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Abstract.
Commonsense knowledge graphs have recently gained attention since they contain lots of commonsense triples, like (get onto

web, HasPrerequisite, turn computer on), which usually use free-form text to represent the entities and are essential for many
artificial intelligence applications. However, a large amount of valuable commonsense knowledge still exists implicitly or misses.
In this case, commonsense knowledge graph completion (CKGC) is proposed to solve this incomplete problems by inferring
the missing parts of the commonsense triples, e.g., (?, HasPrerequisite, turn computer on) or (get onto web, HasPrerequisite,
?). Some existing methods attempt to learn as much entity semantic information as possible by exploiting the structural and
semantic context of entities for improving the performance of CKGC. However, we found that the existing models only pay
attention to the entity and relation of the commonsense triple and ignore the important confidence (weight) information related
to the commonsense triple. In this paper we innovatively introduce commonsense triple confidence into CKGC and propose a
confidence-aware encoder-decoder CKGC model. In the encoding stage, we propose a method to incorporate the commonsense
triple confidence into RGCN (relational graph convolutional network), so that the encoder can learn more accurate entity semantic
representation by considering the triple confidence constraints. Moreover, as well known the commonsense knowledge graphs
are usually sparse, because there are a large number of entities with an in-degree of 1 in the commonsense triples. Therefore, we
propose to add a new relation (called similar edge) between two similar entities for compensating the sparsity of commonsense
KGs. In the decoding stage, considering that the entities in the commonsense triples are sentence-level entities, we propose
a joint decoding model by combining the InteractE and ConvTransE. Experiments show that our new model achieves better
performance compared to the previous competitive models. In particular, the incorporating of the confidence scores of triples
actually brings significant improvements to CKGC.

Keywords: Commonsense Knowledge Graph Completion, Triple Confidence, Encoder-Decoder Framework

1. Introduction

Since Google Knowledge Graph [1] was proposed in 2012, knowledge graphs (KGs), a.k.a. knowledge bases,
have aroused considerable research interest. The structured knowledge called facts in KGs is organized in subject-
predicate-object triples, also referred to as relations between head and tail entities. Commonsense knowledge is in-
formation that humans typically have that helps them make sense of everyday situations. As such, this knowledge,
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Fig. 1. Select part of the data in the popular commonsense knowledge graph ConceptNet-100K [10] to construct the subgraph. The circle
represents the node, and the directed edge is composed of the relation and the confidence (weight) of a commonsense knowledge triple.

which can generally be assumed to be possessed by most people, is typically omitted in (written or oral) communi-
cation. The fact that commonsense knowledge is often implicit presents a challenge for automated natural language
processing (NLP) [2] and question answering (QA) [3] approaches as the extraction and learning algorithms cannot
count on the commonsense knowledge being available directly in text [4].

In order to complete the missing commonsense knowledge of facts, the commonsense knowledge graph com-
pletion (CKGC) is proposed to solve this incomplete problems, which is similar to the classical knowledge graph
completion (KGC). Most of KGC methods adopt KG embedding techniques to predict the missing parts of the facts
[5]. However, we found that at least the following challenges should be investigated and enhanced for CKGC:

1. As we have known, commonsense KGs are usually sparse, because there are a large number of entities with
an in-degree of 1 in the triples of the commonsense KGs (as shown and analysed in Fig. 2 of Section 4). This
can pose a challenge to typical KGC methods that learn entity/relation embedding representations solely from
the knowledge that already exists in the graph.

For compensating the sparsity of commonsense KGs for CKGC, the embedding of the pre-trained lan-
guage model [6] and the textual entity identifiers [7] are used to develop entity embeddings that are more
robust to sparsity. The dense processing of the commonsense KGs can also optimize the sparsity of the graphs
to a certain extent. Treating all commonsense knowledge triples indiscriminately will also lead to inaccuracies
in the integrated information. In some extent, it affects the effect of entity embedding.

2. In addition to the sparseness, another important difference between the commonsense and traditional KGs is
that a triple in the commonsense KG may have a confidence (weight) as shown in Fig. 1. In this case, these
confidence values can identify the importance of neighbor nodes of the node in the triple, and thus may be
very useful for inferring the missing parts of the facts in CKGC. However, such confidence values have not
been explored and utilized in previous work.

Note that, the existing RGCN [8]-based commonsense knowledge graph completion model does not
distinguish the importance of neighbor nodes when aggregating the neighbor node information of a node. The
work in [7, 9] attempt to improve the entity embedding representation for CKGC by aggregating neighbor
information. But the confidence values of triples in commonsense KGs as shown in Fig. 1 have never been
utilized for CKGC in these previous work.
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Based on the above observations, in this paper we propose an encoder-decoder CKGC model by innovatively
incorporating commonsense triple confidence:

– We make a very detailed and deep experimental analysis regarding to the sparsity and confidence in the
commonsense KG datasets (especially ConceptNet-100K [10]), some new observations are discovered, which
can further make new inspiration for CKGC. The details can be found in Sections 4 and 6.

– We propose an encoder-decoder CKGC model by innovatively incorporating commonsense triple confidence.
In the encoding stage, we propose a method to incorporate the commonsense triple confidence into RGCN.
The encoder can aggregate the neighbor node information of the node in a triple, and more importantly it
can distinguish the importance of neighbor nodes for well inferring the missing parts of the triple. Moreover,
when any two entities in the commonsense KG are semantically similar, we propose to add a new relation
(called similar edge) between two entities for compensating the sparsity of commonsense KGs.

– In the decoding stage, considering that the entities in the commonsense KG are sentence-level entities, we
propose a joint decoding model by combining the InteractE [11] and ConvTransE [12].

Experiments show that our new model achieves better performance compared to the previous competitive models.
In particular, the incorporating of the confidence values of triples actually brings significant improvements to CKGC.

2. Related Work

2.1. Knowledge Graph Completion (KGC)

Most of the existing knowledge graphs have incomplete problems, which can be alleviated by inferring missing
links based on known facts. According to the triple structure of the knowledge graph (head entity, relation, tail en-
tity), the main task of knowledge graph completion (KGC) is entity prediction (also called link prediction), which
aims to predict the missing head entity or tail entity in the triple. In brief, the KGC methods can be roughly divided
into distance model [13, 14], hyperbolic space model [15, 16], tensor decomposition model [17, 18] and neural
network model [12, 19, 20]. The distance model defines distance-based scoring functions to compute the distance
between two entities through the transformation of relation (e.g., TransE [13]). The hyperbolic space model embeds
multi-relational graph data in the hyperbolic space, which can be thought of as a continuous analogue of discrete
trees, making it suitable for modelling hierarchical data (e.g., MuRP [15]). The tensor decomposition model rep-
resents relations as linear transformations acting on entity vectors (e.g., DistMult [17], ComplEx [18]). The neural
network model utilizes the popular neural networks as KG embedding techniques to predict the missing parts of the
facts (e.g., SACN taking the benefit of GCN and ConvE together [12], ConvE [19]). Please refer to the survey [5]
for more details and comparisons of these embedding methods.

2.2. Commonsense Knowledge Graph Completion (CKGC)

In 2020, Malaviya et al. [7] propose a model for complementing the commonsense knowledge graph. This is the
first time that a specific model has been proposed for the completion of the commonsense knowledge graph, instead
of directly using the traditional knowledge graph completion methods [10, 21, 22] to complete the commonsense
knowledge graph. Malaviya et al. point out that the key challenge in completing commonsense KG is the scale and
sparsity of the graph. For the problem of graph scale, Malaviya et al. use subgraphs for training to improve efficiency,
thereby using the structure of the graph to provide complementary information to improve the completion perfor-
mance. In response to the problem of sparsity, Malaviya et al. propose an approach for automatic graph densification
based on semantic similarity scores between nodes. In addition to solving the above problems, Malaviya et al. adopt
transfer learning from language models to commonsense knowledge graphs to improve contextual representation of
nodes.

In 2021, InductivE [9] mainly point out that there are some entities in the test set and validation set that have
not appeared in the training set, and thus propose the first benchmark for inductive commonsense KG comple-
tion task. Aiming at the problem of induction, InductivE leverage entity attributes based on transfer learning from
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word embedding, and the graph structure information aggregation through the relational graph convolutional neural
network.

Inspired by the above methods, in this paper we innovatively propose to utilize the confidence of commonsense
triples to help learn more accurate entity semantic representation by considering the triple confidence constraints.
In the addition of similar edges in the graph structure, we decide whether to add or not by limiting the length of the
path between two nodes. In the decoding stage, we use the joint convolution method to decode the obtained entity
embedding and relation embedding, and then use the score function to predict the entity.

3. Problem Description

A commonsense knowledge graph is represent by G = (N,V,C) , where N is the set of nodes, V is the set of
edges and C is the confidence of triple. It contains a set of head entity, relation, tail entity triples (h, r, t), where h is
the head entity, t is the tail entity and r is the relation. The entity is defined in the graph as E(G) = h|(h, r, t) ∈ G ∪
t|(h, r, t) ∈ G. Furthermore, H(G, r) = h|(h, r, t) ∈ G and T (G, r) = t|(h, r, t) ∈ G represent the head entity and tail
entity of a relation.

The commonsense knowledge graph completion (CKGC) aims to answer accurately the queries with a timestamp
(?, r, t) or (h, r, ?) by scoring higher for the true entity. After an incomplete triple is given, the model is used to
find the correct entity among the limited candidate entities to complete the triple. An effective CKGC model should
allow a large score difference between the correct entity and the wrong entity.

4. Datasets and Our Experimental Analysis

ConceptNet [23] is a knowledge graph which contains commonsense knowledge about the world, such as fact (get
onto web, HasPrerequisite, turn computer on). In this paper we also utilize the popular commonsense knowledge
graph completion (CKGC) dataset, i.e., ConceptNet-100k [10], which consists of the Open Mind Common Sense
entries in the ConceptNet dataset. The abbreviation of ConceptNet-100K is CN-100K, where 100K represents the
number of samples. For a fair comparation, in our work we utilize the training set, validation set and test set of
ConceptNet-100k in the previous CKGC method [7].

4.1. Sparsity Analysis of ConceptNet-100K

As mentioned in Section 1, commonsense KGs are usually sparse. We use the node degree to explore the quan-
titative difference between the ConceptNet-100K dataset and the traditional KG dataset in entity prediction. Node
degree is a measure of the edges (relations) linked to nodes (entities) in graph theory. Fig. 2 shows the cumulative
frequency of 1 to 9 in-degrees for each dataset. It can be seen from the figure that the percentage of ConceptNet100K
entities with degree 1 (84.00%) far exceeds that of FB15K [24]-237 (6.02%), WN18 [25] (14.87%) and FB15K [24]
(2.18%). The degrees ⩽ 2 in ConceptNet100K is 91.43%, and the percentage in WN18 is just over half of 91.43%.

4.2. ConceptNet-100K-Confidence

Commonsense knowledge is a fact accepted by most people, but there are obvious differences in the reliability of
the facts, such as (get onto web, HasPrerequisite, turn computer on, 6.32) and (get onto web, HasPrerequisite, start
your web browser, 1.0) 1, where 6.32 is the confidence score of (get onto web, HasPrerequisite, turn computer on
and 1.0 is the confidence score of (get onto web, HasPrerequisite, start your web browser). From the perspective of
experimental comparison and fairness, we also continues to use the previous ConceptNet-100K dataset mentioned
in [7], which is constructed based on the ConceptNet [23]. Note that, since the new ConceptNet (v5.7) knowledge
graph [26] has more reliable confidence scores, we extract the confidence score of each triple in ConceptNet-100K

1The confidence level can be retrieved from the API provided by https://www.conceptnet.io/
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Fig. 2. Cumulative frequency of entity degree 1 to 9 in different datasets.

Table 1
In the ConceptNet-100K dataset, the confidence of the triples in train, validation and test

Matching method Train(100000) Validation(1200) Test(1200)

Exact match 22235 709 782

Similarity match 24181 250 214

Failed match 53584 241 204

from it. But by comparing the two versions of ConceptNet, we found that the triples in previous CoceptNet [23]
cannot be completely matched in the new ConceptNet (v5.7) [26]. In particularly, some triples in the previous
ConceptNet have been adjusted, and even some relations no longer exist in ConceptNet (v5.7) knowledge graph,
such as "NotIsA", "NotHasA" and "NotMadeOf". Table 1 shows an overview of how many triples in the dataset
ConcepetNet-100K [10] can be matched.

Therefore, given each triple in ConceptNet-100K, we first find the same triple from the ConceptNet (v5.7) knowl-
edge graph, and then get the confidence score of the triple. Then, the other unmatched triples are finally matched
through the method of text similarity (by counting the number of identical words in two triples) and semantic sim-
ilarity (by calculating the cosine similarity of two triples). Table 2 shows some examples of obtaining triple con-
fidence through text similarity when a complete match is not possible. Table 3 shows some examples of obtaining
triple confidence with a higher threshold through semantic similarity.

5. Our Model

The overall architecture of our model is shown in Fig. 3, which composed of encoder and decoder. In the encoding
stage, we propose to incorporate the commonsense triple confidence into RGCN. The advantage is to avoid blindly
aggregating the information of neighbor nodes. Our confidence-aware encoder can further improve the reliability of
embedding. Before that, the pre-training language model is fine-tuned through the triples in the commonsense KG,
so as to initialize the embedding of the entities in the commonsense KG. After getting the high-quality embedding,
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Table 2
Commonsense confidence data obtained by text similarity matching in ConceptNet-100K

ConceptNet-100K ConceptNet (v5.7)
Head entity Realtion Tail entity Head entity Realtion Tail entity Weight

get onto web HasPrerequisite turn on your computer get onto web HasPrerequisite turn computer on 1.000

most rock HasProperty hard most rocks HasProperty hard 6.000

necklace ReceivesAction wear around neck necklace ReceivesAction worn around neck 1.000

go to pub UsedFor have drink going to pub UsedFor having drink 6.000

maintain good health HasSubevent exercise maintain good health HasSubevent excersise 1.000

Table 3
Commonsense confidence data obtained through semantic similarity matching in ConceptNet-100K

ConceptNet-100K ConceptNet (v5.7)
Head entity Realtion Tail entity Head entity Realtion Tail entity Weight

buy food MotivatedByGoal you be hungry buy food MotivatedByGoal hungry 3.464

work NotHasProperty fun work does not involve thinking NotHasProperty interesting 1.000

diminish your own hunger HasSubevent you eat some food diminish own hunger HasSubevent eat food 5.657

smoke HasProperty bad for you smoke HasProperty harmful to animal’s health 1.000

kill someone Causes go to jail killing people Causes being sent to prison 1.000

Fig. 3. Our confidence-aware encoder-decoder model for commonsense knowledge graph completion (CKGC). Here, CRGCN is our confidence
relational graph convolutional networks by incorporating the commonsense triple confidence into RGCN. G represents the original graph con-
structed from commonsense triples. G′ represents the graph after adding similar edges (dashed lines in G′ ) for compensating the sparsity of
commonsense KGs. Ĉt and Ît represent the vectors with the same embedding dimension of the entity obtained through ConvTransE and InteractE
respectively. Relational embedding is obtained by random embedding.

in the decoding stage, considering that the entities in the commonsense KG are sentence-level entities, we propose
a joint decoding model.
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5.1. Encoding Structure

The encoding stage is mainly divided into the following several modules. First of all, the pre-training language
model BERT [6] is used to obtain the initial entity embeddings. Then, we further add some similar edges to increase
the density of the graph for relieving the sparsity of commonsense KGs. Final, the commonsense triple confidence
is further introduced into RGCN for accurately aggregating the information of neighbor entities.

5.1.1. Initial Entity Embedding
In order to improve the quality of entity embedding, the selection of pre-training language models is also partic-

ularly important. The common ELMO [27] model is limited by the LSTM [28] neural network and cannot perform
deep modeling work. The GPT model is limited by the partial structure of the decoder using Transformer [29],
which leads to only attention The text information before the current word; The advantages of the BERT [6] model
is that it is also a kind of representation learning, which can learn a high-quality text embedding through its own
deep model structure. The pre-trained language model BERT has been proven to be a model that can improve the
performance of natural language processing tasks through a deep network structure, and the model can also be ob-
tained through unlabeled data training. For this reason, this paper utilizes an embedding method for entities in the
commonsense knowledge graph based on the pre-trained language model BERT.

Inspired by [7] and [9], we also use fastText and fine-tune the BERT model with the masked language model-
ing task upon the set of textual entity identifiers for the commonsense knowledge graph. We apply the BERT-base
uncased model to the commonsense entity identifiers and mean pooling across the token representations from all
layers to obtain a feature embedding. The relationships in many triples are composed of multiple words, and the
word segmentation database of the BERT model can actively perform word segmentation processing on the rela-
tionship. Initialized embedding continuous fine-tuning in the encoding stage, so that the correct candidate entity in
the decoding stage can get a higher score.

5.1.2. Graph Density
In addition to the existing relationships between entities, some entities may have some similarities in semantics.

For example, entities "go see doctor" and "call doctor" in Figure 1 are conceptually similar. The above example
is a perfect display of similar relationships. There are actually many entities that are very similar but already have
a certain relationship, such as (pet, IsA, animal) and (pet, RelatedTo, animal). There are many ways to calculate
the similarity between entities and introduce similar edges. The method proposed by Malaviya [7] is to perform
global thresholding based on the similarity measure of the original node attributes. The above methods have high
requirements for the quality of the initial embedding, and the number of similar edges cannot be controlled.

In our work, the addition of similar edges does not rely on the original initialization vector, and the calculation of
similar edges is performed after multiple training. The entity embedding representation obtained by the aggregation
of the weight relationship is of higher quality. In order to avoid the addition of false similar edges, we have made
other restrictions in addition to the threshold. Before adding similar edges, we set the step distance between two
entities not to exceed four. If the distance is too large, the similarity relationship is not considered. After obtaining
the triples with similar edges, the weight of the triples is set to the size of the threshold. The ultimate goal of multiple
restrictions is to increase the density of the graph while reducing the error caused by the wrong edge connection.

5.1.3. Confidence Relational Graph Convolutional Networks
Graph neural network can be understood as a simple differentiable message-passing framework [30] by Eq (1),

where h(l)
i is the hidden state of node vi in the l-th layer of the neural network, and M represents the incoming

message set of node vi, which is usually selected to be the same as the incoming edge set. gm(·, ·) is typically chosen
to be neural network-like function, and σ(·) is a element-wise activation function. The encoding model in this paper
is mainly motivated as an extension of relational graph convolutional network [8], which was mainly proposed
for large-scale relational data. The previous InductivE [9] model adaptively performs the aggregation operation of
neighbor nodes by adding gating units. The gating function mainly controls the flow of information based on the
interaction between the center and neighboring nodes. The adaptive method improves the performance of the model
to a certain extent, but it ignored the authenticity and reliability of commonsense knowledge.
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hl+1
i = σ(

∑
m∈M

gm(h
(l)
i , h(l)

j )) (1)

This paper uses a relational graph convolutional neural network that quotes the confidence of triples. The con-
fidence relational graph convolutional encoder takes graph G as input and encodes each node as a D-dimensional
embedding hi ∈ RD for all nodes h, r ∈ N. Given a graph G with R relationship types and a GCN with L layer2, the
operation to calculate the entity embeddding of the node h, r in the l + 1 layer is:

hl+1
i = σ(

∑
r∈R

∑
j∈Nr

i

Ci, jW(l)h(l)
j + W(l)

0 h(l)
i ) (2)

where hl
j ∈ Rd(l)

and hl
i ∈ Rd(l)

are the hidden states of the neighbor nodes of node ni and node ni in layer
l-th of confidence relational graph convolutional networks respectively, with d(l) being the dimension of the l-th
layer. Ci, j represents the confidence value of node ni and node node j under the relationship r, and W l is a linear
projection matrix specific to the lth layer. The node ni information and the neighbor nodes information of node ni

are accumulated and passed through the element-wise activation function σ(·).

5.2. Decoding Structure

The encoding stage mainly optimizes the entity embedding, and then obtains a low-dimensional entity embed-
ding representation that combines entity semantic information and structural information, and then selects different
models and score functions in the decoding stage to perform negative feedback adjustment. As mentioned above,
the nodes (entities) of the commonsense knowledge graph are composed of free text. The node vector expressed by
embedding can be understood as a sentence vector, and thus the expressive ability of the neural network needs to be
considered. Additionally, the data scale of the commonsense knowledge graph also requires the parameters of the
neural network model to be optimized. From the perspective of expressive ability and model processing efficiency,
we propose a multi-level convolutional neural network model in the decoding stage.

5.2.1. Single Convolutional model
The ConvTransE [12] model retains the translation invariance of TransE [13] (eh + er ≈ et

3) in structure. The
translation invariance is mainly reflected in the operation of ConvTransE, which can be understood as the accumula-
tion of eh and er after one-dimensional convolution (Eq (3)) . In the embedding, the dimensions of the entities embed-
ding and relations embedding are the same, and the input of ConvTransE is a stack of entity embedding and relation
embedding, where crepresents the c-th convolution kernel, and wc is the parameter of the c-th convolution kernel. K
represents the volume The width of the product core, and n is the index of the output vector (n ∈ [0, d−1]), where d is
the dimension of the embedding representation. êh represents the head entity embedding after padding, êr represents
The tail entity is embedded after padding. The final output vector is Mc(eh, er) = [mc(eh, er, 0), ...,mc(eh, er, d−1)].

mc(eh, er, n) =
K−1∑
τ=0

wc(τ, 0)êh(n + τ) + wc(τ, 0)êr(n + τ) (3)

The original intention of the InteractE[11] model is to enhance the expression ability of the ConvE [19] model.
The commonsense knowledge graph entity embedding contains rich semantic information and can be extracted
with the help of InteractE. The model mainly uses three methods to enhance the information interaction between

2The number of convolutional layers in this paper is 2
3eh, er , etrespectively represent the embedding of the head entity, the embedding of the relationship and the embedding of the entity.
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embedded representations. First, it use random arrangement to reorder the input embedded representations instead
of the fixed ordering method. If you use t different ordering methods, you can get t different interactive information
Pt = [(e1h , e

1
r ), ..., (e

t
h, e

t
r)]. Second, it embed the reordered entities and relationships to represent the improvement

of heterogeneous interaction through shape reshaping function:

∅(Pt) = [∅(e1h , e1r ), ..., ∅(et
h, e

t
r)] (4)

Third, it use the convolution operation of circular convolution (Eq (5)) to replace the standard convolution operation,
where I represents the input after reshaping the shape, and W represents a convolution kernel of size k×k. When
using the padding operation to fill the input content, the ordinary filling method directly fills the input with 0, and
the circular convolution fills in the upper, lower, left, and right contents.

[I ∗ W]p,q =

⌊k/2⌋∑
i=−⌊k/2⌋

⌊k/2⌋∑
j=−⌊k/2⌋

I[p−i]m,[q−i]n Wi, j (5)

5.2.2. Joint Convolutional Model
This paper takes into account that the entity representation in the commonsense knowledge graph is free text, and

combines the characteristics of ConvTransE [12] and InteractE [11] to propose a joint convolution model (down
side of Fig. 2). The following formula maps the two vectors with the same dimension as the tail entity embedding
through MLP:

ψ(eh, er) = MLP(Ct, It) (6)

where Ct (Eq (7)) is the embedding vector obtained by ConvTransE, and It (Eq (8)) is the embedding vector obtained
by InteractE. The ⋆ indicates the deep convolution operation using circular convolution.

Ct = f (vec(M(eh, er))W) (7)

It = g(vec(g(∅(Pt) ⋆ w))W) (8)

In the joint convolution model, more interactive InteractE [11] convolution operations and ConvTransE [12]
convolution operations are performed respectively in the embedding of the input head entity and relationship.
In the convolution operation using InteractE, the first step is to perform feature sorting operations. In order to
capture various heterogeneous interactions, t random permutations of eh and er are interactively generated by
Pt = [(e1h , e

1
r ), ..., (e

t
h, e

t
r)] to indicate. Under high probability, the set of interactions in ∅(ei

h, e
i
r) will not be repeated,

because the embedding dimension is very large, so the number of different interactions in all possible arrangements
is very large . Therefore, for t different arrangements, the total number of interactions can be expected to be approx-
imately t times the number of interactions. The second step is to adjust the arrangement. Arrange the embedding
through rectangles of equal height and equal width, and ensure that the embedding of the entity and the embedding
of the relationship are not adjacent. In this way, the largest heterogeneous interaction between entity and relationship
features is captured. The third step is the circular convolution operation. Compared with the traditional convolution
operation, the circular convolution can further strengthen the interaction. Interaction stacks each reshaped arrange-
ment into a separate channel. For convolution arrangement, circular convolution is applied in a depth calculation
method. Although different filters can be applied to each permutation, it is found that sharing filters across channels
is better in actual practice, because it allows a set of kernel weights to be trained on more input instances. In the
convolution operation using ConvTransE, the head entity and tail entity are composed of shorter text and one-to-one
triples, which will be better than the depth convolution of InteractE rearrangement. Therefore, a joint convolution
operation is performed combining the advantages of the two convolution operations.
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5.3. Training

For a commonsense KG, we also consider the use of inverse relations to increase the scale of the commonsense
KG. For example, the inverse relation triple of (h, r, t) is (t, r−, h). Given an incomplete triple (h, r, ?) (or (?, r, t)),
the model is used to calculate the score of candidate entities in the commonsense knowledge graph. An efficient
model should calculate that the score of the correct tail entity is much higher than the score of the wrong tail entity.
In the ranking of the entity, not only the positive ranking is considered, for example, the tail entity is predicted by
(h, r, ?). We also consider the ranking situation obtained by the inverse relation, such as predicting the head entity
by (t, r−, ?). Each result of the final ranking takes the average of the ranking of the head entity and the ranking of
the tail entity.

Before training, we need to define the scoring function. In the completion task, an incomplete triple (h, r, ?)
needs to be given. The D-dimensional embedding of the head entity is obtained through the encoding layer, and
the embedding of the relationship is obtained by random embedding representation. After two single convolution
models in the decoder, the code with the same dimension as the entity embedding can be obtained respectively.
Two single convolution models in the decoder, the codes with the same dimensions as the entity embedding can be
obtained respectively. After the two codes obtained are mapped through the fully connected layer, the final vector
of the same dimension as the entity embedding is obtained, and the obtained embedding representation is set as êt,
and the candidate tail entity is represented by the embedding matrix Eentity_num∗entity_dimension. Finally, the obtained
embedding representation êt and the candidate tail entity matrix are multiplied by a product operation (Eq (9)) to
obtain the score of each candidate tail entity. Using the above-mentioned matrix product method can efficiently
calculate the scores of multiple candidate sets at the same time and improve the efficiency of the completion network.

S core = êt ∗ Eentity_num∗entity_dimension (9)

This article uses a 1vsAll training strategy [31] with a binary cross-entropy loss function, which can be under-
stood as a multi-classification problem. The effective use of graph convolutional neural networks needs to solve the
problem of the large scale of the graph, so this paper uses the method of subgraph sampling to control the scale of
the graph. To limit the number of neighbor nodes sampled in each layer, we use the method of sampling by layer.
The core idea of hierarchical sampling is to limit the number of nodes sampled in each layer, so that the number
of neighbor nodes will only increase linearly as the number of layers increases. Each training data in the dataset is
in the format of (h, r, t), and the input part in the model is (h, r, ?). Calculate the score for each entity through the
above-mentioned entity score calculation method, and use the activation function sigmoid to map the score value
in the [0,1] interval. The entity outside the complete fact triple is regarded as the wrong candidate entity, and the
binary cross-entropy loss function (Eq (10)) is used for calculation, where N represents the number of input triples,
input is triples, and label is the correct label for each triple. In this paper, the Adam [32] optimization function
combined with decoupled weight decay regularization [33] and label smoothing are used to adjust the parameters of
the model. The model is trained for multiple iterations. If it is verified that the mean reciprocal rank (MRR) does not
improve under 15 iterations, the training will be terminated early. A single NVIDIA GeForce GTX3090 was used
to train all models used in this commonsense knowledge graph completion model.

Loss(input, label) = − 1

N

∑
i

(labeli · log(inputi) + (1− labeli) · log(1− inputi)) (10)

6. Experiments and Results

6.1. Baselines

In order to make the comparison model convincing, this paper adopts a series of comparison models proposed by
Malaviya et al. (2020) [7]: DistMult [17], ComplEx [18], ConvE [19] and ConvTransE [12]. The performance of
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Table 4
Evaluation results on ConceptNet-100K. The upper part is the completion results of some benchmark models, [♣] represents the result from [7],
[♠] represents the result from [9]. Best results are in bold.

ConceptNet-100K
Model MRR Hits@1 Hits@3 Hits@10

Distmult [♣] 8.97 4.51 9.76 17.44
Complex [♣] 11.40 7.42 12.45 19.01

Conve [♣] 20.88 13.97 22.91 34.02
Convtranse [♣] 18.68 7.87 23.87 38.95

Comet-normalized [♣] 6.07 0.08 2.92 21.17
Interacte 22.70 14.60 15.30 35.20

Malaviya et al. [♣] 51.11 39.42 59.58 73.59
Inductive [♠] 57.35 - 64.50 78.00

Our model 55.43 44.05 62.30 76.50
Our model + Confidence 57.45 46.13 64.00 79.13

these models is not necessarily the best in the completion of the commonsense knowledge graph. The above models
have absolute advantages after being screened to illustrate the effectiveness of the confidence level of commonsense
knowledge proposed in this paper.

In addition to the aforementioned baseline model, we also introduced the latest InductivE [9] model and InteractE
[11] model for comparison. But using the latest benchmark model to compare with the previous model, by adjusting
the training parameters and changing the corresponding embedding, it can definitely exceed the original model.
In order to avoid the above situation, we use our own model as the benchmark model, and introduce the model
into commonsense confidence and not introduce commonsense confidence to conduct experiments to illustrate the
importance of confidence.

6.2. Evaluation Metrics

When using the entity prediction task to complete the commonsense knowledge graph, it is usually evaluated
by sorting out the score rankings of the triples. The specific evaluation indicators used are as follows. The first is
Hits@n(n=1, 3, 10), which is the case where the correct triples are ranked in the top n among all combinations of
triples. If the value of Hits@1 is larger, the accuracy of the model is higher, and Hits@3 and Hits@10 can indicate
the accuracy of the model. The second is the MR (Mean Rank) indicator. The results of the average processing of all
the triples rankings, we can see how well the model fits all the triples in the completion. If the value of MR is small,
it means that the fit of the model is better. If the MR is A large value indicates that the model has differentiated in the
evaluation, resulting in low scores for some correct triples. The third is the MRR(Mean Reciprocal Rank) indicator,
which calculates the mean value of the inverse of the ranking of all triples, which reflects the overall effect of model
completion. At the same time, following the past processing method, the correct entity that is not the target entity is
removed by filtering before calculating the ranking of the candidate entity.

6.3. Result

The results of the experiment are shown in Table 4. It can be seen that our new model achieves better performance
compared to the previous competitive models in the evaluation indicators MRR, Hits@1 and Hits@10. In particular,
based on our ablation study, the results show that the incorporating of the triple confidence into our model actually
brings significant improvements to CKGC.

Moreover, through the in-depth study of the test results, we found that the incompleteness of the training samples
also has a great impact on the test results. We select five triples in the test set where the tail entity prediction is
ranked tenth as shown in Table 5. For example, the triple to be predicted is (jellyfish, AtLocation, most ocean), which
ranks tenth in the candidate set, but the triples (jellyfish, AtLocation, sea water), (jellyfish, AtLocation, coral reef),
(jellyfish, AtLocation, open ocean), and (jellyfish, AtLocation, saltwater) exist in ConceptNet but not in ConceptNet-
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Table 5
This table mainly explains the impact of incompleteness of ConceptNet-100K on the model. We selected five examples where the triples to be
predicted ranked tenth in the candidate set, and the triples marked with ∗ indicate that they exist in ConceptNet but do not exist in ConceptNet-
100K

ConceptNet-100K test set
Triples to be predicted (jellyfish, AtLocation, most ocean) (human, AtLocation, park) (chicken, IsA, meat) (cat, HasA, whisker) (water, UsedFor, drink)

Candidate_1 (jellyfish, AtLocation, sea) (human, AtLocation, build) (chicken, IsA, poultry) ∗ (cat, HasA, pet) (water, UsedFor, swim)

Candidate_2 (jellyfish, AtLocation, indian ocean) (human, AtLocation, town) (chicken, IsA, pet) (cat, HasA,leg) (water, UsedFor, relation)

Candidate_3 (jellyfish, AtLocation, any ocean) (human, AtLocation, new york) (chicken, IsA, mammal) (cat, HasA, nose) ∗ (water, UsedFor, wash your hand)

Candidate_4 (jellyfish, AtLocation, gulf of mexico) (human, AtLocation, room) ∗ (chicken, IsA, vegetarian food) (cat, HasA, feel) (water, UsedFor, wash off)

Candidate_5 (jellyfish, AtLocation, sea water) ∗ (human, AtLocation, train station) (chicken, IsA, vegetarian) (cat, HasA, two ear) (water, UsedFor, take bath) ∗
Candidate_6 (jellyfish, AtLocation, in ocean) (human, AtLocation, paris) (chicken, IsA, egg) (cat, HasA, foot) (water, UsedFor, grow vegetable)

Candidate_7 (jellyfish, AtLocation, coral reef) ∗ (human, AtLocation, theatre) ∗ (chicken, IsA, roast) (cat, HasA, tooth) (water, UsedFor, take bath in)

Candidate_8 (jellyfish, AtLocation, open ocean) ∗ (human, AtLocation, street) (chicken, IsA, usually) (cat, HasA, fur to protect it skin) (water, UsedFor, eat)

Candidate_9 (jellyfish, AtLocation, saltwater) ∗ (human, AtLocation, factory) ∗ (chicken, IsA, food animal) (cat, HasA, cat hair) (water, UsedFor, cool off)

Candidate_10 (jellyfish, AtLocation, most ocean) (human, AtLocation, park) (chicken, IsA, meat) (cat, HasA, whisker) (water, UsedFor, drink)

Table 6
This table shows the comparison of the results of this model after introducing the filtering mechanism constructed by complete data

ConceptNet-100K
Model MR MRR Hits@1 Hits@3 Hits@10

Our model + Confidence 127.34 57.45 46.13 64.00 79.13

Our model + Confidence + Complete filtering 125.88 58.31 47.22 64.52 79.45

100K. The above phenomenon of incomplete data affects the filtering mechanism, and thus affects the model’s effect
on the completion of the commonsense knowledge graph. More results can be found in the Appendix.

In order to solve the impact of the above-mentioned data incompleteness on the completion effect of the com-
monsense knowledge graph, we carried out comparison experiments by loading the complete ConceptNet dataset.
The main purpose of loading the complete CoceptNet dataset is to obtain complete commonsense triples data. They
filter all the correct triples in the filtering mechanism, and they do not participate in training. Table 6 shows the
comparison of the results of this model after introducing the filtering mechanism constructed by complete data. It
can be seen from the table that all indicators have been improved. The introduction of MR evaluation indicators
makes the improved results more intuitive. Combining Table 4 and Table 6, it can be found that after the introduction
of complete data for filtering, the evaluation indicators have a certain degree of improvement over all benchmark
models.

7. Conclusion

In this paper we propose a confidence-aware encoder-decoder model for commonsense knowledge graph com-
pletion (CKGC). Our work is the first work to introduce commonsense triple confidence into CKGC, in order that
the model can integrate more recognizable neighbor entity information to learn more accurate entity semantic rep-
resentation. Moreover, we also propose to add a new relation (called similar edge) between two similar entities
for compensating the sparsity of commonsense knowledge graphs. In addition, considering that the entities in the
commonsense triples are sentence-level entities, we propose a joint decoding model by combining the advantages
of InteractE and ConvTransE. Experiments show that our new model achieves better performance compared to
the previous competitive models. In particular, the incorporating of the confidence scores of triples actually brings
significant improvements to CKGC.
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Appendix A. Appendix

Table 7: The table lists the triples where the tail entity to be predicted in the test set does not enter the top ten, and the
situation of the first candidate entity in the prediction

Triples to be predicted Model prediction result
Head entity Realtion Tail entity Head entity Realtion Tail entity

baseball IsA sport baseball IsA consider all-american sport
baseball IsA game baseball IsA consider all-american sport

dog CapableOf bark dog CapableOf poop
dog IsA mammal dog IsA common pet
dog AtLocation kennel dog AtLocation zoo
dog CapableOf guide blind person dog CapableOf poop
dog CapableOf guard house dog CapableOf poop
dog HasA four leg dog HasA eye
dog IsA loyal friend dog IsA common pet
dog IsA canine dog IsA common pet
dog CapableOf guard your house dog CapableOf poop
dog Desires chew on bone dog Desires walk
dog NotCapableOf sweat dog NotCapableOf walk
polo IsA game polo IsA british sport
book ReceivesAction write book ReceivesAction store in library
book AtLocation your desk book AtLocation bookstore
book AtLocation classroom book AtLocation bookstore
book HasA story book HasA lot of information
paper HasProperty recyclable paper HasProperty transparent
sex Causes child sex Causes procreation

metal IsA music metal IsA common metal
sushi IsA food sushi IsA raw seafood
food AtLocation table food AtLocation dinner

telephone AtLocation your desk telephone AtLocation house
telephone UsedFor communication telephone UsedFor make call

sleep HasPrerequisite close eye sleep HasPrerequisite rest
water AtLocation pool water AtLocation freeze
water CapableOf reflect image water CapableOf melt
flower AtLocation park flower AtLocation store
child CapableOf share toy child CapableOf play with toy

computer UsedFor work computer UsedFor do math
computer UsedFor play game computer UsedFor do math
computer IsA electronic device computer IsA excellent source of information
computer AtLocation your house computer AtLocation any large city
computer CapableOf process information computer CapableOf do math

apple AtLocation apple tree apple AtLocation store
clothe AtLocation drawer clothe AtLocation hanger
glass UsedFor drink glass UsedFor correct poor vision

library UsedFor do research library UsedFor study
key CapableOf open lock key CapableOf unlock door
key CapableOf open door key CapableOf unlock door
key UsedFor open door key UsedFor unlock old door
cat CapableOf hunt mouse cat CapableOf bite
cat CapableOf drink water cat CapableOf bite
cat AtLocation lap cat AtLocation home
cat HasA whisker cat HasA leg
cat AtLocation windowsill cat AtLocation home
cat CapableOf catch mouse cat CapableOf bite
cat CapableOf corner mouse cat CapableOf bite

wood UsedFor fence in property wood UsedFor make boat
work NotHasProperty fun work NotHasProperty bore
shark AtLocation any ocean shark AtLocation coral reef

chicken CapableOf cross road chicken CapableOf fly
chicken CapableOf produce egg chicken CapableOf fly
drink HasPrerequisite open your mouth drink HasPrerequisite buy beer

window UsedFor look outside window UsedFor let light in
football IsA game football IsA popular sport

car HasA seat car HasA seatbelt
car HasA four wheel car HasA seatbelt
car CapableOf slow down car CapableOf roll down street
love CausesDesire propose to woman love CausesDesire copulate
knife CapableOf spread butter knife CapableOf hurt person
knife CapableOf spread peanut butter knife CapableOf hurt person
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Head entity Realtion Tail entity Head entity Realtion Tail entity
knife UsedFor stab knife UsedFor slice meat
music CreatedBy composer music CreatedBy write
music HasProperty relax music HasProperty important to human
ball IsA toy ball IsA throw

do housework Causes have clean house do housework Causes sweat
bird AtLocation sky bird AtLocation in tree
bird AtLocation roof bird AtLocation in tree
bird AtLocation air bird AtLocation in tree
bird CapableOf sing bird CapableOf lay egg

feather UsedFor tickle someone feather UsedFor tickle
teacher CapableOf school student teacher CapableOf teach
teacher CapableOf help student teacher CapableOf teach

pool UsedFor get out of heat pool UsedFor dunk
human CapableOf die only once human CapableOf commit genocide
human AtLocation school human AtLocation hospital
human AtLocation love human AtLocation hospital
human AtLocation country human AtLocation hospital
human AtLocation home human AtLocation hospital
human AtLocation park human AtLocation hospital
human AtLocation workplace human AtLocation hospital
plant HasA leave plant HasA stem
read HasSubevent turn page read HasSubevent learn something
pilot CapableOf land plane pilot CapableOf fly aiplane
pilot CapableOf land airplane pilot CapableOf fly aiplane

person CapableOf voice opinion person CapableOf die
person CapableOf love person CapableOf die
person CapableOf catch cold person CapableOf die
person CapableOf cross street person CapableOf die
person Desires clothe person Desires love
person CapableOf wind clock person CapableOf die
person CapableOf taste food person CapableOf die
person CapableOf thank another person person CapableOf die
person CapableOf captain ship person CapableOf die
person CapableOf water plant person CapableOf die
person CapableOf believe in god person CapableOf die
person Desires dance person Desires love
person CapableOf laugh at joke person CapableOf die
person CapableOf talk to each other person CapableOf die
person CapableOf thank god person CapableOf die
person CapableOf sail boat person CapableOf die
person CapableOf pay bill person CapableOf die
person CapableOf shoulder burden person CapableOf die
person Desires laugh person Desires love
person Desires feel important person Desires love
person CapableOf board plane person CapableOf die
doctor CapableOf help sick person doctor CapableOf treat seriously ill person

boy CapableOf date girl boy CapableOf like boy
boy CapableOf kiss girl boy CapableOf like boy
boy IsA young man boy IsA male kid of his parent

have sex Causes baby have sex Causes pregnancy
have sex HasSubevent sweat have sex HasSubevent make love
match CapableOf light candle match CapableOf ignite
foot AtLocation desk foot AtLocation toe

exercise HasPrerequisite energy exercise HasPrerequisite go for run
magician CapableOf fool audience magician CapableOf do magic

rock IsA music rock IsA rock with smooth edge
cook CapableOf prepare meal cook CapableOf bread chicken

student CapableOf fail test student CapableOf read
student CapableOf master subject student CapableOf read

fruit HasProperty edible fruit HasProperty high in calorie
boat AtLocation water boat AtLocation sea
boat IsA on water boat IsA usually
rain IsA water rain IsA form of weather
host CapableOf welcome guest host CapableOf tape television show

ride horse HasSubevent fall off ride horse HasSubevent ride pony
horse HasProperty brown horse HasProperty yellow
horse ReceivesAction ride horse ReceivesAction train to jump high fence
horse CapableOf carry person horse CapableOf jump
horse AtLocation race track horse AtLocation ranch
earth HasA one moon earth HasA more water than land
earth NotIsA perfect sphere earth NotIsA planet

someone AtLocation museum someone AtLocation party
someone AtLocation post office someone AtLocation party
someone AtLocation zoo someone AtLocation party
someone AtLocation lake someone AtLocation party
someone AtLocation shop someone AtLocation party
bicycle IsA two wheel vehicle bicycle IsA method of transportation

go to bed HasPrerequisite turn off light go to bed HasPrerequisite go to your bed
go to bed HasPrerequisite turn out light go to bed HasPrerequisite go to your bed
play game HasSubevent fun play game HasSubevent run
elephant AtLocation circus elephant AtLocation jungle
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Head entity Realtion Tail entity Head entity Realtion Tail entity
go to get haircut Causes your hair will be short go to get haircut Causes short hair

play MotivatedByGoal have some fun play MotivatedByGoal win
play Causes fun play Causes entertainment
man CapableOf father child man CapableOf breathe
man CapableOf date woman man CapableOf breathe
man Desires woman man Desires love
fall IsA season fall IsA activity

stop your bicycle HasSubevent apply brake stop your bicycle HasSubevent brake
kill HasProperty wrong kill HasProperty fun

finger CapableOf push button finger CapableOf scratch
star AtLocation night sky star AtLocation orbit

goldfish IsA carp goldfish IsA common pet
table UsedFor put thing on table UsedFor stand on

use computer HasSubevent type on keyboard use computer HasSubevent play video game
watch movie HasPrerequisite buy ticket watch movie HasPrerequisite go to movie

canada HasProperty north of unite state canada HasProperty very cold
home RelatedTo family home RelatedTo house

neighbour AtLocation door neighbour AtLocation neighbor
go for drive HasPrerequisite get car go for drive HasPrerequisite get key
something AtLocation something else something AtLocation box
something AtLocation school something AtLocation box
something AtLocation store something AtLocation box
something AtLocation beach something AtLocation box
something AtLocation tree something AtLocation box
something AtLocation mall something AtLocation box
something AtLocation sea something AtLocation box
something AtLocation refrigerator something AtLocation box

girl IsA hold puppy girl IsA boy
pretend HasPrerequisite imagine pretend HasPrerequisite dummy
potato AtLocation restaurant potato AtLocation pizza
city AtLocation county city AtLocation new york

frisbee HasProperty round frisbee HasProperty have fun
go for haircut HasPrerequisite find barber go for haircut HasPrerequisite go to barber shop

comb CapableOf part hair comb CapableOf remove tangle from hair
comb UsedFor style hair comb UsedFor tidy person hair
stapler AtLocation your desk stapler AtLocation drawer

chess board HasA 64 square chess board HasA rook
classroom IsA in school classroom IsA place

gravity IsA force gravity IsA direction opposite pull of gravity
day HasProperty bright day HasProperty late

paint CapableOf coat wall paint CapableOf cover
canvas UsedFor paint on canvas UsedFor paint picture

have rest MotivatedByGoal you be very tire have rest MotivatedByGoal relax
get job HasSubevent interview get job HasSubevent work
lizard AtLocation dessert lizard AtLocation forest
lizard AtLocation bush lizard AtLocation forest
pencil UsedFor write something on paper pencil UsedFor write letter
plane CapableOf arrive at airport plane CapableOf runway

woman HasA baby woman HasA penis
woman CapableOf chair committee woman CapableOf love
woman CapableOf mother child woman CapableOf love
woman CapableOf wear dress woman CapableOf love
drive HasSubevent listen to radio drive HasSubevent turn key
coffee HasProperty serve hot coffee HasProperty sweet
slide AtLocation park slide AtLocation playground equipment

basketball HasProperty round basketball HasProperty fill with air
agree with someone HasSubevent nod agree with someone HasSubevent nod head

sand AtLocation desert sand AtLocation find on beach
tongue CapableOf taste food tongue CapableOf kiss

play piano HasPrerequisite take lesson play piano HasPrerequisite practice piano
mouse AtLocation laboratory mouse AtLocation build
crab AtLocation sand crab AtLocation saltwater

blanket UsedFor sleep blanket UsedFor keep warm
farmer CapableOf farm land farmer CapableOf plant crop

air IsA gas air IsA light than air
brain IsA head brain IsA complex organ
thief CapableOf case house thief CapableOf steal from car
thief CapableOf case joint thief CapableOf steal from car

neighbor AtLocation door neighbor AtLocation neighbor house
read magazine HasSubevent turn page read magazine HasSubevent read

babysitter CapableOf mind baby babysitter CapableOf dress child
see your favorite show Causes laugh see your favorite show Causes enjoyment

propose to woman MotivatedByGoal you love her propose to woman MotivatedByGoal marriage
reproduce HasPrerequisite find mate reproduce HasPrerequisite procreate
reproduce Causes child reproduce Causes make baby
internet UsedFor research internet UsedFor get information

cold CausesDesire light fire cold CausesDesire get warm
fan UsedFor move air fan UsedFor cool person on hot day

artist CapableOf paint portrait artist CapableOf paint picture
bathe HasSubevent use soap bathe HasSubevent get naked
soap UsedFor wash yourself soap UsedFor wash dirt from between your toe
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Head entity Realtion Tail entity Head entity Realtion Tail entity
soap UsedFor clean something soap UsedFor wash dirt from between your toe

fly in airplane HasPrerequisite buy ticket fly in airplane HasPrerequisite become pilot
get something HasPrerequisite ask for it get something HasPrerequisite go to store
go for swim HasSubevent drown go for swim HasSubevent get in water

chew your food Causes good digestion chew your food Causes chew
play guitar HasSubevent sing play guitar HasSubevent make music

lawyer CapableOf object in court lawyer CapableOf object to issue
lawyer CapableOf settle lawsuit lawyer CapableOf object to issue

hummingbird CapableOf hover hummingbird CapableOf fly
star trek IsA popular television show star trek IsA television show

stage UsedFor play stage UsedFor do performance
play poker HasSubevent bluff play poker HasSubevent cheat

salt UsedFor melt ice salt UsedFor flavor water
atheist CapableOf doubt existence of god atheist CapableOf believe in god

detective CapableOf piece together clue detective CapableOf catch criminal
alcohol CapableOf cloud judgement alcohol CapableOf get you drunk

some car HasProperty expensive some car HasProperty yellow
your neighbor AtLocation door your neighbor AtLocation next door

remember phone number HasPrerequisite repeat it to yourself remember phone number HasPrerequisite commit to memory
moon AtLocation space moon AtLocation orbit

oxygen IsA gas oxygen IsA atom
train CapableOf arrive late train CapableOf run

submarine IsA ship submarine IsA military submarine
move car Causes accident move car Causes drive it
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