
Journal Title 0 (2021) 1–0 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Performing live time-traversal queries on
RDF datasets
Arcangelo Massari a and Silvio Peroni a,b

a Research Centre for Open Scholarly Metadata, Department of Classical Philology and Italian Studies, University
of Bologna, Bologna, Italy
b Digital Humanities Advanced Research Centre (/DH.arc), Department of Classical Philology and Italian Studies,
University of Bologna, Bologna, Italy
E-mail: arcangelo.massari2@unibo.it
E-mail: silvio.peroni@unibo.it

Abstract. This article introduces a methodology to perform live time-traversal queries on RDF datasets and software based on
this procedure. It offers a solution to manage the provenance and change-tracking of entities described using RDF. Although
these two aspects are crucial factors in ensuring verifiability and trust, some of the most prominent knowledge bases – including
DBpedia, Wikidata, Yago, and the Dynamic Linked Data Observatory – do not support time-agnostic SPARQL queries, i.e.
queries across the various statuses an entity may have assumed in time. The OpenCitations Data Model (OCDM) describes one
possible way to track provenance and entities’ changes in RDF datasets, and it allows restoring an entity to a specific status in
time (i.e. a snapshot) by applying SPARQL update queries. The methodology and library presented in this article are based on
the rationale introduced in the OCDM. We also develop benchmarks proving that such a procedure is efficient for specific queries
and less efficient for others. To date, as far as we know, our library is the only software supporting all the time-related retrieval
functionalities without pre-indexing data.

Keywords: provenance information, change-tracking of RDF data, time-traversal queries, SPARQL, OpenCitations

1. Introduction

Data reliability is based on provenance: who pro-
duced information, when, and the primary source.

Such provenance information is essential because
the truth value of an assertion on the Web is never ab-
solute, as claimed by Wikipedia, which on its policy
on the subject states: "The threshold for inclusion in
Wikipedia is verifiability, not truth" [1]. The Semantic
Web reinforces this aspect since each application pro-
cessing information must evaluate trustworthiness by
probing the statements’ context (i.e., the provenance)
[2]. It is a challenging task and, in the Semantic Web
Stack, trust is the highest and most complex level to
satisfy, subsuming all the previous ones.

Moreover, data changes over time, for either the nat-
ural evolution of concepts or the correction of mis-
takes. Indeed, the latest version of knowledge may not

be the most accurate. Such phenomena are particularly
tangible in the Web of Data, as highlighted in a study
by the Dynamic Linked Data Observatory, which noted
the modification of about 38% of the nearly 90,000
RDF documents monitored for 29 weeks and the per-
manent disappearance of 5% [3].

Notwithstanding these premises, the most extensive
RDF datasets to date – DBPedia, Wikidata, Yago, and
the Dynamic Linked Data Observatory – do not use
RDF to track changes, and only a few of them pro-
vide provenance information at the entity level. They
all adopt backup-based archiving policies, not allow-
ing SPARQL time-traversal queries on previous sta-
tuses of their entities [4–7].

The main reason behind this phenomenon is that the
founding technologies of the Semantic Web – namely
SPARQL, OWL, and RDF – did not initially provide
an effective mechanism to annotate statements with

0000-0000/$00.00 © 2021 – IOS Press. All rights reserved.

mailto:arcangelo.massari2@unibo.it
mailto:silvio.peroni@unibo.it

2 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

metadata information. More precisely, the only stan-
dard solution to date, included since RDF 1.0, is RDF
Reification [8], which is being questioned by several
deprecation proposals due to its poor scalability [9].
This lacking led to the introduction of numerous meta-
data representation models, none of which succeeded
in establishing itself over the others and becoming a
widely accepted standard to track both provenance and
changes to RDF entities [10–28].

The most adopted solutions to define provenance
information to RDF triples are named graphs [10]
and the Provenance Ontology [24]. Named graphs are
widespread because they are part of the RDF data
model and SPARQL. As such, they are independent of
external vocabularies, scalable, and have several seri-
alization formats. On the other hand, the Provenance
Ontology (PROV-O) was published by the Provenance
Working Group as a W3C Recommendation in 2013,
meeting all the requirements for provenance on the
Web and collecting existing ontologies into a single
general model [29].

However, storing provenance information is not
enough. In fact, having mechanisms to understand the
evolution of entities is crucial when dealing with ac-
tivities such as research assessment exercises, where
modifications (due to either corrections or misspecifi-
cations) may affect the overall evaluation of a scholar,
a research group, or an entire institution. For instance,
even considering well-known and proprietary citation
databases such as Scopus and Web of Science, an in-
stitution’s name might change over time and the reflec-
tion of these changes in a database “make it difficult to
identify all institution’s names and units without any
knowledge of institution’s history” [30]. This scenario
can be prevented by keeping track of how data has
changed in the database, thus enabling users to under-
stand such dynamics without accessing external back-
ground knowledge.

In the past, some software was developed to perform
time-traversal queries on RDF datasets, enabling the
reconstruction of the status of a particular entity at a
given time. However, as far as we know, all existing so-
lutions need to preprocess and index RDF data to work
efficiently [31–35]. This requirement is impractical for
linked open datasets that constantly receive many up-
dates, such as Wikidata. Conversely, software that op-
erates on the fly only allows materializing versions or
deltas and not performing SPARQL queries on all the
past states of a dataset [36–38].

All these aspects were taken into strong consider-
ation when OpenCitations, an independent infrastruc-

ture organization for open scholarship dedicated to the
publication of open bibliographic and citation data by
the use of Semantic Web technologies [39], released
the new instance of the OpenCitations Corpus [40]. In-
deed, as described in the OpenCitations Data Model
(OCDM) [41], all the entities included in the collec-
tions released by OpenCitations are accompanied by
information about provenance and data changes over
time, to allow the reconstruction of their status (or
snapshot) at a specified time. This solution was imple-
mented in the OCDM combining named graphs and
PROV-O: a new snapshot is defined every time an
entity is created or modified, and it is stored within
a (provenance) named graph associated with the re-
lated entity. The tracking of entities’ changes is per-
formed by describing the delta between two snap-
shots of the same entity, i.e. the difference of the RDF
statements added and removed between the entity’s
snapshots, through a SPARQL update query [42] as-
sociated with each snapshot through a new property,
i.e. hasUpdateQuery, defined in the OpenCitations
Ontology (https://w3id.org/oc/ontology).
This solution is concretely used in all projects related
to the OpenCitations infrastructure, such as COCI,
an open index containing more than 1.2 billion DOI-
to-DOI citation links derived from the data avail-
able in Crossref [43], and has enabled the creation
of a system to simplify restoring an entity status at
a given time. It is worth noting that the provenance
and change tracking model adopted in the OCDM is
generic and reusable in any other context since it relies
on well-known recommendations (i.e. named graphs
and PROV-O) plus the hasUpdateQuery property.
As such, it is not tied to a particular domain.

This work introduces a methodology enabling all
the time-related retrieval functionalities identified by
Fernández et al. [44] live, without preprocessing the
data, when the provenance and data changes are
tracked according to the recommendation mentioned
above and to the deltas stored as SPARQL update
queries according to the OCDM. Employing such a
snapshot-oriented structure streamlines recovering the
status of an entity to a particular snapshot si: it is suf-
ficient to apply the reverse operations of all update
queries from the most recent snapshot sn to si+1 by
replacing insertions with deletions and vice-versa.

However, some issues need to be addressed for
recreating the correct status of an entity at a given time.
First, entities are linked to other entities, each having
their snapshots generated and invalidated at diverging
times: they must be realigned temporally to make the

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

correct query. Also, the only way to query the past state
of a dataset is to restore that version. However, such
a procedure is not scalable because it gradually con-
sumes more time and resources as the provenance col-
lection increases. After finding a solution to the pre-
vious problem, assuming that the past reconstructed
graphs are extensive, a way to efficiently run the user
query on the rebuilt versions must be devised. Finally,
supposing a query or materialization is executed over
a specific time interval, a strategy should be designed
to jump from the most recent snapshot to the required
one without reconstructing all the intermediate states.

These problems are tackled individually in the
methodology presented in this work, which was also
implemented in a Python library to foster its reuse in
existing applications and workflows. This library is
called time-agnostic-library and can be employed for
any dataset that records provenance as OpenCitations
does, i.e. using named graph, PROV-O, and the addi-
tional property hasUpdateQuery.

The rest of the paper is organized as follows. Sec-
tion 2 reviews the literature on metadata representa-
tion models and knowledge organization systems for
RDF provenance before delving into available archiv-
ing policies, retrieval functionalities, and software.
Section 3 showcases the methodology underlying the
time-agnostic-library implementation, and section 4 il-
lustrates how to use it in concrete applications. Sec-
tion 5 discusses the final product from a quantitative
point of view, reporting the benchmarks results on ex-
ecution times and RAM. Finally, section 6 contains a
qualitative comparison between time-agnostic-library
and preexisting software, illustrating its advantages
and discussing possible solutions to its limitations in
future works.

2. Related works

The landscape of strategies to formally represent
provenance in RDF is vast and fragmented (Fig. 1).
There are many approaches varying in semantics, tuple
typology, standard compliance, dependence on exter-
nal vocabulary, blank node management, granularity,
and scalability [45]. First, the annotation syntaxes and,
subsequently, the knowledge organization systems re-
lated to provenance are discussed in sections 2.1 and
2.2. Secondly, section 2.3 introduces the main strate-
gies to store dynamic linked data and software to query
them.

2.1. Annotation syntaxes for RDF provenance

To date, the only W3C standard syntax for anno-
tating triples’ provenance is RDF reification and it is
the only one to be back-compatible with all RDF-
based systems. Included since RDF 1.0 [8], it con-
sists in associating a statement to a new node of type
rdf:Statement, which is connected to the triple by
the predicates rdf:subject, rdf:predicate,
and rdf:object. Such methodology has a consid-
erable disadvantage: the size of the dataset is at least
quadrupled since subject, predicate, and object must be
repeated to add at least one provenance’s information.
There is a shorthand notation, the rdf:ID attribute in
RDF/XML, but it is not present in other serializations.
Finally, composing SPARQL queries to obtain prove-
nance annotated through RDF Reification is cumber-
some: to identify the URI of the reification, it is nec-
essary to explicit the entire reference triple. For all the
mentioned reasons, there are several deprecation pro-
posals for this syntax, including that by David Beck-
ett, one of the editors of RDF in 2004, and RDF/XML
(Revised) W3C Recommendation. In particular, Beck-
ett wrote that “there are a few RDF model parts that
should be deprecated (or removed if that seems possi-
ble), in particular reification which turned out not to be
widely used, understood or implemented even in the
RDF 2004 update” [9].

After RDF Reification, in 2006, the W3C published
a note that suggested a new approach to enable ex-
pressing provenance, called n-ary relations [46]. In
RDF and OWL, properties are always binary relation-
ships between two URIs or a URI and a value. How-
ever, sometimes it is convenient to connect a URI to
more than one other URI or value, for instance, when
expressing the provenance of a particular relationship.
The n-ary relations allow this behavior through the in-
stance of a relationship in the form of a blank node.
There is a clear similarity between n-ary relations and
RDF Reification, with the difference that the latter rei-
fies the statement, the former the predicate, with the
advantage of not having to repeat all the triple elements
but only the predicate. The second similarity, which
is the main disadvantage of n-ary relations, is the in-
troduction of blank nodes, which cannot be globally
dereferenced.

Due to these design flaws, different approaches have
been proposed since 2005, starting with named graphs
and formulae in Notation 3 Logic. From a syntacti-
cal point of view, named graphs are quadruples, where
the fourth element is the graph URI that acts as con-

4 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 1. Annotation frameworks for RDF provenance.

text to triples [10]. It is a solution compatible with the
RDF data model, it does not rely on terms or ontolo-
gies to capture the provenance, it does not cause triple
bloat, and is scalable and suitable for Big Data appli-
cations. On the other hand, concerning serialization, it
is possible to implement named graphs using exten-
sions of RDF/XML, Turtle, and N-Triples, called TriX,
TriG, and N-Quads, all standardized and compatible
with the SPARQL algebra. Such advantages have led
the Web Alliance to propose named graphs as a format
to express the provenance of scientific statements. The
suggested model is called nanopublications and rep-
resents a fundamental scientific statement with associ-
ated context. Precisely, a nanopublication consists of
three named graphs: one on data, one on provenance,
and one on publication metadata [47].

However, named graphs have a limit: they do not
handle the provenance of implicit triples. RDFS adds
semantics to RDF triples so that new implicit triples
can be derived through inference rules. When an up-
date query erases a named graph, all the logic of the
triple associated is lost along with the data, and there is
no way to separate the two aspects. RDF/S graphsets,

and its evolution RDF triple coloring, extend named
graphs to allow RDFS semantics. A graphset is a set of
named graphs. It is associated with a URI, preserving
provenance information lost following an update, and
registering co-ownership of multiple named graphs
[11]. Similarly, RDF triple coloring manages scenarios
where the same data has different resources, but co-
ownership is implicit [12]. Both RDF/S graphsets and
RDF triple coloring are serializable in TriG, TriX, and
N-Quads, do not need proprietary terms or external vo-
cabularies and are scalable. However, RDF/S graphsets
do not comply with either the RDF data model or the
SPARQL algebra, unlike RDF triple coloring, which is
fully compatible.

Conversely, the quadruple is not the only strat-
egy to attach provenance information to RDF triples.
Additionally, the RDF data model can be extended
to achieve this goal. The first proposal of this kind
was Notation 3 Logic, which introduced the formulae
[13]. Formulae allow producing statements on N3 sen-
tences, which are encapsulated by the syntax {...}.
Berners-Lee and Connolly also proposed a patch file

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

format for RDF deltas, or three new terms, using N3
[48]:

1. diff:replacement, that allows expressing
any change. Deletions can be written as {...}
diff:replacement {}, and additions as
{} diff:replacement {...}.

2. diff:deletion, which is a shortcut to ex-
press deletions as {...} diff:deletion
{...}.

3. diff:insertion, which is a shortcut to ex-
press additions as {...} diff:insertion
{...}.

The main advantage of this representation is its econ-
omy: given two graphs G1 and G2, its cost in storage is
directly proportional to the difference between the two
graphs. Therefore, it is a scalable approach. However,
while conforming to the SPARQL algebra, N3 does not
comply with the RDF data model and relies on the N3
Logic Vocabulary.

Adopting a completely different perspective, RDF+
solves the problem by attaching a provenance prop-
erty and its value to each triple, forming a quintu-
ple. In addition, it extends SPARQL with the ex-
pression WITH META Metalist, which includes
graphs specified in Metalist, containing RDF+
meta knowledge statements [14]. To date, RDF+ is
not compliant with any standard, neither the RDF data
model, nor SPARQL, nor any serialization formats.

Also, SPOTL(X) expresses a triple provenance
through quintuple [16]. Indeed, the framework’s name
means Subject Predicate Object Time Location. Op-
tionally, it is possible to create sextuples that add con-
text to the previous elements. SPOTL(X) is concretely
implemented in YAGO 2, given the need to specify
which time, space, and context a specific statement is
true. Outside of YAGO 2, SPOTL(X) does not follow
either the RDF data model or the SPARQL algebra,
and there is no standard serialization format.

Similarly, annotated RDF (aRDF) does not currently
have any standardization. A triple annotation has the
form s p:λ o, where λ is the annotation, always
linked to the property [49]. Annotated RDF Schema
perfects this pattern by annotating an entire triple and
presenting a SPARQL extension to query annotations,
called AnQL [15].

The most recent proposal in extending the RDF
data model to handle provenance information is RDF*,
which embeds triples into triples as the subject or ob-
ject [17]. Its main goal is to replace RDF Reification
through less verbose and redundant semantics. Since

there is no serialization to represent such syntax, Tur-
tle*, an extension of Turtle to include triples in other
triples within « and », was also introduced. Similarly,
SPARQL* is an RDF*-aware extension for SPARQL.
Later, RDF* was proposed to allow statement-level
annotations in RDF streams by extending RSP-QL
to RSP-QL* [50]. YAGO 4 has adopted RDF* to
attach temporal information to its facts, expressing
the temporal scope through schema:startDate
and schema:endDate [51]. For example, to ex-
press that Douglas Adams, author of the Hitchhiker’s
Guide to the Galaxy, lived in Santa Barbara until he
died in 2001, YAGO 4 records «DouglasAdams
schema:homeLocation
SantaBarbara» schema:endDate 2001.

Having discussed possible RDF extension, two
strategies encapsulate provenance in RDF triples:
PaCE and singleton properties. Provenance Context
Entity (PaCE) is an approach concretely implemented
in the Biomedical Knowledge Repository (BKR) project
at the US National Library of Medicine [18]. Its
implementation is flexible and varies depending on
the application. It allows three granularity levels: the
provenance can be linked to the subject, predicate,
and object of each triple, only to the subject or only
to the subject and predicate, through the property
provenir:derives_from. Therefore, such a so-
lution depends on the Provenir ontology, and it is not
scalable because it causes triple bloat. Apart from
these two flaws, it has several advantages: it leads to
49% less triple than RDF Reification, it does not in-
volve blank nodes, it is fully compatible with the RDF
data model and SPARQL, and can be represented with
any RDF serializations (RDF/XML, N3, Turtle, N-
Triples, RDF-JSON, JSON-LD, RDFa and HTML5
Microdata).

Conversely, singleton properties are inspired by set
theory, where a singleton set has a single element.
Similarly, a singleton property is defined as “a unique
property instance representing a newly established re-
lationship between two existing entities in one par-
ticular context” [19]. This goal is achieved by con-
necting subjects to objects with unique properties that
are singleton properties of the generic predicate via
the new singletonPropertyOf predicate. Then,
meta-knowledge can be attached to the singleton prop-
erty. This strategy has been shown to have advantages
in terms of query size and query execution time over
PaCE (tested on BKR) but disadvantages in terms of
triples’ number where multiple statements share the
same metadata. Beyond that, singleton properties have

6 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the same advantages and disadvantages as PaCE: they
rely on a non-standard term, are not scalable, adhere to
the RDF data model and SPARQL, and are serializable
in any RDF format.

Table 1 summarises all the considerations on the ad-
vantages and disadvantages of the listed RDF based
strategies.

2.2. Knowledge Organisation Systems for RDF
provenance

Many vocabularies and ontologies represent prove-
nance information, either upper ontologies, domain
ontologies, or provenance-related ontologies. Among
the upper ontologies, the Open Provenance Model
stands out because of its interoperability, describing
the history of an entity in terms of processes, artifacts,
and agents [22]. On the other hand, the Proof Markup
Language (PML) is an ontology designed to support
trust mechanisms between heterogeneous web services
[23].

Among domain-relevant models, there is the Provenir
Ontology for eScience [25], PREMIS for archived dig-
ital objects, such as files, bitstreams, and aggrega-
tions [26], and the Semantic Web Applications in Neu-
romedicine (SWAN) Ontology to model a scientific
discourse in the context of biomedical research [27].
Finally, the Dublin Core Metadata Terms enables ex-
pressing the provenance of a resource and specify what
is described (e.g., dct:BibliographicResource),
who was involved (e.g., dct:Agent), when the
changes occurred (e.g., dct:dateAccepted), and
the derivation (e.g., dct:references) [28].

All the requirements and ontologies for provenance
on the Web were merged into a single data model
[29], the PROV Data Model (PROV-DM) [52], trans-
lated into the PROV Ontology using the OWL 2 Web
Ontology Language [24]. PROV-DM provides sev-
eral classes, properties, and restrictions, representing
provenance information in different systems and con-
texts. Its level of genericity is such that it is even pos-
sible to create new classes and data model-compatible
properties for new applications and domains. Just
like the Open Provenance Model, PROV-DM cap-
tures the provenance under three complementary per-
spectives: agent-centered provenance, object-centred-
provenance, and process-centered provenance.

The OpenCitations Data Model relies on the flex-
ibility of PROV-O and named graphs to record the
provenance of bibliographic datasets [41]. Each en-
tity described by the OCDM is associated with one or

more named provenance graphs, called snapshots. The
snapshots are of type prov:Entity and are con-
nected to the bibliographic entity described through
prov:specializationOf. Being the specializa-
tion of another entity means sharing every aspect of
the latter and, in addition, presenting more specific as-
pects, such as an abstraction, a context, or, in this case,
a time. In addition, each snapshot records the validity
dates (prov:generatedAtTime,
prov:invalidatedAtTime), the agents respon-
sible for creation/modification of entities’ data
(prov:wasAttributedTo), the primary sources
(prov:hadPrimarySource) and a link to the pre-
vious snapshot in time (prov:wasDerivedFrom).

Furthermore, as anticipated in section 1, OCDM ex-
tends the Provenance Ontology by introducing a new
property called hasUpdateQuery, a mechanism to
record additions and deletions from an RDF graph with
a SPARQL INSERT and SPARQL DELETE query
string. The snapshot-oriented structure, combined with
a system to explicitly indicate how a previous snapshot
was modified to reach the current state, makes it easier
to recover the current statements of an entity and re-
store an entity to a specific snapshot. The current state-
ments are those available in the present dataset, while
recovering a snapshot si means applying the reverse
operations of all update queries from the most recent
snapshot sn to si+1 [42].

2.3. Storing and querying dynamic linked open data

Various archiving policies have been elaborated to
store and query the evolution of RDF datasets, namely
independent copies, change-based and timestamp-
based policies [44]. Table 2 lists the main knowledge
bases, version control systems, and archives for RDF,
divided by storage policy.

Regarding the time-related retrieval functionalities,
two queries and focus types are identified by Fernán-
dez, Polleres and Umbrich [44]. On the one hand, a
query can be a materialization or structured; on the
other, the focus can affect a version or a delta. Com-
bining query and focus types results in six possible re-
trieval functionalities:

1. Version materialization. The request to obtain a
full version of a specific resource. This feature is
the most common, provided by any version con-
trol system for RDF;

2. Single-version structured query. Queries made
on a specific version of a resource;

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Advantages and disadvantages of metadata representations models to add provenance information to RDF data

Approach Tuple type
Compliance
with the RDF
data model

Compliance
with SPARQL

RDF
serialisations

External
vocabulary

Scalable

Named graphs Quadruple + +
TriG, TriX,
N Quads

- +

RDF/S graphsets Quadruple - -
TriG, TriX,
N Quads

- +

RDF triple coloring Quadruple + +
TriG, TriX,
N Quads

- +

N3Logic Triple (in N3) - + N3
N3 Logic
Vocabulary

+

aRDF & Annotated
RDF Schema

Non-standard - - - - +

RDF+ Quintuple - - - - +

SPOTL(X) Quintuple/sextuple - - - -
Depends on
implementation

RDF* Non-standard - -
Turtle*
(non-standard)

- -

PaCE Triple + +

RDF/XML, N3,
Turtle, N-Triples,
RDF-JSON,
JSON-LD, RDFa,
HTML5 Microdata

Provenir ontology -

Singleton property Triple + +

RDF/XML, N3,
Turtle, N-Triples,
RDF-JSON,
JSON-LD, RDFa,
HTML5 Microdata

Singleton
property

-

Table 2
Datasets and software divided by storage policy

Archiving policy Datasets / Software

Independent copies (IC) DBPedia, Wikidata, YAGO,
Dynamic Linked Data Observa-
tory, SemVersion, PromptDiff

Change-based (CB) [31], R&Wbase
Timestamp-based (TB) x-RDF-3X, v-RDFCSA
Hybrid OSTRICH (CB/TB), OpenCi-

tations’s COCI (CB/TB), [35]
(IC/CB/TB)

3. Cross-version structured query. Queries made on
different versions of a resource, often called a
time-traversal query;

4. Delta materialization. The request to get the dif-
ferences between two versions of a specific re-
source. This feature is handy for RDF author-
ing applications and operations in version control
systems, such as merge or conflict resolution;

5. Single-delta structured queries. The equivalent of
2), but satisfied with deltas instead of versions;

6. Cross-delta structured queries. The equivalent of
3), but satisfied with deltas instead of versions.

Conversely, concerning archiving policies, indepen-
dent copies consist of storing each version separately.
Two levels of granularity are possible: either a copy
of the entire dataset is saved, or only resources that
change are. This strategy is sometimes defined as phys-
ical snapshots in the literature [42]. It is the most
straightforward model to implement and allows ob-
taining versions materializations easily. However, this
approach needs a massive amount of space for stor-
ing and time for processing. Furthermore, given the
different statements’ versions, further diff mechanisms
are required to identify what changed. Nevertheless, to
date, this is the archiving policy adopted by most sys-
tems and knowledge bases.

The first version control systems for RDF were
PromptDiff [36] and SemVersion [37], specially tai-
lored for ontologies. Inspired by CVS, the classic ver-
sion control system for text documents, they save each
version of an ontology in a separate space. In addition,

8 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

PromptDiff provides diff algorithms to compute deltas
between two versions, applying ten heuristic matchers.
The results of a matcher become the input for others
until they produce no more changes. Instead, SemVer-
sion provides two diff algorithms: one structure-based,
which returns the difference between explicit triples in
two graphs, the other semantic-aware, which also con-
siders the triples inferred through RDFS relations. Dif-
ferences are calculated on the fly in both approaches,
while all ontology’s versions take up space on the
disk. For this reason, SemVersion and PromptDiff are
classified as having independent-copies archiving poli-
cies, despite the article from which this classification
is taken consider them as changed-based systems [44].
As for the allowed retrieval functionalities, they are
limited to the delta and version materialization in both
cases.

With respect to knowledge bases, DBpedia [53]
publicly releases snapshots of the entire dataset at reg-
ular intervals. Therefore, in the specific case of DB-
pedia, another problem arises: many changes may not
be reflected in the snapshots, that is, all statements
with a lifespan shorter than the interval between snap-
shots. There are proposals to fill this gap, such as us-
ing Wikipedia’s revisions history information [4]. Sim-
ilarly, Yago releases backups of the whole dataset,
downloadable in the website’s Downloads section [6].
Since the Yago data model was modified significantly
from the first to the fourth edition, each can be down-
loaded separately.

Wikidata does not save the whole dataset but only
the resources that change [54]. Wikibase, the database
used for Wikidata, creates a revision associated with a
specific entity every time the related page is modified
[5]. Within each revision, in the text field, there is
a complete copy of that page after the change. Some
metadata are also saved, such as the timestamp, the
contributor’s username and id, and a comment summa-
rizing the modifications. This information is stored in
compressed XML files and made available for down-
load on the Wikidata website [55]. However, the con-
tent of the text field is not in XML format, but in
JSON format, with all non-ASCII characters escaped.
On the Wikidata site, it is possible to explore the con-
tent of a single revision and compute the delta between
two or more versions on the fly through the user in-
terface. Though, there is no way to perform SPARQL
queries on revisions.

The change-based policy was introduced to solve
scalability problems caused by the independent copies
approach. It consists of saving only the deltas between

one version and the other. For this reason, delta mate-
rialization is costless. The drawback is that additional
computational costs for delta propagation are required
to support version-focused queries. The first proposal
of this approach was described in A Version Manage-
ment Framework for RDF Triple Stores [31]. The idea
is to store the original dataset and the deltas between
two consecutive versions. However, as it was said, per-
forming version queries requires rebuilding that state
on the fly. In order to avoid performance problems,
deltas are compressed in Aggregated Deltas to directly
compute the version of interest instead of considering
the whole sequence of deltas. In other words, all pos-
sible deltas are stored in advance, and duplicated or
unnecessary modifications are deleted. Finally, the ar-
ticle analyzes the performance for structured queries
on a single version, on a single delta, and cross-delta.
However, no mention is made of possible queries on
multiple versions.

A concrete implementation of a change-based pol-
icy is R&Wbase, a version control system inspired
by Git but designed for RDF [38]. Triples are stored
in quads, where the context identifies the version and
whether the triple was added or removed. A ver-
sion’s identifier is either a hash or master. Insertions-
related graphs store metadata, such as the date, the re-
sponsible agent, and the parent delta. The main advan-
tage of this approach is that it allows single-version
structured queries at query-time: a so-called interpre-
tation layer is responsible for translating SPARQL
queries to find all the ancestors of a resource at a
specific time. The query specifies the time via FROM
<version_graph_URI>. In order to accelerate the
process, triples in both the additions and deletions
graphs are excluded, and the most frequent queries
can be cached. The article does not mention any other
query type and whether it can indicate more than one
graph for cross-version structured queries. In any case,
since versions’ URIs are based on not human-readable
hashes, that could be considered as a cumbersome so-
lution.

The timestamp-based policy annotates each triple
with its transaction time, that is, the timestamp of the
version in which that statement was in the dataset. An-
notated RDF Schema can be used to achieve this, com-
bined with AnQL to perform queries, as seen in sec-
tion 2.1 [15]. However, implementations of that solu-
tion are not known. On the contrary, x-RDF-3X is a
database for RDF designed to manage high-frequency
online updates, versioning, time-traversal queries, and
transactions [32]. The triples are never deleted but are

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

annotated with two fields: the insertion and deletion
timestamp, where the last one has zero value for cur-
rently living versions. Afterward, updates are saved in
a separate workspace and merged into various indexes
at occasional savepoints. A dictionary encodes strings
in short IDs, and compressed and clustered B+ trees
are employed to index data in lexicographic order. Be-
cause of indexes, time-traversal queries are speedy, but
no approach to return deltas or query them is men-
tioned.

v-RDFCSA uses a similar strategy but excels in re-
ducing space requirements, compressing 325 GB of
storage into 5.7-7.3GB [33]. To achieve that result, it
compresses both the RDF archive and the timestamps
attached to the triples. All types of queries are explic-
itly allowed.

Finally, there are hybrid storage policies that com-
bine the changed-based approach with the timestamp-
based approach. For example, OSTRICH is a triple-
store that retains the first version of a dataset and
subsequent deltas, as introduced in [31]. However,
it merges changesets based on timestamps to reduce
redundancies between versions, adopting a change-
based and timestamp-based approach simultaneously
[34]. OSTRICH supports version materialization, delta
materialization, and single-version queries.

Datasets based on the OpenCitations Data Model,
such as COCI, [43] embrace a similar hybrid ap-
proach, mirror-like and opposite to the one seen in
[31] and OSTRICH. The present state of an en-
tity is the only one stored, not the original one.
For each entity, a provenance graph is generated
as a result of an update. The delta versus the next
version is expressed as a SPARQL query in the
property oco:hasUpdateQuery. In addition, each
provenance graph contains transactional time informa-
tion, expressed via prov:generatedAtTime and
prov:invalidatedAtTime, that is, the insertion
and deletion timestamps. The advantage is that the
most interesting dataset’s state, the current one, is im-
mediately available and does not have to be recon-
structed. It is worth mentioning that, to date, COCI is
the only citation index to implement change tracking
mechanisms. Among the leading players in the field,
neither Web of Science nor Scopus have adopted solu-
tions in this regard.

Finally, there is software that adopts all three archiv-
ing policies. For example, [35] proposes a system to fill
the already mentioned Wikidata gap, which provides
provenance data but does not allow queries. XML
dumps downloaded from Wikidata are organized into

four graphs: a global state graph, which contains a
named graph on the global state of Wikidata after each
revision; an addition and deletion graph, which con-
tains all the added and deleted triples for revision; and
a default graph, containing metadata for each revision,
such as the author, the timestamp, the id of the modi-
fied entity, the previous version of the same entity and
the URIs of the additions, deletions, and global state
graphs. Since the sum of these graphs would weigh ex-
abytes, they are not directly saved into a triplestore,
but RocksDB is used to store specific indexes [56].
Four kinds of indexes are generated: dictionary in-
dexes, in which each string is associated to an integer
and vice versa; content indexes, which associate the
subject-predicate-object statement permutations spo,
pos, and osp to the respective transaction time in the
form [start, end[; revision indexes, which pro-
vides the set of added and removed triples for a given
revision; and meta indexes, which provide the relevant
metadata for each revision. The use of each storage
policy allows managing all kinds of queries efficiently,
at the cost of a massive computational effort to index
all data.

3. Methodology

As discussed in section 2, Semantic Web tech-
nologies did not initially allow recording or query-
ing change-tracking provenance. For this reason, it
is necessary to adopt an external provenance model.
In the context of this work, the OpenCitations Data
Model (OCDM) was employed [41], summarized in
Fig. 2. According to the OCDM, one or more snap-
shots are linked to each entity, storing information
about that resource at a specified time point. In par-
ticular, they record the validity dates, the primary
data sources, the responsible agents, a human read-
able description, and a SPARQL update query sum-
marizing the differences to the previous snapshot.
To this end, the OCDM reuses terms from PROV-
O [24], Dublin Core Terms [28], and introduces a
new predicate, hasUpdateQuery, described within
the OpenCitations Ontology [57]. More specifically,
each snapshot is an instance of the prov:Entity
class; it is linked to the described entity by the
prov:specializationOf predicate and to the
previous snapshot by prov:wasDerivedFrom. In
addition, the validity period is recorded via
prov:generatedAtTime and
prov:invalidatedAtTime, the primary data

10 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Provenance in the OpenCitations Data Model.

sources via prov:hasPrimarySource and the
responsible agents via prov:wasAttributedTo.
Finally, a human-readable description can be added
via dcterms:description. This description is
particularly significant in those snapshots that do not
report any delta, that is, the snapshots related to an
entity’s creation or the merge between multiple re-
sources.

From now on, we use the exemplar dataset with
provenance and change tracking information described
in section 5 to introduce all the examples discussed
in the following paragraphs. As shown in the Graf-
foo diagram [58] in Fig. 3 and in Listing 1, the
entity <id/80178>, representing [59], is associ-
ated with the bibliographic resource <br/86766>,
whose title is Open access and online publishing: a
new frontier in nursing?. Moreover, <br/86766>
cites five other resources, namely <br/301102>,
<br/301103>, <br/301104>, <br/301105>,
and <br/301106>. The identifier <id/80178> of
<br/86766> was initially registered with a wrong
DOI, i.e. “10.1111/j.1365 2648.2012.06023.x” instead
of
“10.1111/j.1365 2648.2012.06023.x”, where the error
is in the trailing period. The agent identified by the
ORCID 0000-0002-8420-0696 corrected such a
mistake on October 19th, 2021, at 19:55:55. Therefore,
the snapshot <id/80178/prov/se/2> was gen-
erated, associated with <id/80178>, and deriving
from the previous snapshot
<id/80178/prov/se/1>.

Although this annotation system was originally de-
signed for bibliographic and citation data, due to the
nature of OpenCitations, it is generic and can be used
in any environment. Therefore, the methodology intro-

duced in the following subsections is also generic and
works with any RDF dataset that documents prove-
nance as OpenCitations does. Its purpose is to perform
time-agnostic queries, which are carried out not only
on the dataset’s current state but on its whole history.
The taxonomy by Fernández, Polleres, and Umbrich
[44], already introduced in 2.3, is used to illustrate
which approaches were adopted to achieve this goal.
Therefore, a distinction is made between version and
delta materializations, single and cross-version struc-
tured queries, single and cross-delta structured queries.

3.1. Version and delta materialization

Obtaining a version materialization means returning
an entity state at a given period. Thus, the starting in-
formation is a resource URI and a time, which can be
an instant or an interval. Then, it is necessary to ac-
quire the provenance information available for that en-
tity, querying the dataset on which it is stored. In par-
ticular, the crucial data regards the existing snapshots,
their generation time, and update queries expressing
changes through SPARQL update query strings. If
there are no snapshots for a particular entity, it is im-
possible to reconstruct its past version, so the proce-
dure ends. On the other hand, if the change tracking
provenance information does exist, further processing
is required. From a performance point of view, the
main problem is how to get the status of a resource at
a given time without reconstructing its whole history,
but only the portion needed to get the result. Suppose
tn is the present state and having all the SPARQL up-
date queries. The status of an entity at the time tn−k can
be obtained by adding the inverse queries in the correct
order from n to n− k+1 and applying the queries sum
to the entity’s present graph.

For example, consider the graph of the entity
<id/80178> (Fig. 3). At present, this identifier has a
literal value of “10.1111/j.1365 2648.2012.06023.x”.
We want to determine if this value was modified re-
cently, reconstructing the entity at time tn−1. The string
associated with the property oco:hasUpdateQuery
at time tn is shown in Listing 1.

Therefore, to reconstruct the literal value of
<id/80178> at time tn−1, it is sufficient to apply
the same update query to the current graph by re-
placing DELETE with INSERT and INSERT with
DELETE: what was deleted must be inserted, and
what was inserted must be deleted to rewind the en-
tity’s time. It appears that <id/80178> had a differ-
ent literal value at time tn−1, namely “10.1111/j.1365

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 3. Usage example of the OpenCitations Data Model, shown via the graphical framework Graffoo.

2648.2012.06023.x.”. If the resource had more than
two snapshots and the time of interest had been tn−2,
it would have been necessary to execute the same op-
eration with the sum of the update queries associated
with tn and tn−1 in this order.

In addition to data, metadata related to a given
change can be derived, asking for supplementary infor-
mation to the provenance dataset, such as the responsi-
ble agent and the primary source. In this way, it is pos-
sible to understand who made a specific change and the
information’s origin. Finally, hooks to metadata related
to non-reconstructed states can be returned to find out
what other snapshots exist and possibly rebuild them.

The flowchart in Fig. 4 summarizes the version ma-
terialization methodology.

The process described so far is efficient in material-
izing a specific entity’s version. However, if the goal
is to obtain the history of a given resource, adopting
the procedure described in Fig. 4 would mean execut-
ing, for each snapshot, all the update queries of subse-
quent snapshots, repeating the same update query over
and over again. Since every resource graph needs to

be output, it is more convenient to run the reverse up-
date query related to each snapshot on the following
snapshot graph, which was previously computed and
stored.

Conversely, obtaining the materialization of a delta
means returning the change between two versions. No
operations are introduced in our methodology to ad-
dress this operation because it is not needed since
the OCDM already requires deltas to be explicitly
stored as SPARQL update queries strings by adopt-
ing a change-based policy. Therefore, the diff is the
starting point and is immediately available, without the
need of processing provenance change tracking data
to derive it. However, if more than a mere delta is re-
quired, and there is the demand to perform a single or
cross-delta structured query, it is helpful to have ap-
proaches to speed up this operation, as illustrated in
section 3.3.

3.2. Single and cross-version structured query

Running a structured query on versions means re-
solving a SPARQL query on a specific entity’s snap-

12 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

@base <https://github.com/opencitations/time-agnostic-library/>.
@prefix cito: <http://purl.org/spar/cito/>.
@prefix datacite: <http://purl.org/spar/datacite/>.
@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix literal: <http://www.essepuntato.it/2010/06/literalreification/>.
@prefix oco: <https://w3id.org/oc/ontology/>.
@prefix prov: <http://www.w3.org/ns/prov#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

<br/86766> a <http://purl.org/spar/fabio/Expression>;
dcterms:title "Open access and online publishing: a new frontier in
nursing?"^^xsd:string;↪→

cito:cites <br/301102>, <br/301103>, <br/301104>, <br/301105>, <br/301106>;
datacite:hasIdentifier <id/80178>.

<id/80178> a datacite:Identifier;
datacite:usesIdentifierScheme datacite:doi;
literal:hasLiteralValue "10.1111/j.1365-2648.2012.06023.x"^^xsd:string.

<id/80178/prov/se/1> a prov:Entity;
dcterms:description "The entity
'https://github.com/opencitations/time-agnostic-library/id/80178' has been
created."^^xsd:string;

↪→

↪→

prov:generatedAtTime "2021-10-10T23:44:45"^^xsd:dateTime;
prov:hadPrimarySource
<https://api.crossref.org/works/10.1007/s11192-019-03265-y>;↪→

prov:invalidatedAtTime "2021-10-19T19:55:55"^^xsd:dateTime;
prov:specializationOf <id/80178>;
prov:wasAttributedTo <https://orcid.org/0000-0002-8420-0696>.

<id/80178/prov/se/2> a prov:Entity;
dcterms:description "The entity
'https://github.com/opencitations/time-agnostic-library/id/80178' has been
modified."^^xsd:string;

↪→

↪→

prov:generatedAtTime "2021-10-19T19:55:55"^^xsd:dateTime;
prov:specializationOf <id/80178>;
prov:wasAttributedTo <https://orcid.org/0000-0002-8420-0696>;
prov:wasDerivedFrom <id/80178/prov/se/1>;
oco:hasUpdateQuery "DELETE DATA { GRAPH
<https://github.com/opencitations/time-agnostic-library/id/> {
<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x.' . } }; INSERT DATA { GRAPH
<https://github.com/opencitations/time-agnostic-library/id/> {
<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x' . } }"^^xsd:string.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 1: Usage example of the OpenCitations Data Model, translated in RDF Turtle syntax.

shot, if it is a single-version query, or on multiple
dataset’s versions, in case of a cross-version query. In
both cases, a strategy must be devised to achieve the
result efficiently. According to the OCDM, only deltas
are stored; therefore, the dataset’s past conditions must

be reconstructed to query those states. However, restor-
ing as many versions as snapshots would generate mas-
sive amounts of data, consuming time and storage. The
proposed solution is to reconstruct only the past re-
sources significant for the user’s query.

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 4. Flowchart illustrating the methodology to materialize an entity version at a given period.

Hence, given a query, the goal is to explicit all
the variables, materialize every version of each entity
found, and align the respective graphs temporally to
execute the original query on each. To this end, the first
step is to process the SPARQL query string and ex-
tract the triple patterns. Each identified triple may be
joined or isolated. A triple pattern is joined if a path
exists between its subject variable and a subject URI
in the query. In such a case, it is possible to solve the
variable using a previously reconstructed entity graph.
Consider the example in Listing 2.

Once all versions of <br/86766> have been ma-
terialized, every possible value of the variable ?br is
known. At that point, all the possible values that ?id
had can be derived from all the URIs of ?br. Also, the
variable ?value can be resolved similarly. It is worth
noting that a variable can have different values not only
in different versions but also in the same version. For
instance, the bibliographical resource <br/86766>
cites more than just another bibliographical resource
(as shown in Fig. 3). Hence, ?br takes multiple values
in all of its snapshots, determining the same for ?id
and ?value.

On the other hand, a triad is isolated if it is wholly
disconnected from the other patterns in the query, and
its subject is a variable. The query is more generic if
there are isolated triples; therefore, identifying the rel-
evant entities is more demanding. However, if at least
one URI is specified in the query, it is still possible

to narrow the field so that only the strictly necessary
entities are restored and not the whole dataset. Since
deltas are saved as SPARQL strings, a textual search
on all available deltas can be executed to find those
containing the known URIs. The difference between a
delta triple including all the isolated triple URIs and
the isolated triple itself is equal to the relevant enti-
ties to rebuild. Listing 3 shows a time traversal query
to find all identifiers whose literal value has ever con-
tained a trailing dot. Inside, there is an isolated triple
?id literal:hasLiteralValue ?literal
where only the predicate is known, and the subject is
not explicable by other triples within the query.

Identifying all the possible values of ?id and
?literal at any time means discovering which
nodes have ever been connected by the predicate
literal:hasLiteralValue. This information
is enclosed in the values of oco:hasUpdateQuery
within the provenance entities’ snapshots. First, the up-
date queries including the predicate
literal:hasLiteralValue must be isolated.
Then, they have to be parsed in order to process
the triples inside. All subjects and objects linked by
literal:hasLiteralValue are reconstructed
to answer the user’s time agnostic query.

It is worth mentioning that a user query can contain
both joined and isolated triples. In this case, the dis-
connected triples are processed by carrying out textual
searches on the diffs. In contrast, the connected ones

14 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>
PREFIX cito: <http://purl.org/spar/cito/>
PREFIX datacite: <http://purl.org/spar/datacite/>
SELECT DISTINCT ?br ?id ?value
WHERE {

<https://github.com/opencitations/time-agnostic-library/br/86766> cito:cites ?br.
?br datacite:hasIdentifier ?id.
?id literal:hasLiteralValue ?value.

}

Listing 2: Example of an agnostic query of non-isolated triples.

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>
SELECT ?literal
WHERE {

?id literal:hasLiteralValue ?literal.
FILTER REGEX(?literal, "\.$")

}

Listing 3: Agnosting query including an isolated triple.

are solved by recursively explicating the variables in-
side them, as we saw.

After detecting the relevant resources concerning
the user’s query, the next step depends on whether it
is a single-version or a cross-version query. In the first
case, for better efficiency, it is not necessary to recon-
struct the whole history of every entity, but only the
portion included in the input time. On the contrary,
for cross-version queries, all versions of each resource
must be restored. In both cases, the method adopted is
the version materialization described in section 3.1.

However, the initial search cannot be answered even
after all the relevant data records are obtained. Re-
stored snapshots must be aligned to get a complete
picture of events. In particular, since the property
oco:hasUpdateQuery only records changes, if an
entity was modified at time tn, but not at tn+1, that en-
tity will appear in the tn-related delta but not in the tn+1

one. The tn+1 graph would not include that resource,
although it should be present. As a solution, entities
present at time tn but absent in the following snapshot
must be copied to the tn+1-related graph because they
were not modified. Finally, entities’ graphs are merged
based on snapshots so that contemporary information
is part of the same graph.

After the pre-processing described so far, perform-
ing the time-traversal query becomes a trivial task. It
is sufficient to execute it on all reconstructed graphs,
each associated with a snapshot relevant to that query

and containing the strictly necessary information to
satisfy the user’s request.

The flowchart in Fig. 5 summarizes the single-
version and cross-version query methodology.

3.3. Single and cross-delta structured query

Performing a structured query on deltas means fo-
cusing on change instead of the overall status of a re-
source. On the one hand, if the interest is limited to
a specific change instance, it is called a single-delta
structured query. On the other hand, if the structured
query is run on the whole dataset’s changes history, it
is named a cross delta structured query. Although the
methodology’s purpose is not to offer a version control
system, understanding which resources have changed
in advance can help narrow the field and achieve faster
queries on versions.

Theoretically, employing the OCDM, it is possible
to conduct searches on deltas without needing a dedi-
cated library. For example, the query in Listing 4 can
be used to find those identifiers whose strings have
been modified. However, a similar SPARQL string re-
quires the user to have a deep knowledge of the data
model. Therefore, it is valuable to introduce a method
to simplify and generalize the operation, hiding the
complexity of the underlying provenance pattern.

From Listing 4, it is possible to derive two require-
ments: the user shall identify the entities he is inter-
ested in through a SPARQL query and specify the
properties to study the change. In addition, to allow

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 5. Flowchart illustrating the methodology to perform single-time and cross-time structured queries on versions.

PREFIX datacite: <http://purl.org/spar/datacite/>
PREFIX oco: <https://w3id.org/oc/ontology/>
PREFIX prov: <http://www.w3.org/ns/prov#>
SELECT DISTINCT ?id
WHERE {

?se prov:specializationOf ?id; oco:hasUpdateQuery ?updateQuery.
?id a datacite:Identifier.
FILTER CONTAINS (

?updateQuery,
"http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue"↪→

)
}

Listing 4: Example of a direct query on deltas.

both single-delta and cross-delta structured queries, it
is necessary to provide the possibility of entering a
time.

Consequently, the first step is to discover the entities
that respond to the user’s query. One might think that
it is enough to search them on the data collection and
store the resources obtained. However, only the URIs
currently contained in the dataset would be acquired,
excluding the ones deleted in the past (i.e. those not
involved in any RDF statement in the current dataset).
A strategy similar to that described for time-traversal
queries must be implemented to satisfy the user’s re-
search across time. The query has to be pre-processed,
extracting the triple patterns and recursively explicat-
ing the variables for the non-isolated ones. To this end,
the past graphs of the (gradually) identified resources
must be reconstructed, and the procedure is identical
to the version query’s one shown in Fig. 5. Likewise, if
the user has input a time, only versions within that pe-

riod are materialized; otherwise, all states are rebuilt.
However, the difference is in the purpose because there
is no need to return previous versions in this context.
Rebuilding past graphs is a shortcut to explicate the
query variables and identify those relevant resources in
the past but not in the present dataset state. Thereby,
as far as isolated triads are concerned, the procedure
is more streamlined. Once their URIs have been found
within the update queries and the relevant entities have
been stored, there is no reason to get their past condi-
tions since they are isolated.

After all relevant entities are found, suppose a set
of properties is input. In that case, the previously col-
lected resources must be filtered, only keeping those
that changed the values in the properties’ set. This in-
formation can be obtained from the provenance data.
On the contrary, if no predicate was indicated, it is nec-
essary to restrict the field to those entities that have re-
ceived any modification. Finally, the relevant modified

16 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

entities are returned concerning the specified query,
properties, and time, when they changed and how.

The flowchart in Fig. 6 summarizes the single-delta
and cross-delta structured query methodology.

4. Time-Agnostic Library

Time-agnostic-library is a Python > 3.7 library to
perform time-traversal queries on RDF datasets com-
pliant with the OCDM v2.0.1 provenance specification
[41]. It implements the methodology introduced in the
previous section to provide a tool that developers can
use to run entity materializations and single/cross-time
queries on both entities’ versions and deltas. The only
requirement is that the RDF data must be compliant
with the provenance change tracking model introduced
in the OCDM. Time-agnostic-library was released as
open-source software on GitHub under an ISC License
[60], and it was distributed as a package that can be in-
stalled with pip via a terminal command. Test-Driven
Development (TDD) [61] was adopted as a software
development process, and a total of 72 tests were de-
veloped.

The time-agnostic-library is composed of five Python
modules:

– agnostic_entity, where the
AgnosticEntity class is defined, that is the
resource to materialize one or all versions based
on the available provenance snapshots.

– agnostic_query, where the
AgnosticQuery abstract class is introduced,
representing a generic time-traversal query.
VersionQuery and DeltaQuery inherit meth-
ods and attributes from it to perform searches on
versions and deltas.

– prov_entity, defining the ProvEntity class
that specifies all the change-tracking properties
according to the OCDM.

– sparql, providing the Sparql class that han-
dles SPARQL queries. In particular, it searches
data or change-tracking metadata on the correct
dataset in case information is stored on differ-
ent sources. If there is more than one dataset, it
queries each one, returning a single result. Fi-
nally, it allows querying both files and triple-
stores.

– support, defining the empty_the_cache
method, which frees the cache, and other private
methods that are only useful for testing purposes.

Figure 7 shows the UML diagram of all the Python
classes implemented in the time-agnostic-library. Pub-
lic attributes and methods exposed to the user are re-
ported for each object and marked with a plus sign.
In contrast, private attributes and methods are omit-
ted. Dependence relationships are graphically clar-
ified with a dashed arrow, while inheritance is de-
picted with an empty-tipped solid arrow. Notably, all
the top classes depend on ProvEntity, defined
in the OCDM. In addition, AgnosticEntity and
AgnosticQuery, which represent materialization
and time-traversal queries respectively, depend on
Sparql, which manages communication with data
and provenance collections.

These classes work on the assumption that there
is a dataset and some provenance information associ-
ated with its entities. The files’ location or the triple-
store endpoint where that information resides is pro-
vided via a configuration file in JSON format, accord-
ing to the pattern in Listing 5. If everything (data and
provenance) is available from the same source, the
same location should be specified in the dataset
and provenance headings. However, the library
supports multiple separate datasets and provenance
sources, whether they are files or triplestores. In addi-
tion, it is possible to use mixed sources types for both
the dataset and the provenance.

Furthermore, some optional values can be set to
make executions faster and more efficient. As ex-
plained in chapter 3.2, executing a textual search on
deltas is necessary to complete version structured
queries including isolated triple patterns. If Blazegraph
is used as a triplestore (https://blazegraph.com/), it is
possible to use its built-in full-text indexing and the
related predicates to do instant text searches, such as
<http://www.bigdata.com/rdf/
search#search> [62]. In this case, the string “yes”
should be specified in the
blazegraph_full_text_search field to take
advantage of this feature.

Finally,
cache_triplestore_url enables one to specify
the URL of a triplestore to use as a cache. The ben-
efits of using this cache mechanism are illustrated as
follows:

1. All past reconstructed graphs are saved on triple-
store and never on RAM. Then, the impact of the
process on the RAM is highly reduced.

2. Time-traversal queries are executed on the cache
triplestore and not on graphs saved in RAM

https://blazegraph.com/

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 6. Flowchart illustrating the methodology to perform single-time and cross-time structured queries on deltas.

Fig. 7. The UML class diagram of all the Python classes implemented in the time-agnostic-library.

18 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

via rdflib [63]. Therefore, they are faster, as
most triplestores implement optimization strate-
gies to run queries efficiently, unlike rdflib (https:
//github.com/RDFLib/rdflib/issues/787). For ex-
ample, Blazegraph uses B+Tree as a data struc-
ture, which provides search operations in loga-
rithmic amortized time [64].

3. If a query is launched a second time, the already
recovered entities’ history is not reconstructed
but derived from the cache.

However, the cache has two disadvantages: first, it
takes up space; secondly, the current implementation
does not speed the relevant entities’ discovery. The
variables must be solved each time. If there are isolated
triple patterns, for example, all deltas must be queried
every time.

4.1. AgnosticEntity class

In order to materialize a version, an instance of the
AgnosticEntity class must be created, passing an
entity URI and the configuration file’s path as argu-
ments. The latter parameter, in this as in the follow-
ing constructors, is optional. The default value is a
JSON file named config.json in the same direc-
tory from which the script was launched. Finally, the
get_state_at_timemethod ought to be run, pro-
viding a time of interest and, if provenance metadata
is needed, True to the include_prov_metadata
field (Listing 6).

The specified time is a tuple in the format (START,
END). If one of the two values is None, only the other
is considered. Time can be specified using any format
included in the ISO 8601 subset defined in the W3C
note Date and Time Formats [65].

The get_state_at_time output is always a tu-
ple of three elements: the first is a dictionary that
associates graphs and timestamps within the speci-
fied interval; the second contains the metadata of the
snapshot that were returned; the third is a dictionary
including the other snapshots’ provenance metadata
if include_prov_metadata is True, None if
False. More specifically, the Python rdflib library
was employed to represent and manipulate graphs, and
resources versions in the first dictionary are returned
as rdflib.ConjunctiveGraph [63].

Listing 7 illustrates the output template and the con-
crete result of the execution in Listing 6 on the dataset
described in 5. After October 13th, 2021, we can see
that there is only one snapshot, the status of which

was reconstructed and returned into the first dictionary.
That snapshot is <id/80178/prov/se/2>, whose
metadata is contained in the second output dictionary.
Finally, the metadata of the other existing snapshot,
<id/80178/prov/se/1>, is reported in the third
dictionary so that users know of its presence and, if
interested in including it, they can increase the input
interval by specifying it into the method.

The get_history method should be run if the
whole history of a resource is required, as shown in
Listing 8. The class and the parameters are the same as
get_state_at_time ones, but no interval is indi-
cated because all times are needed. One might wonder
why a new method was introduced instead of using the
previous one by passing None as a period. The reason
is that, as explained in 3.2, the two algorithms work
differently for efficiency reasons.

The output is different from the previous meth-
ods, and it is always a two-element tuple. The first
is a dictionary containing all the versions of a given
resource. The second is a dictionary containing all
the provenance metadata linked to that resource if
include_prov_metadata is True, None if
False. Again, the entity’s states are represented as
rdflib.ConjunctiveGraph. Listing 9 shows
the output format, along with the outcome of the sam-
ple materialization in Listing 8.

Using a dictionary for the first output element may
seem unnecessary since it consists of only one key. Ac-
tually, the AgnosticEntity constructor has an op-
tional parameter, related_entities_history.
If it is set to True, the get_history function re-
turns the history of the entity indicated in the res field
and all related ones. One resource is related to another
when linked by an incoming connection rather than an
outgoing one. In this case, the first element of the out-
put tuple is a dictionary of as many keys as there are
related entities plus the entity itself.

4.2. VersionQuery class

The VersionQuery class must be instantiated to
make a single-version structured query, passing as an
argument a SPARQL query string, a tuple represent-
ing the interval of interest, and the configuration file’s
path. It should be noted that the library only supports
SELECT searches; therefore, CONSTRUCT, ASK or
DESCRIBE searches are not allowed. Ultimately, the
run_agnostic_query method ought to be exe-
cuted (Listing 10).

https://github.com/RDFLib/rdflib/issues/787
https://github.com/RDFLib/rdflib/issues/787

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
{

"dataset": {
"triplestore_urls": ["TRIPLESTORE_URL_1", "TRIPLESTORE_URL_2",

"TRIPLESTORE_URL_N"],↪→

"file_paths": ["PATH_1", "PATH_2", "PATH_N"]
},
"provenance": {

"triplestore_urls": ["TRIPLESTORE_URL_1", "TRIPLESTORE_URL_2",
"TRIPLESTORE_URL_N"],↪→

"file_paths": ["PATH_1", "PATH_2", "PATH_N"]
},
"blazegraph_full_text_search": "BOOL",
"cache_triplestore_url": "TRIPLESTORE_URL"

}

USAGE EXAMPLE
{

"dataset": {
"triplestore_urls": ["http://localhost:9999/blazegraph/sparql"],
"file_paths": []

},
"provenance": {

"triplestore_urls": [],
"file_paths": ["./provenance.json"],

},
"blazegraph_full_text_search": "yes",
"cache_triplestore_url": "http://localhost:19999/blazegraph/sparql"

}

Listing 5: Configuration file’s template and usage example.

TEMPLATE
agnostic_entity = AgnosticEntity(res=RES_URI, config_path=CONFIG_PATH)
output = agnostic_entity.get_state_at_time(time=(START, END),

include_prov_metadata=BOOL)↪→

USAGE EXAMPLE
agnostic_entity =

AgnosticEntity(res="https://github.com/opencitations/time-agnostic-library/id/80178",
config_path="./config.json")

↪→

↪→

output = agnostic_entity.get_state_at_time(time=("2021-10-13", None),
include_prov_metadata=True)↪→

Listing 6: Template to materialize an entity’s version and usage example.

In the example of Listing 10, there is an isolated
triple. In that event, as explained in 3.2, it is necessary
to narrow the field by textual searches on deltas, which
can be faster if Blazegraph is used as a triplestore, a
textual index is reconstructed, and a positive boolean
value is passed in the
blazegraph_full_text_search field.

The output is a dictionary where the keys are the
snapshots relevant to that query within the input inter-
val. The values correspond to sets of tuples containing
the query results at the time specified by the key. The
positional value of the elements in the tuples is equiv-
alent to the variables indicated in the query. Listing 11
details the output template and the concrete output of

20 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
(

{
TIME_1: ENTITY_CONJUNCTIVE_GRAPH_AT_TIME_1,
TIME_2: ENTITY_CONJUNCTIVE_GRAPH_AT_TIME_2

},
{

SNAPSHOT_URI_AT_TIME_1: {
"generatedAtTime": TIME_1,
"wasAttributedTo": ATTRIBUTION_1,
"hadPrimarySource": PRIMARY_SOURCE_1

},
SNAPSHOT_URI_AT_TIME_2: {

"generatedAtTime": TIME_2,
"wasAttributedTo": ATTRIBUTION_2,
"hadPrimarySource": PRIMARY_SOURCE_2

}
},
{

OTHER_SNAPSHOT_URI: {
"generatedAtTime": OTHER_TIME,
"wasAttributedTo": OTHER_ATTRIBUTION,
"hadPrimarySource": OTHER_PRIMARY_SOURCE

}
}

)

CONCRETE EXAMPLE
(

{
"2021-10-19T19:55:55": <Graph identifier=N7dbca928e17a4e89a5ca11f198af1b78

(<class rdflib.graph.ConjunctiveGraph>)>↪→

},
{

"https://github.com/opencitations/time-agnostic-library/id/80178/prov/se/2":
{↪→

"generatedAtTime": "2021-10-19T19:55:55",
"wasAttributedTo": "https://orcid.org/0000-0002-8420-0696",
"hadPrimarySource": None

}
},
{

"https://github.com/opencitations/time-agnostic-library/id/80178/prov/se/1":
{↪→

"generatedAtTime": "2021-10-10T23:44:45",
"wasAttributedTo": "https://orcid.org/0000-0002-8420-0696",
"hadPrimarySource":

"https://api.crossref.org/works/10.1007/s11192-019-03265-y"↪→

}
}

)

Listing 7: Output template of the get_state_at_time method and concrete example.

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
agnostic_entity = AgnosticEntity(res=RES_URI, config_path=CONFIG_PATH)
output = agnostic_entity.get_history(include_prov_metadata=BOOL)

USAGE EXAMPLE
agnostic_entity =

AgnosticEntity(res="https://github.com/opencitations/time-agnostic-library/id/80178",
config_path="./config.json")

↪→

↪→

output = agnostic_entity.get_history(include_prov_metadata=True)

Listing 8: Output template of the get_state_at_time method and concrete example.

the execution in Listing 10 on the dataset described in
5. As it can be noted, a no longer existing version of
the literal value was correctly returned, proving that
the query was executed on a past state of the resource.

On the other hand, if a cross-version structured
query is needed, it is sufficient to specify no time. It
is worth pointing out that the output of a cross-version
structured query does not report all the dataset’s
snapshots but only those relevant to each of the re-
sources involved in the query at each time. For ex-
ample, Listing 12 shows a query on all literal values
<id/80178> has had over time. Its output correctly
reports that such identifier had value “10.1111/j.1365
2648.2012.06023.x” from 10th October at 23:44:45
to 19th October 2021 at 19:55:55, when the trailing
point was removed. Therefore, exclusively the times
when something happened to <id/80178>, not to
any dataset’s entity, are returned.

4.3. DeltaQuery class

The DeltaQuery class must be instantiated to
perform a query on deltas, passing a SPARQL query
string, a set of properties, and the path of the config-
uration file as arguments. The query string is helpful
to identify the entities whose changes need to be in-
vestigated. Again, only SELECT searches are allowed.
At the same time, the predicates’ set narrows the field
to those resources where the properties specified in
the set have changed. If no property was indicated,
any changes are considered. In addition, it is possible
to input a time in the form of a tuple, with the same
possibilities already described regarding version ma-
terialization. In that event, the query is executed on
the specified range, otherwise on all dataset’s changes.
Lastly, the run_agnostic_query method should
be launched on the instantiated object, as shown
in Listing 13. All identifiers are searched in the
corresponding usage example where the property

<http://www.essepuntato.it/2010/06/
literalreification/> was modified after 13th

October 2021.
The output is a dictionary that reports the modi-

fied entities, when they were created, modified, and
deleted, following the format in Listing 14. Changes
are reported as SPARQL update queries, in the same
way as deltas are stored according to the OpenCi-
tations Data Model. Merges are exceptions because
they cannot be expressed in SPARQL: in that case, a
description is given in a human-readable format that
specifies which resources were merged. If the entity
was not created or deleted within the indicated range,
the created or deleted value is None. On the
other hand, if the entity does not exist within the in-
put interval, the modified value is an empty dictio-
nary. It is essential to record creation and deletion dates
separately from the changes not to be lost. Indeed, the
creation snapshot has no delta and would not appear
among the changes, just as it is impossible to under-
stand from a diff if a resource was deleted because the
output does not report the entirety of the resource.

The example in Listing 14 reports the output of the
query in Listing 13. It shows that the identifier associ-
ated with the URI <id/80178> was created on 10th

October 2021 at 23:44:45 and still exists in the data
collection, as no cancellation date is indicated. In addi-
tion, it was modified on 19th October 2021 at 19:55:55,
removing the trailing point.

4.4. Cache system

The last module exposed to the user is support,
which provides the empty_the_cache function to
free the cache triplestore. In order to use it, it is suffi-
cient to pass as a parameter the path of the configura-
tion file, as shown in Listing 15.

The implementation of the cache system relies on a
triplestore. A text file would not have been as effec-

22 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
(

{
RES_URI: {

TIME_1: ENTITY_GRAPH_AT_TIME_1,
TIME_2: ENTITY_GRAPH_AT_TIME_2

}
},
{

RES_URI: {
SNAPSHOT_URI_AT_TIME_1: {

"generatedAtTime": TIME_1,
"wasAttributedTo": ATTRIBUTION_1,
"hadPrimarySource": PRIMARY_SOURCE_1

},
SNAPSHOT_URI_AT_TIME_2: {

"generatedAtTime": TIME_2,
"wasAttributedTo": ATTRIBUTION_2,
"hadPrimarySource": PRIMARY_SOURCE_2

}
}

}
)

CONCRETE EXAMPLE
(

{
"https://github.com/opencitations/time-agnostic-library/id/80178": {

"2021-10-10T23:44:45": <Graph
identifier=Nf560f20d1ad0426fa497d7870f7121b6 (<class
rdflib.graph.ConjunctiveGraph>)>,

↪→

↪→

"2021-10-19T19:55:55": <Graph
identifier=Nf560f20d1ad0426fa497d7870f7121b1b6 (<class
rdflib.graph.ConjunctiveGraph>)>

↪→

↪→

}
},
{

"https://github.com/opencitations/time-agnostic-library/id/80178/prov/se/1":
{↪→

"generatedAtTime': "2021-10-10T23:44:45",
"wasAttributedTo': "https://orcid.org/0000-0002-8420-0696",
"hadPrimarySource':

"https://api.crossref.org/works/10.1007/s11192-019-03265-y"↪→

},
"https://github.com/opencitations/time-agnostic-library/id/80178/prov/se/2":

{↪→

"generatedAtTime': "2021-10-19T19:55:55",
"wasAttributedTo': "https://orcid.org/0000-0002-8420-0696",
"hadPrimarySource': None

}
}

)

Listing 9: Output template of the get_history method and concrete example.

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
agnostic_query = VersionQuery(query=QUERY_STRING, on_time=(START, END),

config_path=CONFIG_PATH)↪→

output = agnostic_query.run_agnostic_query()

USAGE EXAMPLE
query = """

PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>
SELECT ?id ?literal
WHERE {

?id literal:hasLiteralValue ?literal.
FILTER REGEX(?literal, "\.$")

}
"""
agnostic_query = VersionQuery(query, ("2021-10-13", None), "./config.json")
output = agnostic_query.run_agnostic_query()

Listing 10: Code template to perform a single-version structured query and usage example.

TEMPLATE
{

TIME: {
(VALUE_1_OF_VARIABLE_1, VALUE_1_OF_VARIABLE_2, VALUE_1_OF_VARIABLE_N),
(VALUE_2_OF_VARIABLE_1, VALUE_2_OF_VARIABLE_2, VALUE_2_OF_VARIABLE_N),
(VALUE_N_OF_VARIABLE_1, VALUE_N_OF_VARIABLE_2, VALUE_N_OF_VARIABLE_N)

}
}

CONCRETE EXAMPLE
{'2021-10-10T23:44:45':

{('https://github.com/opencitations/time-agnostic-library/id/80178',
'10.1111/j.1365-2648.2012.06023.x.')}}

↪→

↪→

Listing 11: Output template of a single-version structured query and concrete example.

query = """
PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>
SELECT DISTINCT ?value
WHERE {

<https://github.com/opencitations/time agnostic library/id/80178>
literal:hasLiteralValue ?value.

}
"""
agnostic_query = VersionQuery(query, config_path="./config.json")
output = agnostic_query.run_agnostic_query()

output = {
'2021-10-10T23:44:45': {('10.1111/j.1365-2648.2012.06023.x.',)},
'2021-10-19T19:55:55': {('10.1111/j.1365-2648.2012.06023.x',)}
}

Listing 12: Example of a cross-version structured query and related output.

24 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
agnostic_entity = DeltaQuery(query=QUERY_STRING, on_time=(START, END),

changed_properties=PROPERTIES_SET, config_path=CONFIG_PATH)↪→

output = agnostic_entity.run_agnostic_query()

USAGE EXAMPLE
query = """

PREFIX datacite: <http://purl.org/spar/datacite/>
SELECT DISTINCT ?id
WHERE {

?id a datacite:Identifier.
}

"""
agnostic_entity = DeltaQuery(query=query, on_time=("2021-10-13", None),

changed_properties={"http://www.essepuntato.it/2010/06/literalreification/"},
config_path="./config.json")

↪→

↪→

output = agnostic_entity.run_agnostic_query()

Listing 13: Code template to perform a single-delta structured query and usage example. Cross-delta structured
queries only differ because the on_time field is equal to None.

tive because the cache’s primary objective is to make
queries on the past graphs faster after they have been
recovered. A text file would have been detrimental to
this purpose, lacking the optimizations and indexes
that characterize a triplestore. Moreover, the cache
triplestore must be separated from both the data and
the provenance collections, as transcribed information
is incompatible and contradictory with that present on
the first two. Indeed, in the cache, statements belong-
ing to different times coexist. Also, the cache system
was implemented only to speed up version queries,
while it does not affect delta queries, as they do not
reconstruct past graphs. Therefore, the only class in-
volved is VersionQuery.

Inside the cache, each triple pertains to a named
graph, whose URI is
f"https://github.com/opencitations/
time-agnostic-library/{timestamp}",
where {timestamp} is the value of
prov:generatedAtTime of the relative prove-
nance snapshot. Such a solution makes the code to run
queries on different versions short and efficient. As
shown in Listing 16, it cycles on the timestamps rel-
evant for the user’s query, transforming the SPARQL
string. In row 5, the string is split to the first oc-
currence of WHERE, ignoring uppercase or lower-
case letters. f"FROM <https://github.com/
opencitations/time agnostic library/
{timestamp}>" is placed before WHERE, which is
then reset with the rest of the query. In this way, the

query is run on a dataset’s portion as it appeared in the
time indicated by timestamp.

As explained in section 4, the cache also allows
quicker searches because it avoids reconstructing
the same entities’ histories more than once. If the
library only recovered the entire resources’ past,
the strategy shown so far would have been ade-
quate. It would have been enough to check if a
URI is in the cache before starting the materializa-
tion process and, if it exists, skip it. However, time-
agnostic-library also stores portions of the past via
single-version-structured queries in the cache. There-
fore, confirming the presence of a URI in the cache
is not sufficient because this URI could be in an-
other temporal graph, which is not of current in-
terest. In order to overcome this limitation, when a
cross-version structured query is run, the function
_cache_entity_graph updates the cache triple-
store with the statement
<{entity}/cache> <https://github.com/
opencitations/time-agnostic-library/
isComplete> "true", where {entity} is the
URI of a relevant entity involved in the time-traversal
query. As a side note, it is worth highlighting that
_cache_entity_graph is always run in a sepa-
rate thread, as it does not return any outputs needed to
the main thread, and it is not necessary to wait for its
completion.

When a search is executed a second time, the
method
_get_relevant_timestamps_from_cache

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

TEMPLATE
{

RES_URI_1: {
"created": TIMESTAMP_CREATION,
"modified": {

TIMESTAMP_1: UPDATE_QUERY_1,
TIMESTAMP_2: UPDATE_QUERY_2,
TIMESTAMP_N: UPDATE_QUERY_N

},
"deleted": TIMESTAMP_DELETION

},
RES_URI_N: {

"created": TIMESTAMP_CREATION,
"modified": {

TIMESTAMP_1: UPDATE_QUERY_1,
TIMESTAMP_2: UPDATE_QUERY_2,
TIMESTAMP_N: UPDATE_QUERY_N

},
"deleted": TIMESTAMP_DELETION

}
}

CONCRETE EXAMPLE
{

"https://github.com/opencitations/time-agnostic-library/id/80178": {
"created": "2021-10-10T23:44:45",
"modified": {

"2021-10-19T19:55:55": "DELETE DATA { GRAPH
<https://github.com/opencitations/time-agnostic-library/id/> {
<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x.' . } }; INSERT DATA { GRAPH
<https://github.com/opencitations/time-agnostic-library/id/> {
<https://github.com/opencitations/time-agnostic-library/id/80178>
<http://www.essepuntato.it/2010/06/literalreification/hasLiteralValue>
'10.1111/j.1365-2648.2012.06023.x' . } }"

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

},
"deleted": None

}
}

Listing 14: Output template of a structured query on changes, along with a concrete example.

TEMPLATE
empty_the_cache(config_path = CONFIG_PATH)

USAGE EXAMPLE
empty_the_cache(config_path = "./config.json")

Listing 15: Code template to empty the cache and usage example.

looks for the triple pattern
<entity/cache> <https://github.com/

opencitations/time-agnostic-library/

isComplete> ?complete. If ?complete re-
sults equal to “true”, the relevant timestamps are
saved to be used in run_agnostic_query, as

26 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 def run_agnostic_query(self) -> Dict[str, Set[Tuple]]:
2 # [...]
3 if self.cache_triplestore_url:
4 for timestamp, _ in self.relevant_graphs.items():
5 split_by_where = re.split(pattern="where", string=self.query, maxsplit=1,

flags=re.IGNORECASE)↪→

6 query_named_graph = split_by_where[0] + f"FROM
<https://github.com/opencitations/time-agnostic-library/{timestamp}>
WHERE" + split_by_where[1]

↪→

↪→

7 [...]

Listing 16: Snippet code to run a query on a named graph in the cache triplestore.

shown in Listing 16, and the reconstruction can be
skipped.

In order to identify the relevant times, another prob-
lem must be solved. In fact, the cache stores not
only restored graphs but also aligned and duplicated
ones. If a resource was not modified between a snap-
shot and the next one, its graph is cloned. In or-
der to mark an original snapshot, its URI is saved
in a triple that connects it to the reference entity via
<http://www.w3.org/ns/prov#
specializationOf>. Ultimately, by searching
for URIs linked via that predicate, the results are
the actual snapshots that were saved. Such triples
are included in a separate graph, whose name is
f"https://github.com/opencitations/
time-agnostic-library/relevant/
{timestamp}" so that run_agnostic_query
does not return unwanted provenance information. Fi-
nally, since the generation timestamps are directly con-
tained in the named graph, they can be derived with a
simple split.

The UML diagram in Fig. 8 exemplifies the entire
cache system.

5. Evaluation

This section illustrates the quantitative evaluation
we performed on the time-agnostic-library through
benchmarks on execution times and resources used by
the various functionalities.

Before benchmarking, it was necessary to generate a
dataset compliant with the OpenCitations Data Model
rich in provenance information. As for the dataset con-
tent, the metadata of all the works published by the
journal Scientometrics was mapped, having derived
that information entirely from Crossref via its REST
API [66]. The dataset is in the public domain on Zen-
odo under the Creative Commons Zero v1.0 Univer-

sal license and is reusable without restrictions [67]. It
was distributed as two journal files, one for the data
and one for the provenance, readable via the triple-
store Blazegraph. There are 4,960,087 data triples and
19,348,027 provenance triples, which correspond to
1,134,545 entities and 2,696,689 snapshots. Therefore,
on average, each entity has two snapshots. Among the
data, there are 231,217 agent roles, 221,602 responsi-
ble agents, 206,003 bibliographic resources, 142,472
citations, 141,555 bibliographical references, 108,112
identifiers, and 83,584 resource embodiments. The
code to generate and modify such collections is avail-
able on GitHub [68].

All the experiments were conducted using a com-
puter with the following hardware specifications. Only
the components relevant to the results’ reproduction
are reported:

– CPU: Intel Core i5 8500 @ 3.00 GHz, 6 core, 6
logic processors

– RAM: 32 GB DDR4 3000 MHz CL15
– Storage: 1 TB SSD Nvme PCIe 3.0

The results obtained strictly depend on the hard-
ware employed and are reproducible uniquely under
the same conditions. They were published on Zenodo
under a Creative Commons Zero v1.0 Universal li-
cense, along with the code to reproduce them [69].

The benchmarks involved ten use cases: the materi-
alization of one or all versions, single-version, single-
delta, cross-version, and cross-delta structured queries
containing only connected triple patterns with a known
subject and, finally, the same types of searches with
unknown subjects. The two types of queries can be
seen in Listing 17. The first query and all materializa-
tions assessed reference the graph of <br/86766>
described in Fig. 3. This approach was adopted to re-
move the provenance associated with different entities
from the variables and make the outcomes compara-

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 8. UML sequence diagram of the cache system.

ble. For the same reason, queries on specified inter-
vals consider the same period, ranging from 13th Octo-
ber 2021 onwards. Exceptions are benchmarks number
5, 6, 9, 10, referring to structured queries where only
predicates and objects are known, which by definition
do not have a reference graph.

Each benchmark was performed ten times to track
the time and RAM, and the minimum, median, and
maximum values were stored. Among those measure-
ments, the best one is the most significant because val-
ues above the minimum are not caused by Python but
by other interfering processes [70]. However, it should
be noted that Blazegraph caches recent queries, mak-
ing instant subsequent executions. In order to avoid

this facilitation, the triplestore was closed and re-
opened before every run, so as to clear the cache up.

The cache system and the Blazegraph textual in-
dex were evaluated together and separately to mea-
sure their contribution to speeding up the processes.
These additional features were not assessed for all
the retrieval functionalities but exclusively for those
that benefit from them. More precisely, the cache is
employed only by those functions that involve recon-
structing past graphs in order to query them, that is,
operations 3, 4, 5, 6. On the other hand, only pro-
cesses that require searching for strings within update
queries take advantage of the Blazegraph textual index,
namely 5, 6, 9, 10.

The execution time was evaluated using the Python
built-in timeit module and, in particular, the repeat
method. It reiterated each benchmark ten times, dis-
connecting and reconnecting the databases in the pre-
liminary setup phase, which is not included in the time
count. In addition, this function temporarily interrupts
the garbage collector, which is responsible for freeing
the RAM whenever all pointers to a specific variable
become unused. This operation, however, is not en-
tirely predictable and depends in part on the operating
system. Therefore, it is a source of variability between
one execution and the other, making the outcomes not
comparable.

On the other hand, the RAM consumption was
measured using the module psutil, particularly the
memory_info method of the Process class [71].
Since the RAM used by a process is released only af-
ter its completion, running benchmarks sequentially in
a single process would have artificially increased the
resources occupied. The solution adopted was to gen-
erate scripts containing only the test on the fly, run
them, measure the maximum memory used, terminate
the script, and delete the file. Also, the setup was re-
peated before each iteration and excluded from the re-
sources assessed.

Table 3 shows – in seconds – the minimum, me-
dian and maximum time spent to complete the var-
ious operations, with and without the cache and the
Blazegraph textual index. The values are reported with
three significant figures. By looking at the results, it
can be observed that the time-agnostic-library is able
to materialize and query versions and deltas quickly
despite working live. Materializing all versions of
<br/86766> took 0.567 seconds, while a specific in-
terval 0.541 seconds, considering the best times. Con-
versely, the SPARQL query on all versions took 0.583
seconds, on versions within a given period 0.573 sec-

28 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

query_known_subjects = f"""
PREFIX literal: <http://www.essepuntato.it/2010/06/literalreification/>
PREFIX cito: <http://purl.org/spar/cito/>
PREFIX datacite: <http://purl.org/spar/datacite/>
SELECT DISTINCT ?br ?id ?value
WHERE {

<https://github.com/opencitations/time-agnostic-library/br/86766> cito:cites
?br.↪→

?br datacite:hasIdentifier ?id.
OPTIONAL {?id literal:hasLiteralValue ?value.}

}
"""
query_unknown_subjects = """

PREFIX datacite: <http://purl.org/spar/datacite/>
SELECT DISTINCT ?s
WHERE {

?s datacite:usesIdentifierScheme datacite:orcid.
}

"""

Listing 17: Benchmarked queries with known and unknown subjects, respectively.

onds, on all deltas 0.659 seconds, and on deltas within
a limited interval 0.629 seconds.

However, such speeds are only possible if the sub-
ject is known. If it is unknown, all present and past en-
tities relevant to explicated predicates and objects must
be considered, requiring much more time. For bench-
marks number 5, 6, 9, and 10, it was necessary to iden-
tify and process 11,470 entities, taking about 10 min-
utes for version queries and 8 minutes for delta queries.
Indeed, the cache system and the Blazegraph textual
index were implemented to reduce these timeframes
as much as possible. The index alone made it possi-
ble to reduce the execution of time-traversal queries by
about 1 minute, while the influence on delta searches
was lower, equal to about 30 seconds. The cache had
an even more significant impact, cutting alone approx-
imately 6 minutes on version queries with unknown
subjects. Finally, by combining the textual index and
the cache, the results were predictably the fastest in the
series.

However, it is essential to highlight a drawback
resulting from the cache’s adoption: it improves the
times only from the second execution of a given query
onwards. The first time, it worsens them significantly,
involving additional write operations on the cache
triplestore. For example, running number 5 with the
cache took about 20.5 minutes the first time instead of
the already mentioned 10 minutes. Nevertheless, the
cache always has advantages in terms of RAM, as ex-
plained below.

Table 4 shows the minimum, median, and maxi-
mum RAM used by the various functionalities mea-
sured in Megabyte with three significant figures, first
without and then with the cache. All operations re-
quired less than a gigabyte. The minimum was about
51 MB for materializations. Conversely, the peak was
about 550 MB regarding the cross-version structured
query where only the predicate and object are known.
Instead, the same function performed over a limited in-
terval required about 200 MB. It can be inferred that
if the available RAM is insufficient, defining a period
of interest helps to reduce dramatically the resources
needed to answer the research.

A valid alternative to decrease RAM consumption
is to use the cache system, which improves all bench-
marks, and over 450 MB in the fifth one. Furthermore,
this solution is scalable because the resources required
to save reconstructed graphs in the cache triplestore do
not increase linearly as the entities involved. If the re-
stored graphs are hundreds of thousands or millions,
depending on the available RAM, caching them be-
comes the only viable option to complete the query and
avoid a crash. Additionally, even if the PC resources
were sufficient, the time necessary to answer the user’s
query on all the past states of the dataset stored in
RAM would increase exponentially with the entities
involved. At the same time, a triplestore implements
optimizations that allow completing this final step in a
scalable way. Though, it should be noted that the cache
occupies disk space. In this case, after all the bench-

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 3
Minimum, median and maximum time in seconds spent to complete the various operations, with and without the cache and the Blazegraph
textual index. The values are reported with three significant figures

Retrieval functionality

Time (s)
w/out cache
w/out textual index

Time (s)
w/out cache
w/ textual index

Time (s)
w/ cache
w/out textual index

Time (s)
w/ cache
w/ textual index

Min Median Max Min Median Max Min Median Max Min Median Max

1. Materialization of all versions 0.567s 0.583s 0.660s
2. Materialization of a specific version 0.541s 0.576s 0.577s
3. Cross-version structured query 0.583s 0.604s 1.41s 0.319s 0.336s 1.56s
4. Single-version structured query 0.573s 0.587s 1.32s 0.317s 0.335s 0.710s
5. Cross-version structured query
where only the predicate and object
are known

573s 581s 597s 511s 516s 519s 201s 202s 1245s 170s 175s 1220s

6. Single-version structured query
where only the predicate and object are
known

552s 580s 587s 493s 495s 498s 176s 178s 923s 169s 170s 888s

7. Cross-delta structured query 0.659s 0.668s 0.816s
8. Single-delta structured query 0.629s 0.652s 0.660s
9. Cross-delta structured query where
only the predicate and object are
known

486s 489s 504s 456s 457s 461s

10. Single-delta structured query
where only the predicate and object
are known

488s 490s 492s 455s 456s 457s

marks, the cache triplestore reached a weight of 640
MB.

6. Discussions

In light of the benchmarks, time-agnostic-library
has proven effective for any materialization. Regard-
ing structured queries, they are swift if all subjects are
known or deductible by explicating the variables re-
cursively in linked triple patterns. On the other hand,
the presence of isolated triples in the user’s SPARQL
query involves the identification of all present and past
entities that satisfy that pattern, requiring a more sig-
nificant amount of time and resources. It can be con-
cluded that the proposed software can be used effec-
tively in all cases where the subject is known, that
is, for any materialization or formulating SPARQL
queries without isolated triple patterns containing un-
known subjects.

Future research should focus on optimizing spe-
cific SPARQL queries containing isolated triples to
avoid reconstructing portions of the past that are not
needed to fulfill the request. Consider the time traver-
sal queries in Listing 18. Although they both involve
isolated triples, processing all current and past entities

that satisfy those patterns is unnecessary since other

clues can narrow the field.

In the first example, retrieving the history of all iden-

tifiers that have ever had a literal value would be ex-

cessive. In the following row, we learn that the focus is

only on those that end with a dot.

Similarly, the current methodology responds to the

second example search in Listing 18 by determining

all identifiers that have never had a literal value of

"10.1111/j.1365-2648.2012.06023.x." and then, sepa-

rately, all entities that have ever had an identifier. How-

ever, by combining the two pieces of information, it is

clear that it would be enough to reconstruct only the

past of entities that have ever had an identifier with a

literal value of "10.1111/j.1365-2648.2012.06023.x.".

Such optimizations are possible only by managing

case-by-case specific queries, thus improving all those

of the same typology. In this direction, there is a mar-

gin to allow time-agnostic-library to operate faster and

live for generic time-traversal queries.

30 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Minimum, median and maximum RAM used by the various functionalities measured in Megabyte, first without and then with the cache. The
data are reported with three significant figures

Memory (MB)
w/out cache

Memory (MB)
w/ cache

Min Median Max Min Median Max

1. Materialization of all versions 51.2 MB 51.5 MB 51.7 MB
2. Materialization of a specific version 50.9 MB 51.3 MB 51.5 MB
3. Cross-version structured query 51.4 MB 51.7 MB 51.9 MB 50.8 MB 51.0 MB 52.1 MB
4. Single-version structured query 51.0 MB 51.2 MB 51.4 MB 50.8 MB 51.0 MB 51.4 MB
5. Cross-version structured query
where only the predicate and object
are known

514 MB 519 MB 548 MB 74.3 MB 74.5 MB 95.3 MB

6. Single-version structured query
where only the predicate and object are
known

200 MB 201 MB 202 MB 72.0 MB 72.6 MB 85.2 MB

7. Cross-delta structured query 52.1 MB 52.2 MB 52.4 MB
8. Single-delta structured query 51.4 MB 51.6 MB 51.9 MB
9. Cross-delta structured query where
only the predicate and object are
known

66.0 MB 66.5 MB 66.9 MB

10. Single-delta structured query
where only the predicate and object
are known

65.2 MB 65.6 MB 66.0 MB

query_1 = """
PREFIX literal:

<http://www.essepuntato.it/2010
/06/literalreification/>

↪→

↪→

SELECT DISTICT ?id
WHERE {

?id literal:hasLiteralValue
?literal.↪→

FILTER REGEX (?literal, "\.$")
}"""
query_2 = """
PREFIX datacite:

<http://purl.org/spar/datacite/>↪→

PREFIX literal:
<http://www.essepuntato.it/2010
/06/literalreification/>

↪→

↪→

SELECT DISTICT *
WHERE {

?id literal:hasLiteralValue
"10.1111/j.1365-2648.2012.06023.x.".↪→

?br datacite:hasIdentifier ?id.
}"""

Listing 18: Example of generic time-traversal queries
that can be optimized in future works.

From Table 5, it is clear that all the existing solu-
tions need indexes and pre-processing to manage time-
traversal queries efficiently. Software that performs op-

erations on the fly, such as R&Wbase [38], does not
allow cross-version structured queries. This flaw can
prove fatal in dynamic open linked datasets that con-
stantly receive many updates, such as Wikidata.

Therefore, to date, as far as we know, time-agnostic-
library is the only software to support all retrieval
functionalities without requiring pre-indexing pro-
cesses. This feature makes it especially suitable for
use in scenarios with large amounts of data that often
change over time, particularly regarding materializa-
tions and queries with known subjects. Moreover, like
R&Wbase, time-agnostic-library caches the results of
the most common queries. As for the deltas, materi-
alization is straightforward without the need for soft-
ware since the OCDM adopts a changed-based storage
policy. At last, compared to the approach of [31] and
OSTRICH [34], the OCDM requires storing the cur-
rent state and not the original one, allowing to query
the latest version of an entity without further computa-
tional effort to re-create it.

To conclude, time-agnostic-library can be used
stand-alone or employed to develop sophisticated ap-
plications. For instance, we used the time-agnostic-
library to develop a prototype browser, i.e. the time-
agnostic-browser, to enable recovering all the past of
an entity from its URI and performing time-traversal
queries through a graphical user interface [72]. Its

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

main added value is hiding the triples and the com-
plexity of the underlying RDF model: predicate URIs,
as well as subjects and objects, appear in a human-
readable format. A possible use case for such a tool
may concern the involvement of non-expert users of
Semantic Web in the curatorship of data while keeping
track of the changes and their responsible agents.

7. Conclusion

This article introduced a methodology to conduct
live time-traversal queries on RDF datasets and soft-
ware developed in Python implementing it. To this end,
two problems had to be solved. On the one hand, iden-
tifying a sufficiently general metadata model compli-
ant with RDF. On the other hand, elaborating an ef-
ficient and reusable system to navigate a dataset past
and its metadata.

We adopted the OpenCitations Data Model (OCDM)
to handle provenance and change tracking, devise our
methodology and implement the system. The OCDM
introduces a document-inspired system that stores the
delta between two versions of an entity, saving the diff
in a separate named graph as a SPARQL update string
associated with the property oco:hasUpdateQuery.
Then, by analyzing existing solutions to run time-
traversal queries on RDF datasets with the taxonomy
by Fernández et al. [44], two requirements were es-
tablished: on the one hand, all retrieval functionalities
needed to be enabled; on the other, they had to be com-
pleted live.

The procedure introduced in this paper meets both
specifications and overcomes the main related issues:

– Regarding the alignment of linked entities’ snap-
shots, their reconstructed graphs are merged
based on generation times and copied to the
temporally following graphs if they have not
changed. This approach is made possible by
OCDM’s hybrid storage policy, which is both
changed-based and timestamp-based. In fact, not
only the deltas but also their transaction times are
available via the prov:generatedAtTime
and prov:invalidatedAtTime properties.

– To avoid restoring all past versions of a dataset
before running a time-traversal query, exclusively
those portions that are strictly necessary to an-
swer the user’s SPARQL query are recovered.
Such a result is achieved by explicating the user’s
query variables recursively if the triple patterns

are joined, otherwise by searching for relevant en-
tities within the oco:hasUpdateQuery prop-
erties. Afterward, the history of such pertinent en-
tities is rebuilt in full if the query is on all ver-
sions, otherwise in the specified time interval.

– If the reconstructed graphs are extensive, they
can be saved on a triplestore that acts as a cache.
Thereby, the time-agnostic queries can take ad-
vantage of database optimizations and be re-
solved efficiently. In addition, the cache sys-
tem makes subsequent executions of identical
searches much faster and drastically reduces the
impact on RAM.

– Finally, to avoid retrieving the entire history of
an entity when the user only requires its state
at a specified time, SPARQL update queries rep-
resenting the deltas of that entity are ordered
from the most recent to the one demanded and
summed. Then, they are executed on the present
state of the resource, thus allowing a time jump
from the present to the period needed.

This methodology was concretely implemented in a
Python package, time-agnostic-library, distributed un-
der the ISC license, and downloadable through pip
[60]. It allows running entity materializations, ver-
sion queries, and delta queries. All three operations
can be performed over the entire history available
or by specifying a time interval. Thereby, the time-
agnostic-library realizes all the retrieval functionalities
described in the taxonomy by Fernández et al. [44].
To ensure the software’s correctness, maintainability,
and future extensibility, Test Driven Development was
adopted [61]. All the methods were implemented by
first defining the requirements they intended to meet
and writing tests that passed only if those specifica-
tions were satisfied. In total, 72 tests were created to
verify the functioning of each operation in different use
cases and limit situations. In this way, if it is necessary
to add new features, any developer can perform such
tests to avoid incompatibility with the existing code.

As introduced in section 6, as far as we know, the
time-agnostic-library is, to date, the only one that al-
lows performing all the time-related retrieval function-
alities live. In addition, this software can be used for
any dataset that tracks changes and provenance as de-
scribed in the OCDM. In the future, we aim to use it
to address specific needs derived from OpenCitations’
use cases and users, such as offering a system to en-
able users to understand how and why an entity was
modified in time. In addition, we plan to improve and

32 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Comparative between time-agnostic-library and preexisting software to achieve materializations and time traversal queries on RDF datasets

Software Version mate-
rialization

Delta materi-
alization

Single version
structured
query

Cross version
structured
query

Single delta
structured
query

Cross delta
structured
query

Live

PromptDiff + + - - - - +
SemVersion + + - - - - +
[31] + + + - + + -
R&Wbase + + + - - - +
x-RDF-3X + - + + - - -
v-RDFCSA + + + + + + -
OSTRICH + + + - - - -
[35] + + + + + + -
time-
agnostic-
library

+ + + + + + +

extend the library’s code to increase the performances
of all the operations it enables, particularly in running
structured queries where only the predicate and object
are known.

Acknowledgements

This work has been partially funded from the Eu-
ropean Union’s Horizon 2020 research and innova-
tion program under grant agreement No 101017452
(OpenAIRE-Nexus Project). We would like to thank
Fabio Vitali for the constructive feedback, and Simone
Persiani, for the valuable guidance throughout the use
of the Python library oc_ocdm. We also thank Silvia
Di Pietro for the language editing and proofreading.

References

[1] S.L. Garfinkel, Wikipedia and the Meaning of Truth, MIT Tech-
nology Review (2008). https://stephencodrington.com/Blogs/
Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/
Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf.

[2] M.-R. Koivunen and E. Miller, Semantic Web Activity, 2001,
Edition: W3C Volume: 11 02. https://www.w3.org/2001/12/
semweb-fin/w3csw.

[3] T. Käfer, A. Abdelrahman, J. Umbrich, P. O’Byrne and
A. Hogan, Observing Linked Data Dynamics, in: The Se-
mantic Web: Semantics and Big Data, Vol. 7882, D. Hutchi-
son, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mattern,
J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi,
G. Weikum, P. Cimiano, O. Corcho, V. Presutti, L. Hollink and
S. Rudolph, eds, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013, pp. 213–227, Series Title: Lecture Notes in Com-
puter Science. ISBN 978-3-642-38287-1 978-3-642-38288-8.
doi:10.1007/978-3-642-38288-8_15.

[4] F. Orlandi and A. Passant, Modelling provenance of
DBpedia resources using Wikipedia contributions,
Journal of Web Semantics 9(2) (2011), 149–164.
doi:10.1016/j.websem.2011.03.002. https://linkinghub.
elsevier.com/retrieve/pii/S1570826811000175.

[5] P. Dooley and B. Božić, Towards Linked Data for Wiki-
data Revisions and Twitter Trending Hashtags, in: Proceed-
ings of the 21st International Conference on Information In-
tegration and Web-based Applications & Services, ACM, Mu-
nich Germany, 2019, pp. 166–175. ISBN 978-1-4503-7179-7.
doi:10.1145/3366030.3366048.

[6] Y. Project, Download data, code, and logo of Yago projects,
2021. https://yago-knowledge.org/downloads.

[7] J. Umbrich, M. Hausenblas, A. Hogan, A. Polleres and
S. Decker, Towards Dataset Dynamics: Change Frequency of
Linked Open Data Sources, in: Proceedings of the WWW2010
Workshop on Linked Data on the Web, C. Bizer, T. Heath,
T. Berners-Lee and M. Hausenblas, eds, CEUR Workshop
Proceedings, Raleigh, USA, 2010. http://ceur-ws.org/Vol-628/
ldow2010_paper12.pdf.

[8] F. Manola and E. Miller, RDF Primer, 2004. http://www.w3.
org/TR/2004/REC-rdf-primer-20040210/.

[9] D. Beckett, RDF Syntaxes 2.0, 2010. https://www.w3.org/
2009/12/rdf-ws/papers/ws11.

[10] J.J. Carroll, C. Bizer, P. Hayes and P. Stickler, Named graphs,
provenance and trust, in: Proceedings of the 14th interna-
tional conference on World Wide Web - WWW ’05, ACM
Press, Chiba, Japan, 2005, p. 613. ISBN 978-1-59593-046-0.
doi:10.1145/1060745.1060835. http://portal.acm.org/citation.
cfm?doid=1060745.1060835.

[11] P. Pediaditis, G. Flouris, I. Fundulaki and V. Christophides,
On Explicit Provenance Management in RDF/S Graphs,
in: First Workshop on the Theory and Practice of
Provenance, USENIX, San Francisco, CA, USA, 2009.
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/
pediaditis/pediaditis.pdf.

[12] G. Flouris, I. Fundulaki, P. Pediaditis, Y. Theoharis and
V. Christophides, Coloring RDF Triples to Capture Prove-
nance, in: The Semantic Web - ISWC 2009, Vol. 5823,
D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mat-
tern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,

https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://stephencodrington.com/Blogs/Hong_Kong_Blog/Entries/2009/4/11_What_is_Truth_files/Wikipedia%20and%20the%20Meaning%20of%20Truth.pdf
https://www.w3.org/2001/12/semweb-fin/w3csw
https://www.w3.org/2001/12/semweb-fin/w3csw
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000175
https://yago-knowledge.org/downloads
http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf
http://ceur-ws.org/Vol-628/ldow2010_paper12.pdf
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
https://www.w3.org/2009/12/rdf-ws/papers/ws11
https://www.w3.org/2009/12/rdf-ws/papers/ws11
http://portal.acm.org/citation.cfm?doid=1060745.1060835
http://portal.acm.org/citation.cfm?doid=1060745.1060835
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf
https://www.usenix.org/legacy/event/tapp09/tech/full_papers/pediaditis/pediaditis.pdf

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi,
G. Weikum, A. Bernstein, D.R. Karger, T. Heath, L. Feigen-
baum, D. Maynard, E. Motta and K. Thirunarayan, eds,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 196–
212, Series Title: Lecture Notes in Computer Science. ISBN
978-3-642-04929-3 978-3-642-04930-9. doi:10.1007/978-3-
642-04930-9_13.

[13] T. Berners-Lee, Notation 3 Logic, 2005. https://www.w3.org/
DesignIssues/N3Logic.

[14] R. Dividino, S. Sizov, S. Staab and B. Schueler, Query-
ing for provenance, trust, uncertainty and other meta knowl-
edge in RDF, Journal of Web Semantics 7(3) (2009), 204–
219. doi:10.1016/j.websem.2009.07.004. https://linkinghub.
elsevier.com/retrieve/pii/S1570826809000237.

[15] A. Zimmermann, N. Lopes, A. Polleres and U. Straccia, A
general framework for representing, reasoning and querying
with annotated Semantic Web data, Journal of Web Semantics
11 (2012), 72–95. doi:10.1016/j.websem.2011.08.006. https:
//linkinghub.elsevier.com/retrieve/pii/S1570826811000771.

[16] J. Hoffart, F.M. Suchanek, K. Berberich and G. Weikum,
YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia, Artificial Intelligence 194 (2013),
28–61. doi:10.1016/j.artint.2012.06.001. https://linkinghub.
elsevier.com/retrieve/pii/S0004370212000719.

[17] O. Hartig and B. Thompson, Foundations of an Alternative Ap-
proach to Reification in RDF, arXiv:1406.3399 [cs] (2019),
arXiv: 1406.3399. http://arxiv.org/abs/1406.3399.

[18] S.S. Sahoo, O. Bodenreider, P. Hitzler, A. Sheth and
K. Thirunarayan, Provenance Context Entity (PaCE): Scal-
able Provenance Tracking for Scientific RDF Data, in: Sci-
entific and Statistical Database Management, Vol. 6187,
D. Hutchison, T. Kanade, J. Kittler, J.M. Kleinberg, F. Mat-
tern, J.C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,
B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M.Y. Vardi,
G. Weikum, M. Gertz and B. Ludäscher, eds, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010, pp. 461–470, Series Ti-
tle: Lecture Notes in Computer Science. ISBN 978-3-642-
13817-1 978-3-642-13818-8. doi:10.1007/978-3-642-13818-
8_32.

[19] V. Nguyen, O. Bodenreider and A. Sheth, Don’t like RDF
reification?: making statements about statements using sin-
gleton property, in: Proceedings of the 23rd international
conference on World wide web - WWW ’14, ACM Press,
Seoul, Korea, 2014, pp. 759–770. ISBN 978-1-4503-2744-2.
doi:10.1145/2566486.2567973. http://dl.acm.org/citation.cfm?
doid=2566486.2567973.

[20] E. Damiani, B. Oliboni, E. Quintarelli and L. Tanca, A
graph-based meta-model for heterogeneous data management,
Knowledge and Information Systems 61(1) (2019), 107–136.
doi:10.1007/s10115-018-1305-8.

[21] F.M. Suchanek, J. Lajus, A. Boschin and G. Weikum,
Knowledge Representation and Rule Mining in Entity-Centric
Knowledge Bases, in: Reasoning Web. Explainable Artificial
Intelligence, Vol. 11810, M. Krötzsch and D. Stepanova, eds,
Springer International Publishing, Cham, 2019, pp. 110–152,
Series Title: Lecture Notes in Computer Science. ISBN 978-
3-030-31422-4 978-3-030-31423-1. doi:10.1007/978-3-030-
31423-1_4.

[22] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil,
P. Groth, N. Kwasnikowska, S. Miles, P. Missier, J. My-
ers, B. Plale, Y. Simmhan, E. Stephan and J.V. den

Bussche, The Open Provenance Model core specification
(v1.1), Future Generation Computer Systems 27(6) (2011),
743–756. doi:10.1016/j.future.2010.07.005. https://linkinghub.
elsevier.com/retrieve/pii/S0167739X10001275.

[23] P.P. da Silva, D.L. McGuinness and R. Fikes, A proof markup
language for Semantic Web services, Information Systems
31(4–5) (2006), 381–395. doi:10.1016/j.is.2005.02.003. https:
//linkinghub.elsevier.com/retrieve/pii/S0306437905000281.

[24] T. Lebo, S. Sahoo and D. McGuinness, PROV-O: The PROV
Ontology, 2013, Place: PROV-O Volume: 04 30. http://www.
w3.org/TR/2013/REC-prov-o-20130430/.

[25] S.S. Sahoo and A.P. Sheth, Provenir Ontology: Towards
a Framework for eScience Provenance Management, 2009.
https://corescholar.libraries.wright.edu/knoesis/80.

[26] P. Caplan, Understanding PREMIS: an overview of the
PREMIS Data Dictionary for Preservation Metadata, Library
of Congress, 2017. https://www.loc.gov/standards/premis/
understanding-premis-rev2017.pdf.

[27] P. Ciccarese, E. Wu, G. Wong, M. Ocana, J. Kinoshita, A. Rut-
tenberg and T. Clark, The SWAN biomedical discourse on-
tology, Journal of Biomedical Informatics 41(5) (2008), 739–
751. doi:10.1016/j.jbi.2008.04.010. https://linkinghub.elsevier.
com/retrieve/pii/S1532046408000580.

[28] D.U. Board, DCMI Metadata Terms, 2020. http://dublincore.
org/specifications/dublin-core/dcmi-terms/2020-01-20/.

[29] Y. Gil, J. Cheney, P. Groth, O. Hartig, S. Miles, L. Moreau and
P. Silva, Provenance XG Final Report, 2010, Type: W3C. http:
//www.w3.org/2005/Incubator/prov/XGR-prov-20101214/.

[30] R. Pranckutė, Web of Science (WoS) and Scopus: The Titans of
Bibliographic Information in Today’s Academic World, Pub-
lications 9(1) (2021), 12. doi:10.3390/publications9010012.
https://www.mdpi.com/2304-6775/9/1/12.

[31] D.-H. Im, S.-W. Lee and H.-J. Kim, A Version Manage-
ment Framework for RDF Triple Stores, International Journal
of Software Engineering and Knowledge Engineering 22(01)
(2012), 85–106. doi:10.1142/S0218194012500040.

[32] T. Neumann and G. Weikum, x-RDF-3X: Fast Querying, High
Update Rates, and Consistency for RDF Databases, Proceed-
ings of the VLDB Endowment 3 (2010), 256–263.

[33] A. Cerdeira-Pena, A. Farina, J.D. Fernandez and
M.A. Martinez-Prieto, Self-Indexing RDF Archives,
in: 2016 Data Compression Conference (DCC),
IEEE, Snowbird, UT, USA, 2016, pp. 526–535.
ISBN 978-1-5090-1853-6. doi:10.1109/DCC.2016.40.
http://ieeexplore.ieee.org/document/7786197/.

[34] R. Taelman, M.V. Sande and R. Verborgh, OSTRICH: Ver-
sioned Random-Access Triple Store, in: Companion Proceed-
ings of the Web Conference 2018, 2018, pp. 127–130. https:
//core.ac.uk/download/pdf/157574975.pdf.

[35] T. Pellissier Tanon and F. Suchanek, Querying the Edit His-
tory of Wikidata, in: The Semantic Web: ESWC 2019 Satellite
Events, Vol. 11762, P. Hitzler, S. Kirrane, O. Hartig, V. de Boer,
M.-E. Vidal, M. Maleshkova, S. Schlobach, K. Hammar,
N. Lasierra, S. Stadtmüller, K. Hose and R. Verborgh, eds,
Springer International Publishing, Cham, 2019, pp. 161–166,
Series Title: Lecture Notes in Computer Science. ISBN 978-
3-030-32326-4 978-3-030-32327-1. doi:10.1007/978-3-030-
32327-1_32.

[36] N.F. Noy and M.A. Musen, Promptdiff: A Fixed-Point Algo-
rithm for Comparing Ontology Versions, in: Proc. of IAAI,
2002, pp. 744–750.

https://www.w3.org/DesignIssues/N3Logic
https://www.w3.org/DesignIssues/N3Logic
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826809000237
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S1570826811000771
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000719
http://arxiv.org/abs/1406.3399
http://dl.acm.org/citation.cfm?doid=2566486.2567973
http://dl.acm.org/citation.cfm?doid=2566486.2567973
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://linkinghub.elsevier.com/retrieve/pii/S0167739X10001275
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
https://linkinghub.elsevier.com/retrieve/pii/S0306437905000281
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://corescholar.libraries.wright.edu/knoesis/80
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://www.loc.gov/standards/premis/understanding-premis-rev2017.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1532046408000580
https://linkinghub.elsevier.com/retrieve/pii/S1532046408000580
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://dublincore.org/specifications/dublin-core/dcmi-terms/2020-01-20/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
http://www.w3.org/2005/Incubator/prov/XGR-prov-20101214/
https://www.mdpi.com/2304-6775/9/1/12
http://ieeexplore.ieee.org/document/7786197/
https://core.ac.uk/download/pdf/157574975.pdf
https://core.ac.uk/download/pdf/157574975.pdf

34 A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[37] M. Völkel, W. Winkler, Y. Sure, S. Kruk and M. Synak,
SemVersion: A Versioning System for RDF and Ontologies, in:
Proc. of ESWC, 2005.

[38] M.V. Sande, P. Colpaert, R. Verborgh, S. Coppens, E. Man-
nens and R.V. Walle, R&Wbase: Git for triples, in: Proceedings
of the 6th Workshop on Linked Data on the Web. 996. CEUR
Workshop Proceedings, 2013.

[39] S. Peroni and D. Shotton, OpenCitations, an infrastructure or-
ganization for open scholarship, Quantitative Science Studies
1(1) (2020), 428–444. doi:10.1162/qss_a_00023. https://direct.
mit.edu/qss/article/1/1/428-444/15580.

[40] S. Peroni, D. Shotton and F. Vitali, One Year of the OpenCita-
tions Corpus, in: The Semantic Web – ISWC 2017, Vol. 10588,
C. d’Amato, M. Fernandez, V. Tamma, F. Lecue, P. Cudré-
Mauroux, J. Sequeda, C. Lange and J. Heflin, eds, Springer In-
ternational Publishing, Cham, 2017, pp. 184–192, Series Title:
Lecture Notes in Computer Science. ISBN 978-3-319-68203-7
978-3-319-68204-4. doi:10.1007/978-3-319-68204-4_19.

[41] M. Daquino, S. Peroni and D. Shotton, The OpenCitations Data
Model (2020), 836876 Bytes, Artwork Size: 836876 Bytes
Publisher: figshare. doi:10.6084/M9.FIGSHARE.3443876.V7.
https://figshare.com/articles/online_resource/Metadata_for_
the_OpenCitations_Corpus/3443876/7.

[42] S. Peroni, D. Shotton and F. Vitali, A Document-inspired Way
for Tracking Changes of RDF Data, in: Detection, Representa-
tion and Management of Concept Drift in Linked Open Data,
L. Hollink, S. Darányi, A.M. Peñuela and E. Kontopoulos,
eds, CEUR Workshop Proceedings, Bologna, 2016, pp. 26–33.
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf.

[43] I. Heibi, S. Peroni and D. Shotton, Software review:
COCI, the OpenCitations Index of Crossref open DOI-to-
DOI citations, Scientometrics 121(2) (2019), 1213–1228.
doi:10.1007/s11192-019-03217-6.

[44] J.D. Fernández, A. Polleres and J. Umbrich, Towards Efficient
Archiving of Dynamic Linked, in: DIACRON@ESWC, Com-
puter Science, Portorož, Slovenia, 2015, pp. 34–49.

[45] L.F. Sikos and D. Philp, Provenance-Aware Knowledge Rep-
resentation: A Survey of Data Models and Contextualized
Knowledge Graphs, Data Science and Engineering 5(3)
(2020), 293–316. doi:10.1007/s41019-020-00118-0.

[46] W3C, Defining N-ary Relations on the Se-
mantic Web, 2006. http://www.w3.org/TR/2006/
NOTE-swbp-n-aryRelations-20060412/.

[47] P. Groth, A. Gibson and J. Velterop, The anatomy of a nanop-
ublication, Information Services & Use 30(1–2) (2010), 51–56.
doi:10.3233/ISU-2010-0613.

[48] T. Berners-Lee and D. Connolly, Delta: an ontology for the
distribution of differences between RDF graphs, 2004. https:
//www.w3.org/DesignIssues/lncs04/Diff.pdf.

[49] O. Udrea, D.R. Recupero and V.S. Subrahmanian, Anno-
tated RDF, ACM Transactions on Computational Logic 11(2)
(2010), 1–41. doi:10.1145/1656242.1656245.

[50] R. Keskisärkkä, E. Blomqvist, L. Lind and O. Hartig, RSP-
QL* : Enabling Statement-Level Annotations in RDF Streams,
in: Semantic Systems. The Power of AI and Knowledge Graphs,
Vol. 11702, M. Acosta, P. Cudré-Mauroux, M. Maleshkova,
T. Pellegrini, H. Sack and Y. Sure-Vetter, eds, Springer Inter-
national Publishing, Cham, 2019, pp. 140–155, Series Title:
Lecture Notes in Computer Science. ISBN 978-3-030-33219-8
978-3-030-33220-4. doi:10.1007/978-3-030-33220-4_11.

[51] T.P. Tanon, G. Weikum and F. Suchanek, YAGO 4: A Reason-
able Knowledge Base, in: The Semantic Web. ESWC 2020,
Springer, Cham, 2020, pp. 583–596.

[52] PROV-DM: The PROV Data Model, 2013. http://www.w3.org/
TR/2013/REC-prov-dm-20130430/.

[53] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer
and C. Bizer, DBpedia – A large-scale, multilingual knowledge
base extracted from Wikipedia, Semantic Web 6(2) (2015),
167–195. doi:10.3233/SW-140134.

[54] F. Erxleben, M. Günther, M. Krötzsch, J. Mendez and D. Vran-
dečić, Introducing Wikidata to the Linked Data Web, in: The
Semantic Web – ISWC 2014, Springer International Publishing,
2014, pp. 50–65.

[55] Wikidata:Database download, 2021. https://www.wikidata.
org/wiki/Wikidata:Database_download.

[56] RocksDB, 2021. https://rocksdb.org/.
[57] M. Daquino and S. Peroni, OCO, the OpenCitations Ontology,

2019. https://w3id.org/oc/ontology/2019-09-19.
[58] R. Falco, A. Gangemi, S. Peroni, D. Shotton and F. Vitali,

Modelling OWL Ontologies with Graffoo, in: The Seman-
tic Web: ESWC 2014 Satellite Events, Vol. 8798, V. Presutti,
E. Blomqvist, R. Troncy, H. Sack, I. Papadakis and A. Tordai,
eds, Springer International Publishing, Cham, 2014, pp. 320–
325, Series Title: Lecture Notes in Computer Science. ISBN
978-3-319-11954-0 978-3-319-11955-7. doi:10.1007/978-3-
319-11955-7_42.

[59] R. Watson, M. Cleary, D. Jackson and G.E. Hunt, Open ac-
cess and online publishing: a new frontier in nursing?: Edito-
rial, Journal of Advanced Nursing 68(9) (2012), 1905–1908.
doi:10.1111/j.1365-2648.2012.06023.x.

[60] A. Massari, time-agnostic-library, 2021.
https://archive.softwareheritage.org/swh:1:dir:
79c280e31529470d833324eb1b727502e9276b8c.

[61] K. Beck, Test-driven development: by example, The Addison-
Wesley signature series, Addison-Wesley, Boston, 2003. ISBN
978-0-321-14653-3.

[62] B. Bebee, Rebuild_Text_Index_Procedure, 2020.
https://github.com/blazegraph/database/wiki/Rebuild_Text_
Index_Procedure.

[63] G.A. Grimnes, J. Hees, G. H., N. Car, N. Arndt,
I. Herman and A. Sommer, RDFlib, 2021.
https://archive.softwareheritage.org/swh:1:snp:
e9bbe74dcd6d1aa67d21f3bf2a4722414f14315b.

[64] L. SYSTAP, The bigdata® RDF Database, 2013. https://
blazegraph.com/docs/bigdata_architecture_whitepaper.pdf.

[65] M. Wolf and C. Wicksteed, Date and Time Formats, 1997.
https://www.w3.org/TR/NOTE-datetime.

[66] G. Hendricks, D. Tkaczyk, J. Lin and P. Feeney, Cross-
ref: The sustainable source of community-owned scholarly
metadata, Quantitative Science Studies 1(1) (2020), 414–427.
doi:10.1162/qss_a_00022. https://direct.mit.edu/qss/article/1/
1/414-427/15577.

[67] A. Massari, Bibliographic dataset based on Scientometrics, in-
cluding provenance information compliant with the OpenCita-
tions Data Model, Zenodo, 2021, Version Number: 1.0.0 Type:
dataset. doi:10.5281/ZENODO.5549624. https://zenodo.org/
record/5549624.

[68] A. Massari, time_agnostic, 2021. https:
//archive.softwareheritage.org/swh:1:snp:
a4870cfd8555201cc8de64193cbb283758873660.

https://direct.mit.edu/qss/article/1/1/428-444/15580
https://direct.mit.edu/qss/article/1/1/428-444/15580
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
https://figshare.com/articles/online_resource/Metadata_for_the_OpenCitations_Corpus/3443876/7
http://ceur-ws.org/Vol-1799/Drift-a-LOD2016_paper_4.pdf
http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
http://www.w3.org/TR/2006/NOTE-swbp-n-aryRelations-20060412/
https://www.w3.org/DesignIssues/lncs04/Diff.pdf
https://www.w3.org/DesignIssues/lncs04/Diff.pdf
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
https://www.wikidata.org/wiki/Wikidata:Database_download
https://www.wikidata.org/wiki/Wikidata:Database_download
https://rocksdb.org/
https://w3id.org/oc/ontology/2019-09-19
https://archive.softwareheritage.org/swh:1:dir:79c280e31529470d833324eb1b727502e9276b8c
https://archive.softwareheritage.org/swh:1:dir:79c280e31529470d833324eb1b727502e9276b8c
https://github.com/blazegraph/database/wiki/Rebuild_Text_Index_Procedure
https://github.com/blazegraph/database/wiki/Rebuild_Text_Index_Procedure
https://archive.softwareheritage.org/swh:1:snp:e9bbe74dcd6d1aa67d21f3bf2a4722414f14315b
https://archive.softwareheritage.org/swh:1:snp:e9bbe74dcd6d1aa67d21f3bf2a4722414f14315b
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://blazegraph.com/docs/bigdata_architecture_whitepaper.pdf
https://www.w3.org/TR/NOTE-datetime
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://direct.mit.edu/qss/article/1/1/414-427/15577
https://zenodo.org/record/5549624
https://zenodo.org/record/5549624
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660
https://archive.softwareheritage.org/swh:1:snp:a4870cfd8555201cc8de64193cbb283758873660

A. Massari and S. Peroni / Performing live time-traversal queries on RDF datasets 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[69] A. Massari, time-agnostic-library: benchmark results on ex-
ecution times and RAM, Zenodo, 2021, Version Number:
1.0.0 Type: dataset. doi:10.5281/ZENODO.5549648. https://
zenodo.org/record/5549648.

[70] P.S. Foundation, timeit — Measure execution time of small
code snippets, 2021. https://docs.python.org/3/library/timeit.
html#timeit.Timer.repeat.

[71] J. Loden, D. Daeschler and G. Rodola, psutil,
2020. https://archive.softwareheritage.org/swh:1:snp:
8ffb1982e5fa5a72c9b494d330993efc0dff756c.

[72] A. Massari, time-agnostic-browser, 2021.
https://archive.softwareheritage.org/swh:1:dir:
337f641375cca034eda39c2380b4a7878382fc4c.

https://zenodo.org/record/5549648
https://zenodo.org/record/5549648
https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat
https://archive.softwareheritage.org/swh:1:snp:8ffb1982e5fa5a72c9b494d330993efc0dff756c
https://archive.softwareheritage.org/swh:1:snp:8ffb1982e5fa5a72c9b494d330993efc0dff756c
https://archive.softwareheritage.org/swh:1:dir:337f641375cca034eda39c2380b4a7878382fc4c
https://archive.softwareheritage.org/swh:1:dir:337f641375cca034eda39c2380b4a7878382fc4c

	Introduction
	Related works
	Annotation syntaxes for RDF provenance
	Knowledge Organisation Systems for RDF provenance
	Storing and querying dynamic linked open data

	Methodology
	Version and delta materialization
	Single and cross-version structured query
	Single and cross-delta structured query

	Time-Agnostic Library
	AgnosticEntity class
	VersionQuery class
	DeltaQuery class
	Cache system

	Evaluation
	Discussions
	Conclusion
	Acknowledgements
	References

