o J oy s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Semantic Web 1 (0) 1-5 1
10S Press

Helio: a framework for implementing the life
cycle of knowledge graphs

Andrea Cimmino *and Raudl Garcia-Castro ?

2 Ontology Engineering Group, Universidad Politécnica de Madrid, ES, Spain
E-mail: {cimmino, rgarcia}@fi.upm.es

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country

Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,
Country

Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. Building and publishing knowledge graphs (KG) as Linked Data, either in the Web or in private companies, has become
a relevant and crucial process in many domains. This process requires that users perform a wide number of tasks conforming
the life cycle of a KG and these tasks usually involve different unrelated research topics, such as RDF materialisation or link
discovery. There is already a large corpora of tools and methods designed to perform these tasks; however, the lack of one tool
that gathers them all leads practitioners to develop ad-hoc pipelines which are not generic, and thus, non re-usable. As a result,
building and publishing a KG is becoming a complex and resource consuming process. In this paper a generic framework called
Helio is presented. The framework aims at covering a set of requirements elicited from the KG life cycle and providing a tool
capable of performing the different tasks required to build and publish KGs. As a result, Helio reduces the effort required to
perform this process and prevents the development of ad-hoc pipelines. The Helio framework has been applied in a wide number

of contexts, from European projects to research work.

Keywords: Knowledge graph generation, Knowledge graph publication, Link Data

1. Introduction

The presence of knowledge graphs (KGs) published
openly on the Web, or privately as Linked Data has
growth in the last decade [1]. The reason of this growth
is due to the fact that many domains demand data to
be published homogeneously under a common repre-
sentation which, sometimes, requires translating exist-
ing heterogeneous data from a set of data sources [2].
To this end, the data of the KGs has to be built using
Semantic Web Technologies [3] like RDF and, then,
published following the Linked Data principles [4]. In
fact, building a KG is not a simple process since it may
involve many tasks that belong to different research
topics [5]; from the translation of data into RDF using
materialisers [6], to the generation of links among the
resources of different KGs by means of link discovery
tools [7].

There is a large number of tools that aim at perform-
ing one or more tasks, which are related to these re-
search topics, for building and publishing a KG [8].
However, these tools were designed with a narrow
scope that aimed at solving a reduced set of very
specific tasks; usually involved with a novel research
topic. As a result, many of these tools were developed
to have a standalone use and, thus, using and coor-
dinating different tools automatically is not possible
without developing custom ad-hoc code in most of the
cases [5]. Up to the authors’ knowledge there is no tool
that is able to cope and cover all the tasks conform-
ing a KG life cycle which are required for building and
publishing KGs [5].

As a consequence, building and publishing a KG
becomes a complex and resource consuming task that
is not at the hands of all practitioners. On the one
hand, practitioners must learn a wide spectrum of tools

1570-0844/0-1900/$35.00 © 0 — IOS Press and the authors. All rights reserved

=W N

©w o g o W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

mailto:\protect \protect \T1\textbraceleft cimmino, rgarcia\protect \protect \T1\textbraceright @fi.upm.es

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

2 Cimmino and Garcia-Castro /

from which some are research prototypes that are not
suitable for a production environment or they lack of
fundamental documentation hindering their usability.
On the other hand, the fact that these tools can not
be directly interconnected in order to work together
requires practitioners to develop ad-hoc pipe lines to
build and publish a KG [9-12]. Developing these ad-
hoc pipelines has a high cost in time, personal re-
sources, and requires large cycles of debugging and
maintenance, decreasing the productivity of a project.

In this paper, a framework known as Helio is pre-
sented. The goal of the framework is to provide a
tool that is able to perform all the tasks required for
building and publishing a KG and, in case new func-
tionalities are required, allows practitioners integrating
these without modifying the framework source code
by means of independent plugins. To ensure its goal
Helio has been developed on top of a list of require-
ments that support the KG life cycle [13]. These re-
quirements profile a system that is able to assist prac-
titioners during the whole life cycle of a KG and, also,
that publishes the KG according to the Linked Data
principles [4].

The Helio architecture has a modular design that, on
the one hand, allows Helio to use some of the exist-
ing tools to perform these tasks and, on the other hand,
allows practitioners to extend the framework in order
to cope with new scenarios. Helio fosters the develop-
ment of plugins for either using existing tools or im-
plementing new functionalities since they are highly
reusable. As a result, the use of plugins prevents de-
veloping ad-hoc pipelines, and allows other practition-
ers to cope with common scenarios without spending
additional effort.

The Helio framework has been used in several con-
texts: A) European research projects from different
domains, namely: VICINITY! (IoT in smart cities),
BIMERR? (buildings and construction), DELTA? (en-
ergy demand response), AURORAL* (IoT in smart
communities), and related research articles [14]; B)
Research works [15-19], which relayed on Helio to
generate and/or publish their KGs; and C) Bachelor
projects [20-23], in which Helio was extended or used
to publish their results as a KG. Additionally, Helio
has been presented in different tutorials [24, 25]. As a
result, although Helio lacks a formal experimental val-

Thttps://www.vicinity2020.eu/
2https://bimerr.eu/
3https://www.delta-h2020.eu/
“https://www.auroral.eu/

idation its use in all these scenarios presents an indica-
tor of its usability and usefulness.

The rest of this article is structured as follows: Sec-
tion 2 reports the history, motivation, and a list of re-
quirements on top of which Helio has been built; Sec-
tion 3 introduces an analysis of proposals from the lit-
erature; Section 4 presents the framework design and
its architecture; Section 5 provides a discussion about
the framework introduced and how it meets the re-
quirements elicited; Section 6 reports real-world cases
where Helio has been used and; finally, Section 7 re-
caps our findings and conclusions.

2. Requirements of a knowledge graph life cycle

Knowledge graphs have a well-defined and estab-
lished life cycle [13], which is depicted in Figure 1.
It consists of several steps, depicted as rounded boxes,
which have one or more associated tasks that should
be performed in each specific step, depicted as squared
boxes in Figure 1. These task are usually related to one
or more research problems, which are still active nowa-
days or they lack of a recommendation; fostering the
numerous existing tools that tackle the same problem.
As Figure 1 depicts, some of these task are also related
to the Linked Data principles. The different steps of
the life cycle are the following:

Publishing a L Publishing RDF under
SPARQL endpoint |} their URLs (REST API)

Providing HTML views
for humans

~ - Validating RDF
- Linking RDF
- Enriching RDF

Storing RDF

Producing
RDF

o Juin | o

Figure 1. KG life cycle [13] and related tasks.

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Cimmino and Garcia-Castro / 3

Knowledge graph creation: during this step the
knowledge graph is created by expressing its data as
RDF [26] and according to an ontology. Sometimes,
practitioners create the RDF data manually; however,
in some cases the RDF data is created using a materi-
aliser [5]. Materialisers produce an RDF file by fetch-
ing and translating the data from heterogeneous data
sources by means of translation mappings [6]. practi-
tioners rely on materialisers when the KG data must
provide an homogeneous view of the data belonging to
these heterogeneous data sources.

Knowledge graph hosting: this step aims at stor-
ing the RDF data in a suitable environment, which
will allow interacting with such data during the fol-
lowing steps of the KG life cycle. For instance, dur-
ing this step data could be stored in a triple store or
kept in memory depending on the user requirements.
The RDF data to be hosted is usually provided manu-
ally by practitioners or uploaded automatically by an
ad-hoc script; this is due to the fact that materialisers
often only output an RDF file. The fact that the mate-
rialisers do not store automatically the data hinders the
synchronisation of the hosted RDF data and the origi-
nal one, which may change over time without updating
the stored RDF one.

Knowledge graph curation: this step consists of
several tasks: enriching, linking, and validating the
RDF data. Enriching covers a large number of possible
tasks [27], from transforming RDF data in order to in-
crease its quality, e.g., removing white spaces or cap-
italising names, up to create new data on the fly, e.g.,
completing the RDF data of a KG with machine learn-
ing [28]. Linking aims at producing links between the
RDF resources by means of link rules [29]. Addition-
ally, these links may involve RDF resources from dif-
ferent KGs; creating these links is one of the Linked
Data principles [4]. Validating aims at ensuring that
the RDF data follows certain restrictions, e.g., using
the W3C recommended SHACL shapes [30]. As de-
picted by Figure 1 these tasks are executed over stored
RDF data and, although they are not mandatory, they
improve the RDF data published afterwards.

Knowledge graph deployment: this step consists
of publishing the RDF data of the KG for humans
and/or machines so they can consume its content. For
humans the RDF data is usually presented embedded
in an HTML document (lacking its formal semantics);
instead, for machines the RDF data is published at re-
source level by means of a URL in a REST API that
provides the RDF of such resource. A mixed solution
proposed by the W3C consists of using HTML+RDFa

documents [31], publishing HTML documents under-
standable by humans that contain RDF annotations
understandable for machines. Additionally, for query-
ing the RDF data a SPARQL endpoint is usually pro-
vided [32].

As depicted by Figure 1, the different steps of the
life cycle imply a set of related tasks which practition-
ers may perform using several of the different exist-
ing tools. Nevertheless, up to the authors’ knowledge
these proposals usually focus on some tasks or steps,
but they do not cover the whole KG life cycle [5].
To this end, a set of requirements have been elicited.
These requirements profile a system that potentially
covers the whole KG life cycle by implementing them.
Furthermore, a system that implements these require-
ments builds and publishes the KG data according to
the Linked Data principles, fostering the good prac-
tices promoted by the W3C. The requirements are the
following:

— (KG creation) RO1: The system allows practition-
ers to provide as input an RDF file, in all likeli-
hood created manually, for feeding the life cycle.

— (KG creation) R02: The system provides a materi-
alisation tool to translate the heterogeneous data,
i.e., non-RDF, from a set of heterogeneous data
sources into RDF.

— (KG creation) R03: The materialisation tool of
the system understands more than one mapping
language, reducing the chances for users of need-
ing to learn a new mapping language or provid-
ing bespoke features of such mapping language
missing in other [33].

— (KG Creation) R04: The materialisation tool of
the system relies on a mapping language that al-
lows expressing a set of functions and the tool
implements these functions. This allows practi-
tioners to use these functions to clean data before
translating it into RDF.

— (KG Creation) R05: The materialisation tool of
the system allows defining link rules and applying
such rules for linking resources that belong to the
RDF data of the KG.

— (KG Creation) R06: The system provides a mech-
anism to use other existing materialisation tools.
This allows practitioners to use a materialisation
tool known by them and therefore, not needing to
learn a new mapping language.

— (KG Creation) R07: The system provides reusable
extension mechanisms that allow to extend the

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

4 Cimmino and Garcia-Castro /

provided materialisation tool and other system
features in order to cope with new scenarios with-
out forcing practitioners to develop ad-hoc soft-
ware.

— (KG Hosting) R08: The system provides different
configurable options for storing the RDF data [5].
For instance, the system may be configured to
store in-memory the RDF data for a quick re-
trieval.

— (KG Hosting) R09: The system provides mecha-
nisms to synchronise the stored RDF data gener-
ated by one or more materialisation tools and the
original heterogeneous data.

— (KG Curation) R10: The system allows practi-
tioners to use existing tools that aim at enriching,
validating, or linking RDF data that has been pre-
viously stored by the system.

— (KG Curation) R11: The system provides at least
one technique for cleaning, enriching, validating,
or linking RDF data that has been previously
stored by the system.

— (KG Deployment) R12: The system provides a
REST API that publishes each resource in the
RDF data through its URI using either the HTTP
or HTTPs protocol.

— (KG Deployment) R13: The system provides a
SPARQL endpoint according to the W3C specifi-
cation [32]. As a result, the system allows practi-
tioners to query the RDF data of the KG.

— (KG Deployment) R14: The system provides
content-negotiation so practitioners can consume
the RDF data and/or the SPARQL results in dif-
ferent serialisations.

— (KG Deployment) R15: The system publishes
HTML views for assisting practitioners during
the data consumption.

— (KG Deployment) R16: The system provides
mechanisms to customise the HTML views, e.g.,
to allow practitioners to change the aesthetics of
the HTML views.

— (KG Deployment) R17: The system provides

mechanisms to customise and embed meta-annotations

in the published HTML views. As a result, the
system allows transforming the plain HTML into
HTML+RDFa [34].

Notice that the previous requirements not only de-
scribe a system that is able to assist practitioners dur-
ing the whole life cycle of a KG. In addition, a system
that implements all these requirements publishes the
RDF data of a KG according to the Linked Data prin-

ciples [4], namely: 1) Use URIs as names for things,
covered by RO1 and/or R02; 2) Use HTTP URISs so that
people can look up those names, covered by R12; 3)
When someone looks up a URI, provide useful infor-
mation, using the standards (RDF, SPARQL), covered
by R12 and R13; and 4) Include links to other URIs,
so that they can discover more things, covered by R10
and/or R11.

3. Related Work

There are a wide number of tools from the litera-
ture that have been designed to address specific tasks
or steps from the KG life cycle depicted by Figure 1.
However, up to the authors’ knowledge none is able to
cope with the whole KG life cycle; as also pointed out
by Simsek et al. [5]. In this section, the different tools
are analysed from the point of view of the requirements
elicited by section 2 and the step, or steps, of the KG
life cycle that they address.

Table 1 shows the different categories of these tools
from the literature. Additionally, Table 1 reports which
of the requirements are covered by all the tools from
the category (v'), or they do not cover (-), or are par-
tially covered by some of the tools (~). The categories
and their tools are following surveyed.

3.1. Knowledge graph creation

RDF materialisation is an approach widely used to
generate the RDF data of a KG from a set of heteroge-
neous sources that counts with a large number of ex-
isting tools [14, 35-39]. Although some of these may
differ on efficiency, or suitability when applied in cer-
tain contexts, in general they have the same workflow.
First, a practitioner manually writes a set of translation
mappings; then, these mappings are provided as input
for the materialiser; finally, the materialiser fetches and
translates the data producing the RDF data that is writ-
ten in a file. As a result, since these tools provide as
output an RDF file they only cover the KG creation
step from the life cycle, i.e., excluding any requirement
from RO8 and forth.

Although all the materialisers implement the re-
quirement RO2 not all of them implementing the other
KG creation requirements: only few materialisation
tools are able to understand more than one translation
mapping (R03); a large number of materialisers are
able to apply functions when translating heterogeneous
data into RDF, however they are namely meant for

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Cimmino and Garcia-Castro / 5

Categories of tools from the literature

KG life cycle Requirements ~ RDF materialisers OBDI/A RDF frameworks RDF triple stores ~ RDF publishers
RO1 ~ ~ - -
RO2 v ~ - -
RO3 ~ ~ - -
KC Creation RO4 ~ - - -
RO5 ~ - - -
RO6 - - - -
RO7 - - - -
KG Hosting RO8) ~))
R09 - - - -
KG Curation RIO) ~))
R11 - ~ - -
RI12 - ~ ~ -
R13 - ~ v ~
KG Deployment Ri4) ~ v ~
RI15 - - - ~
R16 - - - ~
R17 - - - -

Elicited requirements meet by existing tools types

cleaning data rather than linking RDF resources (R04
and R05); these tools are developed to translate hetero-
geneous data and, thus, some of them are not able to
take data already in RDF as input (RO1). Finally, up
to the authors’ knowledge, none of these tools are de-
signed to work in combination with another material-
isation tool (R06), nor provide extension mechanisms
to cope with new scenarios (R07), e.g., a new format
from which to translate data into RDF.

Ontology Based Data Integration (OBDI) and Onto-
logy-based Data Access (OBDA) tools are used when
there is a non-RDF database with large amounts of
data for which materialisation proposals fall short [40].
These tools focus on providing a SPARQL endpoint
and translate the SPARQL queries received into one
or more languages. OBDA are tools that only trans-
late from SPARQL to just one language [41-46], in-
stead OBDI tools that are able to translate a SPARQL
query into other multiple languages at once [47-49].
Since these tools are not actually building a KG they
do not cover any requirement from the KG creation
step from the life cycle. Instead, these tools cover some
from the KG deployment, especially those related to
SPARQL, since they allow consuming the heteroge-
neous data form the databases by means of SPARQL
queries.

OBDI and OBDA tools allow answering SPARQL
queries over data from heterogeneous databases as
if a KG with such RDF data would exist. However,

some of these tools expect the queries to be pro-
vided programmatically rather than through a pub-
lished SPARQL endpoint (R13), and some of these
tools only support SELECT queries, or SELECT with-
out special statements like FILTER; which may be a
serious limitation when querying the data of a KG. Fi-
nally, since these tools perform a translation of queries,
although SPARQL supports functions that could be
used for cleaning or linking, not all the tools are able to
cope with such functions during query translation (R03
and R04). Furthermore, since these tools only translate
queries instead of building and publishing RDF data,
they do not cover the rest of the requirements from R0O8
and further with the exception of R13 for some tools.

3.2. Knowledge graph curation

KG curation involves a large number of tools from
the literature that can be divided into three cate-
gories: RDF enriching tools [50], RDF link discovery
tools [7], and RDF validation tools [51].

Notice that the KG curation is a step that occurs
once the RDF data has been stored after the KG Host-
ing. It is worthwhile to mention that the tasks involved
in KG curation are not blocking for those happening in
KG deployment, entailing that they are fully optional.
In fact, any of these tools could be used by a system
covering a KG life cycle as stated by R10 and R11;
however, by themselves they do not cover any require-

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

6 Cimmino and Garcia-Castro /

ment from the elicited ones. Due to this fact the tools
analysed in this subsection are not included in Table 1.

RDF enriching tools have a wide number of goals,
for instance, some tools aim at completing with new
information existing RDF data [27] whereas others
aim at summarising existing RDF data [52].

RDF link discovery aims at producing relationships
among local RDF resources and other RDF resources
allocated in different KGs [7]. On the one hand, there
is a wide number of tools that aim at producing link
rules [53-61], i.e., restrictions under which two RDF
resources are linked. On the other hand, other tools fo-
cus on applying efficiently those rules and producing
the links among resources [62—64].

RDF validators are tools that specify whether data
expressed in RDF conforms with a set of restric-
tions. There is a specification for expressing these re-
strictions that is a W3C standard, i.e., SHACL [30],
and other non-standard specifications [65]. These tools
usually take as input an excerpt of RDF data and a set
of restrictions, and produce a validation report.

3.3. Knowledge graph hosting and deployment

RDF frameworks aim at providing practitioners sev-
eral functionalities, e.g., pragmatically chose different
environments where to host their RDF data, that be-
long to different steps of the KG life cycle [66-70].
Some tools like Star Dog® implement a wider number
of requirements related to different steps of the KG life
cycle (RO1, R02, RO3, or R10 among others). Some
others, like Jena [66], are also suitable for validation
(R10). Others, like RDF4J® focus on providing mech-
anisms to practitioners to choose from different triple
stores where to allocate their RDF data (R08).

Despite the RDF frameworks, in most of the cases
the KGs are deployed by storing their RDF data
into triple stores [71-75]. These stores host the RDF
data and also provide a SPARQL endpoint (R13).
Some triple stores also publish each resource under a
URL (R12) and others implement content-negotiation
for the SPARQL endpoint and the RDF resources
(R14), including HTML documents. Nevertheless,
triple stores are not suitable for any other task within
the KG life cycle.

RDF publishers aim at providing human interfaces
(HTML) for those SPARQL endpoints and resources
published exclusively with machine interfaces. Some

Shttps://www.stardog.com/
Shttps://rdf4j.org/

tools, like YASGUI [76], publish a human SPARQL
interface for a given SPARQL endpoint (R13 and
R14). Others, like Pubby [77], also publish human in-
terfaces for the resources provided by the SPARQL
endpoint (R15). Some others, like Elda’, allow to cus-
tomise the aesthetics of HTML views meant for hu-
mans relying on templates (R16). Nevertheless, up to
the authors’ knowledge, none of these tools allows the
customisation of HTML views for transforming them
into HTML+RDFa [34] (R17).

4. The Helio Framework

Helio is a framework built to meet the requirements
previously elicited and explained. The goal of Helio is
to build a KG from heterogeneous data sources (which
may include RDF sources) and publishing the KG data
following the Linked Data principles. In order to meet
all the requirements the Helio framework is divided
into four logic modules, each of which aims at imple-
menting a set of the elicited requirements. These mod-
ules are implemented as a Java artefacts although they
could be implemented, or viewed, as micro-services
alternatively. The modules and the requirements that
they cover, depicted in Figure 2, are the following:

Vo] E/ @ KG Publishing
KG Curation

R12-R17
R10 and R11 Module
Curator Host KG Hosting
Module Wiy RO8 and RO9
RDF KG Creati
reation
Generator ROT — RO7

Module

Figure 2. Helio framework

RDF Generator Module®: this module focuses on
generating the RDF data of a KG from a set of het-
erogeneous data sources, including RDF data sources.
The output of this module is one or more fragments of
RDF data that are passed to the Hosting Module. This
module aims at covering all the requirements related to

7http://epimorphics.github.io/elda/index.html
8https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://www.stardog.com/
https://rdf4j.org/

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Cimmino and Garcia-Castro / 7

the KG creation, namely RO1 to RO7. Subsection 4.1
provides a detailed description of this module.

Hosting Module’: this module focuses on how the
RDF data of a KG is stored and provides an SPARQL
interface for interacting with it. It allows the RDF Gen-
erator Module to store data, the Curation Module to
update existing data, and the Publisher Module to read
stored data. This module aims at covering all the re-
quirements related to the KG Hosting, namely R0O8 and
R0O9. Subsection 4.2 provides a detailed description of
this module.

Curation Module: this module focuses on the dif-
ferent tasks related to the curation of RDF data for en-
riching the KG. This module interacts with the Hosting
Module through the SPARQL endpoint for reading the
current data, applying a curation technique (e.g., data
linking), and storing the generated RDF data again in
the Hosting Module. This module aims at covering all
the requirements related to the KG Curation, namely
R10 and R11. Subsection 4.3 provides a detailed de-
scription of this module.

Publisher Module'’: this module focuses on the
publication of the RDF data of a KG. This module pub-
lishes different views of the data. On the one hand,
it implements a REST API to access the RDF re-
sources whose format may be chosen relying on con-
tent negotiation. On the other hand, the module also
publishes HTML views that can be customised into
HTML+RDFa which can be retrieved using content
negotiation. Additionally, a standard SPARQL [32]
endpoint and the whole dataset are also published for
either querying the data or downloading a dump of the
dataset (also available in different formats). This mod-
ule aims at covering all the requirements related to the
KG Publishing, namely from R12 to R17. Section 4.4
provides a detailed description of this module.

In the following sub-sections these modules are ex-
plained in detail, providing an insight view of their im-
plementation. Then, in section 5 it is explained how
the framework allows publishing KGs according to the
Linked Data principles and how it covers the elicited
requirements.

4.1. RDF Generator Module

The RDF Generator Module is in charge of gener-
ating the RDF data of a KG and providing this data to

9https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users#repositories
10https://github.com/oeg-upm/helio/wiki/Helio-Publisher

the Hosting Module. In order to fulfil its goal this mod-
ule is built upon two generic components that must be
instantiated in an implementation, i.e., data providers
and data handlers, and a component to translate data
into RDF if required, i.e., the data translator. The de-
tails of the translation process are specified in a Helio
bespoke mapping language, the conceptual mapping,
that must be provided to the RDF Generator Module
as input. Additionally, there is a last component named
resources orchestrator that organises the whole trans-
lation process and also pushes the generated RDF data
into the Hosting Module.

The data providers are components in charge of re-
trieving the data from one data source. These compo-
nents are agnostic to the format of the data; its only
goal is to deal with the protocols for retrieving the
data. After a data provider obtains the data, such data
is passed to the data handlers. The current Helio imple-
mentation counts with several data provider instantia-
tions!!. Example 1: the URLProvider is able to retrieve
data from a URL based on several protocols such as
http, https, ftp, or file. Nevertheless, the URLProvider
is agnostic from the format of the data retrieved.

The data handlers are components that focus on
fetching fragments of information from the data pro-
vided by a data provider. These components are highly
related to the format of the data since they need to it-
erate or access specific positions of the data in order
to fetch the fragments. Notice that they are totally ag-
nostic from the protocols involved for retrieved such
data. The current Helio implementation counts with
several data handlers instantiations'?. Example 2: as-
suming that the data retrieved in the Example 1 was
a JSON file, the JsonHandler should be used for it-
erating over the file and retrieving different values by
means of JSONPath expressions.

The RDF translator takes as input a conceptual map-
ping that specifies what data providers shall be used,
and to which data handlers they have to pass the re-
trieved data. In addition these mappings hold a set of
translation rules that are related to the data handlers.
The rules usually contain some filtering expression,
and optionally cleaning functions, that require fetch-
ing fragments of information from the data retrieved
by the data providers by using their related data han-
dlers to process the filtering expressions. Additionally,

https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users#data-providers

2https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users#data-handlers

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

8 Cimmino and Garcia-Castro /

ConceptualMapping

\l,+ +

\l,+

I (

<<references>>

Datasource o ResourceRule <<reference>> LinkingRule
+id : String [1] ‘ +id : String Cmmmmmm e -0+ sourceld : String [1]
+ refresh : int [0..1] + subject : String [mmmmmmmmee - + targetld: String [1]
; <<reference>>

-0 + datasources : String [1..N]

+ expression : String [1]

L 2

*

Provider

+ property : String [1]

+ inverseProperty : String [0..1]

—1 + type : String

1 PropertyRule

+input : Json [0..1]

Handler

— + type : String [1]

+ predicateTemplate : String [1]
+ objectPrediate : String [1]
1 + isLiteral : boolean [1]

+ datatype : String [0..1]

+ input : Json [0..1]

Figure 3. Helio Conceptual Mappings model

the conceptual mappings may include some linkage
rules to be applied after the translation. Finally, once
the RDF translator has been initialised with a concep-
tual mapping, this component initialises and connects
the different data providers with their respective data
providers, and then, remains on stand by. In case that
the RDF translator would be provided with valid RDF
data, i.e., no translation is required since the data han-
dler is meant for RDF, this component will automati-
cally provide the RDF data as result.

The resources orchestrator is the component that
triggers the RDF translator when required on-demand
by any other module. In that moment, the resources
orchestrator invokes the RDF translator that will gen-
erate the RDF data. Then, the resources orchestrator
pushes this data into the Hosting Module. Alterna-
tively, if specified in the conceptual mappings, the re-
sources orchestrator can trigger the RDF translator pe-
riodically instead that on-demand.

4.1.1. Conceptual Mappings

The Conceptual Mappings'® specify how the trans-
lation of data is performed. As depicted by Figure 3,
a ConceptualMapping is conformed by three main el-

3https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users#helio-mappings

ements: one or more Datasource, one or more Re-
sourceRule, and one or more Linking Rule.

A Datasouce describes a source of data, which has
a unique identifier (id) and a refreshing time (refresh-
Time) that specifies whether the generation of data is
performed on-demand (if null) or periodically. In ad-
dition, a Datasource counts with two other elements: a
data Handler and a data Provider.

A Provider and a Handler have a type that refers
to a specific instantiation, for instance the name of a
class such as JsonHandler or URLprovider, and an in-
put that must be a JSON document for configuration,
for instance for the URLprovider the URL from where
the data must be fetched.

A ResourceRule describes how the data from one or
more sources is translated into RDF. It has a uniquely
identifier (id), a set of Datasource identifiers (data-
sources), and a subject that specifies how the subject
of a set of triples is generated. Additionally, a Re-
sourceRule is related to zero or more PropertyRule;
each of which specifies how to generate a predicate and
an object related to the former subject (predicateTem-
plate and objectPrediacte, respectively), and also, if
the object is a literal (isLiteral) or the datatype of such
literal (datatype).

A LinkingRule describes how to link resources (the
subjects) from the RDF generated with the rules of two
ResourceRule. The LinkingRule has two ResourceRule

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

[R S

Cimmino and Garcia-Castro / 9

cm : ConceptualMapping

ds : Datasource

id = "api_datasource"

refresh = 3600

rr1: ResourceRule

id = "api_kg_data"

L subject = "http://kgdata.com/resource/sensor/{$.sensorld}"

datasources = ["api_datasource"]

pr2: PropertyRule
predicateTemplate = "https://w3id.org/saref#hasValue"
objectPrediate = "$.value"
isLiteral = true

datatype = "http://www.w3.0rg/2001/XMLSchemaf#float"

prd4: PropertyRule
predicateTemplate = "https://w3id.org/saref#fisMeasuredin"
objectPrediate = "https://w3id.org/saref#llluminanceUnit"

isLiteral = false

——— type = "JsonHandler"

input = "{ ‘iterator' : '$' }"

ha1: Handler pr1: Provider
— type = "URLProvider"

input = "{ 'url' : 'http://sampledomain.com/api' }"

pr1: PropertyRule
predicateTemplate = "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type"
—7— objectPrediate = "https://w3id.org/saref#Measurement”

isLiteral = false

pr3: PropertyRule
predicateTemplate = "https://w3id.org/saref#fhasTimestamp"
—— objectPrediate = "$.tmp"
isLiteral = true

datatype = "http://www.w3.0rg/2001/XMLSchema#dateTime"

pr5: PropertyRule
predicateTemplate = "https://w3id.org/saref#relatesToProperty"

—— objectPrediate = "https://w3id.org/saref#Light"

isLiteral = false

Figure 4. Example of Conceptual Mappings for a REST API

identifiers, one related to the subject of the link (sour-
celd) and one related to the object of the link (rar-
getld). Also, the LinkingRule has an expression that is a
link rule [60], an RDF predicate to relate both subjects
(property), and a predicate that will be generated in in-
verse order inverseProperty (linking the target subject

with the source subject).

Figure 4 depicts a simple Conceptual Mapping in-
stantiation specifying how to integrate data from a

JSON serialisation (as shown in Appendix A), or trans-
lating an equivalent mapping from RML (as shown in
Appendix B), or from a WoT-Mapping'* (as shown in
Appendix C).

The RDF Generator Module has several internal
translators in order to understand different mapping
languages, like RML", the WoT-Mappings, or the
JSON serialisation'® of the model depicted by Fig-
ure 4.

REST API that publishes JSON data about sensors that

measure luminance, a sample payload is the following:

"sensorId" "ooi",
"value " " 3 . 2 n 0
"tmp" "2005-10-30T10:45:002"

Notice that the Conceptual Mappings are data struc-

4.1.2. Extending the RDF Generator Module

As it has been explained, the RDF Generator Mod-
ule is capable of generating RDF from heterogeneous
data sources, cleaning the data and also linking the
RDF resources generated. Although it counts with sev-
eral data providers and handlers for achieving this task,
new scenarios may introduce protocols or formats cur-
rently not supported by the module.

tures that the RDF Generator component handle inter-
nally. This entails that input provided to this compo-
nent may have different serialisations that are trans-
lated into this data structure internally. For instance,
the Conceptual Mapping depicted in Figure 4 can be
the result of translating an equivalent mapping from a

4http://iot.linkeddata.es/def/wot-mappings/index-en.html
Shttps://github.com/oeg-upm/helio/wiki/Streamlined-use-
cases#materialising-rdf-from-csv—xml-and-json-files-using-rml

16https://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-

Users#helio-mappings

=W N

w J o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 Cimmino and Garcia-Castro /

For this reason, the RDF Generator Module counts
with a dynamic system for loading plugins!”. This al-
lows users to develop new data providers or handlers
without modifying the code of Helio, and load this ex-
tensions dynamically.

As an example, in the repository of plugins'® it can
be found a data handler that allows Helio to fetch
data from an Ethereum blockchain!®. A new user that
would like to use this plugin should only download
the jar, configure Helio to use it*’, and define a correct
mapping?!.

Notice that the RDF translator component is ca-
pable of dealing with data that is already expressed
in RDF. Therefore, a new data provider that relies
on existing materialisation techniques could be imple-
mented. This provider would receive as input the map-
pings understandable for that technique, and the tech-
nique would be invoked as a regular data provider. It is
worth to mention that, similarly to materialisers, OBDI
or OBDA techniques could be also included as data
providers.

As a result, thanks to the plugin system, the RDF
Generator Module is capable of reusing code and pre-
vents the generation of non-reusable ad-hoc pipelines.
Additionally, although it generates RDF from hetero-
geneous sources it could be used with plugins that rely
on third-party techniques for the RDF generation.

4.2. Hosting Module

This module publishes a SPARQL endpoint for the
other modules to store, read, or update RDF data. For
this goal, the current Helio implementation relies on
the SAIL Configurations that enable a user to specify
where to store RDF data. For instance, the following
configuration stores the data in an existing triple store.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-
schema#>.

@prefix rep: <http://www.openrdf.org/config/
repository#>.

Thttps://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
developers#helio-plugins

8https://github.com/oeg-upm/helio-plugins

https://github.com/oeg-upm/helio-
plugins/tree/master/providers/ethereum-provider

2Ohttps://github.com/oeg-upm/helio/wiki/Helio-Materialiser-for-
Users#advanced-configuration

21 https://github.com/oeg-upm/helio-
plugins/tree/master/providers/ethereum-
provider#ethereumconnector-example-mapping

3

NN

(o]

10
11
12
13

14
15

16
17

18
19

@prefix sparqgl: <http://www.openrdf.org/
config/repository/sparql#>.

[1] a rep:Repository ;
rep:repositoryID "example"
rdfs:label "SPARQL endpoint at http://
example.org/"
rep:repositoryImpl [
rep:repositoryType "openrdf:
SPARQLRepository"
sparqgl:query—-endpoint <http://example.
org/sparql> ;
sparqgl :update—-endpoint <http://example.
org/sparqgl/update> ;
I

Instead, the configuration below specifies that the
triples must be stored in the file system.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-
schema#>.

@prefix rep: <http://www.openrdf.org/config/
repository#>.

@prefix sr: <http://www.openrdf.org/config/
repository/sail#>.

@prefix sail: <http://www.openrdf.org/config/

sail#>.
@prefix ms: <http://www.openrdf.org/config/
sail/memory#>.

@prefix sb: <http://www.openrdf.org/config/
sail/base#>.

[l a rep:Repository ;
rep:repositoryID "example"
rdfs:label "Example Memory store"
rep:repositoryImpl [
rep:repositoryType "openrdf:
SailRepository"
sr:sailImpl [
sail:sailType "openrdf:MemoryStore"
sail:iterationCacheSyncThreshold "
10000";
ms:persist true;

The Hosting Module is configured with one of these
SAIL Configurations, and then, publishes a SPARQL
endpoint for the rest of the modules to be used. No-
tice that this flexibility allows users to adapt to cer-
tain scenarios where the computational resources are
limited (e.g., deploying Helio in a Raspberry Pi board)
and thus, choosing a suitable environment becomes
paramount.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Cimmino and Garcia-Castro / 11

4.3. Curation Module

The Curation Module aims at performing different
curation tasks, for instance linking resources or com-
pleting RDF triples. Therefore, this module can have
one or more implementations depending on the task at
hand.

The current Helio framework allows for any Cura-
tion Module implementation to interact with the rest of
the framework by relying on a standard SPARQL in-
terface. These implementations must access the gener-
ated data by means of the Hosting Module who pub-
lishes the SPARQL endpoint, perform the desired cu-
ration task, and then store the output by using the Host-
ing Module though the SPARQL endpoint. As a result,
the RDF of the KG published by the Publisher Module
will include these modifications.

Notice that this mechanism allows any user to de-
fine a service to perform a specific curation task; its
only requirement is to interact with the Hosting Mod-
ule through a SPARQL 1.1 interface. As a result, this
service could be re-used by any third-party entity that
will have to deal with a similar, or the same, curation
challenge.

4.4. Publisher Module

The Publisher Module is in charge of making the
RDF data from the Hosting Module available through
the HTTP protocol, i.e., it publishes a REST API for
consuming the data. The current implementation of the
Publisher Module is a Spring Boot Java service.

The data from the Hosting Module is published
by this module at three levels: RDF resource level,
when the URL of a specific existing RDF resource
is requested the Publisher Module outputs its triples;
SPARQL level, the Publisher Module enables a stan-
dard SPARQL 1.1 endpoint for querying all data stored
by the Hosting Module; Dataset level, the Publisher
Module provides a dump containing all the triples that
conform the dataset stored in the Hosting Module.

The Publisher Module implements content negotia-
tion by means of HTTP headers that enable consuming
any of the data published in different formats. For in-
stance, the module will provide a client with an HTML
view if a request with the text/html is performed; in-
stead, if the same request uses fext/turtle the same
data will be output in raw RDF turtle. Figure 5 from
Annex D shows the standard HTML views that the
Publisher Module provides for its SPARQL endpoint
(implemented with YASGUI [76]) (shown by Figure

5a), any RDF resource (shown by Figure 5b), and the
dataset (shown by Figure 5c).

Besides the standard views for RDF resources
(shown by Figure 5b), the Publisher Module imple-
ments a mechanism to customise the HTML views of
the resources, as depicted by Figure 5d from Annex D.
It allows to associate the URLs of these Resources to
a specific HTML file in which the information is dy-
namically injected. As a result, a user can customise
the HTML views of the resources. Furthermore, these
views can also include RDFa annotations.

Finally, the Publisher Module allows defining dy-
namic views that are HTML documents in which the
data injected is the result of a SPARQL query. In other
words, a user can choose a subset of data from the
Hosting Module by means of a SPARQL query and
associate to such view a URL that does not exist on
the dataset. Nevertheless, if a client requests such URL
to the Publisher Module the module will automatically
fetch the data and inject the result into a customised
HTML view previously provided. A sample of this
kind of usage is available at https://helio.vicinity.iot.
linkeddata.es/tests/vicinity-wot; furthermore the view
of this example is HTML+RDFa.

5. Discussion

This section aims at providing a discussion divided
into two subsections. The former explains how the
framework provides the means for publishing a KG
following the Linked Data principles. The latter ex-
plains how the framework meets the requirements
elicited in Section 2.

5.1. Enabling Linked Data principles

The Linked Data principles establish good prac-
tices that must be followed when publishing a KG [4].
These principles are namely:

— P1: Use URIs to identify things.

— P2: Use HTTP URIs so that people can look up
those names.

— P3: When someone looks up a URI, provide use-
ful information, using the standards (RDF, RDFS,
SPARQL).

— P4: Include links to other URISs, so that they can
discover more things.

The Helio framework enables P1 by allowing users
to provide valid RDF data (that must identify things

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://helio.vicinity.iot.linkeddata.es/tests/vicinity-wot
https://helio.vicinity.iot.linkeddata.es/tests/vicinity-wot

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

12 Cimmino and Garcia-Castro /

with URIs), or providing mechanisms to translate het-
erogeneous data into RDF.

P2 and P3 are enabled due to the fact that the
framework publishes over HTTP all the RDF re-
sources identified by URIs; in addition, when these
URIs are looked up they provide the information of
those resources by means of standards (RDF, HTML,
HTML+RDFa, SPARQL).

Finally, the framework allows generating links am-
ong the RDF resources of the same dataset thanks to
the linking rules supported by the Generator Module.
Nevertheless, other linking techniques can also be used
as a Curation Module implementation. As a result, the
framework enables the P4 principle.

Notice that none of the tools analysed in the litera-
ture explained in Section 3 allowed users to fully fol-
low the Linked Data principles. In order to follow them
a user should rely on several of the analysed tools.

5.2. Requirements met

The requirements elicited in section 2 are grouped
by the KG step. Similarly, the modules of Helio are
splitted into the same steps, easing the coverage anal-
ysis of these requirements.

The Generator Module meets all the requirements
related to KG Creation, i.e., R1-R07. This module pro-
duces RDF data by either translating a set of hetero-
geneous sources (R02) or by allowing users to provide
data already in RDF (R01). Furthermore, the transla-
tion of the data can be specified using different map-
ping languages (R03) as shown in Annexes A, B, or C.
In the particular case of using the native language of
the framework, the conceptual mappings allow defin-
ing cleaning functions (R04) or linking rules (RO0S5).
Finally, the Generator Module implements a plugin-
based system that prevents users to develop ad-hoc
code that is not reusable (R07). Relying on this mech-
anism existing materialisation tools can be used as
a DataProvider to translate heterogeneous data into
RDF instead of using the Helio native translation com-
ponent (R06).

The Hosting Module allows by means of an RDF
SAIL configuration to choose different environments
to store the data; from an existing triple store to disk-
based persistence (R08). The data stored in these envi-
ronments is provided by the Generator Module (R09),
which can be configured using the conceptual map-
pings for pushing the data synchronously on-demand
or asynchronously periodically each quantum of time.

The Curation Module allows, thanks to the architec-
ture of the framework, to plug any existing tool based
on SPARQL in order to clean, enrich, validate, or link
(R10). Nevertheless, the Generator Module also al-
lows to define cleaning functions and link rules for re-
sources in the dataset (R11).

Finally, the Publisher Module meets all the require-
ments related to the KG Deployment, i.e., R12-R17.
The publisher provides a REST API for accessing the
RDF resources (R12), perform queries using a stan-
dard SPARQL endpoint (R13), and download the KG
dump. Furthermore, relaying on HTTP content nego-
tiation the RDF resources, or the dump, are provided
in different formats (R14). For HTML MIME types
the Publisher Module already provides a set of de-
fault views (R15). Nevertheless, it also allows defin-
ing custom HTML views (R16) that may include meta-
annotations transforming HTML into HTML+RDFa
(R17).

As a final remark, notice that none of the tools anal-
ysed in Section 3 was able to meet all the requirements
elicited in Section 2. Up to the authors’ knowledge, the
Helio framework is the first tool to meet all these re-
quirements allowing the users to cover the whole life
cycle of a KG.

6. Helio framework adoption

The Helio framework lacks of a formal experimen-
tation, nevertheless it has been widely used in differ-
ent contexts. The wide adoption of the framework is an
indicator of its usability and usefulness.

VICINITY?: in the European project VICINITY
Helio was used to implement the Gateway API Query
Distributed component. The goal of this component
was to answer SPARQL queries using the data from
a set of REST endpoints publishing JSON data about
sensors; which is highly dynamic. Helio was ex-
tended in this project in order to understand the WoT-
Mappings developed for this project [18], which on-
tology is publicly available?}. In the context of this
project this component was the heart of the semantic
interoperability approach responsible to allow compo-
nents to transparently exchange and understand data.
In this context, Helio was extended with the WoT-
Mappings translator.

22https://www.vicinity2020.eu/vicinity/
2http://iot.linkeddata.es/def/wot-mappings

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

O O d o U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N PR O VW Do U W N R O LV ®Jd o W NP O

Cimmino and Garcia-Castro / 13

As result of this project, a standalone proposal
called eWoT that enables semantic interoperability for
ecosystems of sensors was released [14]. This proposal
relies on Helio to perform the translation on the fly of
the data required to answer an issued query.

DELTA?*: in the European project DELTA Helio
was used to implement the whole semantic interoper-
ability architecture [19]. In this project, Helio was part
of the Common Information Model (CIM)? software
that enables components to exchange data in differ-
ent formats. Then the CIM offered the services to ex-
change data (by translating the heterogeneous data on
the fly into RDF expressed according to the DELTA
ontology [78]), validate, and publish such data.

Additionally, in this project Helio was used to pub-
lish JSON data stored in an Hyperledge Blockchain as
RDEF, allowing users to easily consume such data. In
this context Helio was extended for including custom
templates for publishing the data and also enable a val-
idation mechanism to ensure data quality.

AURORAL? in the ongoing European project AU-
RORAL, Helio is going to be used for translating the
data published by a large number of data sources, such
as IoT devices and services, into RDF and for com-
bining this output with Thing Descriptions from the
Web of Things (WoT) standard to enhance the current
WoT discovery specification [79] by allowing not only
to discover resources using static data (provided in the
Thing Descriptions) but also taking dynamic data into
account (coming from the data sources).

COGITO?: in the ongoing European project COG-
ITO, Helio is going to be used to generate and pub-
lish KGs for Digital Twins from heterogeneous data
sources to build their virtual model.

Astrea [17]: this project aims at automatically gen-
erating SHACL shapes automatically from a set of in-
put ontologies. Helio is used to integrate and publish
data from different sources, which conforms a Knowl-
edge Graph that is the pillar component for the au-
tomatic generation of the shapes. The Helio endpoint
with the integrated data is public available®®.

Themis [16]: this project deals with ontology test-
ing; it generates conformance reports for an ontology
taking as input a set of test cases provided by a user.
In this case Helio was used to publish the conformance

2https://www.delta-h2020.eu/
2Shttps://github.com/oeg-upm/DeltaCimApp
26https://www.auroral.eu
2Thttps://cogito-project.eu/
28https://astrea.helio.linkeddata.es/

reports with custom HTML templates that have em-
bedded RDF, i.e., HTML+RDFa. The endpoints pub-
lished with Helio are accessible from the main page of
Themis®.

Semantic Blockchain: Helio has set the pillars to
develop a research line that aims at combining seman-
tic web technologies such as SPARQL, RDF, or on-
tologies with blockchain. This line currently counts
with two papers [15, 80] that focus on studying the
feasibility of storing RDF directly in the blockchain
or storing JSON and using Helio to publish the data
(allowing resource and query access). In this context,
two plugins have been developed for Helio that are the
Ethereum and Hyperledge connectors.

This research line was originated from a master the-
sis [20] in which the feasibility of using Helio to pub-
lish data stored in a blockchains regardless its im-
plementation (e.g., Bitcoin, Ethereum, or Hyperledge)
was studied and analysed.

Bachelor works: Helio has been used in two bach-
elor works developed at the Universidad Politécnica
de Madrid. The former work aimed at implementing
a smart office in which several sensors had to gather
data and a control service to ensure that the work envi-
ronment fulfilled a set of health KPIs proposed by the
European Commission [21]. Helio was deployed in a
Raspberry Pi board and its goal was to fetch the data
coming from a set of sensors, which were pushing their
data into an MQTT broker. For this purpose an MQTT
connector for Helio was developed.

The latter bachelor work aimed at studying fac-
tors that were related with the rabies virus propaga-
tion [22]. For this purpose Helio integrated a file with
data endowed by the student and several sources of in-
formation, namely: the PanTHERIA database®, some
data from the Encyclopedia of Life’!, and Wikidata.

NLP: in the context of the Natural Language Pro-
cessor, Helio is been currently used to assist Name
Entity Recognition (NER) tasks. For this purpose the
Valkyr-IE plugin has been developed, which allows to
extract entities from a set of given texts using the tool
Valkyr-1E32,

Lectures: currently Helio is being used to support
different courses related to semantic web and knowl-
edge graphs imparted at the Universidad Politécnica de
Madrid.

29http://themis.linkeddata.es/catalogue. html
3Onttps://ecologicaldata.org/wiki/pantheria
31 https://eol.org/

3 https://github.com/oeg-upm/valkyr-ie-gate

O O d oy U W NP

[T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO

https://github.com/oeg-upm/DeltaCimApp
https://www.auroral.eu
https://astrea.helio.linkeddata.es/
http://themis.linkeddata.es/catalogue.html

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

14 Cimmino and Garcia-Castro /

7. Conclusions

In this article the Helio framework for building and
publishing KGs as Linked Data has been presented.
The framework sets its pillars on top of several require-
ments that establish the life-cicle of the KGs, meet-
ing these requirements and also allowing practitioners
to publish KGs following the Linked Data principles.
Furthermore, the framework counts with a plugin sys-
tem that prevents the generation of ad-hoc code that is
not reusable to address novel challenges identified in
new scenarios.

Although the presented framework lacks of a formal
experimentation, its wide adoption presents an indica-
tor of its usability and usefulness. Future work in He-
lio will follow two paths: on the one hand, the KG cu-
ration modules available for Helio will be extended to
add novel functionalities, such as ODRL policies [81];
on the other hand, the architecture of Helio will be
break-down into pieces to constitute a distributed ar-
chitecture capable of dealing with larger and complex
scenarios.

8. Acknowledgements

This work is partially funded by the European
Union’s Horizon 2020 Research and Innovation Pro-
gramme through the AURORAL project, Grant Agree-
ment No. 101016854.

References

[1] M. Monti, F. Perego, Y. Zhao, G. Vetere, J.M. Gomez-Perez,
P. Alexopoulos, H. Nguyen, G. Webster, B. Villazon-Terrazas,
N. Garcia-Santa and J.Z. Pan, Success Stories, in: Exploit-
ing Linked Data and Knowledge Graphs in Large Organisa-
tions, J.Z. Pan, G. Vetere,]. M. Gomez-Perez and H. Wu, eds,
Springer International Publishing, Cham, 2017, pp. 215-236.
ISBN 978-3-319-45654-6. doi:10.1007/978-3-319-45654-6_8.
https://doi.org/10.1007/978-3-319-45654-6_8.

D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruck-
haus and O. Corcho, GTFS-Madrid-Bench: A benchmark for
virtual knowledge graph access in the transport domain, Jour-
nal of Web Semantics 65 (2020), 100596.

D. Fensel, U. Simsek, K. Angele, E. Huaman, E. Kirle,
O. Panasiuk, I. Toma, J. Umbrich and A. Wahler, How fo
Build a Knowledge Graph, in: Knowledge Graphs: Method-
ology, Tools and Selected Use Cases, Springer International
Publishing, Cham, 2020, pp. 11-68. ISBN 978-3-030-37439-6.
doi:10.1007/978-3-030-37439-6_2.

C. Bizer, T. Heath and T. Berners-Lee, Linked Data - The
Story So Far, Int. J. Semantic Web Inf. Syst. 5(3) (2009), 1-22.
doi:10.4018/jswis.2009081901.

[2

—

3

—_

[4

=

[5] U. Simsek, J. Umbrich and D. Fensel, Towards a Knowledge
Graph Lifecycle: A pipeline for the population of a commer-
cial Knowledge Graph, in: Proceedings of the Conference on
Digital Curation Technologies (Qurator 2020), Berlin, Ger-
many, January 20th - 21st, 2020, A. Paschke, C. Neudecker,
G. Rehm, J.A. Qundus and L. Pintscher, eds, CEUR Workshop
Proceedings, Vol. 2535, CEUR-WS.org, 2020. http://ceur-ws.
org/Vol-2535/paper_10.pdf.

[6] A. Dimou, M.V. Sande, P. Colpaert, R. Verborgh, E. Man-
nens and R.V. de Walle, RML: A Generic Language for Inte-
grated RDF Mappings of Heterogeneous Data, in: Proceedings
of the Workshop on Linked Data on the Web co-located with the
23rd International World Wide Web Conference (WWW 2014),
Seoul, Korea, April 8, 2014, C. Bizer, T. Heath, S. Auer and
T. Berners-Lee, eds, CEUR Workshop Proceedings, Vol. 1184,
CEUR-WS.org, 2014. http://ceur-ws.org/Vol-1184/ldow2014_
paper_01.pdf.

[7] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo and E. Rahm,
A survey of current link discovery frameworks, Semantic Web
8(3) (2017), 419-436.

[8] J.M. Gomez-Perez, J.Z. Pan, G. Vetere and H. Wu, Enterprise
knowledge graph: An introduction, in: Exploiting linked data
and knowledge graphs in large organisations, Springer, 2017,
pp. 1-14.

[9] H. Weng, Z. Liu, S. Yan, M. Fan, A. Ou, D. Chen and T. Hao,
A Framework for Automated Knowledge Graph Construction
Towards Traditional Chinese Medicine, in: Health Information
Science, S. Siuly, Z. Huang, U. Aickelin, R. Zhou, H. Wang,
Y. Zhang and S. Klimenko, eds, Springer International Publish-
ing, Cham, 2017, pp. 170-181. ISBN 978-3-319-69182-4.

[10] Q. Cong, Z. Feng, F. Li, L. Zhang, G. Rao and C. Tao, Con-
structing Biomedical Knowledge Graph Based on SemMedDB
and Linked Open Data, in: 2018 IEEE International Con-
ference on Bioinformatics and Biomedicine (BIBM), 2018,
pp. 1628-1631. doi:10.1109/BIBM.2018.8621568.

[11] Y. Zhang, M. Sheng, R. Zhou, Y. Wang, G. Han, H. Zhang,
C. Xing and J. Dong, HKGB: An Inclusive, Extensible,
Intelligent, Semi-auto-constructed Knowledge Graph Frame-
work for Healthcare with Clinicians’ Expertise Incorporated,
Information Processing & Management 57(6) (2020), 102324.
doi:https://doi.org/10.1016/j.ipm.2020.102324. http://www.
sciencedirect.com/science/article/pii/S0306457320308190.

[12] T. Yu, J. Li, Q. Yu, Y. Tian, X. Shun, L. Xu, L. Zhu
and H. Gao, Knowledge graph for TCM health preser-
vation: Design, construction, and applications, Ar-
tificial ~Intelligence in Medicine 77 (2017), 48-52.
doi:https://doi.org/10.1016/j.artmed.2017.04.001. http://www.
sciencedirect.com/science/article/pii/S0933365717301355.

[13] D. Fensel, U. Simsek, K. Angele, E. Huaman, E. Kirle,
O. Panasiuk, I. Toma, J. Umbrich and A. Wahler, Knowl-
edge Graphs - Methodology, Tools and Selected Use Cases,
Springer, 2020. ISBN 978-3-030-37438-9. doi:10.1007/978-3-
030-37439-6.

[14] A.Cimmino, M. Poveda-Villalon and R. Garcia-Castro, eWoT:
A Semantic Interoperability Approach for Heterogeneous IoT
Ecosystems Based on the Web of Things, Sensors 20(3) (2020),
822.

[15] A. Cimmino, R. Garcia-Castro and J. Cano-Benito, Bench-
marking the efficiency of RDF-based access for blockchain en-
vironments, in: The 32nd International Conference on Soft-
ware Engineering and Knowledge Engineering, SEKE 2020,

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

https://doi.org/10.1007/978-3-319-45654-6_8
http://ceur-ws.org/Vol-2535/paper_10.pdf
http://ceur-ws.org/Vol-2535/paper_10.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://www.sciencedirect.com/science/article/pii/S0306457320308190
http://www.sciencedirect.com/science/article/pii/S0306457320308190
http://www.sciencedirect.com/science/article/pii/S0933365717301355
http://www.sciencedirect.com/science/article/pii/S0933365717301355

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Cimmino and Garcia-Castro / 15

KSIR Virtual Conference Center, USA, July 9-19, 2020,
R. Garcia-Castro, ed., KSI Research Inc., 2020, pp. 554-559.
doi:10.18293/SEKE2020-104.

[16] A. Fernindez-Izquierdo and R. Garcia-Castro, Themis: a tool
for validating ontologies through requirements, in: Proceed-
ings of the International Conference on Software Engineering
and Knowledge Engineering, SEKE, 2019, KSI Research Inc.
and Knowledge Systems I, 2019, pp. 573-578.

[17] A. Cimmino, A. Fernindez-Izquierdo and R. Garcia-Castro,
Astrea: Automatic Generation of SHACL Shapes from Ontolo-
gies, in: The Semantic Web - 17th International Conference,
ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020,
Proceedings, A. Harth, S. Kirrane, A.N. Ngomo, H. Paulheim,
A. Rula, A.L. Gentile, P. Haase and M. Cochez, eds, Lec-
ture Notes in Computer Science, Vol. 12123, Springer, 2020,
pp. 497-513. doi:10.1007/978-3-030-49461-2_29.

[18] A. Cimmino, V. Oravec, F. Serena, P. Kostelnik, M. Poveda-
Villalén, A. Tryferidis, R. Garcia-Castro, S. Vanya, D. Tzo-
varas and C. Grimm, VICINITY: IoT Semantic Interoperability
Based on the Web of Things, in: 2019 15th International Con-
ference on Distributed Computing in Sensor Systems (DCOSS),
IEEE, 2019, pp. 241-247.

[19] A. Cimmino, N. Andreadou, A. Ferndndez-Izquierdo, C. Pat-
sonakis, A.C. Tsolakis, A. Lucas, D. Ioannidis, E. Kotsakis,
D. Tzovaras and R. Garcia-Castro, Semantic Interoperability
for DR Schemes Employing the SGAM Framework, in: 2020
International Conference on Smart Energy Systems and Tech-
nologies (SEST), IEEE, 2020, pp. 1-6.

[20] J.C. de Benito, Oficina domética semdntica usando tecnologia
blockchain, 2019. http://oa.upm.es/55994/.

[21] L.G. Vélez, Sensorizacién de espacios de trabajo basado en
el paradigma Web of Things, Master Thesis at Universidad
Politécnica de Madrid, 2020. http://oa.upm.es/58136/.

[22] A.N. Molinero, Andlisis de los factores implicados en el salto
de huésped del virus de la rabia, Master Thesis at Universidad
Politécnica de Madrid, 2019. http://oa.upm.es/57068/.

[23] D.N. Rodriguez, Espacios de trabajo inteligentes en la lucha
contra la Covid-19, Master Thesis at Universidad Politécnica
de Madrid, 2021. http://oa.upm.es/66302/.

[24] D. Chaves-Fraga, A. Alobaid, A. Cimmino, F. Priyatna and
0. Corcho, Generating and querying (Virtual) Knowledge
Graphs from heterogeneous data sources, in: Tutorial at
Extended Semantic Web Conference, 2019. https://tutorials.
oeg-upm.net/vkg2019/.

[25] D. Chaves-Fraga, A. Iglesias-Molina, A.C. Arriaga and O. Cor-
cho, Knowledge Graph Construction using Declarative Map-
ping Rules, in: Tutorial at International Semantic Web Confer-
ence, 2020. https://tutorials.oeg-upm.net/kgc2020/.

[26] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J.J. Carroll
and B. McBride, RDF 1.1 concepts and abstract syntax, W3C
recommendation 25(02) (2014).

[27] P. Ristoski and H. Paulheim, RDF2Vec: RDF Graph Em-
beddings for Data Mining, in: The Semantic Web — ISWC
2016, P. Groth, E. Simperl, A. Gray, M. Sabou, M. Krotzsch,
F. Lecue, F. Flock and Y. Gil, eds, Springer International Pub-
lishing, Cham, 2016, pp. 498-514.

[28] E. Amador-Dominguez, E. Serrano, D. Manrique, P. Hohe-
necker and T. Lukasiewicz, An ontology-based deep learning
approach for triple classification with out-of-knowledge-
base entities, Information Sciences 564 (2021), 85-102.

doi:https://doi.org/10.1016/j.ins.2021.02.018. https://www.
sciencedirect.com/science/article/pii/S0020025521001602.

[29] A. Cimmino and R. Corchuelo, On Feeding Business Sys-
tems with Linked Resources from the Web of Data, in:
Business Information Systems - 21st International Confer-
ence, BIS 2018, Berlin, Germany, July 18-20, 2018, Proceed-
ings, W. Abramowicz and A. Paschke, eds, Lecture Notes in
Business Information Processing, Vol. 320, Springer, 2018,
pp. 307-320. doi:10.1007/978-3-319-93931-5_22.

[30] H. Knublauch and D. Kontokostas, Shapes constraint language
(SHACL), W3C Candidate Recommendation 11(8) (2017).

[31] S.McCarron, B. Adida, M. Birbeck, G. Kellogg and I. Herman,
HTML+ RDFa 1.1, 2013.

[32] L. Feigenbaum, G.T. Williams, K.G. Clark and E. Torres,
SPARQL 1.1 Protocol, Recommendation, W3C, March (2013).

[33] O. Corcho, F. Priyatna and D. Chaves-Fraga, Towards a new
generation of ontology based data access, Semantic Web 11(1)
(2020), 153-160. doi:10.3233/SW-190384.

[34] 1. Herman, B. Adida, M. Sporny and M. Birbeck, RDFa 1.1
Primer—Third Edition, W3C Note (2015).

[35] U. Simsek, E. Kirle and D. Fensel, RocketRML-A Nodel]S
implementation of a use-case specific RML mapper, arXiv
preprint arXiv:1903.04969 (2019).

[36] S. Jozashoori and M.-E. Vidal, MapSDI: A Scaled-Up Seman-
tic Data Integration Framework for Knowledge Graph Cre-
ation, in: OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems", Springer, 2019,
pp. 58-75.

[37] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh and
A. Dimou, Parallel RDF generation from heterogeneous big
data, in: Proceedings of the International Workshop on Seman-
tic Big Data, 2019, pp. 1-6.

[38] M. Lefrancois, A. Zimmermann and N. Bakerally, A SPARQL
extension for generating RDF from heterogeneous formats, in:
European Semantic Web Conference, Springer, 2017, pp. 35—
50.

[39] G. Haesendonck, W. Maroy, P. Heyvaert, R. Verborgh and
A. Dimou, Parallel RDF Generation from Heterogeneous Big
Data, in: Proceedings of the International Workshop on Se-
mantic Big Data, SBD ’19, Association for Computing Ma-
chinery, New York, NY, USA, 2019. ISBN 9781450367660.
doi:10.1145/3323878.3325802.

[40] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenz-
erini and R. Rosati, Linking data to ontologies, in: Journal on
Data Semantics X, Springer, 2008, pp. 133-173.

[41] F. Priyatna, O. Corcho and J. Sequeda, Formalisation and Ex-
periences of -based SPARQL to SQL Query Translation Using
Morph, in: International World Wide Web Conference, ACM,
New York, NY, USA, 2014, pp. 479-490. ISBN 978-1-4503-
2744-2. doi:10.1145/2566486.2567981.

[42] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov,
D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop:
Answering SPARQL queries over relational databases, Seman-
tic Web 8(3) (2017), 471-487.

[43] J.LF. Sequeda and D.P. Miranker, Ultrawrap: SPARQL
execution on relational data, Web Semantics: Science,
Services and Agents on the WWW 22 (2013), 19-
39. doi:https://doi.org/10.1016/j.websem.2013.08.002.
http://www.sciencedirect.com/science/article/pii/
S1570826813000383.

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

http://oa.upm.es/55994/
http://oa.upm.es/58136/
http://oa.upm.es/57068/
http://oa.upm.es/66302/
https://tutorials.oeg-upm.net/vkg2019/
https://tutorials.oeg-upm.net/vkg2019/
https://tutorials.oeg-upm.net/kgc2020/
https://www.sciencedirect.com/science/article/pii/S0020025521001602
https://www.sciencedirect.com/science/article/pii/S0020025521001602
http://www.sciencedirect.com/science/article/pii/S1570826813000383
http://www.sciencedirect.com/science/article/pii/S1570826813000383

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

16

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Cimmino and Garcia-Castro /

F. Michel, L. Djimenou, C.F. Zucker and J. Montagnat, Trans-
lation of relational and non-relational databases into RDF with
xR2RML, in: 1 1th International Confenrence on Web Informa-
tion Systems and Technologies (WEBIST’15), 2015, pp. 443—
454.

D. Chaves-Fraga, E. Ruckhaus, F. Priyatna, M.-E. Vidal and
0. Corcho, Enhancing OBDA Query Translation over Tabular
Data with MorphCSYV, 2020.

C. Bizer and A. Seaborne, D2RQ-treating non-RDF databases
as virtual RDF graphs, in: Proceedings of the 3rd international
semantic web conference (ISWC2004), Vol. 2004, Proceedings
of ISWC2004, 2004.

K.M. Endris, P.D. Rohde, M.-E. Vidal and S. Auer, Ontario:
Federated Query Processing against a Semantic Data Lake,
Database and Expert Systems Applications. Lecture Notes in
Computer Science. Springer, Cham (2019).

M.N. Mami, D. Graux, S. Scerri, H. Jabeen and S. Auer,
Querying Data Lakes using Spark and Presto, in: International
World Wide Web Conference, ACM, 2019, pp. 3574-3578.

Y. Khan, A. Zimmermann, A. Jha, V. Gadepally, M. D’ Aquin
and R. Sahay, One Size Does Not Fit All: Querying Web Poly-
stores, IEEE Access 7 (2019), 9598-9617.

H. Paulheim, Knowledge graph refinement: A survey of ap-
proaches and evaluation methods, Semantic Web 8(3) (2017),
489-508. doi:10.3233/SW-160218.

D. Tomaszuk, RDF validation: a brief survey, in: International
Conference: Beyond Databases, Architectures and Structures,
Springer, 2017, pp. 344-355.

Z. Zheng, X. Luo and H. Wang, MESRG: multi-entity sum-
marisation in RDF graph, International Journal of Computa-
tional Science and Engineering 23(1) (2020), 74-81.

A. Cimmino and R. Corchuelo, A hybrid genetic-bootstrapping
approach to link resources in the web of data, in: International
Conference on Hybrid Artificial Intelligence Systems, Springer,
2018, pp. 145-157.

A.-C.N. Ngomo and K. Lyko, EAGLE: Efficient Active Learn-
ing of Link Specifications Using Genetic Programming, in:
ESWC, 2012, pp. 149-163.

R. Isele and C. Bizer, Learning Expressive Linkage Rules us-
ing Genetic Programming, PVLDB 5(11) (2012), 1638-1649.
R. Isele and C. Bizer, Active learning of expressive linkage
rules using genetic programming, J. Web Sem. 23 (2013), 2—
15.

A. Nikolov, M. d’Aquin and E. Motta, Unsupervised Learning
of Link Discovery Configuration, in: ESWC, 2012, pp. 119—
133.

T. Soru and A.-C.N. Ngomo, A comparison of supervised
learning classifiers for link discovery, in: SEMANTICS, 2014,
pp. 41-44.

A. Cimmino and R. Corchuelo, On Feeding Business Systems
with Linked Resources from the Web of Data, in: BIS, 2018,
pp. 307-320.

A. Cimmino, C.R. Rivero and D. Ruiz, Improving Link
Specifications using Context-Aware Information., in: LDOW@
WWW, 2016.

A. Cimmino and R. Corchuelo, On learning context-aware
rules to link RDF datasets, Logic Journal of the IGPL (2020).
LFE. Cruz, EP. Antonelli and C. Stroe, AgreementMaker: ef-
ficient matching for large real-world schemas and ontologies,
Proceedings of the VLDB Endowment 2(2) (2009), 1586—
1589.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[751

[76]

(771

J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Silk-a link dis-
covery framework for the web of data., Ldow 538 (2009), 53.
A.-C.N. Ngomo and S. Auer, LIMES—a time-efficient ap-
proach for large-scale link discovery on the web of data, in:
Twenty-Second International Joint Conference on Artificial In-
telligence, 2011.

D. Tomaszuk, RDF Validation: A Brief Survey, in: Be-
yond Databases, Architectures and Structures. Towards Ef-
ficient Solutions for Data Analysis and Knowledge Repre-
sentation - 13th International Conference, BDAS 2017, Us-
tron, Poland, May 30 - June 2, 2017, Proceedings, S. Koziel-
ski, D. Mrozek, P. Kasprowski, B. Malysiak-Mrozek and
D. Kostrzewa, eds, Communications in Computer and Informa-
tion Science, Vol. 716, 2017, pp. 344-355. doi:10.1007/978-3-
319-58274-0_28.

B. McBride, Jena: a semantic Web toolkit, IEEE Internet Com-
puting 6(6) (2002), 55-59. doi:10.1109/MIC.2002.1067737.
J. Broekstra, A. Kampman and F. Van Harmelen, Sesame:
A generic architecture for storing and querying rdf and rdf
schema, in: International semantic web conference, Springer,
2002, pp. 54-68.

R. Oldakowski, C. Bizer and D. Westphal, Rap: Rdf api for
php, in: Proceedings of the Workshop Scripting for the Seman-
tic Web, 2005.

J. Wielemaker, G. Schreiber and B. Wielinga, Prolog-Based
Infrastructure for RDF: Scalability and Performance, in: The
Semantic Web - ISWC 2003, D. Fensel, K. Sycara and J. My-
lopoulos, eds, Springer Berlin Heidelberg, Berlin, Heidelberg,
2003, pp. 644-658. ISBN 978-3-540-39718-2.

E. Oren and R. Delbru, ActiveRDF: object-oriented RDF in
Ruby, Scripting for Semantic Web (ESWC) (2006), 3.

G.E. Modoni, M. Sacco and W. Terkaj, A survey of RDF
store solutions, in: 2014 International Conference on Engi-
neering, Technology and Innovation (ICE), 2014, pp. 1-7.
doi:10.1109/ICE.2014.6871541.

K. Rohloff, M. Dean, I. Emmons, D. Ryder and J. Sumner,
An Evaluation of Triple-Store Technologies for Large Data
Stores, in: On the Move to Meaningful Internet Systems 2007:
OTM 2007 Workshops, R. Meersman, Z. Tari and P. Herrero,
eds, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
pp. 1105-1114. ISBN 978-3-540-76890-6.

V. Khadilkar, M. Kantarcioglu, B. Thuraisingham and
P. Castagna, Jena-HBase: A distributed, scalable and efficient
RDF triple store, in: Proceedings of the 11th International Se-
mantic Web Conference Posters and Demonstrations Track,
ISWC-PD, Vol. 12, Citeseer, 2012, pp. 85-88.

R. Punnoose, A. Crainiceanu and D. Rapp, Rya: A Scalable
RDF Triple Store for the Clouds, in: Proceedings of the 1st
International Workshop on Cloud Intelligence, Cloud-1 *12,
Association for Computing Machinery, New York, NY, USA,
2012. ISBN 9781450315968. doi:10.1145/2347673.2347677.
M. Atre, J. Srinivasan and J.A. Hendler, BitMat: A main mem-
ory RDF triple store, Tetherless World Constellation, Rensselar
Plytehcnic Institute, Troy NY (2009).

L. Rietveld and R. Hoekstra, The YASGUI family of SPARQL
clients 1, Semantic Web 8(3) (2017), 373-383.

R. Cyganiak and C. Bizer, Pubby-a linked data frontend
for sparql endpoints, Url: http://wifo5-03. informatik. uni-
mannheim. de/pubby/.(Acesso: 19-11-2014) (2008).

=W N

o 0 g o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

[78]

[79]

[80]

[81]

Cimmino and Garcia-Castro /

A. Fernandez-Izquierdo, A. Cimmino, C. Patsonakis,
A.C. Tsolakis, R. Garcia-Castro, D. Ioannidis and D. Tzovaras,
Openadr ontology: Semantic enrichment of demand response
strategies in smart grids, in: 2020 International Conference on
Smart Energy Systems and Technologies (SEST), IEEE, 2020,
pp. 1-6.

A. Cimmino, M. McCool, F. Tavakolizadeh and K. Toumura,
Web of Things (WoT) Discovery, W3C Working Draft 2 June
2021 (2021).

J. Cano-Benito, A. Cimmino and R. Garcia-Castro, Towards
Blockchain and Semantic Web, in: International Conference
on Business Information Systems, Springer, 2019, pp. 220—
231.

R. Iannella M. and S. Villata, ODRL Information Model 2.2,
W3C Recommendation 15 February 2018 (2018).

Sw N

o 3 o U

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

O O d o U W N

g g s s D s R R R D D W W W W W W W W W W NN NDNDNNDNNN R R R R R e e
H O W 0w J o LB W N E O W 0 Jd o s W NP O VW 0 d oYy s W NN O VW T Yy U W NP O

18

Cimmino and Garcia-Castro /

Appendix A. Json mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4

{
"datasources" : [
{
"id" : "api_datasource",
"refresh" : "3600",
"type" : "JsonDatasource",
"arguments" : ["$"],
"connector" : {
"arguments" : ["http://sampledomain.com/api"],
"type" : "URLConnector",
}
}
]I
"resource_rules" : [
{
"id" : "api_kg_data",
"datasource_ids" : ["api_datasource"],
"subject" : "http://kgdata.com/resource/sensor/{S$.sensorId}",
"properties" : [
{
"predicate" : "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type",
"object" : "https://w3id.org/saref#Measurement",
"is_literal" : "False"
oA
"predicate" : "https://w3id.org/sareff#relatesToProperty",
"object" : "https://w3id.org/saref#Light",
"is literal" : "False"
oA
"predicate" : "https://w3id.org/saref#isMeasuredIn",
"object" : "https://w3id.org/saref#IlluminanceUnit",
"is_literal" : "False"
}I{
"predicate" : "https://w3id.org/saref#hasvValue",
"object" : "{S$.value}",
"is_literal" : "True",
"datatype" : "http://www.w3.0rg/2001/XMLSchema#float"
b A
"predicate" : "https://w3id.org/saref#hasTimestamp",
"object" : "S$S.tmp",
"is_literal" : "True",
"datatype" : "http://www.w3.org/2001/XMLSchema#dateTime"
}
]
}
]
}

O o J o s W N

[N N N e e e e T e
W N P O VW L J o U W NP O

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

Cimmino and Garcia-Castro /

Appendix B. RML mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix gl: <http://semweb.mmlab.be/ns/qgl#>.
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>.
prefix saref: <https://w3id.org/saref#>

<#VenueMapping>
rml:logicalSource [
rml:source "http://sampledomain.com/";
rml:referenceFormulation gl:JSONPath;
rml:iterator "S"

1;

rr:subjectMap [
rr:template "http://kgdata.com/resource/sensor/{$.sensorId}";
rr:class saref:Measurement

1;

rr:predicateObjectMap [
rr:predicate saref:hasValue;
rr:objectMap [
rml:reference "S$.value";
rr:datatype xsd:float
]
1i

rr:predicateObjectMap [
rr:predicate saref:hasTimestamp;
rr:objectMap [
rml:reference "S.tmp";
rr:datatype xsd:dateTime
1
1;

rr:predicateObjectMap [
rr:predicate saref:isMeasuredIn;
rr:object saref:IlluminanceUnit

1i

rr:predicateObjectMap [
rr:predicate saref:relatesToProperty;
rr:object saref:Light

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

Qs s s s s s s D DWW W W W W WwWw W W NNNNNDNNNNN R R R R R R e e P e
H O W © < o 0 W N O W Jdo W N R O VW O do s W NP O WV ®Jd o s W N R OV

20 Cimmino and Garcia-Castro /
Appendix C. WoT-Mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4

@prefix wot: <http://iot.linkeddata.es/def/wot#>

@prefix core: <http://iot.linkeddata.es/def/core#>

@prefix map: <http://iot.linkeddata.es/def/wot-mappings#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
@prefix xsd: <http://www.w3.o0rg/2001/XMLSchema#>

@prefix saref: <https://w3id.org/saref#>

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

<http://kgdata.com/resource/sensor/001> core:isDescribedBy [
a core:ThingDescription;
core:describes <http://kgdata.com/resource/sensor/001>;
map:hasAccessMapping [
map:hasMapping [
a map:0bjectProperty ;
map:predicate rdf:type;
map:targetClass saref:Measurement;
1,0
a map:0bjectProperty ;
map:predicate saref:relatesToProperty;
map:targetClass saref:Light;
1,0
a map:0bjectProperty ;
map:predicate saref:isMeasuredlIn;
map:targetClass saref:IlluminanceUnit;
1,0
a map:ObjectProperty ;
map:predicate saref:relatesToProperty;
map:targetClass saref:Light;
1,10
a map:DataProperty ;
map:predicate saref:hasValue;
map: jsonPath "$.value";
rdfs:Datatype xsd:float;
1,10
a map:DataProperty ;
map:predicate saref:hasTimestamp;
map: jsonPath "$.tmp";
rdfs:Datatype xsd:dateTime;
I
map:mapsResourceFrom [
a wot:Link;
wot :href "http://sampledomain.com/api/sensors?id=001";
wot :mediaType "application/json" ;

Sw N

© 0 9 o u

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

o J o s w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Cimmino and Garcia-Castro /

Appendix D. Helio Publisher Module HTML interfaces depicted by Figure 5

1~ PREFIX ast: <https://w3id.org/def/astrea#>

2~ SELECT distinct ?sub WHERE {
3 ?sub ast:isMappedTo Ztype .

L

el Response = Pivot Table Google Chart | Geo

Showing 1 to 50 of 80 entries

sub

I«

!<I>!

SPARQL Dataset
& >
'Sl

Search:

1 http://astrea.helio.linkeddata.es/11615915171

2 http://astrea.helio.linkeddata.es/1722371155

3 http://astrea.helio.linkeddata.es/1142192332

4 http://astrea.helic.linkeddata.es/1461404966

5 http://astrea.helic.linkeddata.es/93557317

(a) SPARQL endpoint HTML interface

Resources > http://astrea.helio.linkeddata.es/11615815171

® Properties (1) @ Relations(3) @ Types(2) @ Equivalences (0)

Filter ...

Property
https://w3id.org/def/astrea#isMappedTo
https://w3id.org/def/astreattinvolves

https://w3id.org/def/astreatistatement

http://www.w3.0rg/1998/02/22-rdf-
syntax-ns#type

http:/Awww.w3.0rg/1999/02/22-rdf-
syntax-ns#type

https://w3id.org/def/astrea#tisMappedTo

Value
http://astrea.helio.linkeddata.es/1965179649

hitp://astrea.helio.linkeddata.es/12072844311

https.//w3id.org/def/astrea#SHACLPattern

hitps://w3id.org/def/astrea#Pattern

http://astrea.helio.linkeddata.es/1 147308305

(b) Default RDF HTML interface

Show | 50 #|entries

SPARQL Dataset

?shapeUrl a sh:PropertyShape ; sh:pattern [\\-+]?[0-9]+" Axsd:string ; sh:maxinclusive
127" ~Mxsd:integer ; shimininclusive '-128''AAxsd:integer
Ashittp/fwww.w3.0rg/2001/XMLSchematdstring

21

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

@ J oy U W N

10
11

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

22 Cimmino and Garcia-Castro /

SPARQL

TURTLE
N-TRIPLES
RDF/XML
JSON-LD

(c) Dataset HTML interface

Add resource for dynamic views

Include dynamic views for resources
Resource.

Tempiate:

osv, the same 4 must be

Resourea delted corecty!

Resource. Tempiate s Regox

[homistesta et o

[————— prr—— e

(d) Dynamic views and HTML customised menu

Figure 5. Helio Publisher Module interfaces

o J o s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	Introduction
	Requirements of a knowledge graph life cycle
	Related Work
	Knowledge graph creation
	Knowledge graph curation
	Knowledge graph hosting and deployment

	The Helio Framework
	RDF Generator Module
	Conceptual Mappings
	Extending the RDF Generator Module

	Hosting Module
	Curation Module
	Publisher Module

	Discussion
	Enabling Linked Data principles
	Requirements met

	Helio framework adoption
	Conclusions
	Acknowledgements
	References
	Appendix A.Json mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4
	Appendix B.RML mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4
	Appendix C.WoT-Mapping serialisation for instantiating the Conceptual Mapping depicted by Figure 4
	Appendix D.Helio Publisher Module HTML interfaces depicted by Figure 5

