 

model trained on the open-domain SQuAD 2.0 

achieved an F1 score of 83 on the open-domain  

SQuAD 2.0 dataset [90]. However, on the 

genealogical domain dataset (Gen-SQuAD2), it 

achieved a significantly lower F1 score (60.12) 

compared to the Uncle-BERT2 (81.45). The fact that 

Uncle-BERT2 achieves a higher F1 score is not 

surprising since the model was trained on genealogical 

data, as opposed to the baseline BERT model trained 

on the open-domain question data. However, when 

comparing Uncle-BERT2 to Uncle-DELFT2, it is clear 

that the performance improvement is due to the 

proposed methodology and not just due to the richer 

or domain-specific training data. Moreover, the 

DELFT method is much more complex than BERT, 

yet it achieved a lower score even when trained on the 

same domain-specific data. The fact that the vast 

majority of entities (found in both the “user” question 

and the expected answer) exists only in the 

unstructured data makes it hard for the GNN to find 

the correct answer (i.e., to complete the graph). This 

finding emphasizes the uniqueness of a genealogical 

question answering task compared to the open-domain 

question-answering and the need for the end-to-end 

pipeline and methodology for training and using 

DNNs for this task, as presented in this paper. Since 

Uncle-BERT2 achieved a higher accuracy score than 

the more complex Uncle-DELFT2 model, we conclude 

that the proposed method reduces complexity while 

increasing accuracy. 

As shown in Table 6, although some questions 

appear in both Gen-SQuAD2 and SQuAD 2.0 datasets, 

there is still a significant difference between open-

domain questions and genealogical questions. Except 

for Uncle-DELFT2 in the case of date questions, all the 

state-of-the-art models failed to answer natural 

genealogical questions compared to Uncle-BERT2 

(and in many cases, even compared to Uncle-BERT1). 

However, Uncle-DELFT2 was successful regarding 

date questions. This may imply that objective date 

questions are harder to extract from unstructured texts 

and the graph structure contributes to resolving such 

questions. Moreover, BERT's success on SP’s date 

questions (compared to Uncle-BERT2) may suggest 

that these questions are more generic and have more 

common features among different domains than 

unique features in the genealogical domain. 

Furthermore, the current state-of-the-art knowledge 

graph pipeline (i.e., DELFT) achieved performance 

similar to simpler BERT-based models. This indicates 

that while it is beneficial for open-domain questions, 

it is not as effective in the genealogical domain. This 

result, combined with  the additional complexity of 

DELFT, makes it less satisfactory in this domain 

(except for date questions, as mentioned above). 

Interestingly, the “basic” BERT model outperforms 

all the newer BERT-based models (except for Uncle-

BERT2). Furthermore, the fact that Uncle-BERT1 

achieved a higher F1 score on place type questions 

may indicate that place type questions may be more 

sensitive to "noise" or broad context. For example, 

place names may have different variations for the 

same entity (high "noise"), e.g., NY, NYC, New York, 

and New York City are all references to the same 

entity. This variety makes the model’s task more 

difficult, thus adding broader contextual information 

and other types of "noise" (e.g., other entities, more 

people names, and dates), which may reduce the 

model’s accuracy. Another possible reason for Uncle-

BERT2’s lower accuracy on place type questions may 

be the fact that Uncle-BERT2 was trained with both 

one-hop-away and two-hop-away contexts while 

Uncle-BERT1 was trained only with one-hop-away 

contexts. The fact that the F1 score of the model is 

smaller on second-degree place objective questions 

(1.39) than on first-degree (4.72) and zero-degree 

(10.01) place objective questions may reinforce this 

indication. However, it is important to notice that in 

many cases, this factor will not affect the F1 score 

since the F1 score does not use the position of the 

answer (start and end index), but only the selected 

tokens compared to the answer tokens. Since most 

children and parents live in the same place, either the 

parent’s place (e.g., birthplace) or the child’s place can 

be selected by the model without affecting the F1 

score. Table 7 presents some examples of answer 

predictions for place objective questions by Uncle-

BERT1 and Uncle-BERT2. These results suggest that 

higher accuracy can be achieved by classifying the 

question types and using a different model for 

different question types and relation depths. 
  



Table 5 

Uncle-BERT models F1 score on Gen-SQuAD2. 

Question objective Uncle-BERT0 Uncle-BERT1 Uncle-BERT2 

Name 44.53 95.14 97.64 

Date 21.60 52.48 55.10 

Place 27.54 88.53 78.52 

Information \ named entity 16.91 15.22 87.40 

First-degree relation 19.58 86.94 89.45 

Second-degree relation 20.66 63.45 82.52 

First-degree date 13.26 43.44 53.85 

First-degree place 34.17 86.55 81.83 

First-degree information / named entity 8.95 12.21 87.28 

Second-degree date 11.68 43.12 44.87 

Second-degree place 33.10 80.51 79.12 

Second-degree information / named entity 8.37 11.34 81.04 

Overall 19.73 69.92 81.45 

 
Table 6 

F1 scores of Uncle-BERT2 and other state-of-the-art models on Gen-SQuAD2. 

Question objective BERT Distilbert RoBERTa Electra DELFT Uncle-DELFT2 Uncle-BERT2 

Name 28.27 28.54 38.97 21.30 32.99 39.84 97.64 

Date 60.58 53.30 44.33 34.92 39.62 79.35 55.10 

Place 74.96 64.67 40.41 26.03 36.27 66.66 78.52 

Information / named entity 71.20 66.79 34.96 31.72 40.91 70.58 87.40 

First-degree relation 65.20 62.41 55.32 49.10 34.42 46.48 89.45 

Second-degree relation 55.85 46.31 42.03 43.09 37.56 41.01 82.52 

First-degree date 46.45 48.16 42.54 37.45 40.58 64.84 53.85 

First-degree place 74.58 66.73 47.02 21.50 36.64 75.78 81.83 

First-degree information / named 

entity 
60.57 64.54 35.95 35.30 37.59 68.78 87.28 

Second-degree date 39.49 39.75 23.30 26.99 38.29 60.15 44.87 

Second-degree place 69.49 66.28 41.34 22.47 36.60 66.40 79.12 

Second-degree information / named 
entity 

60.19 62.38 34.37 37.15 35.70 
47.26 

81.04 

Overall 60.12 60.19 39.45 43.39 37.56 42.96 81.45 

 
Table 7 

Uncle-BERT1‘s and Uncle-BERT2 ‘s prediction examples 

Question 

objective 

Question Context (relevant parts) Correct 

Answer 

Uncle-

BERT1 

Uncle-

BERT2 

Place 
Where was John 

born? 

… John was born in Poland in 1866 … John grew up 

in PL until he was… 
Poland in Poland PL 

Place 
Where was John 

buried? 

… John died and was buried in Germany during … 

Kate (John’s daughter) was born in France… 
Germany Germany France 

First-degree 
place 

Where did John’s 
father get married? 

… Matt (John’s father) was born in Warsaw, Poland 
… Matt married Elain in Warsaw… 

Warsaw Warsaw in Warsaw 

First-degree 
place 

Where was Matt 
killed? 

… Matt died at home in Poland surrounded… his 

father (John’s grandfather) was killed in Pruszkow in 

1850… 

Poland Poland Pruszkow 

Second-
degree place 

Where did John’s 
grandfather die? 

… his father (John’s grandfather) was killed in 
Pruszkow in 1850… 

Pruszkow in Pruszkow Pruszkow 



6. Conclusions and future work 

This study proposed and implemented a multi-

phase end-to-end methodology for DNN-based 

answering natural questions using transformers in the 

genealogical domain.  

The presented methodology was evaluated on a 

large corpus of 3,140 family trees comprised of 

1,847,224 different persons. The evaluation results 

show that a fine-tuned Uncle-BERT2 model, trained 

on the genealogical dataset with second degree 

relationships, outperformed all the open-domain state-

of-the-art models. This finding indicates that the 

genealogy domain is distinctive and requires a 

dedicated training dataset and fine-tuned DNN model. 

A comparison of the proposed knowledge-graph-to-

text approach was also found to be superior to the 

direct knowledge graph-based models, such as 

DELFT, even after domain-adaptation, both in terms 

of accuracy and complexity. This study also examined 

the effect of the type of question on the accuracy of 

the question answering model. The date-related 

questions are different as they can be answered with 

greater accuracy directly from the knowledge graph 

and may have more generic features than other 

question types, while place-related questions are more 
sensitive to noise than other question types. In addition, 

the evaluation results of the three Uncle-BERT models 

showed that the consanguinity scope of graph traversal 

used for generating a training corpus influences the 

accuracy of the models.  

In summary, this paper's contributions are: (1) a 

genealogical knowledge graph representation of 

GEDCOM standard; (2) a dedicated graph traversal 

algorithm adapted to interpret the meaning of the 

relationships in the genealogical data (Gen-BFS); (3) 

an automatically generated SQuAD-style genealogical 

training dataset (Gen-SQuAD); (4) an end-to-end 

question answering pipeline for the genealogical 

domain; and (5) a fine-tuned question-answering 

BERT-based model for the genealogical domain 

(Uncle-BERT). 

Although the proposed end-to-end methodology 

was implemented and validated for the question 

answering task, it can be applied to other NLP 

downstream tasks in the genealogical domain, such as 

entity extraction, text classification, and 

summarization. Researchers can utilize the study's 

results to reduce the time, cost, and complexity and to 

improve accuracy in the genealogical domain NLP 

research.  

Possible directions for future research may include: 

(1) investigating the tradeoff between rich context 

passage generation and increasing the Gen-BFS scope, 

(2) integration with DNC or GNNs for dynamic 

scoping, (3) finding a method for classifying question 

types, (4) investigating the contribution of each 

question type to the accuracy of the model, and 

developing a model selection or multi-model method 

for each question type, (5) investigating larger 

contexts (relation degrees) using models that can 

handle larger input (e.g., Longformer [58] or 

Reformer [9]), (6) extending the Gen-BFS algorithm 

to handle missing family relations by adding a 

knowledge graph completion step while traversing the 

graph, (7) investigating the influence of the order of 

verbalized sentences and especially the order of 

person reference types, (8) investigating an 

architecture that will rank family trees (embedding the 

entire graph [37]) based on similarity to the question 

[92]) and eliminate the need for the user to select a 

family tree, (9) investigating the impact of spelling 

mistakes and out-of-vocabulary words on the quality 

of the results, (10) and training other transformer 

models on genealogical data to further optimize 

question answering DNN models for the genealogical 

domain. 
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