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Abstract. Contextualized commonsense inference is the task of generating commonsense assertions from a given story, and
a sentence from that story. (Here, we think of a story as a sequence of causally-related events and descriptions of situations.)
This task is hard, even for modern contextual language models. Some of the problems with the task are: lack of controllability
for topics of the inferred assertions; lack of commonsense knowledge during pre-training; and possibly, hallucinated or false
assertions. We utilize a transformer model as a base inference engine to infer commonsense assertions from a sentence within
the context of a story. The task’s goals are to make sure that (1) the generated assertions are plausible as commonsense; and (2)
to assure that they are appropriate to the particular context of the story.

With our inference engine, we control the inference by introducing a new technique we call “hinting". Hinting is a kind of lan-
guage model prompting [1], that utilizes both hard prompts (specific words) and soft prompts (virtual learnable templates). This
serves as a control signal to advise the language model “what to talk about". Next, we establish a methodology for performing
joint inference with multiple commonsense knowledge bases. While in logic, joint inference is just a matter of a conjunction of
assertions, joint inference of commonsense requires more care, because it is imprecise and the level of generality is more flexible.
You want to be sure that the results "still make sense" for the context. We show experimental results for joint inference, including
three knowledge graphs (ConceptNet[2], Atomic2020[3], and GLUCOSE[4]). We align the assertions in the knowledge graphs
with a story and a target sentence, and replace their symbolic assertions with textual versions of them. This combination allows
us to train a single model to perform joint inference with multiple knowledge graphs.

Our final contribution is a GAN architecture that uses the contextualized commonsense inference from stories as a generator;
and that discriminates by scoring the generated assertions as to their plausibility. The result is an integrated system for contextu-
alized commonsense inference in stories, that can controllably generate plausible commonsense assertions, and takes advantage
of joint inference between multiple commonsense knowledge bases.

Keywords: Language Models, Adversarial, Commonsense, Joint Inference, Controllable Generation

1. Introduction

Contextualized or discourse aware commonsense inference is the task of inferring coherent commonsense asser-
tions or facts from a story context and a selected or target sentence. This framing (i.e., story and target sentence) is
important because a story can be anything: an actual story, a procedure, etc. In the case of a story, such contextual
commonsense inference can help with story understanding (e.g., it could give commonsense assertions that indicate
a revenge plot[5]), and in the case of a procedure, it could help with explanations and step rephrasing. Such framing
allows us to go sentence by sentence, inferring assertions, which requires the model to utilize and possibly maintain
prior information for coherence. We give an example of this task in Figure 1.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved
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Fig. 1. Overview of the task of contextual commonsense inference. From the story on the left, and the bolded sentence, a system has to infer
assertions such as the ones on the right.

This task is hard for modern contextual language models. It may rely on information that a model may not
have seen during pre-training, or the model has to figure out what topic to infer information about. In the case of
commonsense inference, this problem is exarcerbated as commonsense knowledge, present in everyone, tends to
not be written explicitly in text [6–9]. In addition to this, the factuality or the correctness of the information that is
generated by the models is hard to evaluate and usually involves a costly human-in-the-loop setup.

Prior work, such as COMET[10], has tried to do sentence-level commonsense inference. COMET was improved
to work on a paragraph-level, namely ParaCOMET[11], by extending it with a recurrent memory and training it on
an corpus of aligned stories and assertions. ParaCOMET builds a dataset to address the contextual commonsense
inference task by aligning facts from a commonsense knowledge graph (i.e., ATOMIC[12]) with a story (i.e., sam-
pled from ROCStories[13]) through a heuristic based on the ROUGE [14] metric. It goes a step further by utilizing
the cross entropy of story tokens of a language model, conditioned on one of the matched facts as a measure of
coherence to keep only matches that are coherent to the narrative. They additionally address the need for memory
(i.e., for the model to remember prior events) by using and saving prior aligned assertions in a memory system. In
the work that we present, it is possible to utilize this same memory system, however we leave testing of it for future
work. In figure 2[11], we can see an overview of how ParaCOMET functions.

Fig. 2. Overview of the ParaCOMET architecture. Taken from [11].

Another parallel work that has tackled contextual commonsense inference is GLUCOSE[4]. GLUCOSE annotates
the ROCStories[13] corpus along ten dimensions of commonsense. The authors categorize the knowledge into ten
dimensions, however, to convert this into our format described in section 2.1, we utilize the connectives (e.g.,
Causes, Enables, etc.) that the GLUCOSE authors present, as the relation types in our tuple, and expect the model
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to understand the different dimensions implicitly. From here on out, we utilize relation to refer as an assertion of a
certain dimension with a specific connective. They annotate every sentence with an assertion that is either present
or implied in it. Additionally they annotate each assertion with a general version of it which includes variables and
descriptions of these. What this means is that any person(s) or object in the assertion are replaced with a token such
as Person_A, etc. to represent a general version of the fact. Given the example story:

John is a regular person who has a dog. John, every day, goes out to walk his dog. A dog is man’s best friend.
Dogs like to bark at other dogs.

An example of a story specific assertion can be:

“John has a dog, causes, John to walk the dog".

An example of a general version of the story specific assertion, according to the GLUCOSE format, is:

“Person_A has Something_A (that is a dog), causes, Person_A to go walk the Something_A (that is dog)".

With this corpus of annotated stories, the authors train a T5[15] model to, given a dimension, target sentence, and
story, generate both a story specific and general assertion.

However, none of these works address controllability in the generation, which means that the models can generate
assertions that may be irrelevant to the sentence, or may not be about a topic needed for a downstream application.
Additionally, these models are only trained on one dataset at a time, which can hinder a model’s capability to
infer knowledge if it has not seen the knowledge elsewhere. Lastly, these models do not score the factuality or
correctness of the assertions; at most they can generate a beam score, which indicates the likelihood of the phrase
being generated.

In this work, we address all of these shortcomings, by first constructing a dataset consisting of all of the assertions
in ConceptNet[2], ATOMIC 2020[3], and GLUCOSE [4]. To construct this dataset, we align the ROCStories[13]
with an assertion by generating sentence/paragraph embeddings for the stories and the assertions by using the
sentence-transformers [16] library. We then use cosine distance to find the closest story for each assertion, and we
repeat the process once more, only with the sentences in the nearest story, to find the closest sentence in the story to
the assertion. Additionally, we contextualize the assertions in ATOMIC 2020 to make them even more relevant to
a story. This contextualization and alignment puts all the datasets in the same universe. Secondly, we augment this
dataset of aligned assertions, stories , and target sentences, with “hints" which are parts of a target assertion, along
with a symbol identifying the parts. We define an assertion here as a tuple that represents a fact. This tuple contains
at least a subject, a relation type, and a object (similar to subject-verb-object triples). We add an additional field to
this tuple which is specificity. We define specificity as whether the assertion’s content is tailored to the aligned story
or if it is a generalized version of an assertion. This can be seen as whether the assertion is a general template with
variables, or a specific instance of this template. Hinting helps tell the model that we want a part of an assertion to
show up in the generation (i.e., if a hint has a certain subject, that subject should show up in the inferred assertion).
Thirdly, we use this dataset to adversarially train two language models; one to infer assertions from the story and
target sentence, and a second to validate the assertion given the story and the target sentence.

Altogether our contributions are:

– The utilization of a hinting mechanism to help condition and control a generative model for contextual com-
monsense inference

– A simple method for contextualizing assertions to a given text with the purpose of performing joint inference
– A method for adversarially training language models to infer and evaluate assertions from a story context

2. Hinting for Controllable Generation

2.1. What is hinting?

Recently, there has been work on exploring prompting strategies [1] for pre-trained, transformer-based language
models [17, 18]. These are methods which alter the input to a language model such that it matches or approximates
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templates that it has seen during pre-training and can reuse or exploit this information. Prompting helps achieve
higher performance in tasks with less training data, can help with controllability in the case of text generation, and
is more parameter-efficient and data-efficient than fine-tuning, in some cases [19]. One type of prompting is prefix
prompting [19, 20]. Prefix prompting consists of altering a language model’s input (i.e. prefix) by adding additional
words. These words can be explicit hard prompts such as actual phrases or words, or they can be soft prompts,
embeddings that are input into a model and can be trained to converge on some virtual template or virtual prompt
that can help the model.

Prompting holds potential for improving contextualized commonsense inference. We utilize the idea of a hint, a
hybrid of hard and soft prompts. We define a hint as the part(s) of an assertion that a model has to predict, along with
special identifiers for these parts, wrapped within parenthesis characters. A forthcoming companion paper focuses
on the hinting mechanism. We include a brief description of it here, but we note that the focus of this work is the
adversarial generation with the joint inference training. Because hinting is an essential component for controllability
of this model, we include this overview.

Syntactically, a hint takes the form of: “([specificity], [subject symbol,subject], [relation symbol,relation], [object
symbol,object] )" where the actual content of the hint between the parenthesis would be a permutation of all but one
of the elements in the target tuple. Hints are provided during training by sampling a binomial distribution for each
element in a minibatch, which determines whether to give a hint or not. The actual content of the hint would then
be generated by randomly sampling without replacement up to all but one of the elements in a target tuple. We now
give a complete example of an input to a language model with hinting underlined:

John is a regular person who has a dog. John, every day, goes out to walk his dog. A dog is man’s best friend.
Dogs like to bark at other dogs. (<specific>, <subj>A dog, <relation>is a)

Such an input on a model trained for contextual commonsense inference could predict the assertion:

<specific> <subj>A dog, <relation>is a <obj> animal

Here we can see more clearly that whenever a hint is provided, a model trained with hinting tends to produce
generations that include the components given in the hint. We utilize hinting in training our models from here on
out unless otherwise stated. The controllability that hinting enables can permit us to use models trained with it in
downstream applications such as contextual knowledge graph generation.

2.1.1. Discourse-aware/Contextual commonsense inference
Commonsense inference is the task of generating a commonsense assertion. Discourse-aware/contextual com-

monsense inference is the task of, given a certain narrative or discourse, inferring commonsense assertions that are
coherent within the narrative[21]. This task is particularly hard because commonsense knowledge may not be ex-
plicitly stated in text [7] and the model needs to keep track of entities and their states either explicitly or implicitly.
Research into the knowledge that pre-trained language models learn has yielded good results in that they do contain
various types of factual knowledge, as well as some commonsense knowledge[8, 9, 22]. The amount of common-
sense knowledge in these models can be improved by supplementing sparsely covered subject areas with structured
knowledge sources such as ConceptNet [2, 9].

Knowing that these pre-trained language models may contain some commonsense information has led to the
development of knowledge models such as COMET[10]. This line of research has been extended from the sentence-
by-sentence level in COMET, to the paragraph-level in ParaCOMET [21]. Contemporaneously, GLUCOSE [4]
builds a dataset of commonsense assertions that are contextualized to a set of stories, and generalized (e.g., John is
a human is generalized to Someone_A is a human).

Our general task of contextual commonsense inference can be formally described as follows. We are given a
story S composed of n sentences, S = {S 1, S 2, . . . , S n} , a target sentence from that story, S t, where S t ∈ S , and
a relation type R. Given all this, we want to generate a tuple in the form of (speci f icity, sub ject,R, ob ject) that
represents an assertion, present or implied, in S t given the context S , and the relation type R.
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2.2. Experimental Setup

We ran some tests on applying hinting to the formulation that GLUCOSE has for its contextual commonsense in-
ference. Recall that GLUCOSE’s description of the contextual commonsense is that given a relation to predict along
for, a story, and a target sentence, a model has to infer an assertion of that dimension type along with a generalized
version of that assertion. The authors use a T5 model in a sequence-to-sequence manner. In this formulation, the
source text is composed of a prefix of a dimension to predict D ∈ 1, 2, . . .101, followed by the story S , which is
composed of n sentences, S = {S 1, S 2, . . . , S n}. In GLUCOSE, the target sentence that we want the model to focus
and generate inferences on, S t, is marked with ∗ before and after the sentence. An example input is: “1: The first
sentence. *The target sentence. * The third sentence.". In this task we have to infer a general and context specific
subject, object and a relation. For our hints we provide up to five out of these six things during training, along
with a symbol that represents whether it is the subject, object, or relation, and another symbol that represents the
specificity. We add our hint after the story S , utilizing the prefix “hint:” and supplying the hint between parenthesis.

We ran these experiments for 1 epoch on the data. Additionally, we utilize a linear warm up of 3000 steps. We
utilize the ADAM optimizer [23] with a learning rate of 1e-5, a train batch size 4, and a max source length of 1024
and max target length of 384. We utilize the training and testing data given by the GLUCOSE work. In this set of
experiments, we calculate the scores on the test set every 2000 iterations and these are the scores we utilize to report
our aggregation. We report the scores given by SacreBLEU[24], ROUGE [14], and METEOR[25] using the datasets
library [26] metrics system to get a sense of how good the commonsense inferences are, and we run the experiments
with 4 different variations or seeds.

2.3. Effects of hinting

Model
BLEU METEOR ROUGE-1 ROUGE-2 ROUGE-L ROUGE-L-SUM

No Hint Hint No Hint Hint Hint Hint No Hint Hint No Hint Hint No Hint Hint

T5
(Avg. Max)

40.242 44.367 40.550 43.069 53.881 56.209 34.702 36.817 50.321 52.61 50.329 52.617

T5
(Avg.)

30.237 32.147 33.953 34.761 46.925 47.562 28.334 28.791 43.32 44.08 43.330 44.083

T5
(Median)

33.578 36.002 36.163 36.787 49.787 50.496 30.864 31.479 46.149 47.257 46.143 47.293

Table 1
Results hinting experiments utilizing the formulation for contextual commonsense inference. We include the average and median of the runs,
and the average of the maximum values per run. The largest scores are bolded. Observe that on the “Hint" columns, which signify the scores
that were produced by a model that was trained with hinting, the model achieves greater automated scores.

In this task, we notice two large benefits when we include hinting. Firstly, it improves automated metrics, which
means it gives more accurate commonsense inferences than without it. We can see in Table 1 that for the GLUCOSE
like formulation, simple hinting improves scores on average more than a point. We suspect that this can be attributed
by the fragments of new information that the hint provides to the model to encode. Secondly, and most importantly,
hinting serves as a control signal for the generative language model. What this means is that we can supply parts of
a hint and have the model fill in whatever parts are missing.

3. Joint Inference of Commonsense Assertions

Given that we have presented hinting, which is a method to help with the controllability of contextual common-
sense inference generation, we now look at how we can combine multiple knowledge bases for this task. We then
look at combining both hinting and this joint inference towards our task of contextual commonsense inference.

1The definition for each dimension number is given in the GLUCOSE work
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3.1. What is joint commonsense inference?

In this work we define joint commonsense inference as inferring commonsense knowledge assertions by leverag-
ing knowledge from multiple knowledge bases. Recall the story that we have been utilizing as our example:

John is a regular person who has a dog. John, every day, goes out to walk his dog. A dog is man’s best friend.
Dogs like to bark at other dogs.

From this story, we want to infer the general version of the commonsense assertion of “John is capable of walking
his dog", derived from the second sentence. This general version can look similar to “Someone_A who has an
animal (that is a dog) enables Someone_A to walk the animal (that is a dog)". To generalize this, we must know that:
John is a person’s name, which we can find from a semantic tagger. A much more commonsensical fact needed to
infer the assertion is that: a dog is an animal, which is a fact found in ConceptNet. Lastly, to infer the assertion, we
need to know that: A person having a dog has the effect that a person goes to walk their dog, which is a fact that
we could find from Atomic. Therefore to infer the general assertion that we presented, we must join information
from at least two knowledge bases to infer our general assertion. Joint commonsense inference is useful because
it could lead to implicitly applying or combining knowledge and/or analogies that might be present in the different
knowledge sources, which may lead to better results when performing contextual commonsense inference.

3.2. Joint Inference Approach Overview

We apply this joint inference to the task of contextual commonsense inference, which we presented in section
2.1.1. To be able to perform joint contextual commonsense inference by leveraging multiple knowledge bases we
propose the following approach:

1. For each knowledge base that we have, we convert each facts found in them into a tuple format of {subject,
relation, object, specificity}2. We note that each part of the tuple must be text3 (i.e., if a relation is symbolically
“IsA", the text version would be “is a").

2. We align each knowledge base tuple with a story (e.g., the ROCStories corpus) and target sentence from the
story. The target sentence is the sentence which is most likely to be used to infer the tuple. We give details of
this alignment in section 3.4.

3. We combine into one list and shuffle, the aligned knowledge base tuples from multiple knowledge sources.
4. We replace the naming scheme of variables that may be present in general assertions with the naming scheme

from GLUCOSE.
5. We train a contextual commonsense inference model on this dataset, whose inferences are joint inferences.

By following this procedure, we will end up with a dataset of story aligned assertions. In this dataset, all of the
assertions are grounded in the same set of stories. With this we can train models that can perform joint contextual
commonsense inference. Now we will go into some details of this process.

3.3. Specificity in Assertions

Recall that we define specificity as whether the assertion’s content is tailored to the aligned story or if it is a
generalized version of an assertion. This can be seen as whether the assertion is a general template with variables,
or a specific instance of this template. To make the difference between specific and general assertions clearer we
give the following example. Using the same story as before:

John is a regular person who has a dog. John, every day, goes out to walk his dog. A dog is man’s best friend.
Dogs like to bark at other dogs.

2This follows a similar pattern to subject-verb-object triples, but has the added field of specificity which is whether the assertion is contextual
to a story, or a generally applicable assertion

3This ultimately helps us express the assertion in a textual way (i.e., (a dog, IsA, animal) when converted to the tuple (a dog, is a, animal,
specific) and passed to a string representation function can be expressed as “Specifically, a dog is a animal".
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As before, we focus on the second sentence: John, every day, goes out to walk his dog.. From here, we can
infer the specific assertion: “John is capable of walking his dog". The assertion is specific because it fills out a
broadly applicable template, which we will present next, that speaks about John and his dog from the story. From
the sentence, we can also infer the general version of the assertion: “Someone_A who has Something_A (that is a
dog) enables Someone_A to walk the Something_A (that is a dog)". This latter assertion is general because it speaks
in a template format (i.e.,broader terms) the same fact. A general assertion is not the story-dependent instance of
the template, but the broader, story-independent template. These general assertions contain variables in them.

In this work we utilize ConceptNet, Atomic 2020, and GLUCOSE as our knowledge bases, and propose to
combine them to perform joint inference. In table 2 we give the different available specificities for these knowledge
bases. From this, we can see that ConceptNet does not have general specificity assertions. Although this may

Knowledge Base General Specific
ConceptNet ✗* ✓

Atomic 2020 ✓ ✗*

GLUCOSE ✓ ✓

Table 2
Here we can see the available specificities in ConceptNet, Atomic 2020, and GLUCOSE. We mark with ✗ the specificities that are not available
by default, and add * to those that can be generated.

sound counterintuitive, ConceptNet gives specific, untemplated, instances of assertions, in contrast to Atomic and
GLUCOSE, which describe general versions of assertions. Atomic 2020 has the opposite problem, it gives general
versions of rules, (e.g., PersonX participates in some event, has some effect on PersonX or Y around them), and
does not give, within our contextual commonsense inference framework, the specific instance of the templates (e.g.,
filling out PersonX, PersonY, etc.). To remedy this lack of specificity within two of our sources, we mention ways
to generate examples of the missing specificity, and implement the solution for Atomic 2020.

3.3.1. Generating Missing Specificity
ConceptNet To generate general assertions for ConceptNet, we could possibly run a classifier that would deter-
mine whether a given set of tokens is a, person, place, object, among others. With this information we could fill
out, as an example, the template that GLUCOSE broadly utilize which is: {Category}({Description}), relation,
{Possibly Other Category} ({Possibly Other Description}). From ConceptNet, we could find the relation: “a dog,
IsA, animal". A general version of this assertion can be “Something_A (that is a dog), IsA, Something_B (that is a
animal)". Although we describe this process, we do not implement it in our work.

Atomic 2020 To generate specific assertions for Atomic 2020 we can do the following. We can first identify
variables (PersonX, PersonY, etc.) that are in the assertion. We can then replace these variables with a mask token
from a language model that was trained with the masked language modeling objective [18, 27], and use the language
model to fill in the Mask token similar to a cloze (i.e., fill-in-the-blanks) task. To give the model sufficient context,
we insert the assertion to the right of the nearest aligned sentence (we describe the process to get this in the next
section). In the case of PersonN variable, this usually leads to the variable being replaced with a character from the
story. In addition to this, Atomic 2020 contains blanks demarcated by underscore characters (i.e., ____ ), which we
can once more replace with a mask token and have the model fill it out with the given context. We use this process
in our work, filling in the blanks with a ROBERTA[27] large model.

3.4. Aligning Assertions with Stories

To align assertions with stories we do of the following procedure. On a high-level, we vectorize the stories and
we vectorize the assertions and we then utilize the cosine distance to find the nearest story for each assertion. We
then go into more detail and repeat the same procedure (i.e., vectorization) for each sentence in the previously found
nearest story. Ultimately we are left with the story and sentence that is most relevant or similar to the assertion. On a
low-level, we utilize the sentence transformers package along with the “paraphrase-mpnet-base-v2" model from the
repository, to generate a representative vector for every story and for every assertion from each of our knowledge
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bases. We then utilize the FAISS package [28] to perform fast approximate cosine similarity search to find, for each
assertion, what is the nearest story. Once we have this nearest story we again utilize the sentence transformers model
to vectorize every sentence in that story along with the FAISS package for the cosine similarity search, to find the
nearest sentence to the assertion. This process can be visualized and figures 3 and 4.

Fig. 3. Step 1: The story and assertion corpus are vectorized. In
our work we utilize the sentence-transformers package [16] to
achieve this.

Fig. 4. Step 2: The resulting assertion vectors are utilized as
queries, and the resulting story vectors are used as keys for a
memory-like lookup. In this work we use the FAISS package for
this. The output of the memory-like lookup is the nearest story
for each vector. This process is repeated for the sentences in the
nearest story, to align the assertion with a sentence.

3.5. Experimental Setup

To evaluate the effects of joint inference by combining multiple knowledge bases in the task of contextual com-
monsense inference we do the following. We generate a story aligned assertion dataset for each knowledge base
individually (i.e., for ConceptNet, for Atomic 2020, and for GLUCOSE) as described in the previous sections. Once
we have generated a dataset for each, we proceed to perform combinations of the datasets: ConceptNet-Atomic
2020, ConceptNet-GLUCOSE, GLUCOSE-Atomic, ConceptNet-Atomic-GLUCOSE. For the individual and the
combined datasets we perform two sets of automated tests. One that includes hinting the specificity, subject, and
relation during evaluation, and the other without these. The rationale behind these two setups is that we want to
evaluate what the model infers without any guidance, and see what it infers with guidance and joint and with mul-
tiple sources. To train our models, we use a batch size of 50, on 4xNVIDIA A6000, a learning rate of 1e-5 for an
ADAM[23] optimizer, and 3 epochs over the data.

We note that the data for ConceptNet we utilize is the dataset given by [29], specifically the data in the
“train_600k.txt" which are approximately 600,000 examples of assertions from ConceptNet, and as a test set we
utilize the “test.txt" that they provide. For Atomic 2020 we utilize the training and testing data files provided by
the authors [3]. Lastly, for GLUCOSE we use the training and evaluation files also provided by the authors in the
corresponding repository.

Additionally, we look into running a small Mechanical Turk evaluation of generated test assertions, because we
suspect that automated metrics may hurt the model’s evaluation when not using hinting. We sample 100 entries from
the testing files of each knowledge base (Atomic 2020, ConceptNet, and GLUCOSE), and run these through a set
of models trained firstly with only one of the test knowledge bases (i.e. a model trained only ConceptNet, a model
trained in Atomic 2020, and a model trained in GLUCOSE) and secondly a model trained with the combination of
knowledge bases and evaluated with and without hinting. We take the generated inferences and ask 2 raters from
Amazon Mechanical Turk to determine whether the assertion is acceptable, whether it is acceptable with the context
that it was aligned with, and whether the gold standard assertion was acceptably aligned with the context. We mark
as acceptable the answers that both human annotators agree as valid and the others as invalid.
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Fig. 5 & 6 & 7 . Automated metrics (BLEU, Meteor, and ROUGE F1) for gaging effects of joint inference with hinting. Each set of colors (3 sets
in total, Atomic 2020, GLUCOSE, ConceptNet) represents testing on a different test set, and from top to bottom, we remove knowledge bases.
Overall, we can see that with hinting on the test set, the addition of knowledge bases for inference does not improve nor degrade substantially
the performance. We suspect that with hinting the model is able to channel the specific knowledge base that pertains to the test set.

3.6. Effects of joint inference

From our experiments in this area we can see a couple of things. Firstly, when used with hinting, joint infer-
ence does not seem to improve the performance of synthetic tests. What this may mean is that hinting manages to
somehow utilize the format of the knowledge base that it is tapping into for information. Additionally, some of the
knowledge sources that we are using have a little overlap (GLUCOSE and ConceptNet had approximately 0.34%
of overlap[4], and ATOMIC 2020 has approximately 9.4% of overlap with ConceptNet[3]), which means that once
hinting is utilized to give control signals to the models, this lack of overlap may attribute to why the metrics do
not decrease drastically. Secondly, without hinting, in the automated tests that we run, performance seems to de-
grade when we add knowledge bases. The reason for this may be that the model thinks that an assertion from an-
other knowledge base may be more relevant than the test assertion types that we are evaluating. An example of this
can be if we combined GLUCOSE and ConceptNet. When evaluating with automated metrics against a test set of
GLUCOSE assertions, it may be the case that our joint model generates a ConceptNet-like assertion with different
relations than the ones that GLUCOSE utilizes, which would lead to performance decreases in automated metrics.
However, when we use hinting and combine our multiple knowledge sources to perform this joint inference, we are
able to within one model, fit all of the knowledge bases, that we are evaluating. This has implications for down-
stream applications because they no longer require multiple models. With one model and hinting we can do what
three separate models usually do. The results for our Mechanical Turk study can be found in table 3. We can see
that without hinting, the joint inference model (i.e Atomic 2020 - ConcetpNet - GLUCOSE - No Hint) improves the
acceptability, both with and without context, of assertions predicted in the Atomic 2020 test set. We can also see that
performance does not degrade much in whether it produces assertions that are contextually acceptable throughout
the test sets. We can see that with hinting however, the performance is decreased and becomes closer to what the
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Fig. 8 & 9 & 10 . Automated metrics (BLEU, Meteor, and ROUGE F1) for gaging effects of joint inference without hinting. Each set of colors
(3 sets in total,Atomic 2020, GLUCOSE, ConceptNet) represents testing on a different test set, and from top to bottom, we remove knowledge
bases. Overall, we can see that without hinting on the test set, the addition of knowledge bases for inference decreases the performance. We
suspect that this is not due to wrong inference, but that it may be more likely that an assertion from a knowledge base different than what the test
set is from was inferred (i.e., when testing on GLUCOSE, the model predicted a ConceptNet assertion)

individually trained models can achieve. This suggests that with hinting, the model tries to channel the knowledge
base that we are targetting, and aligns to what we see in the automated metrics.

We also note that on average our alignment technique has 60% approval rate for Atomic 2020, 68.3% for Con-
ceptNet, and 69% for GLUCOSE, which gives us on average 65% approval for our alignment strategy of using
sentence-transformers with the FAISS similarity search.

4. Adversarial Language Models

4.1. Adversarially training language models

In this work, our main contribution is providing and demonstrating the usefulness of a method for adversarially
training language models for the task of contextual commonsense inference. In the broader literature of genera-
tive adversarial networks (GANs)[30], the adversarial training of models, leads to better results than training each
model individually, possibly because of the generator network being updated with gradients flowing through the
discriminator. Additionally, we get the benefit that our discriminator model can give us a 0-1 score of an assertion.

In a high level view, we want to use a generative language model (i.e., a generator) who is given a story and a
target sentence, and is expected to infer commonsense assertions that are relevant to the target sentence within the
context of the story. Additionally, we want to be able to tune this generator with a discriminator model whose inputs
are the same story and target sentence along with the generated fact. The discriminator can first determine whether
the fact came from a generative model or not and secondly can determine whether the fact is valid or not. This
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Model Acceptable
Contextually
Acceptable

Alignment
Acceptable

Acceptable
Contextually
Acceptable

Alignment
Acceptable

Acceptable
Contextually
Acceptable

Alignment
Acceptable

Atomic 2020 - No Hint 0.70 0.66 0.6 - - - - -

ConceptNet - No Hint - - - 0.77 0.71 0.72 - - -

GLUCOSE - No Hint - - - - - - 0.81 0.68 0.8
Atomic 2020 - ConceptNet-
GLUCOSE - No Hint

0.76 0.68 0.63 0.83 0.7 0.65 0.79 0.67 0.59

Atomic 2020 - ConceptNet-
GLUCOSE - Hint

0.71 0.53 0.57 0.77 0.64 0.68 0.77 0.64 0.68

Table 3
Results for human annotation of 100 randomly sampled assertions from Atomic 2020, GLUCOSE, and ConceptNet test sets and the inferred
commonsense from these. We have three sets of three columns Acceptable, Contextually Acceptable, and Alignment Acceptable. Each set of
columns is color-coded to represent a knowledge base. Firstly, the Acceptable column is the ratio of whether humans thought that inferred
assertions, without context, were acceptable commonsense or not. The Contextually Acceptable, column represents the ratio of whether humans
thought that inferred assertions given the context, were acceptable or not. Lastly, the Alignment Acceptable column is whether humans thought
that the gold standard (from a knowledge base) assertion was correctly matched to the context. We can see that without hinting, the joint
inference model (i.e Atomic 2020 - ConcetpNet - GLUCOSE - No Hint) improves the acceptability, both with and without context, of assertions
predicted in the Atomic 2020 test set. We can also see that performance does not degrade much in whether it produces assertions that are
contextually acceptable throughout the test sets. We can see that with hinting however, the performance is decreased and becomes closer to what
the individually trained models can achieve. This suggests that with hinting, the model tries to channel the knowledge base that we are targetting,
and aligns to what we see in the automated metrics.

general architecture can be seen in Figure 11. One interesting aspect of this formulation, is that it becomes a kind of
conditional GAN [31], which could reinforce the control signals given in hints.

Fig. 11. Overview of the proposed GAN architecture. A story and a target sentence are fed into the generator, which infers a contextual com-
monsense fact. This fact, along with the story and target sentence, are passed into a discriminator to determine whether it is from a generator or
not and whether it is factual or not.

To be able to achieve this architecture, we need to be able to connect a generative language model to a regular
language model with some additional final layers that produce a score. In our work, we utilize a transformer-based
encoder-decoder generative model. Specifically we use the BART model [32]for conditional generation, provided
by the Huggingface Transformers library[33]. To discriminate, we utilize a regular BART model, and add some
additional layers that compress the output representation and produce a single final score from 0-1. However, it is
not as simple as conditionally generating, and passing into the discriminator the generated assertions. The generative
process utilized is a recurrent next token generation. Recall that to pick a next token with this method, a non-
differentiable argmax operation is utilized. This impedes the gradients from being calculated in backpropagation.
The issue becomes even more complex, in that the generation process can utilize beam search to find even better
generations, and each beam at the end of each generation step selects a next best token also with an argmax. To
address this discontinuity, we utilize an approximation of the argmax (i.e., a soft argmax) described it in the next
section. Finally, we pick two of the same types of base model (e.g., BART), in order for both the generator and
discriminator to share a vocabulary. The reason for sharing the vocabulary is addressed in the next section, however
this may not be necessary and we give an alternative way of being able to “splice" together different models for this
task in section 4.4.
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4.2. Addressing the Discontinuity in Generation

Recall that during recurrent conditional language generation, a next token, N, is selected by finding the argmax
of a so f tmax of all the vocabulary, after a language model is given the generated phrase up until step N − 1. Also
recall that an embedding layer is a neural network component that given an index i , returns a row vector, from a
vocabulary matrix, that corresponds to i. This lookup operation can also be achieved by performing a dot product
of a one hot vector that represents the index i and the vocabulary matrix. This essentially scales every row in the
matrix by the corresponding vector component and sums all the vectors. In the case of a one-hot vector, it scales all
but one vector to zero, therefore leaving only the desired i at the end of the summation.

Fig. 12. We visualize an example that shows the discontinuity when combining a generative language model with a discriminative language
model. The dashed line represents where the gradients are discontinued because of the non-differentiable argmax operation.

Fig. 13. We visualize an example that shows how we address the discontinuity by replacing the non-differentiable argmax with a dot product
between the softmax and the embedding layer matrix. Additionally we highlight where the scaling factor is inserted to make the approximation
more accurate. We mark our approach in green.

Now, to maintain the gradients, we need to connect the output of our generative model, which is the softmax, to
the embedding layer of our discriminator model so that it can be input, scored, and backpropagated correctly. To
do this, we simply replace the aforementioned one-hot vector that represents our index, with the softmax that the
generative model produces at a given generation step, and perform a dot product of this softmax with the embedding
matrix. This method is approximate, given that there may be noise from other non-zero elements in the softmax, and
the top element is not an exact 1. To somewhat remedy this approximation, we can multiply the input of the softmax
by a certain factor to essentially give a more approximate one-hot vector. However, this factor cannot be very large,
because it may cause instability during backpropagation. In our work, we use a scaling factor of 1, as this seems to be
accurate enough. We repeat this approximation for every generation step, and are left with a list of input embeddings
for the discriminator that represent the output of the generator with usable gradients. Since we are using the same
vocabulary, we can verify how accurate the output is, by training a K-Nearest Neighbors system, and finding the
K=1 neighbor of the output of the softmax and embedding matrix dot product against the embedding matrix. We
can use this test to determine an appropriate factor for scaling the softmax. Altogether, this approximation permits
us to train our two language models adversarially by having gradients flow from the discriminator to the generator.
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4.3. Addressing Different Generation Types

The aforementioned approximation for the discontinuity, as we described it, can be utilized for greedy selection
of the next-token (i.e., we always pick the maximal one from the final softmax). We can also apply this technique
to beam-search generation, and at every point in constructing the top scored beam, we utilize the softmax of the
maximal scoring beam, essentially simplifying the problem back down to a greedy generation-like formulation. In
this work however, we do not explore top-k generation, top-p generation, nor sampling during generation. Top-k
and top-p generation can be seen as masking out with zeros, tokens that do not meet a certain criteria. Sampling
is more complicated. To use our approximation with sampling, we would need to model the sampling function at
every generation step with something like a recurrent neural network. We leave this line of research for future work.

4.4. Splicing different models

We come back to address the issue of having to utilize models that have the same vocabulary. The reason for
this is that the soft argmax operation matches in matrix multiplication dimensions between models. We now give an
alternative, although unexplored, option. Given that a generative model will produce a softmax vector of vocabulary
size V , and we have another model that has a different vocabulary size of M, we can train decoding layers that can
convert the output tokens of the generative model, into corresponding tokens from the discriminative model. How-
ever, this conversion layer would need to be trained beforehand, and may need to be frozen during the adversarial
training, otherwise it would be a disconnect between the two models, and the input given to the discriminator may
be corrupted. To train this conversion layer beforehand, one could use as a ground truth, the results that a tokenizer
from model B, with the vocabulary size of M, would use as the targets in a cross entropy loss, and the results that a
tokenizer from model A, with the vocabulary size of V , uses as the input to the layer.

4.5. Factuality in the Discriminator

Given that we can now adversarially train our models, we explore enhancing the discriminator with some way
to determine factuality. We take a simple approach that in addition to the normal discriminator training objective
(i.e., the discriminator is given a batch of generated text and a batch of real text and evaluated whether it inferred
this correctly), we add a confounder loss. Our additional confounder loss is based on the confounder loss by [29],
in that we shuffle around the subjects and objects and expect our model to determine that when shuffled objects
are false. Since our generated outputs are structured (i.e., we have symbol tokens that delimit the different parts
of assertions), we can do this shuffling easily. Although shuffling may incur in some false negatives (we may have
a shuffled configuration that is factually correct), since we supply the story and target sentence, we expect the
discriminator to be able to discern this correctly. We believe that we could also apply the max-margin loss utilized
to great effectiveness by other language GAN literature [34, 35], although we leave this for future work.

4.6. Experimental Setup

For our GAN experiments we had the following setup. We built a joint inference dataset using the procedure given
in section 3, and we augmented it with hinting. This dataset was composed of 1,479,811 training examples, and
30,183 testing examples. We fed this data to a model with the adversarial setup described in the previous sections.
The generator model utilized was the BART-base for conditional generation, and the discriminator model was a
BART-base model with 3 1D-Convolutional layers each of which compresses the final output by a factor of two right
after the final hidden output of the model. This is followed by a pooling layer, and three linear layers which compress
even further the representation. The output of the final linear layer is a vector of dimensionality 1 to produce a score.
We note that we apply a non-linearity at the output of the convolutional layers, and at all but the last linear layer. We
took this approach because it seemed like a useful way to filter through the tokens for important parts of information,
and then compress this representation. For the sake of time, we run our model on only 1,000,000 examples, with a
batch size of 50, on 4xNVIDIA A6000. We run only one epoch through the data. After this, we run our model on
our test set without hinting and list automated metrics composed of ROUGE scores, METEOR scores, and BLEU
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Model METEOR BLEU rougeLsum rouge1 rouge2 rougeL Acceptable
Contextually
Acceptable

Alignment
Acceptable

Generator - Non-GAN 63.961 36.473 42.345 45.758 15.033 42.35 0.735 0.74 0.68
Generator - GAN 62.141 32.113 41.511 44.524 11.353 41.517 0.74 0.735 0.645

Table 4
Here we can see the results of GAN training in models. It appears that our naive GAN approach is bested by the non-adversarial generator
trained only with the language modeling objective. We note however, that with human judgements, both models are on par in both Acceptable
and Contextually Acceptable inferences.

scores to get an idea of the model’s general capabilities. We train a model with and without the adversarial approach
that we propose. We run an additional user study, which consists of randomly sampling 200 entries from our test
data, and running the same setup as the study described in section 3, we ask a pair of human annotators to determine
whether the generated assertions are valid, and whether they are valid for the given context; the same setup as for
our joint inference.

4.7. Effects of adversarial training

After running automated tests and human annotated tests, we can see that our GAN system is on par with a
non-GAN generator. We suspect that our approach may be too naive, and possibly an improved GAN formulation
such as the Wasserstein GAN [36] used in [37] may help our results. We also note that we ran a quick test with
the Spearman Rank Correlation coefficient [] and we found that the discriminator of the GAN system has some
correlation (0.121) with the Contextual Acceptability measure. This may indicate that there is still room to improve
in the Discriminator, and we may look into other training objectives for it. Looking further into the results, we see
that the non-GAN model trumps our GAN formulation in all of the metrics, suggesting that the Discriminator could
be restricting the Generator too much.

5. Related Work

5.1. Prompting

Recently, there has been a shift in Natural Language Processing from pre-training and fine-tuning a model, to
pre-training, prompting, and predicting [1]. One reason for this shift is the creation of ever-larger language models,
which have become computationally expensive to fine-tune. Prompting is a finding a way to convert a model’s
input sequence into another sequence that resembles what the model has seen during pre-training. Overall, most
prompting research focuses on formulating the task as a cloze (fill-in-the-blanks) task. However, we consider the
task of language generation, an open-ended formulation.

Recall that prefix prompting modifies the input to a language model, by adding either a hard prompt (additional
words to the input sequence)[38] or a soft prompt (i.e., adding trainable vectors that represent, but are not equivalent
to, additional words) [1, 19, 20]. Unlike classic prefix prompting, hinting uses both hard and soft prompts. The
soft prompts are in the form of symbols that represent the different parts of the assertion (i.e., subject (<subj>),
relation type (<relation>), and object (<obj>)), and the hard prompts are in the form of the actual parts of the
assertion that are selected to be appended as part of the hint as seen in our example in section 5.1. Hinting is similar
to KnowPrompt[39], except that they use a masked language model and soft prompts for relationship extraction.
AutoPrompt [38] is also similar, but finds a set of “trigger" words that give the best performance on a cloze-related
task, whereas we provide specific structured input for the model to guide text generation.

5.2. Controllable Generation

Controllable generation can be described as ways to control a language model’s text generation given some
kind of guidance. One work that tries to implement controllable generation is CTRL [40]. The authors supply
control signals during pre-training of a language model. This approach is intended to provide a generally applicable
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language model. A body of work in controllable generation has focused on how it can be used for summarization.
Representative work that uses techniques similar to ours is GSum [41]. In contrast to GSum, our method is model
independent, allows for the source document to interact with the guidance signal, and contains soft prompts in the
form of trainable embeddings that represent the parts of a tuple. The GSum system gives interesting insight into
the fact that highlighted sentences, and the provision of triples, does in fact help with the factual correctness of
abstractive summarization.

5.3. Story and Assertion Alignment

The closest work to ours, with regards to constructing an story aligned assertion dataset is ParaCOMET and
GLUCOSE. GLUCOSE uses human annotation to perform the alignment between stories and commonsense as-
sertions. ParaCOMET takes an automated approach in which assertions are aligned either by giving the sentence
to a COMET model as an input and producing a relevant inferred assertion, or by calculating the cross entropy
of combining the story up until the target sentence with an assertion from a knowledge base. Our method differs
from this in that we utilize cosine distance between semantic representations of the story and its sentences and an
assertion from a knowledge base. Some possible differences that arise from this is that our method could match
assertions that may not be explicit in a story to that story. Whereas ParaCOMET’s approaches, which are based on
cross-entropy for coherence, are likely to produce assertions that have parts that are explicit in text. Overall, our
approach can match more abstract assertions to stories. Additionally, our method permits us to use the optimized
FAISS library to scale up to billions of stories and assertions, and gives us the freedom to select how to embed the
stories/sentences/assertions.

5.4. Commonsense Grounding and Reasoning

A similar line of work has been in grounding commonsense statements for inference. However, this line of work
is more aligned for natural language inference rather than assertions. One work in this area is HellaSwag[42] which
constructs a question answering dataset whose plausible answers are intended to be confounders to language models.
Our work differs from this line of work in that we intend to produce structured outputs.

Other works look at reasoning with commonsense knowledge graphs. One work that utilizes the explicit
graph structure to perform multi-hop reasoning is “Commonsense for Generative Multi-Hop Question Answering
Tasks"[43]. The authors look to select grounded multi-hop relational commonsense information from ConceptNet
via a pointwise mutual information and term-frequency based scoring function to fill in gaps of reasoning between
context hops for a model they use. In contrast to this work, we are not explicitly looking at a graph structure for our
inference, nor are in a task of question answering.

Some older work that looks at doing something similar to joint inference is blending[44]. This technique essen-
tially consists of constructing and adding or blending together matrices of embeddings to find the commonalities
between discrete knowledge sources and commonsense knowledge. This method however is hard to scale to large
knowledge bases, and is not easily applied to the task of contextual knowledge inference. An even older work that
looks into a certain kind of joint inference is Cyc[45]. Cyc uses the idea of "micro-theories"; there would be a small
set of commonsense assertions that you could reason with, then combine them with the more general Cyc KB.
However, this is not really joint inference in the sense that we use, but trying to address the problem of local vs.
global inference.

5.5. Adversarial Language Models

Here we look into work that utilizes adversarial or close training with language models. One such work is [46] in
which the authors utilize a GPT-3[47] model as a teacher in order to distill commonsense knowledge into a student
model that is considerably smaller. This task is different from ours in that they do not explore contextual/discourse
aware commonsense inference, instead they look at extracting the knowledge already found in a model.

Other work more similar to ours, albeit older, is [37]. In this work, the authors take a similar approach to our
adversarial configuration, however they utilize the Wasserstein GAN objective [36] rather than the basic GAN
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formulation that we use. The authors additionally use the same approximation that we utilize in section ??. We note
that they employ other strategies such as teacher helping, curriculum learning, and variable length that are worth
looking into for future work. We note however that the authors tackle general language generation, rather than our
task of contextual commonsense inference.

6. Contributions & Takeaways

In this work we have presented three things: a method for controlling contextual commonsense inference called
hinting, a method for combining multiple knowledge graphs for joint contextual commonsense inference, and a
adversarial and non-adversarial model trained with these techniques. Taken altogether, we can obtain one model that
is capable of inferring on a topic given by a hint, the inference can be performed on any subject, relation, object,
and specificity from source knowledge bases, and the model’s discriminator is capable of scoring assertions. These
works serve as a baseline to explore the area of contextual commonsense inference, and leave much room to explore
avenues on hinting, joint inference, and adversarial training of transformer-based language models.
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