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Abstract. This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015
as a result of the “deep learning revolution” in natural language processing. Its goal is to systemize design features of neural
entity linking systems and compare their performance to the remarkable classic methods on common benchmarks. This work
distills a generic architecture of a neural EL system and discusses its components, such as candidate generation, mention-
context encoding, and entity ranking, summarizing prominent methods for each of them. The vast variety of modifications of this
general architecture are grouped by several common themes: joint entity mention detection and disambiguation, models for global
linking, domain-independent techniques including zero-shot and distant supervision methods, and cross-lingual approaches.
Since many neural models take advantage of entity and mention/context embeddings to represent their meaning, this work also
overviews prominent entity embedding techniques. Finally, the survey touches on applications of entity linking, focusing on the
recently emerged use-case of enhancing deep pre-trained masked language models based on the Transformer architecture.
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1. Introduction

Knowledge Graphs (KGs), such as Freebase [14],
DBpedia [92], and Wikidata [184], contain rich and
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precise information about entities of all kinds, such as
persons, locations, organizations, movies, and scien-
tific theories, just to name a few. Each entity has a set
of carefully defined relations and attributes, e.g. “was
born in” or “play for”. This wealth of structured in-
formation gives rise to and facilitates the development
of semantic processing algorithms as they can directly
operate on and benefit from such entity representa-
tions. For instance, imagine a search engine that is able
to retrieve mentions in the news during the last month
of all retired NBA players with a net income of more
than 1 billion US dollars. The list of players together
with their income and retirement information may be
available in a knowledge graph. Equipped with this in-
formation, it appears to be straightforward to look up
mentions of retired basketball players in the newswire.
However, the main obstacle in this setup is the lexi-
cal ambiguity of entities. In the context of this appli-
cation, one would want to only retrieve all mentions
of “Michael Jordan (basketball player)”1 and exclude
mentions of other persons with the same name such as
“Michael Jordan (mathematician)”2.

This is why Entity Linking (EL) – the process of
matching a mention, e.g. “Michael Jordan”, in a tex-
tual context to a KG record (e.g. “basketball player” or
“mathematician”) fitting the context – is the key tech-
nology enabling various semantic applications. Thus,
EL is the task of identifying an entity mention in the
(unstructured) text and establishing a link to an entry
in a (structured) knowledge graph.

Entity linking is an essential component of many
information extraction (IE) and natural language un-
derstanding (NLU) pipelines since it resolves the lexi-
cal ambiguity of entity mentions and determines their
meanings in context. A link between a textual mention
and an entity in a knowledge graph also allows us to
take advantage of the information encompassed in a
semantic graph, which is shown to be useful in such
NLU tasks as information extraction, biomedical text
processing, or semantic parsing and question answer-
ing (see Section 5). This wide range of direct applica-
tions is the reason why entity linking is enjoying great
interest from both academy and industry for more than
two decades.

1https://en.wikipedia.org/wiki/Michael_Jordan
2https://en.wikipedia.org/wiki/Michael_I._Jordan

1.1. Goal and Scope of this Survey

Recently, a new generation of approaches for en-
tity linking based on neural models and deep learn-
ing emerged, pushing the state-of-the-art performance
in this task to a new level. The goal of our survey is
to provide an overview of this latest wave of models,
emerging from 2015.

Models based on neural networks have managed
to excel in EL as in many other natural language
processing tasks due to their ability to learn use-
ful distributed semantic representations of linguistic
data [11, 30, 203]. These current state-of-the-art neural
entity linking models have shown significant improve-
ments over “classical”3 machine learning approaches
[27, 84, 148] to name a few that are based on shallow
architectures, e.g. Support Vector Machines, and/or de-
pend mostly on hand-crafted features. Such models of-
ten cannot capture all relevant statistical dependencies
and interactions [53]. In contrast, deep neural networks
are able to learn sophisticated representations within
their deep layered architectures. This reduces the bur-
den of manual feature engineering and enables signifi-
cant improvements in EL and other tasks.

In this survey, we systemize recently proposed neu-
ral models, distilling one generic architecture used by
the majority of neural EL models (illustrated in Fig-
ures 2 and 5). We describe the models used in each
component of this architecture, e.g. candidate genera-
tion, mention-context encoding, entity ranking. Promi-
nent variations of this generic architecture, e.g. end-to-
end EL or global models, are also discussed. To better
structure the sheer amount of available models, various
types of methods are illustrated in taxonomies (Fig-
ures 3 and 6), while notable features of each model are
carefully assembled in a tabular form (Table 2). We
discuss the performance of the models on commonly
used entity linking/disambiguation benchmarks and an
entity relatedness dataset. Because of the sheer amount
of work, it was not possible for us to try available
software and to compare approaches on further pa-
rameters, such as computational complexity, run-time,
and memory requirements. Nevertheless, we created
a comprehensive collection of references to publicly
available official implementations of EL models and
systems discussed in this survey (see Table 7 in Ap-
pendix A).

3On classical ML vs deep learning: https://towardsdatascience.
com/deep-learning-vs-classical-machine-learning-9a42c6d48aa
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An important component of neural entity linking
systems is distributed entity representations and en-
tity encoding methods. It has been shown that encod-
ing the KG structure (entity relationships), entity def-
initions, or word/entity co-occurrence statistics from
large textual corpora in low-dimensional vectors im-
proves the generalization capabilities of EL models
[53, 70]. Therefore, we also summarize distributed en-
tity representation models and novel methods for en-
tity encoding.

Many natural language processing systems take
advantage of deep pre-trained language models like
ELMo [138], BERT [36], and their modifications. EL
made its path into these models as a way of introducing
information stored in KGs, which helps to adapt word
representations to some text processing tasks. We dis-
cuss this novel application of EL and its further devel-
opment.

1.2. Article Collection Methodology

We do not have a strict article collection algorithm
for the review like e.g., the one conducted by Oliveira
et al. [130]. Our main goal is to provide and describe a
conceptual framework that can be applied to the major-
ity of recently presented neural approaches to EL. Nev-
ertheless, as with all surveys, we had to draw the line
somewhere. The main criteria for including papers into
this survey was that they had been published during or
after 2015, and they primarily address the task of EL,
i.e. resolving textual mentions to entries in KGs, or dis-
cussing EL applications. We explicitly exclude related
work e.g., on (fine-grained) entity typing (see [4, 28]),
which also encompasses a disambiguation task, and
work that employs KGs for other tasks than EL. This
survey also does not try to cover all EL methods de-
signed for specific domains like biomedical texts or
messages in social media. For the general-purpose EL
models evaluated on well-established benchmarks, we
try to be as comprehensive as possible with respect
to recent-enough papers that fit into the conceptual
framework, no matter where they have appeared (how-
ever, with a focus on top conferences and journals in
the fields of natural language processing and Semantic
Web).

1.3. Previous Surveys

One of the first surveys on EL was prepared by Shen
et al. [160] in 2015. They cover the main approaches
to entity linking (within the modules, e.g. candidate

generation, ranking), its applications, evaluation meth-
ods, and future directions. In the same year, Ling et al.
[97] presented a work that aims to provide (1) a stan-
dard problem definition to reduce confusion that ap-
pears due to the existence of variant similar tasks re-
lated to EL (e.g., Wikification [112] and named entity
linking [67]), and (2) a clear comparison of models and
their various aspects.

There are also other surveys that address a wider
scope. The work of Martínez-Rodríguez et al. [106],
published in 2020, involves information extraction
models and semantic web technologies. Namely, they
consider named entity recognition, entity linking, ter-
minology extraction, keyphrase extraction, topic mod-
eling, topic labeling, and relation extraction tasks. In
a similar vein, the work of Al-Moslmi et al. [3], re-
leased in 2020, overviews the research in named entity
recognition, named entity disambiguation, and entity
linking published between 2014 and 2019.

Another recent survey paper by Oliveira et al. [130],
published in 2020, analyses and summarizes EL ap-
proaches that exhibit some holism. This viewpoint lim-
its the survey to the works that exploit various peculiar-
ities of the EL task: additional metadata stored in spe-
cific input like microblogs, specific features that can
be extracted from this input like geographic coordi-
nates in tweets, timestamps, interests of users posted
these tweets, and specific disambiguation methods that
take advantage of these additional features. In the con-
current work, Möller et al. [118] overview models de-
veloped specifically for linking English entities to the
Wikidata [184] and discuss features of this KG that can
be exploited for increasing the linking performance.

Previous surveys on similar topics (a) do not cover
many recent publications [97, 160], (b) broadly cover
numerous topics [3, 106], or (c) are focused on the
specific types of methods [130] or a knowledge graph
[118]. There is not yet, to our knowledge, a detailed
survey specifically devoted to recent neural entity link-
ing models. The previous surveys also do not address
the topics of entity and context/mention encoding, ap-
plications of EL to deep pre-trained language models,
and cross-lingual EL. We are also the first to summa-
rize the domain-independent approaches to EL, several
of which are based on zero-shot techniques.

1.4. Contributions

More specifically, this article makes the following
contributions:
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Fig. 1. The entity linking task. An Entity Linking (EL) model takes a raw textual input and enriches it with entity mentions linked to nodes in
a Knowledge Graph (KG). The task is commonly split into entity mention detection and entity disambiguation sub-tasks.

– a survey of state-of-the-art neural entity linking
models;

– a systematization of various features of neural EL
methods and their evaluation results on popular
benchmarks;

– a summary of entity and context/mention embed-
ding techniques;

– a discussion of recent domain-independent (zero-
shot) and cross-lingual EL approaches;

– a survey of EL applications to modeling word rep-
resentations.

The structure of this survey is the following. We
start with defining the EL task in Section 2. In Sec-
tion 3.1, the general architecture of neural entity link-
ing systems is presented. Modifications and variations
of this basic pipeline are discussed in Section 3.2. In
Section 4, we summarize the performance of EL mod-
els on standard benchmarks and present results of the
entity relatedness evaluation. Section 5 is dedicated to
applications of EL with a focus on recently emerged
applications for improving neural language models.
Finally, Section 6 concludes the survey and suggests
promising directions of future work.

2. Task Description

2.1. Informal Definition

Consider the example presented in Figure 1 with an
entity mention Scott Young in a soccer-game-related
context. Literally, this common name can refer to
at least three different people: the American football
player, the Welsh football player, or the writer. The
EL task is to (1) correctly detect the entity mention in
the text, (2) resolve its ambiguity and ultimately pro-
vide a link to a corresponding entity entry in a KG,
e.g. provide for the Scott Young mention in this context

a link to the Welsh footballer4 instead of the writer5.
To achieve this goal, the task is usually decomposed
into two sub-tasks, as illustrated in Figure 1: Mention
Detection (MD) and Entity Disambiguation (ED).

2.2. Formal Definition

2.2.1. Knowledge Graph (KG)
A KG contains entities, relations, and facts, where

facts are denoted as triples (i.e. head entity, relation,
tail entity) as defined in Ji et al. [77]. Formally, as de-
fined by Färber et al. [45], a KG is a set of RDF triples
where each triple (s, p, o) is an ordered set of the fol-
lowing terms: a subject s ∈ U ∪ B, a predicate p ∈ U,
and an object o ∈ U ∪ B ∪ L. An RDF term is ei-
ther a URI u ∈ U, a blank node b ∈ B, or a literal
l ∈ L. URI (or IRI) nodes are for the global identifica-
tion of entities on the Web; literal nodes are for strings
and other datatype values (e.g. integers, dates); and the
blank node is for anonymous nodes, which are not as-
signed an identifier, as explained in Hogan et al. [68].

This RDF representation can be considered as a
multi-relational graph G = (E,A = {A0, A1, ..., Am ⊆
(E× E)}), where E is a set of all entities of a KG, and
A is a family of typed edge sets of length m. For exam-
ple, A0 is the “occupation” predicate adjacency matrix,
A1 is the “founded” predicate adjacency matrix, etc.

There is also an equivalent three-way tensor repre-
sentation of a KG A ∈ {0, 1}n×m×n, where

Ai,k, j =

{
1 if (i, j) ∈ Ak : k 6 m
0 otherwise.

(1)

2.2.2. Mention Detection (MD)
The goal of mention detection is to identify an entity

mention span, while entity disambiguation performs

4https://en.wikipedia.org/wiki/Scott_Young_(Welsh_footballer)
5https://en.wikipedia.org/wiki/Scott_Young_(writer)
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Fig. 2. General architecture for neural entity linking. Entity Linking (EL) consists of two main steps: Mention Detection (MD), when entity
mention boundaries in a text are identified, and Entity Disambiguation (ED), when a corresponding entity is predicted for the given mention.
Entity disambiguation is further carried out in two steps: Candidate Generation, when possible candidate entities are selected for the mention,
and Entity Ranking, when a correspondence score between context/mention and each candidate is computed through the comparison of their
vector representations.

linking of found mentions to entries of a KG. We can
consider this task as determining an MD function that
takes as input a textual context ci ∈ C (e.g. a document
in a document collection) and outputs a sequence of n
mentions (m1, . . .mn) in this context mi ∈ M, where
M is a set of all possible text spans in the context:

MD : C −→ Mn. (2)

In the majority of works on EL, it is assumed that
the mentions are already given or detected, for exam-
ple, using a named entity recognition (NER) system
(sometimes called named entity recognition and clas-
sification (NERC) [4, 119]). We should note that, usu-
ally, in addition to MD, NER systems also tag/classify
mentions with a predefined types [95, 107, 130, 181]
that also can be leveraged for disambiguation [107].

2.2.3. Entity Disambiguation (ED)
The entity disambiguation task can be considered as

determining a function ED that, given a sequence of n
mentions in a document and their contexts (c1, . . . , cn),
outputs an entity assignment (e1, . . . , en), ei ∈ E,
where E is a set of entities in a KG:

ED : (M,C)n −→ En. (3)

To learn a mapping from entity mentions in a con-
text to entity entries in a KG, EL models use super-
vision signals like manually annotated mention-entity
pairs. The size of KGs varies; they can contain hun-
dreds of thousands or even millions of entities. Due
to their large size, training data for EL would be ex-
tremely unbalanced; training sets can lack even a sin-
gle example for a particular entity or mention, e.g. as in
the popular AIDA corpus [67]. To deal with this prob-

lem, EL models should have wide generalization capa-
bilities.

Despite KGs being usually large, they are incom-
plete. Therefore, some mentions in a text cannot be
correctly mapped to any KG entry. Determining such
unlinkable mentions, which usually is designated as
linking to a NIL entry, is one of the current EL chal-
lenges. Methods that address this problem provide a
separate function for it or extend the set of entities in
the disambiguation function with this special entry:

ED : (M,C)n −→ (E ∪ NIL)n. (4)

2.3. Terminological Aspects

More or less, the same technologies and models are
sometimes called differently in the literature. Namely,
Wikification [26] and entity disambiguation are con-
sidered as subtypes of EL [115]. To be comprehensive
in this survey, we assume that the entity linking task
encompasses both entity mention detection and entity
disambiguation. However, only a few studies suggest
models that perform MD and ED jointly, while the ma-
jority of papers on EL focus exclusively on ED and as-
sume that mention boundaries are given by an exter-
nal entity recognizer [152] (which may lead to some
terminological confusions). Numerous techniques that
perform MD (e.g. in the NER task) without entity dis-
ambiguation are considered in many previous surveys
[57, 95, 119, 159, 193] inter alia and are out of the
scope of this work.

Entity linking in the general case is not restricted
to linking mentions to graph nodes but rather to con-
cepts in a knowledge base. However, most of the mod-
ern widely-used knowledge bases organize informa-
tion in the form of a graph [14, 92, 184], even in par-



ticular domains, like e.g. the scholarly domain [34].
A basic statement in a data/knowledge base usually
can be represented as a subject-predicate-object tuple
(s, p, o), e.g. (John_Lennon, occupation, singer) or (New_-
York_City, founded, 1624), and a set of such tuples can be
represented as a multi-relational graph. This formalism
helps to efficiently organize knowledge for many ap-
plications ranging from search engines to question an-
swering and recommendation systems [68, 77]. There-
fore, in this article, the terms Knowledge Graph (KG)
and Knowledge Base (KB) are used interchangeably.

3. Neural Entity Linking

We start the discussion of neural entity linking ap-
proaches from the most general architecture of EL
pipelines and continue with various specific modifi-
cations like joint entity mention detection and link-
ing, disambiguation techniques that leverage global
context, domain-independent EL approaches including
zero-shot methods, and cross-lingual models.

3.1. General Architecture

Some of the attempts to EL based on neural net-
works treat it as a multi-class classification task in
which entities correspond to classes. However, the
straightforward approach results in a large number of
classes, which leads to suboptimal performance with-
out task-sharing [80]. The streamlined approach to EL
is to treat it as a ranking problem. We present the gen-
eralized EL architecture in Figure 2, which is appli-
cable to the majority of neural approaches. Here, the
mention detection model identifies the mention bound-
aries in text. The next step is to produce a shortlist of
possible entities (candidates) for the mention, e.g. pro-
ducing Scott_Young_(writer) as a candidate rather than a
completely random entity. Then, the mention encoder
produces a semantic vector representation of a men-
tion in a context. The entity encoder produces a set of
vector representations of candidates. Finally, the en-
tity ranking model compares mention and entity rep-
resentations and estimates mention-entity correspon-
dence scores. An optional step is to determine unlink-
able mentions, for which a KG does not contain a cor-
responding entity. The categorization of each step in
the general neural EL architecture is summarized in
Figure 3.

3.1.1. Candidate Generation
An essential part of EL is candidate generation. The

goal of this step is given an ambiguous entity mention,
such as “Scott Young”, to provide a list of its possi-
ble “senses” as specified by entities in a KG. EL is
analogous to the Word Sense Disambiguation (WSD)
task [115, 121] as it also resolves lexical ambiguity.
Yet in WSD, each sense of a word can be clearly de-
fined by WordNet [46], while in EL, KGs do not pro-
vide such an exact mapping between mentions and en-
tities [22, 115, 121]. Therefore, a mention potentially
can be linked to any entity in a KG, resulting in a large
search space, e.g. “Big Blue” referring to IBM. In the
candidate generation step, this issue is addressed by
performing effective preliminary filtering of the entity
list.

Formally, given a mention mi, a candidate genera-
tor provides a list of probable entities, e1, e2, ..., ek, for
each entity mention in a document.

CG : M −→ (e1, e2, ..., ek). (5)

Similar to [3, 160], we distinguish three common
candidate generation methods in neural EL: (1) based
on surface form matching, (2) based on expansion
with aliases, and (3) based on a prior matching prob-
ability computation. In the first approach, a candidate
list is composed of entities that match various surface
forms of mentions in the text [87, 114, 211]. There are
many heuristics for the generation of mention forms
and matching criteria like the Levenshtein distance, n-
grams, and normalization. For the example mention of
“Big Blue”, this approach would not work well, as the
referent entity “IBM” or its long-form “International
Business Machines” does not contain a mention string.
Examples of candidate entity sets are presented in Ta-
ble 1, where we searched a name matching of the men-
tion “Big Blue” in the titles of all Wikipedia articles
present in DBpedia and presented random 5 matches.

In the second approach, a dictionary of additional
aliases is constructed using KG metadata like dis-
ambiguation/redirect pages of Wikipedia [43, 211] or
using a dictionary of aliases and/or synonyms (e.g.
“NYC” stands for “New York City”). This helps to
improve the candidate generation recall as the surface
form matching usually cannot catch such cases. Per-
shina et al. [137] expand the given mention to the
longest mention in a context found using coreference

6Random matches from DBpedia labels dataset – http://
downloads.dbpedia.org/2016-10/core-i18n/en/labels_en.ttl.bz2
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Fig. 3. Reference map of the general architecture of neural EL systems. The categorization of each step in the general neural EL architecture
with alternative design choices and example references illustrating each of the choices.

Table 1
Candidate generation examples. Candidate entities for the example mention “Big Blue” obtained using several candidate generation methods.
The highlighted candidates are “correct” entities assuming that the given mention refers to the IBM corporation and not a river, e.g. Big_Blue_-
River_(Kansas).

Method 5 candidate entities for the example mention “Big Blue”
surface form matching based

on DBpedia names6
Big_Blue_Trail, Big_Bluegrass, Big_Blue_Spring_cave_crayfish,

Dexter_Bexley_and_the_Big_Blue_Beastie, IBM_Big_Blue_(X-League)
expansion using aliases

from YAGO-means7
Big_Blue_River_(Indiana), Big_Blue_River_(Kansas),

Big_Blue_(crane), Big_Red_(drink), IBM
probability + expansion using aliases

from [53]: Anchor prob. + CrossWikis + YAGO
8 IBM, Big_Blue_River_(Kansas), The_Big_Blue

Big_Blue_River_(Indiana), Big_Blue_(crane)

resolution. Then, an entity is selected as a candidate
if its title matches the longest version of the mention,
or it is present in disambiguation/redirect pages of this
mention. This resource is used in many EL models,
e.g. [19, 107, 125, 131, 144, 164, 194]. Another well-
known alternative is YAGO [170] – an ontology au-
tomatically constructed from Wikipedia and WordNet.
Among many other relations, it provides “means” re-
lations, and this mapping is utilized for candidate gen-
eration like in [53, 67, 157, 164, 194]. In this tech-
nique, the external information would help to disam-
biguate “Big Blue” as “IBM”. Table 1 shows examples
of candidates generated with the help of the YAGO-
means candidate mapping dataset used in Hoffart et al.
[67].

The third approach to candidate generation is based
on pre-calculated prior probabilities of correspondence
between certain mentions and entities, p(e|m). Many
studies rely on mention-entity priors computed based
on Wikipedia entity hyperlinks. A URL of a hyperlink
to an entity page of Wikipedia determines a candidate

7YAGO-means dataset of Hoffart et al. [67] – http://resources.
mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2

entity, and the anchor text of the hyperlink determines
a mention. Another widely-used option is CrossWikis
[169], which is an extensive resource that leverages the
frequency of mention-entity links in web crawl data
[53, 62].

It is common to apply multiple approaches to can-
didate generation at once. For example, the resource
constructed by Ganea and Hofmann [53] and used in
many other EL methods [82, 86, 139, 158, 198] relies
on prior probabilities obtained from entity hyperlink
count statistics of CrossWikis [169] and Wikipedia, as
well as on entity aliases obtained from the “means” re-
lationship of the YAGO ontology Hoffart et al. [67].
The illustrative mention “Big Blue” can be linked to
its referent entity “IBM” with this method, as shown
in Table 1. As another example, Fang et al. [44] utilize
surface form matching and aliases. They share candi-
dates between abbreviations and their expanded ver-
sions in the local context. The aliases are obtained
from Wikipedia redirect and disambiguation pages, the
Wikipedia search engine, and synonyms from Word-

8We generated these examples using the source code of Peters
et al. [139] – https://github.com/allenai/kb

http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
http://resources.mpi-inf.mpg.de/yago-naga/aida/download/aida_means.tsv.bz2
https://github.com/allenai/kb


Net [46]. Additionally, they submit mentions that are
misspelled or contain multiple words to Wikipedia and
Google search engines and search for the correspond-
ing Wikipedia articles. It is also worth noting that some
works also employ a candidate pruning step to reduce
the number of candidates.

Recent zero-shot models [55, 100, 191] perform
candidate generation without external resources. Sec-
tion 3.2.3 describes them in detail.

3.1.2. Context-mention Encoding
To correctly disambiguate an entity mention, it is

crucial to thoroughly capture the information from its
context. The current mainstream approach is to con-
struct a dense contextualized vector representation of
a mention ym using an encoder neural network.

mENC : (C,M)n −→ (ym1
, ym2

, ..., ymn
). (6)

Several early techniques in neural EL utilize a con-
volutional encoder [49, 127, 168, 171], as well as at-
tention between candidate entity embeddings and em-
beddings of words surrounding a mention [53, 86].
However, in recent models, two approaches prevail: re-
current networks and self-attention [182].

A recurrent architecture with LSTM cells [66] that
has been a backbone model for many NLP applica-
tions, is adopted to EL in [43, 62, 82, 87, 107, 129,
164] inter alia. Gupta et al. [62] concatenate outputs
of two LSTM networks that independently encode left
and right contexts of a mention (including the men-
tion itself). In the same vein, Sil et al. [164] encode
left and right local contexts via LSTMs but also pool
the results across all mentions in a coreference chain
and postprocess left and right representations with a
tensor network. A modification of LSTM – GRU [29]
– is used by Eshel et al. [40] in conjunction with an
attention mechanism [7] to encode left and right con-
text of a mention. Kolitsas et al. [82] represent an en-
tity mention as a combination of LSTM hidden states
included in the mention span. Le and Titov [87] sim-
ply run a bidirectional LSTM network on words com-
plemented with embeddings of word positions relative
to a target mention. Shahbazi et al. [158] adopt pre-
trained ELMo [138] for mention encoding by averag-
ing mention word vectors.

Encoding methods based on self-attention have re-
cently become ubiquitous. The EL models presented
in [25, 100, 139, 191, 198] and others rely on the out-
puts from pre-trained BERT layers [36] for context
and mention encoding. In Peters et al. [139], a men-

tion representation is modeled by pooling over word
pieces in a mention span. The authors also put an ad-
ditional self-attention block over all mention represen-
tations that encode interactions between several enti-
ties in a sentence. Another approach to modeling men-
tions is to insert special tags around them and perform
a reduction of the whole encoded sequence. Wu et al.
[191] reduce a sequence by keeping the representation
of the special pooling symbol ‘[CLS]’ inserted at the
beginning of a sequence. Logeswaran et al. [100] mark
positions of a mention span by summing embeddings
of words within the span with a special vector and us-
ing the same reduction strategy as Wu et al. [191]. Ya-
mada et al. [198] concatenate text with all mentions in
it and jointly encode this sequence via a self-attention
model based on pre-trained BERT. In addition to the
simple attention-based encoder of Ganea and Hofmann
[53], Chen et al. [25] leverage BERT for capturing type
similarity between a mention and an entity candidate.
They replace mention tokens with a special “[MASK]”
token and extract the embedding generated for this to-
ken by BERT. A corresponding entity representation is
generated by averaging multiple embeddings of men-
tions.

3.1.3. Entity Encoding
To make EL systems robust, it is essential to con-

struct distributed vector representations of entity can-
didates ye in such a way that they capture semantic re-
latedness between entities in various aspects.

eENC : Ek −→ (ye1 , ye2 , ..., yek
). (7)

For instance, in Figure 4, the most similar entities
for Scott Young in the Scott_Young_(American_football)
sense are related to American football, whereas the
Scott_Young_(writer) sense is in the proximity of writer-
related entities.

There are three common approaches to entity en-
coding in EL: (1) entity representations learned using
unstructured texts and algorithms like word2vec [110]
based on co-occurrence statistics and developed orig-
inally for embedding words; (2) entity representations
constructed using relations between entities in KGs
and various graph embedding methods; (3) training a
full-fledged neural encoder to convert textual descrip-
tions of entities and/or other information into embed-
dings.

In the first category, Ganea and Hofmann [53] col-
lect entity-word co-occurrences statistics from two
sources: entity description pages from Wikipedia; text
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surrounding anchors of hyperlinks to Wikipedia pages
of corresponding entities. They train entity embed-
dings using the max-margin objective that exploits
the negative sampling approach like in the word2vec
model, so vectors of co-occurring words and enti-
ties lie closer to each other compared to vectors of
random words and entities. Some other methods di-
rectly replace or extend mention annotations (usually
anchor text of a hyperlink) with an entity identifier
and straightforwardly train on the modified corpus a
word representation model like word2vec [114, 176,
195, 210, 211]. In [53, 114, 125, 176], entity embed-
dings are trained in such a way that entities become
embedded in the same semantic space as words or
texts (i.e., sentences and paragraphs) [195]. For exam-
ple, Newman-Griffis et al. [125] propose a distantly-
supervised method that expands the word2vec objec-
tive to jointly learn words and entity representations in
the shared space. The authors leverage distant supervi-
sion from terminologies that map entities to their sur-
face forms (e.g. Wikipedia page titles and redirects or
terminology from UMLS [12]).

9We used the English 100D embeddings from
https://wikipedia2vec.github.io/wikipedia2vec/pretrained

In the second category of entity encoding methods
that use relations between entities in a KG, Huang et al.
[70] train a model that generates dense entity represen-
tations from sparse entity features (e.g. entity relations,
descriptions) based on the entity relatedness. Several
works expand their entity relatedness objective with
functions that align words (or mentions) and entities in
a unified vector space [19, 42, 144, 162, 194, 197], just
like the methods from the first category. For example,
Yamada et al. [194] jointly optimize three objectives
to learn word and entity representations: prediction of
neighbor words for the given target word, prediction of
neighbor entities for the target entity based on the re-
lationships in a KG, and prediction of neighbor words
for the given entity.

Recently, knowledge graph embedding has become
a prominent technique and facilitated solving various
NLP and data mining tasks [187] from KG comple-
tion [15, 122, 189] to entity classification [128]. For
entity linking, two major graph embedding algorithms
are widely adopted: DeepWalk [136] and TransE [15].

The goal of the DeepWalk [136] algorithm is to pro-
duce embeddings of vertices that preserve their prox-
imity in a graph [58]. It first generates several ran-
dom walks for each vertex in a graph. The generated

https://wikipedia2vec.github.io/wikipedia2vec/pretrained


walks are used as training data for the skip-gram algo-
rithm. Like in word2vec for language modeling, given
a vertex, the algorithm maximizes the probabilities of
its neighbors in the generated walks. Parravicini et al.
[135], Sevgili et al. [156] leverage DeepWalk-based
graph embeddings built from DBpedia [92] for en-
tity linking. Parravicini et al. [135] use entity embed-
dings to compute cosine similarity scores of candidate
entities in global entity linking. Sevgili et al. [156]
show that combining graph and text-based embeddings
can slightly improve the performance of entity linking
when compared to using only text-based embeddings.

The goal of the TransE [15] algorithm is to con-
struct embeddings of both vertices and relations in
such a way that they are compatible with the facts in
a KG [187]. Consider the facts in a KG are repre-
sented in the form of triples (i.e. head entity, relation,
tail entity). If a fact is contained in a KG, the TransE
margin-based ranking criterion facilitates the presence
of the following correspondence between embeddings:
head+relation ≈ tail. This means that the relationship
in a KG should be a linear translation in the embed-
ding space of entities. At the same time, if there is no
such fact in a KG, this functional relationship should
not hold. The TransE-based entity representations con-
structed from Wikidata [184] and Freebase [14] have
been used for entity representation in language mod-
eling [206] and in several works on EL [9, 124, 168].
Banerjee et al. [9], Sorokin and Gurevych [168] utilize
Wikidata-based entity embeddings as an input com-
ponent of neural models along with other types of
information about entities. The ablation study con-
ducted by Banerjee et al. [9] show that the TransE en-
tity embeddings are the most important features for
their entity linking model. They attribute this finding
to the fact that graph embeddings contain rich infor-
mation about the KG structure. Similarly, Sorokin and
Gurevych [168] find that without KG structure infor-
mation, their entity linker experiences a big perfor-
mance drop. Nedelchev et al. [124] integrate knowl-
edge graph embeddings built from Freebase and word
embeddings in a single end-to-end model that solves
entity and relation linking tasks jointly. The quanti-
tative analysis shows that their KG-embedding-based
method helps to pick correct entity candidates. Re-
cently, Wu et al. [190] also utilize TransE embeddings
with other types of entity embeddings, like Ganea and
Hofmann [53] or dynamic representation, to compute
pairwise entity relatedness scores.

There are many other techniques for KG embed-
ding: [35, 59, 128, 175, 189, 199] inter alia and very

recent 5*E [123], which is designed to preserve com-
plex graph structures in the embedding space. How-
ever, they are not widely used in entity linking right
now. A detailed overview of all graph embedding al-
gorithms is out of the scope of the current work. We
refer the reader to the previous surveys on this topic
[18, 58, 154, 187] and consider integration of novel
KG embedding techniques in EL models a promising
research direction.

In the last category, we place methods that produce
entity representations using other types of information
like entity descriptions and entity types. Often, an en-
tity encoder is a full-fledged neural network, which
is a part of an entity linking architecture. Sun et al.
[171] use a neural tensor network to encode interac-
tions between surface forms of entities and their cate-
gory information from a KG. In the same vein, Francis-
Landau et al. [49] and Nguyen et al. [127] construct
entity representations by encoding titles and entity de-
scription pages with convolutional neural networks. In
addition to a convolutional encoder for entity descrip-
tions, Gupta et al. [62] also include an encoder for fine-
grained entity types by using the type set of FIGER
[96]. Gillick et al. [55] construct entity representa-
tions by encoding entity page titles, short entity de-
scriptions, and entity category information with feed-
forward networks. Le and Titov [87] use only entity
type information from a KG and a simple feed-forward
network for entity encoding. Hou et al. [69] also lever-
age entity types. However, instead of relying on exist-
ing type sets like in [62], they construct custom fine-
grained semantic types using words from starting sen-
tences of Wikipedia pages. To represent entities, they
first average the word vectors of entity types and then
linearly aggregate them with embeddings of Ganea and
Hofmann [53].

Recent works leverage deep language models like
BERT [36] or ELMo [138] for encoding entities. Nie
et al. [129] use an architecture based on a recur-
rent network for obtaining entity representations from
Wikipedia entity description pages. Subsequently, sev-
eral models adopt BERT for the same purpose [100,
191] inter alia. Yamada et al. [198] propose a masked
entity prediction task, where a model based on the
BERT architecture learns to predict randomly masked
input entities. This task makes the model learn also
how to generate entity representations along with stan-
dard word representations. Shahbazi et al. [158] in-
troduce E-ELMo that extends the ELMo model [138]
with an additional objective. The model is trained in
a multi-task fashion: to predict next/previous words,



as in a standard bidirectional language model, and to
predict the target entity when encountering its men-
tions. As a result, besides the model for mention en-
coding, entity representations are obtained. Mulang’
et al. [117] use bidirectional Transformers to jointly
encode context of a mention, a candidate entity name,
and multiple relationships of a candidate entity from
a KG verbalized into textual triples: “[subject] [pred-
icate] [object]”. The input sequence of the encoder is
composed simply by appending all these types of in-
formation delimited by a special separator token.

3.1.4. Entity Ranking
The goal of this stage is given a list of entity candi-

dates (e1, e2, ..., ek) from a KG and a context C with a
mention M to rank these entities assigning a score to
each of them, as in Equation 8, where n is a number of
entity mentions in a document, k is a number of candi-
date entities. Figure 5 depicts the typical architecture
of the ranking component.

RNK : ((e1, e2, ..., ek),C,M)n −→ Rn×k. (8)

The mention representation ym generated in the
mention encoding step is compared with candidate en-
tity representations yei

(i = 1, 2, . . . , k) according to
the similarity measure s(m, ei). Entity representations
can be pre-trained (see Section 3.1.3) or generated
by another encoder as in some zero-shot approaches
(see Section 3.2.3). The BERT-based model of Yamada
et al. [198] simultaneously learns how to encode men-
tions and entity embeddings in the unified architecture.

Most of the state-of-the-art studies compute similar-
ity s(m, e) between representations of a mention m and
an entity e using a dot product as in [53, 62, 82, 139,
191]:

s (m, ei) = ym · yei
; (9)

or cosine similarity as in [49, 55, 171]:

s (m, ei) = cos(ym, yei
) =

ym · yei

‖ym‖ · ‖yei
‖
. (10)

The final disambiguation decision is inferred via a
probability distribution P(ei|m), which is usually ap-
proximated by a softmax function over the candidates.
The calculated similarity score or probability can be
combined with mention-entity priors obtained during
the candidate generation phase [49, 53, 82] or other
features f (ei,m) such as various similarities, a string
matching indicator, and entity types or type similarity

[25, 49, 157, 158, 164, 200]. One of the common tech-
niques for that is to use an additional one or two-layer
feedforward network φ(·, ·) [49, 53, 158]. The obtained
local similarity score Φ(ei,m) or the probability distri-
bution can be further utilized for global scoring (see
Section 3.2.2).

P(ei|m) =
exp(s(m, ei))∑k

i=1 exp(s(m, ei))
. (11)

Φ(ei,m) = φ(P(ei|m), f (ei,m)). (12)

There are several approaches to framing a training
objective in the literature on EL. Consider that we have
k candidates for the target mention m, one of which is
a true entity e∗. In some works, the models are trained
with the standard negative log-likelihood objective like
in classification tasks [100, 191]. However, instead of
classes, negative candidates are used:

L (m) = −s (m, e∗) + log

k∑
i=1

exp (s (m, ei)) .

(13)

Instead of the the negative log-likelihood, some
works use variants of a ranking loss. The idea behind
such an approach is to enforce a positive margin γ > 0
between similarity scores of mentions to positive and
negative candidates [53, 82, 139]:

L(m) =
∑

i

`(ei,m), where (14)

`(ei,m) = [γ − Φ (e∗,m) + Φ(ei,m)]+ . (15)

or

`(ei,m) ={
[γ − Φ(ei,m)]+ , if ei equal e∗
[Φ(ei,m)]+ , otherwise.

(16)

3.1.5. Unlinkable Mention Prediction
The referent entities of some mentions can be ab-

sent in the KGs, e.g. there is no Wikipedia entry about
Scott Young as a cricket player of the Stenhousemuir
cricket club.10 Therefore, an EL system should be able

10Information about Scott Young as a cricket player:
https://www.stenhousemuircricketclub.com/teams/171906/player/
scott-young-1828009

https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
https://www.stenhousemuircricketclub.com/teams/171906/player/scott-young-1828009
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to predict the absence of a reference if a mention ap-
pears in specific contexts, which is known as the NIL
prediction task:

NILp : (C,M)n −→ {0, 1}n. (17)

The NIL prediction task is essentially a classifica-
tion with a reject option [51, 64, 65]. There are four
common ways to perform NIL prediction. Sometimes
a candidate generator does not yield any correspond-
ing entities for a mention; such mentions are trivially
considered unlikable [164, 176]. One can set a thresh-
old for the best linking probability (or a score), below
which a mention is considered unlinkable [84, 139].
Some models introduce an additional special “NIL”
entity in the ranking phase, so models can predict it as
the best match for the mention [82]. It is also possi-
ble to train an additional binary classifier that accepts

mention-entity pairs after the ranking phase, as well as
several additional features (best linking score, whether
mentions are also detected by a dedicated NER sys-
tem, etc.), as input and makes the final decision about
whether a mention is linkable or not [107, 114].

3.2. Modifications of the General Architecture

This section presents the most notable modifications
and improvements of the general architecture of neural
entity linking models presented in Section 3.1 and Fig-
ures 2 and 5. The categorization of each modification
is summarized in Figure 6.

3.2.1. Joint Entity Mention Detection and
Disambiguation

While it is common to separate the mention detec-
tion (cf. Equation 2) and entity disambiguation stages
(cf. Equation 3), as illustrated in Figure 1, a few sys-



tems provide joint solutions for entity linking where
entity mention detection and disambiguation are done
at the same time by the same model. Formally, the task
becomes to detect a mention mi ∈ M and predict an
entity ei ∈ E for a given context ci ∈ C, for all n entity
mentions in the context:

EL : C −→ (M, E)n. (18)

Undoubtedly, solving these two problems simulta-
neously makes the task more challenging. However,
the interaction between these steps can be beneficial
for improving the quality of the overall pipeline due
to their natural mutual dependency. While first com-
petitive models that provide joint solutions were prob-
abilistic graphical models [102, 126], we focus on
purely neural approaches proposed recently [17, 23,
33, 82, 107, 139, 142, 168].

The main difference of joint models is the necessity
to produce also mention candidates. For this purpose,
Kolitsas et al. [82] and Peters et al. [139] enumerate all
spans in a sentence with a certain maximum width, fil-
ter them by several heuristics (remove mentions with
stop words, punctuation, ellipses, quotes, and curren-
cies), and try to match them to a pre-built index of en-
tities used for the candidate generation. If a mention
candidate has at least one corresponding entity candi-
date, it is further treated by a ranking neural network
that can also discard it by considering it unlinkable
to any entity in a KG (see Section 3.1.4). Therefore,
the decision during the entity disambiguation phase af-
fects mention detection. In a similar fashion, Sorokin
and Gurevych [168] treat each token n-gram up to a
certain length as a possible mention candidate. They
use an additional binary classifier for filtering can-
didate spans, which is trained jointly with an entity
linker. Banerjee et al. [9] also enumerates all possible
n-grams and expands each of them with candidate en-
tities, which results in a long sequence of points cor-
responding to a candidate entity for a particular men-
tion n-gram. This sequence is further processed by a
single-layer BiLSTM pointer network [183] that gen-
erates index numbers of potential entities in the input
sequence. Li et al. [94] consider various possible spans
as mention candidates and introduce a loss component
for boundary detection, which is optimized along with
the loss for disambiguation.

Martins et al. [107] describe the approach with
tighter integration between detection and linking phases
via multi-task learning. The authors propose a stack-
based bidirectional LSTM network with a shift-reduce

mechanism and attention for entity recognition that
propagates its internal states to the linker network
for candidate entity ranking. The linker is supple-
mented with a NIL predictor network. The networks
are trained jointly by optimizing the sum of losses
from all three components.

Broscheit [17] goes further by suggesting a com-
pletely end-to-end method that deals with mention de-
tection and linking jointly without explicitly executing
a candidate generation step. In this work, the EL task
is formulated as a sequence labeling problem, where
each token in the text is assigned an entity link or a
NIL class. They leverage a sequence tagger based on
pre-trained BERT for this purpose. This simplistic ap-
proach does not supersede [82] but outperforms the
baseline, in which candidate generation, mention de-
tection, and linking are performed independently. In
the same vein, Chen et al. [23] use a sequence tagging
framework for joint entity mention detection and dis-
ambiguation. However, they experiment with both set-
tings: when a candidate list is available and not, and
demonstrate that it is possible to achieve high linking
performance without candidate sets. Similar to Li et al.
[94], they optimize the joint loss for linking and men-
tion boundary detection.

Poerner et al. [142] propose a model E-BERT-
MLM, in which they repurpose the masked language
model (MLM) objective for the selection of entity can-
didates in an end-to-end EL pipeline. The candidate
mention spans and candidate entity sets are generated
in the same way as in [82]. For candidate selection, E-
BERT-MLM inserts a special “[E-MASK]” token into
the text before the considered candidate mention span
and tries to restore an entity representation for it. The
model is trained by minimizing the cross-entropy be-
tween the generated entity distribution of the poten-
tial spans and gold entities. In addition to the standard
BERT architecture, the model contains a linear trans-
formation pre-trained to align entity embeddings with
embeddings of word-piece tokens.

De Cao et al. [33] recently have proposed a genera-
tive approach to performing mention detection and dis-
ambiguation jointly. Their model, which is based on
BART [93], performs a sequence-to-sequence autore-
gressive generation of text markup with information
about mention spans and links to entities in a KG. The
generation process is constrained by a markup format
and a candidate set, which is retrieved from standard
pre-built candidate resources. Most of the time, the
network works in a copy-paste regime when it copies
input tokens into the output. When it finds a begin-
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ning of a mention, the model marks it with a square
bracket, copies all tokens of a mention, adds a fin-
ishing square bracket, and generates a link to an en-
tity. Although this approach to EL, at the first glance,
is counterintuitive and completely different from the
solutions with a standard bi-encoder architecture, this
model achieves near state-of-the-art results for joint
MD and ED and competitive performances on ED-
only benchmarks. However, as it is shown in the pa-
per, to achieve such impressive results, the model had
to be pre-trained on a large annotated Wikipedia-based
dataset [191]. The authors also note that the memory
footprint of the proposed model is much smaller than
that of models based on the standard architecture due
to no need for storing entity embeddings.

3.2.2. Global Context Architectures
Two kinds of contextual information are available

in entity disambiguation: local and global. In local ap-
proaches to ED, each mention is disambiguated inde-
pendently based on the surrounding words, as in the
following function:

LED : (M,C) −→ E. (19)

Global approaches to ED take into account semantic
consistency (coherence) across multiple entities in a
context. In this case, all q entity mentions in a group
are disambiguated interdependently: a disambiguation
decision for one entity is affected by decisions made
for other entities in a context as illustrated in Figure 7
and Equation 20.

GED : ((m1,m2, ...,mq),C) −→ Eq. (20)

In the example presented in Figure 7, the consis-
tency score between correct entity candidates: the na-
tional football team sense of Wales and the Welsh foot-
baller sense of Scott Young and John Hartson, is ex-
pected to be higher than between incorrect ones.

Besides involving consistency, the considered con-
text of a mention in global methods is usually larger
than in local ones or even extends to the whole doc-
ument. Although modeling consistency between en-
tities and the extra information of the global context
improves the disambiguation accuracy, the number
of possible entity assignments is combinatorial [54],
which results in high time complexity of disambigua-
tion [53, 200]. Another difficulty is an attempt to as-
sign an entity its consistency score since this score is
not possible to compute in advance due to the simulta-
neous disambiguation [194].

The typical approach to global disambiguation is to
generate a graph including candidate entities of men-
tions in a context and perform some graph algorithms,
like random walk algorithms (e.g. PageRank [133]) or
graph neural networks, over it to select highly consis-
tent entities [61, 137, 210, 211]. Recently, Xue et al.
[192] propose a neural recurrent random walk net-
work learning algorithm based on the transition ma-
trix of candidate entities containing relevance scores,
which are created from hyperlinks information and co-
sine similarity of entities. Cao et al. [20] construct a
subgraph from the candidates of neighbor mentions,
integrate local and global features of each candidate,
and apply a graph convolutional network over this
subgraph. In this approach, the graph is static, which
would be problematic in such cases that two men-
tions would co-occur in different documents with dif-
ferent topics, however, the produced graphs will be the
same, and so, could not catch the different informa-
tion [190]. To address it, Wu et al. [190] propose a
dynamic graph convolution architecture, where entity
relatedness scores are computed and updated in each
layer based on the previous layer information (initial-
ized with some features, including context scores) and
entity similarity scores. Globerson et al. [56] introduce
a model with an attention mechanism that takes into
account only the subgraph of the target mention, rather



than all interactions of all the mentions in a document
and restrict the number of mentions with an attention.

Some works approach global ED by maximizing the
Conditional Random Field (CRF) potentials, where the
first component Ψ represents a local entity-mention
score, and the other component Φ measures coherence
among selected candidates [53, 54, 85, 86], as defined
in Ganea and Hofmann [53]:

g(e,m, c) =

n∑
i=1

Ψ(ei,mi, ci)+
∑
i< j

Φ(ei, e j). (21)

However, model training and its exact inference are
NP-hard. Ganea and Hofmann [53] utilize truncated
fitting of loopy belief propagation [54, 56] with differ-
entiable and trainable message passing iterations us-
ing pairwise entity scores to reduce the complexity. Le
and Titov [85] expand it in a way that pairwise scores
take into account relations of mentions (e.g. located_in,
or coreference: the mentions are coreferent if they re-
fer to the same entity) by modeling relations between
mentions as latent variables. Shahbazi et al. [157] de-
velop a greedy beam search strategy, which starts from
a locally optimal initial solution and is improved by
searching for possible corrections with the focus on the
least confident mentions.

Despite the optimizations proposed like in some
aforementioned works, taking into account coherence
scores among candidates of all mentions at once can be
prohibitively slow. It also can be malicious due to er-
roneous coherence among wrong entities [43]. For ex-
ample, if two mentions have coherent erroneous can-
didates, this noisy information may mislead the fi-
nal global scoring. To resolve this issue, some stud-
ies define the global ED problem as a sequential de-
cision task, where the disambiguation of new entities
is based on the already disambiguated ones with high
confidence. Fang et al. [43] train a policy network
for sequential selection of entities using reinforcement
learning. The disambiguation of mentions is ordered
according to the local score, so the mentions with high
confident entities are resolved earlier. The policy net-
work takes advantage of output from the LSTM global
encoder that maintains the information about earlier
disambiguation decisions. Yang et al. [200] also uti-
lize reinforcement learning for mention disambigua-
tion. They use an attention model to leverage knowl-
edge from previously linked entities. The model dy-
namically selects the most relevant entities for the tar-
get mention and calculates the coherence scores. Ya-

mada et al. [198] iteratively predict entities for yet un-
resolved mentions with a BERT model, while attend-
ing on the previous most confident entity choices. Sim-
ilarly, Gu et al. [60] sort mentions based on their am-
biguity degrees produced by their BERT-based local
model and update query/context based on the linked
entities so that the next prediction can leverage the
previous knowledge. They also utilize a gate mech-
anism to control historical cues – representations of
linked entities. Yamada et al. [194] and Radhakrishnan
et al. [144] measure the similarity first based on un-
ambiguous mentions and then predict entities for com-
plex cases. Nguyen et al. [127] use an RNN to implic-
itly store information about previously seen mentions
and corresponding entities. They leverage the hidden
states of the RNN to reach this information as a feature
for the computation of the global score. Tsai and Roth
[176] directly use embeddings of previously linked en-
tities as features for the disambiguation model. Re-
cently, Fang et al. [44] combine sequential approaches
with graph based methods, where the model dynami-
cally changes the graph depending on the current state.
The graph is constructed with previously resolved en-
tities, current candidate entities, and subsequent men-
tion’s candidates. The authors use a graph attention
network over this graph to make a global scoring. As
explained before, Wu et al. [190] also change the en-
tity graph dynamically depending on the outputs from
previous layers of a GCN. Zwicklbauer et al. [211] in-
clude to the candidates graph a topic node created from
the set of already disambiguated entities.

Some studies, for example, Kolitsas et al. [82]
model the coherence component as an additional feed-
forward neural network that uses the similarity score
between the target entity and an average embedding of
the candidates with a high local score. Fang et al. [42]
use the similarity score between the target entity and
its surrounding entity candidates in a specified window
as a feature for the disambiguation model.

Another approach that can be considered as global
is to make use of a document-wide context, which usu-
ally contains more than one mention and helps to cap-
ture the coherence implicitly instead of explicitly de-
signing an entity coherence component [49, 62, 114,
139].

3.2.3. Domain-Independent Architectures
Domain independence is one of the most desired

properties of EL systems. Annotated resources are
very limited and exist only for a few domains. Obtain-
ing labeled data in a new domain requires much la-



bor. Earlier, this problem is tackled by few domain-
independent approaches based on unsupervised [19,
125, 186] and semi-supervised models [84]. Recent
studies provide solutions based on distant learning and
zero-shot methods.

Le and Titov [86, 87] propose distant learning tech-
niques that use only unlabeled documents. They rely
on the weak supervision coming from a surface match-
ing heuristic, and the EL task is framed as binary
multi-instance learning. The model learns to distin-
guish between a set of positive entities and a set of ran-
dom negatives. The positive set is obtained by retriev-
ing entities with a high word overlap with the men-
tion and that have relations in a KG to candidates of
other mentions in the sentence. While showing promis-
ing performance, which in some cases rivals results
of fully supervised systems, these approaches require
either a KG describing relations of entities [87] or
mention-entity priors computed from entity hyperlink
statistics extracted from Wikipedia [86].

Recently proposed zero-shot techniques [100, 173,
191, 201] tackle problems related to adapting EL sys-
tems to new domains. In the zero-shot setting, the only
entity information available is its description. As well
as in other settings, texts with mention-entity pairs are
also available. The key idea of zero-shot methods is to
train an EL system on a domain with rich labeled data
resources and apply it to a new domain with only mini-
mal available data like descriptions of domain-specific
entities. One of the first studies that proposes such a
technique is Gupta et al. [62] (not purely zero-shot be-
cause they also use entity typings). Existing zero-shot
systems do not require such information resources as
surface form dictionaries, prior entity-mention proba-
bilities, KG entity relations, and entity typing, which
makes them particularly suited for building domain-
independent solutions. However, the limitation of in-
formation sources raises several challenges.

Since only textual descriptions of entities are avail-
able for the target domain, one cannot rely on pre-
built dictionaries for candidate generation. All zero-
shot works rely on the same strategy to tackle candi-
date generation: pre-compute representations of entity
descriptions (sometimes referred to as caching), com-
pute a representation of a mention, and calculate its
similarity with all the description representations. Pre-
computed representations of descriptions save a lot of
time at the inference stage. Particularly, Logeswaran
et al. [100] use the BM25 information retrieval for-
mula [78], which is a similarity function for count-
based representations.

A natural extension of count-based approaches is
embeddings. The method proposed by Gillick et al.
[55], which is a predecessor of zero-shot approaches,
uses average unigram and bigram embeddings fol-
lowed by dense layers to obtain representations of
mentions and descriptions. The only aspect that sep-
arates this approach from pure zero-shot techniques
is the usage of entity categories along with descrip-
tions to build entity representations. Cosine similarity
is used for the comparison of representations. Due to
the computational simplicity of this approach, it can be
used in a single stage fashion where candidate gener-
ation and ranking are identical. For further speedup, it
is possible to make this algorithm two-staged. In the
first stage, an approximate search can be used for can-
didate set retrieval. In the second stage, the retrieved
smaller set can be used for exact similarity computa-
tion. Instead of simple embeddings, Wu et al. [191]
suggest using a BERT-based bi-encoder for candidate
generation. Two separate encoders generate represen-
tations of mentions and entity descriptions. Similar to
the previous work, the candidate selection is based on
the score obtained via a dot-product of mention/entity
representations.

For entity ranking, a very simple embedding-based
approach of Gillick et al. [55] described above shows
very competitive scores on the TAC KBP-2010 bench-
mark, outperforming some complex neural architec-
tures. The recent studies of Logeswaran et al. [100] and
Wu et al. [191] utilize a BERT-based cross-encoder to
perform joint encoding of mentions and entities. The
cross-encoder takes a concatenation of a context with
a mention and an entity description to produce a scalar
score for each candidate. The cross-attention helps to
leverage the semantic information from the context
and the definition on each layer of the encoder net-
work [71, 150]. In both studies, cross-encoders achieve
superior results compared to bi-encoders and count-
based approaches. For entity linking, cross-attention
between mention context representations and entity
descriptions is also used by Nie et al. [129]. How-
ever, they leverage recurrent architectures for encod-
ing. Yao et al. [201] introduce a small tweak of posi-
tional embeddings in the Logeswaran et al. [100]’s ar-
chitecture aimed at better handling long contexts. Tang
et al. [173] address the problem of the limited size
of the mention context and the entity description that
could be processed by the standard BERT model. They
argue that the input size of 512 tokens is not enough
to capture context and entity description relatedness
since the evidence for linking could scatter in differ-



ent paragraphs and suggest a novel architecture that
resolves this problem. Roughly speaking, their model
splits the context of a mention and entity description
into multiple paragraphs, performs cross-attention be-
tween representations of these paragraphs, and aggre-
gates the results for disambiguation. The experimen-
tal results show that their model substantially improves
the zero-shot performance keeping the inference time
in an acceptable range.

Evaluation of zero-shot systems requires data from
different domains. Logeswaran et al. [100] proposes
the Zero-shot EL11 dataset, constructed from several
Wikias12. In the proposed setting, training is per-
formed on one set of Wikias while evaluation is per-
formed on others. Gillick et al. [55] construct the
Wikinews dataset. This dataset can be used for evalua-
tion after training on Wikipedia data.

Clearly, heavy neural architectures pre-trained on
general-purpose open corpora substantially advance
the performance of zero-shot techniques. As high-
lighted by Logeswaran et al. [100] further unsuper-
vised pre-training on source data, as well as on the tar-
get data is beneficial. The development of better ap-
proaches to the utilization of unlabeled data might be
a fruitful research direction. Furthermore, closing the
performance gap of entity ranking between a fast rep-
resentation based bi-encoder and a computationally in-
tensive cross-encoder is an open question.

3.2.4. Cross-lingual Architectures
An abundance of labeled data for EL in English con-

trasts with the amount of data available in other lan-
guages. The cross-lingual EL (sometimes called XEL)
methods [76] aim at overcoming the lack of annota-
tion for resource-poor languages by leveraging super-
vision coming from their resource-rich counterparts.
Many of these methods are feasible due to the presence
of a unique source of supervision for EL – Wikipedia,
which is available for a variety of languages. The inter-
language links in Wikipedia that map pages in one
language to equivalent pages in another language also
help to map corresponding entities in different lan-
guages.

Challenges in XEL start at candidate generation
and mention detection steps since a resource-poor lan-
guage can lack mappings between mention strings and
entities. In addition to the standard mention-entity pri-
ors based on inter-language links [164, 176, 179], can-

11https://github.com/lajanugen/zeshel
12https://www.wikia.com

didate generation can be approached by mining a trans-
lation dictionary [134], training a translation and align-
ment model [177, 180], or applying a neural character-
level string matching model [151, 207]. In the latter
approach, the model is trained to match strings from
a high-resource pivot language to strings in English.
If a high-resource pivot language is similar to the tar-
get low-resource one, such a model is able to produce
reasonable candidates for the latter. The neural string
matching approach can be further improved with sim-
pler average n-gram encoding and extending entity-
entity pairs with mention-entity examples [208]. Such
an approach can also be applied to entity recognition
[31]. Fu et al. [50] criticize methods that solely rely
on Wikipedia due to the lack of inter-language links
for resource-poor languages. They propose a candidate
generation method that leverages results from query-
ing online search engines (Google and Google Maps)
and show that due to its much higher recall compared
to other methods, it is possible to substantially increase
the performance of XEL.

There are several approaches to candidate ranking
that take advantage of cross-lingual data for dealing
with the lack of annotated examples. Pan et al. [134]
use the Abstract Meaning Representation (AMR) [8]
statistics in English Wikipedia and mention context for
ranking. To train an AMR tagger, pseudo-labeling [89]
is used. Tsai and Roth [176] train monolingual embed-
dings for words and entities jointly by replacing ev-
ery entity mention with corresponding entity tokens.
Using the inter-language links, they learn the projec-
tion functions from multiple languages into the En-
glish embedding space. For ranking, context embed-
dings are averaged, projected into the English space,
and compared with entity embeddings. The authors
demonstrate that this approach helps to build better
entity representations and boosts the EL accuracy in
the cross-lingual setting by more than 1% for Span-
ish and Chinese. Sil et al. [164] propose a method for
zero-shot transfer from a high-resource language. The
authors extend the previous approach with the least
squares objective for embedding projection learning,
the CNN context encoder, and a trainable re-weighting
of each dimension of context and entity representa-
tions. The proposed approach demonstrates improved
performance as compared to previous non-zero-shot
approaches. Upadhyay et al. [179] argues that the suc-
cess of zero-shot cross-lingual approaches [164, 176]
might be largely originating from a better estimation
of mention-entity prior probabilities. Their approach
extends [164] with global context information and in-

https://github.com/lajanugen/zeshel
https://www.wikia.com


corporation of typing information into context and en-
tity representations (the system learns to predict typ-
ing during the training). The authors report a signif-
icant drop in performance for zero-shot cross-lingual
EL without mention-entity priors, while showing state-
of-the-art results with priors. They also show that train-
ing on a resource-rich language might be very benefi-
cial for low-resource settings.

The aforementioned techniques of cross-lingual en-
tity linking heavily rely on pre-trained multilingual
embeddings for entity ranking. While being effec-
tive in settings with at least prior probabilities avail-
able, the performance in realistic zero-shot scenarios
drops drastically. Along with the recent success of the
zero-shot multilingual transfer of large pre-trained lan-
guage models, this is a motivation to utilize power-
ful multilingual self-supervised models. Botha et al.
[16] use the zeros-shot monolingual architecture of
Logeswaran et al. [100], Wu et al. [191] and mBERT
[141] to build a massively multilingual EL model for
more than 100 languages. Their system effectively se-
lects proper entities among almost 20 million of can-
didates using a bi-encoder, hard negative mining, and
an additional cross-lingual entity description retrieval
task. The biggest improvements over the baselines are
achieved in the zero-shot and few-shot settings, which
demonstrates the benefits of training on a large amount
of multilingual data.

3.3. Methods that do not Fit the General Architecture

There are a few works that propose methods not fit-
ting the general architecture presented in Figures 2 and
5. Raiman and Raiman [146] rely on the intermediate
supplementary task of entity typing instead of directly
performing entity disambiguation. They learn a type
system in a KG and train an intermediate type clas-
sifier of mentions that significantly refines the num-
ber of candidates for the final linking model. Onoe
and Durrett [131] leverage distant supervision from
Wikipedia pages and the Wikipedia category system to
train a fine-grained entity typing model. At test time,
they use the soft type predictions and the information
about candidate types derived from Wikipedia to per-
form the final disambiguation. The authors claim that
such an approach helps to improve the domain inde-
pendence of their EL system. Kar et al. [80] consider
a classification approach, where each entity is consid-
ered as a separate class or a task. They show that the
straightforward classification is difficult due to exceed-
ing memory requirements. Therefore, they experiment

with multitask learning, where parameter learning is
decomposed into solving groups of tasks. Globerson
et al. [56] do not have any encoder components; in-
stead, they rely on contextual and pairwise feature-
based scores. They have an attention mechanism for
global ED with a non-linear optimization as described
in Section 3.2.2.

3.4. Summary

We summarize design features for neural EL mod-
els in Table 2 and also links to their publicly available
implementations in Table 7 in Appendix A. The men-
tion encoders have made a shift to self-attention ar-
chitectures and started using deep pre-trained models
like BERT. The majority of studies still rely on exter-
nal knowledge for the candidate generation step. There
is a surge of models that tackle the domain adapta-
tion problem in a zero-shot fashion. However, the task
of zero-shot joint entity mention detection and link-
ing has not been addressed yet. It is shown in several
works that the cross-encoder architecture is superior
compared to models with separate mention and entity
encoders. The global context is widely used, but there
are few recent studies that focus only on local EL.

Each column in Table 2 corresponds to a model fea-
ture. The encoder type column presents the architec-
ture of the mention encoder of the neural entity linking
model. It contains the following options:

– n/a – a model does not have a neural encoder for
mentions / contexts.

– CNN – an encoder based on convolutional layers
(usually with pooling).

– Tensor net. – an encoder that uses a tensor net-
work.

– Atten. – means that a context-mention encoder
leverages an attention mechanism to highlight the
part of the context using an entity candidate.

– GRU – an encoder based on a recurrent neural
network and gated recurrent units [29].

– LSTM – an encoder based on a recurrent neural
network and long short-term memory cells [66]
(might be also bidirectional).

– FFNN – an encoder based on a simple feedfor-
ward neural network.

– ELMo – an encoder based on a pre-trained ELMo
model [138].

– BERT – an encoder based on a pre-trained BERT
model [36].



Table 2
Features of neural EL models. Neural entity linking models compared according to their architectural features. The description of columns is
presented in the beginning of Section 3.4. The footnotes in the table are enumerated in the end of Section 3.4.

Model Encoder Type Global
MD+
ED

NIL
Pred.

Ent. Encoder
Source based on

Candidate
Generation

Learning Type
for Disam.

Cross-
lingual

Sun et al. (2015) [171] CNN+Tensor net. ent. specific info. surface match+aliases supervised
Francis-Landau et al. (2016) [49] CNN 83 8 ent. specific info. surface match+prior supervised
Fang et al. (2016) [42] word2vec-based 8 relational info. n/a supervised
Yamada et al. (2016) [194] word2vec-based 8 relational info. aliases supervised

Zwicklbauer et al. (2016b) [211] word2vec-based 8 8
unstructured text +
ent. specific info. surface match unsupervised5

Tsai and Roth (2016) [176] word2vec-based 8 8 unstructured text prior supervised 8

Nguyen et al. (2016b) [127] CNN 8 8 ent. specific info. surface match+prior supervised
Globerson et al. (2016) [56] n/a 8 n/a prior+aliases supervised

Cao et al. (2017) [19] word2vec-based 8 relational info. aliases
supervised or
unsupervised

Eshel et al. (2017) [40] GRU+Atten. unstructured text1 aliases or surface match supervised
Ganea and Hofmann (2017) [53] Atten. 8 unstructured text prior+aliases supervised
Moreno et al. (2017) [114] word2vec-based 83 8 unstructured text surface match+aliases supervised
Gupta et al. (2017) [62] LSTM 83 ent. specific info. prior supervised4

Nie et al. (2018) [129] LSTM+CNN 8 ent. specific info. surface match+prior supervised
Sorokin and Gurevych (2018) [168] CNN 8 8 relational info. surface match supervised
Shahbazi et al. (2018) [157] Atten. 8 unstructured text prior+aliases supervised
Le and Titov (2018) [85] Atten. 8 unstructured text prior+aliases supervised
Newman-Griffis et al. (2018) [125] word2vec-based unstructured text aliases unsupervised
Radhakrishnan et al. (2018) [144] n/a 8 relational info. aliases supervised
Kolitsas et al. (2018) [82] LSTM 8 8 unstructured text prior+aliases supervised

Sil et al. (2018) [164] LSTM+Tensor net. 8 ent. specific info.
prior or

prior+aliases zero-shot 8

Upadhyay et al. (2018a) [179] CNN 83 ent. specific info. prior zero-shot 8

Cao et al. (2018) [20] Atten. 8 relational info. prior+aliases supervised
Raiman and Raiman (2018) [146] n/a 8 n/a prior+type classifier supervised 8

Mueller and Durrett (2018) [116] GRU+Atten.+CNN unstructured text1 surface match supervised

Shahbazi et al. (2019) [158] ELMo unstructured text
prior+aliases

or aliases supervised

Logeswaran et al. (2019) [100] BERT ent. specific info. BM25 zero-shot
Gillick et al. (2019) [55] FFNN ent. specific info. nearest neighbors supervised4

Peters et al. (2019) [139]2 BERT 83 8 8 unstructured text prior+aliases supervised

Le and Titov (2019b) [87] LSTM ent. specific info. surface match
weakly-

supervised

Le and Titov (2019a) [86] Atten. 8 unstructured text prior+aliases weakly-
supervised

Fang et al. (2019) [43] LSTM 8
unstructured text +
ent. specific info. aliases supervised

Martins et al. (2019) [107] LSTM 8 8 unstructured text aliases supervised

Yang et al. (2019) [200] Atten. or CNN 8
unstructured text or
ent. specific. info. prior+aliases supervised

Xue et al. (2019) [192] CNN 8 ent. specific info. prior+aliases supervised

Zhou et al. (2019) [207] n/a 8 unstructured text
prior+char.-
level model zero-shot 8

Broscheit (2019) [17] BERT 8 8 n/a n/a supervised

Hou et al. (2020) [69] Atten. 8
ent. specific info.+
unstructured text prior+aliases supervised

Onoe and Durrett (2020) [131]
ELMo+Atten.
+CNN+LSTM n/a prior or aliases supervised4

Chen et al. (2020) [23] BERT 8 relational info. n/a or aliases supervised
Wu et al. (2020b) [191] BERT ent. specific info. nearest neighbors zero-shot

Banerjee et al. (2020) [9] fastText 8 relational info. surface match supervised

Wu et al. (2020a) [190] ELMo 8
unstructured text+

relational info. prior+aliases supervised

Fang et al. (2020) [44] BERT 8 ent. specific info.
surface match+aliases+

Google Search supervised

Chen et al. (2020) [25] Atten.+BERT 8 unstructured text prior+aliases supervised
Botha et al. (2020) [16] BERT ent. specific info. nearest neighbors zero-shot 8

Yao et al. (2020) [201] BERT ent. specific info. BM25 zero-shot
Li et al. (2020) [94] BERT 8 ent. specific info. nearest neighbors zero-shot
Poerner et al. (2020) [142]2 BERT 8 8 8 relational info. prior+aliases supervised

Fu et al. (2020) [50] M-BERT ent. specific info.
Google Search
Google Maps zero-shot 8

Mulang’ et al. (2020) [117] Atten. or CNN or BERT 8 relational info. prior+aliases supervised

Yamada et al. (2021) [198] BERT 8 unstructured text
prior+aliases

or aliases supervised

Gu et al. (2021) [60] BERT 8 8 ent. specific info.
surface match+prior

or aliases supervised

Tang et al. (2021) [173] BERT ent. specific info. BM25 zero-shot
De Cao et al. (2021) [33] BART 8 8 n/a prior+aliases supervised



– fastText – an encoder based on a pre-trained fast-
Text model [13].

– word2vec-based – an encoder that leverages prin-
ciples of CBOW or skip-gram algorithms [88,
110, 111].

Note that the theoretical complexity of various types
of encoders is different. As discussed by Vaswani
et al. [182], complexity per layer of self-attention is
O(n2 ·d), as compared to O(n·d2) for a recurrent layer,
and O(k · n · d2) for a convolutional layer, where n is
the length of an input sequence, d is the dimension-
ality, and k is the kernel size of convolutions. At the
same time, the self-attention allows for a better paral-
lelization than the recurrent networks as the number of
sequentially executed operations for self-attention re-
quires a constant number of sequentially executed op-
erations of O(1), while a recurrent layer requires O(n)
sequential operations. Overall, estimation of the com-
putational complexity of training and inference of var-
ious neural networks is certainly beyond the scope of
the goal of this survey. The interested reader may re-
fer to [182] and specialized literature on this topic,
e.g. [99, 132, 165].

The global column shows whether a system uses a
global solution (see Section 3.2.2). The MD+ED col-
umn refers to joint entity mention detection and disam-
biguation models, where detection and disambiguation
of entities are performed collectively (Section 3.2.1).
The NIL prediction column points out models that
also label unlinkable mentions. The entity embedding
column presents which resource is used to train entity
representations based on the categorization in Section
3.1.3, where

– n/a – a model does not have a neural encoder for
entities.

– unstructured text – entity representations are con-
structed from unstructured text using approaches
based on co-occurrence statistics developed orig-
inally for word embeddings like word2vec [110].

– relational info. – a model uses relations between
entities in KGs.

– ent. specific info. – an entity encoder uses other
types of information, like entity descriptions,
types, or categories.

In the candidate generation column, the candidate
generation methods are specified (Section 3.1.1). It
contains the following options:

– n/a – the solution that does not have an explicit
candidate generation step (e.g. the method pre-
sented by Broscheit [17]).

– surface match – surface form matching heuristics.
– aliases – a supplementary aliases for entities in a

KG.
– prior – filtering candidates with pre-calculated

mention-entity prior probabilities or frequency
counts.

– type classifier – Raiman and Raiman [146] filter
candidates using a classifier for an automatically
learned type system.

– BM25 – a variant of TF-IDF to measure similarity
between a mention and a candidate entity based
on description pages.

– nearest neighbors – the similarity between men-
tion and entity representations is calculated, and
entities that are nearest neighbors of mentions are
retrieved as candidates. Wu et al. [191] train a
supplementary model for this purpose.

– Google search – leveraging Google Search En-
gine to retrieve entity candidates.

– char.-level model – a neural character-level string
matching model.

The learning type for disambiguation column
shows whether a model is ‘supervised’, ‘unsuper-
vised’, ‘weakly-supervised’, or ‘zero-shot’. The cross-
lingual column refers to models that provide cross-
lingual EL solutions (Section 3.2.4).

In addition, the following superscript notations are
used to denote specific features of methods shown as a
note in the Table 2:

1. These works use only entity description pages,
however, they are labeled as the first category
(unstructured text) since their training method is
based on principals from word2vec.

2. The authors provide EL as a subsystem of lan-
guage modeling.

3. These solutions do not rely on global coherence
but are marked as “global” because they use
document-wide context or multiple mentions at
once for resolving entity ambiguity.

4. These studies are domain-independent as dis-
cussed in Section 3.2.3.

5. Zwicklbauer et al. [211] may not be accepted as
purely unsupervised since they have some thresh-



old parameters in the disambiguation algorithm
tuned on a labeled set.

4. Evaluation

In this section, we present evaluation results for the
entity linking and entity relatedness tasks on the com-
monly used datasets.

4.1. Entity Linking

4.1.1. Experimental Setup
The evaluation results are reported based on two

different evaluation settings. The first setup is entity
disambiguation (ED) where the systems have access
to the mention boundaries. The second setup is en-
tity mention detection and disambiguation (MD+ED)
where the input for the systems that perform MD and
ED jointly is only plain text. We presented their results
in separate tables since the scores for the joint models
accumulate the errors made during the mention detec-
tion phase.

Datasets We report the evaluation results of mono-
lingual EL models on the English datasets widely-used
in recent research publications: AIDA [67], TAC KBP
2010 [75], MSNBC [32], AQUAINT [112], ACE2004
[148], CWEB [52, 61], and WW [61]. AIDA is the
most popular dataset for benchmarking EL systems.
For AIDA, we report the results calculated for the test
set (AIDA-B).

The cross-lingual EL results are reported for the
TAC KBP 2015 [76] Spanish (es) and Chinese (zh)
datasets. The descriptive statistics of the datasets and
their text genres are presented in Table 3 according to
information reported in [39, 53, 75, 76, 191].

Evaluation Metrics For the ED setting, we present
micro F1 or accuracy scores reported by model au-
thors. We note that, since mentions are provided as
an input, the number of mentions predicted by the
model is equal to the number of mentions in the ground
truth [160], so micro F1, precision, recall, and accu-
racy scores are equal in this setting as explained in
Shen et al. [160]:

F1 = Acc =
# correctly disamb. mentions

# total mentions
.

(22)

For the MD+ED setting, where joint models are
evaluated, we report micro F1 scores based on strong
annotation matching. The formulas to compute F1
scores are shown below, as described in Shen et al.
[160] and Ganea et al. [54]:

P =
# correctly detected and disamb. mentions

# predicted mentions by model
,

(23)

R =
# correctly detected and disamb. mentions

# mentions in ground truth
,

(24)

F1 =
2 · P · R
P + R

. (25)

We note that results reported in multiple consid-
ered papers are usually obtained using GERBIL [153]
– a platform for benchmarking EL models. It im-
plements various experimental setups, including en-
tity disambiguation denoted as D2KB and a combi-
nation of mention detection and disambiguation de-
noted as A2KB. GERBIL encompasses many evalua-
tion datasets in a standartized way along with annota-
tions and provides the computation of evaluation met-
rics, i.e. micro-macro precision, recall, and F-measure.

Baseline Models While our goal is to perform a sur-
vey of neural EL systems, we also report results of sev-
eral indicative and prominent classic non-neural sys-
tems as baselines to underline the advances yielded by
neural models. More specifically, we report results of
DBpedia Spotlight (2011) [108], AIDA (2011) [67],
Ratinov et al. (2011) [148], WAT (2014) [140], Ba-
belfy (2014) [115], Lazic et al. (2015) [84], Chisholm
and Hachey (2015) [27], and PBOH (2016) [54].

For considered neural EL systems, we present the
best scores reported by the authors. For the baseline
systems, the results are reported according to Kolitsas
et al. [82]13 and Ganea and Hofmann [53].

4.1.2. Discussion of Results
Entity Disambiguation Results We start our discus-
sion of the results from the entity disambiguation (ED)
models, for which mention boundaries are provided.
Figure 8 shows how the performance of the entity dis-
ambiguation models on the most widely-used dataset
AIDA improved during the course of the last decade

13Some of the baseline scores are presented in the appendix of
[82], which is available at https://arxiv.org/pdf/1808.07699.pdf

https://arxiv.org/pdf/1808.07699.pdf


Table 3
Evaluation datasets. Descriptive statistics of the evaluation datasets used in this survey to compare the EL models. The values for MSNBC,
AQUAINT, and ACE2004 datasets are based on the update by Guo and Barbosa [61]. The statistics for AIDA-B, MSNBC, AQUAINT, ACE2004,
CWEB, and WW is reported according to [53] (# of mentions takes into account only non-NIL entity references). The TAC KBP dataset
statistics is reported according to [39, 75, 76, 191] (# of mentions takes into account also NIL entity references).

Corpus Text Genre # of Documents # of Mentions

AIDA-B [67] News 231 4,485

MSNBC [32] News 20 656

AQUAINT [112] News 50 727

ACE2004 [148] News 36 257

CWEB [52, 61] Web & Wikipedia 320 11,154

WW [61] Web & Wikipedia 320 6,821

TAC KBP 2010 [75] News & Web 2,231 2,250
TAC KBP 2015 Chinese [76] News & Forums 166 11,066
TAC KBP 2015 Spanish [76] News & Forums 167 5,822
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Fig. 8. Entity disambiguation progress. Performance of the classic entity linking models (green) with the more recent neural models (gray) on
the AIDA test set shows an improvement (around 10 points of accuracy).

and how the best disambiguation models based on

classical machine learning methods (denoted as “non-

neural”) correspond to the recent state-of-the-art mod-

els based on deep neural networks (denoted as “neu-



Table 4
Entity disambiguation evaluation. Micro F1/Accuracy scores of neural entity disambiguation as compared to some classic models on common
evaluation datasets.

Model AIDA-B KBP’10 MSNBC AQUAINT ACE-2004 CWEB WW KBP’15 (es) KBP’15 (zh)

Accuracy Accuracy Micro F1 Micro F1 Micro F1 Micro F1 Micro F1 Accuracy Accuracy

Non-Neural Baseline Models

DBpedia Spotlight (2011) [108] 0.561 - 0.421 0.518 0.539 - - - -

AIDA (2011) [67] 0.770 - 0.746 0.571 0.798 - - - -

Ratinov et al. (2011) [148] - - 0.750 0.830 0.820 0.562 0.672 - -

WAT (2014) [140] 0.805 - 0.788 0.754 0.796 - - - -

Babelfy (2014) [115] 0.758 - 0.762 0.704 0.619 - - - -

Lazic et al. (2015) [84] 0.864 - - - - - - - -

Chisholm and Hachey (2015) [27] 0.887 - - - - - - - -

PBOH (2016) [54] 0.804 - 0.861 0.841 0.832 - - - -

Guo and Barbosa (2018) [61] 0.890 - 0.920 0.870 0.880 0.770 0.845 - -

Neural Models

Sun et al. (2015) [171] - 0.839 - - - - - - -

Francis-Landau et al. (2016) [49] 0.855 - - - - - - - -

Fang et al. (2016) [42] - 0.889 0.755 0.852 0.808 - - - -

Yamada et al. (2016) [194] 0.931 0.855 - - - - - - -

Zwicklbauer et al. (2016b) [211] 0.784 - 0.911 0.842 0.907 - - - -

Tsai and Roth (2016) [176] - - - - - - - 0.824 0.851

Nguyen et al. (2016b) [127] 0.872 - - - - - - - -

Globerson et al. (2016) [56] 0.927 0.872 - - - - - - -

Cao et al. (2017) [19] 0.851 - - - - - - - -

Eshel et al. (2017) [40] 0.873 - - - - - - - -

Ganea and Hofmann (2017) [53] 0.922 - 0.937 0.885 0.885 0.779 0.775 - -

Gupta et al. (2017) [62] 0.829 - - - 0.907 - - - -

Nie et al. (2018) [129] 0.898 0.891 - - - - - - -

Shahbazi et al. (2018) [157] 0.944 0.879 - - - - - - -

Le and Titov (2018) [85] 0.931 - 0.939 0.884 0.900 0.775 0.780 - -

Radhakrishnan et al. (2018) [144] 0.930 0.896 - - - - - - -

Kolitsas et al. (2018) [82] 0.831 - 0.864 0.832 0.855 - - - -

Sil et al. (2018) [164] 0.940 0.874 - - - - - 0.823 0.844

Upadhyay et al. (2018a) [179] - - - - - - - 0.844 0.860
Cao et al. (2018) [20] 0.800 0.910 - 0.870 0.880 - 0.860 - -

Raiman and Raiman (2018) [146] 0.949 0.909 - - - - - - -

Shahbazi et al. (2019) [158] 0.962 0.883 0.923 0.901 0.887 0.784 0.798 - -

Gillick et al. (2019) [55] - 0.870 - - - - - - -

Le and Titov (2019b) [87] 0.815 - - - - - - - -

Le and Titov (2019a) [86] 0.897 - 0.922 0.907 0.881 0.782 0.817 - -

Fang et al. (2019) [43] 0.943 - 0.928 0.875 0.912 0.785 0.828 - -

Yang et al. (2019) [200] 0.946 - 0.946 0.885 0.901 0.756 0.788 - -

Xue et al. (2019) [192] 0.924 0.944 0.919 0.911 0.801 0.855 - -

Zhou et al. (2019) [207] - - - - - - - 0.829 0.855

Hou et al. (2020) [69] 0.926 - 0.943 0.912 0.907 0.785 0.819 - -

Onoe and Durrett (2020) [131] 0.859 - - - - - - - -

Wu et al. (2020b) [191] - 0.945 - - - - - - -

Wu et al. (2020a) [190] 0.931 - 0.927 0.894 0.906 0.814 0.792 - -

Fang et al. (2020) [44] 0.830 - 0.800 0.880 0.890 - - - -

Chen et al. (2020) [25] 0.937 - 0.945 0.898 0.908 0.782 0.810 - -

Mulang’ et al. (2020) [117] 0.949 - - - - - - - -

Yamada et al. (2021) [198] 0.971 - 0.963 0.935 0.919 0.789 0.892 - -

De Cao et al. (2021) [33] 0.933 - 0.943 0.909 0.911 0.773 0.879 - -
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Fig. 9. Mention/context encoder type for entity disambiguation. Performance of the entity disambiguation models on the AIDA test set with
mention/context encoder displayed with different colors as defined in Table 2. The bars with multiple colors refer to the models that use different
types of encoder models; the bars do not reflect any meaning on the percentage. Note: we assigned the “RNN” label for the models LSTM, GRU,
and ELMo; the “Transformers” label for BERT and BART models.

ral”). As one may observe, the models based on deep
learning substantially improve the EL performance
pushing the state of the art by around 10 percentage
points in terms of accuracy.

Table 4 presents the comparison of the ED mod-
els in detail on several datasets presented above. The
model of Yamada et al. [198] yields the best result on
AIDA and appears to behave robustly across different
datasets, getting top scores or near top scores for most
of them. Here, we should also mention that none of
the non-neural baselines reach the best results on any
dataset.

Among local models for disambiguation, the best
results are reported by Shahbazi et al. [158] and Wu
et al. [191]. It is worth noting that the latter model can
be used in the zero-shot setting. Shahbazi et al. [158]
has the best score on AIDA among other local models
outperforming them by a substantial margin. However,
this is due to the use of the less-ambiguous resource

of Pershina et al. [137] for candidate generation, while
many other works use the YAGO-based resource pro-
vided by Ganea and Hofmann [53], which typically
yields lower results.

The common trend is that the global models (those
trying to disambiguate several entity occurrences at
once) outperform the local ones (relying on a sin-
gle mention and its context). The best considered ED
model of Yamada et al. [198] is global. Its performance
improvements over competitors are attributed by the
authors to the novel masked entity prediction objective
that helps to fine-tune pre-trained BERT for producing
contextualized entity embeddings and to the multi-step
global disambiguation algorithm.

Finally, as one could see from Table 4, the least
number of experiments is reported on the non-English
datasets (TAC KBP datasets for Chinese and Span-
ish). Among the four reported results, the approach of
Upadhyay et al. [180] provides the best scores, yet out-
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Fig. 10. Local-Global entity disambiguation. Performance of the entity disambiguation models on the AIDA test set with local/global models
displayed with different colors as defined in Table 2. Note, some models, like Francis-Landau et al. [49], do not rely on global coherence, but
they use document-wide context or multiple mentions at once, as explained in Table 2.

performing the other three approaches only by a small
margin.

Mention/Context Encoder Type Figure 9 provides
further analysis of the performance of entity disam-
biguation models presented above. The top perform-
ing model by Yamada et al. [198] is based on Trans-
formers. It is followed by the model of Shahbazi et al.
[158], which relies on RNNs: more specifically, it re-
lies on the ELMo encoder that is based on pre-trained
bidirectional LSTM cells. Overall, RNN is a popu-
lar choice for the mention-context encoder. However,
recently, self-attention-based encoders, and especially
the ones based on pre-trained Transformer networks,
have gained popularity.

Several approaches, such as Yamada et al. [194],
rely on simpler encoders based on the word2vec mod-
els, yet none of them manage to outperform more com-
plex deep architectures.

Local-global models Figure 10 visualizes the usage
of the local and global context in various models for
entity disambiguation. As one can observe from the
plot, the majority of models perform global entity dis-
ambiguation, including the top-performing model by
Yamada et al. [198]. Although Shahbazi et al. [158]
provide a local model, they also show a good perfor-
mance.

Joint Entity Mention Detection and Disambiguation
Table 5 presents results of the joint MD and ED mod-
els. Only a fraction of the models presented in Table 2
is capable of performing both entity mention detection
and disambiguation; thus, the list of results is much
shorter. Among the joint MD and ED solutions, the
best results on the AIDA dataset are reported by Chen
et al. [23]. However, Poerner et al. [142] note that these
results might not be directly comparable with others
due to a different evaluation protocol. The best com-



Table 5
Evaluation of joint MD-ED models. Micro F1 scores for joint
entity mention detection and entity disambiguation evaluation on
AIDA-B and MSNBC datasets.

Model AIDA-B MSNBC

Non-Neural Baseline Models

DBpedia Spotlight (2011) [108] 0.578 0.406

AIDA (2011) [67] 0.728 0.651

WAT (2014) [140] 0.730 0.645

Babelfy (2014) [115] 0.485 0.397

Neural Models

Kolitsas et al. (2018) [82] 0.824 0.724

Martins et al. (2019) [107] 0.819 -

Peters et al. (2019) [139] 0.744 -

Broscheit (2019) [17] 0.793 -

Chen et al. (2020) [23] 0.877 -

Poerner et al. (2020) [142] 0.850 -

De Cao et al. (2021) [33] 0.837 0.737

parable results on the AIDA dataset are shown by E-
BERT [142]. On the MSNBC dataset, the top scores
are achieved by De Cao et al. [33] with an autoregres-
sive model. The scores of the systems that solve both
tasks at once fall behind the disambiguation-only sys-
tems since they rely on noisy mention boundaries pro-
duced by themselves. In the joint MD and ED setting,
the neural models also substantially (up to around 10
points) outperform the classic models.

On Effect of Hyperparameter Search As explained
above, in Tables 4 and 5, we present the best scores
reported by the authors of the models. In principle,
each neural model can be further tuned as shown by
Reimers and Gurevych [149], but also the variance of
neural models is rather high in general. Therefore, it
may be possible to further optimize meta-parameters
of one (possibly simpler) neural model so that it out-
performs a more complex (but tuned in a less op-
timal way) model. One common example of such a
case is RoBERTa [98], which is basically the original
BERT model, which was carefully and robustly opti-
mized. This model outperformed many successors of
the BERT model, showing the new state-of-the-art re-
sults on various tasks while keeping the original archi-
tecture.

4.2. Entity Relatedness

The quality of entity representations can be mea-
sured by how they capture semantic relatedness be-
tween entities [19, 53, 70, 162, 194]. Moreover, the se-
mantic relatedness is an important feature in global EL
[21, 38]. In this section, we present results of entity
relatedness evaluation, which is different from evalua-
tion of EL pipelines.

4.2.1. Experimental Setup
We summarize results from several works obtained

on a benchmark of Ceccarelli et al. [21] for entity relat-
edness evaluation based on the dataset of Hoffart et al.
[67]. Given a target entity and a list of candidate en-
tities, the task is to rank candidates semantically re-
lated to the target higher than the others [53]. For the
most of the considered works, the relatedness is mea-
sured by the cosine similarity of entity representations.
For comparison, we also add results for two other
approaches: a well-known Wikipedia hyperlink-based
measure devised by Milne and Witten [112] known as
WLM and a KG-based measure of El Vaigh et al. [38].

The evaluation metrics are normalized discounted
cumulative gain (nDCG) [73] and a mean average pre-
cision (MAP) [105]. nDCG is a commonly used met-
ric in information retrieval. It discounts the correct an-
swers, depending on their rank in predictions Manning
et al. [105]:

nDCG(Q, k) =
1

|Q|

|Q|∑
j=1

Zk j

k∑
m=1

2R( j,m) − 1

log2(1 + m)
,

(26)

where Q is the set of target entities (queries); Zk j

is a normalization factor, which corresponds to ideal
ranking; k is a number of candidates for each query;
R( j,m) ∈ {0, 1} is the gold-standard annotation of re-
latedness between the target entity j and a candidate
m.

MAP is another common metric in information re-
trieval [105]:

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

m j

m j∑
k=1

Precision@r jk, (27)

where Q is a set of target entities (queries); m j is
the number of related candidate entities for the target
j, and Precision@r jk is a precision at rank r jk, where



Table 6
Entity relatedness evaluation. Reported results for entity relatedness evaluation on the test set of Ceccarelli et al. [21] .

Model nDCG@1 nDCG@5 nDCG@10 MAP

Milne and Witten (2008) [112] 0.540 0.520 0.550 0.480

Huang et al. (2015) [70] 0.810 0.730 0.740 0.680
Yamada et al. (2016) [194] 0.590 0.560 0.590 0.520

Ganea and Hofmann (2017) [53] 0.632 0.609 0.641 0.578

Cao et al. (2017) [19] 0.613 0.613 0.654 0.582

El Vaigh et al. (2019) [38] 0.690 0.640 0.580 -

Shi et al. (2020) [162] 0.680 0.814 0.820 -

r jk is a rank of each related candidate in the prediction
k = 1..m j [105].

4.2.2. Discussion of Results
Table 6 summarizes the evaluation results in the

entity relatedness task reported by the authors of the
models. The scores of Milne and Witten [112] are
taken from Huang et al. [70].

The highest scores of nDCG@1 and MAP are re-
ported by Huang et al. [70], and the best scores of
nDCG@5 and nDCG@10 are reported by Shi et al.
[162]. The high scores of Huang et al. [70] can be at-
tributed to the usage of different information sources
for constructing entity representations, including en-
tity types and entity relations [53]. Shi et al. [162] also
use various types of data sources for constructing en-
tity representations, including textual and knowledge
graph information, like the types provided by a cate-
gory hierarchy of a knowledge graph.

Note that cosine similarity based measures perform
better in terms of nDCG@10 than the methods based
on relations in KG (shown as italic in Table 6).

5. Applications of Entity Linking

In this section, we first give a brief overview of es-
tablished applications of the entity linking technology
and then discuss recently emerged use-cases specific to
neural entity linking based on injection of these mod-
els as a part of a larger neural network, e.g. in a neural
language model.

5.1. Established Applications

Text Mining An EL tool is a typical building block
for text mining systems. Extracting and resolving the
ambiguity of entity mentions is one of the first steps
in a common information extraction pipeline. The am-
biguity problem is especially crucial for such domains

as biomedical and clinical text processing due to vari-
ability of medical terms, the complexity of medical
ontologies such as UMLS [12], and scarcity of anno-
tated resources. There is a long history of develop-
ment of EL tools for biomedical literature and elec-
tronic health record mining applications [6, 24, 83,
101, 109, 155, 167, 178, 209]. These tools have been
successfully applied for summarization of clinical re-
ports [104], extraction of drug-disease treatment re-
lationships [81], mining chemical-induced disease re-
lations [10], differential diagnosis [5], patient screen-
ing [41], and many other tasks. Besides medical text
processing, EL is widely used for mining social net-
works and news [2, 113]. For example, Twitcident [1]
uses the DBpedia Spotlight [108] EL system for min-
ing Twitter messages for small scale incidents. Prova-
torova et al. [143] leverage a recently proposed EL
toolkit REL [181] for mining historical newspapers for
people, places, and other entities in the CLEF HIPE
2020 evaluation campaign [37]. Luo et al. [103] au-
tomatically construct a large-scale dataset of images
and text captions that describe real and out-of-context
news. They leverage REL for linking entities in image
captions, which helps to automatically measure incon-
sistency between images and their text captions.

Knowledge graph population EL is one of the neces-
sary steps of knowledge graph population algorithms.
Before populating a KG with new facts extracted from
raw texts, we have to determine mentioned concepts in
these texts and link them to the corresponding graph
nodes. A series of evaluation workshops TAC14 pro-
vides a forum for KG population tools (TAC KBP),
as well as benchmarks for various subsystems includ-
ing EL. For example, Ji and Grishman [74] and El-
lis et al. [39] overview various successful systems for
knowledge graph population participated in the TAC

14https://tac.nist.gov/2019/index.html



KBP 2010 and 2015 tasks. Shen et al. [161] pro-
pose a knowledge graph population algorithm that not
only uses the results of EL, but also helps to improve
EL itself. It iteratively populates a KG, while the EL
model benefits from added knowledge and continu-
ously learns to disambiguate better.

Information retrieval and question-answering EL is
also widely used in information retrieval and question-
answering systems. EL helps to complement search
results with additional semantic information, to re-
solve query ambiguity, and to restrict the search space.
For example, Lee et al. [91] use EL to complement
the results of a biomedical literature search engine
with found entities: genes, diseases, drugs, etc. COVI-
DASK [90], a real-time question answering system
that helps researchers to retrieve information related to
coronavirus, uses the BioSyn model [172] for process-
ing COVID-19 articles and linking mentions of drugs,
symptoms, diseases to concepts in biomedical ontolo-
gies. Links to entity descriptions help users to navi-
gate the search results, which enhances the usability
of the system. Yih et al. [202] apply EL for pruning
the search space of a question answering system. For
the query: “Who first voiced Meg on Family Guy?”,
after linking “Meg” and “Family Guy” to entities in
a KG, the task becomes to resolve the predicates to
the “Family Guy (the TV show)” entry rather than all
entries in the KG. Shnayderman et al. [163] develop
a fast EL algorithm for pre-processing large corpora
for their autonomous debating system [166] with the
goal to conduct an argumentative dialog with an oppo-
nent on some topic and to prove a predefined point of
view. The system uses the results of entity linking for
corpus-based argument retrieval.

5.2. Novel Applications: Neural Entity Linking for
Training Better Neural Language Models

Neural EL models have unlocked the new category
of applications that have not been available for classi-
cal machine learning methods. Namely, neural models
allow the integration of an entire entity linking system
inside a larger neural network such as BERT. As they
are both neural networks, such kind of integration be-
comes possible. After integrating an entity linker into
another model’s architecture, we can also expand the
training objective with an additional EL-related task
and train parameters of all neural components jointly:

LJOINT = LBERT + LEL-related . (28)

Neural entity linkers can be integrated in any other
networks. The main novel trend is the use of EL in-
formation for representation learning. Several studies
have shown that contextual word representations could
benefit from information stored in KGs by incorporat-
ing EL into deep language models (LMs) for transfer
learning.

KnowBERT [139] injects one or several entity link-
ers between top layers of the BERT architecture and
optimizes the whole network for multiple tasks: the
masked language model (MLM) task and next sen-
tence prediction (NSP) from the original BERT model,
as well as EL:

LBERT = LNSP + LMLM. (29)

LKnowBert = LNSP + LMLM + LEL . (30)

The authors adopt the general end-to-end EL archi-
tecture of [82] but use only the local context for disam-
biguation and an encoder based on self-attention over
the representations generated by underlying BERT lay-
ers. If the EL subsystem detects an entity mention in
a given sentence, corresponding pre-built entity repre-
sentations of candidates are utilized for calculating the
updated contextual word representations generated on
the current BERT layer. These representations are used
as input in a subsequent layer and can also be modified
by a subsequent EL subsystem. Experiments with two
EL subsystems based on Wikidata and WordNet show
that presented modifications in KnowBERT help it to
slightly surpass other deep pre-trained language mod-
els in tasks of relationship extraction, WSD, and entity
typing.

ERNIE [206] expands the BERT [36] architecture
with a knowledgeable encoder (K-Encoder), which
fuses contextualized word representations obtained
from the underlying self-attention network with en-
tity representations from a pre-trained TransE model
[15]. EL in this study is performed by an external tool
TAGME [47]. For model pre-training, in addition to
the MLM task, the authors introduce the task of restor-
ing randomly masked entities in a given sequence
keeping the rest of the entities and tokens. They refer
to this procedure as a denoising entity auto-encoder
(dEA):

LERNIE = LNSP + LMLM + LdEA . (31)

Using English Wikipedia and Wikidata as training
data, the authors show that introduced modifications



provide performance gains in entity typing, relation
classification, and several GLUE tasks [185].

Wang et al. [188] train a disambiguation network
named KEPLER using the composition of two losses:
regular MLM and a Knowledge Embedding (KE) loss
based on the TransE [15] objective for encoding graph
structures:

LKEPLER = LMLM + LKE. (32)

In the KE loss, representations of entities are ob-
tained from their textual descriptions encoded with a
self-attention network [98], and representations of re-
lations are trainable vectors. The network is trained on
a dataset of entity-relation-entity triplets with descrip-
tions gathered from Wikipedia and Wikidata. Although
the system exhibits a significant drop in performance
on general NLP benchmarks such as GLUE [185], it
shows increased performance on a wide range of KB-
related tasks such as TACRED [205], FewRel [63], and
OpenEntity [28].

Yamada et al. [196] propose a deep pre-trained
model called “Language Understanding with Knowledge-
based Embeddings” (LUKE). They modify RoBERTa
[98] by introducing an additional pre-training objec-
tive and an entity-aware self-attention mechanism. The
objective is a simple adoption of the MLM task to
entities LMLMe, instead of tokens, the authors sug-
gest restoring randomly masked entities in an entity-
annotated corpus.

LLUKE = LMLM + LMLMe. (33)

Although the corpus used in this work is constructed
from Wikipedia by considering hyperlinks to other
Wikipedia pages as mentions of entities in a KG, al-
ternatively, it can be generated using an external entity
linker.

The entity-aware attention mechanism helps LUKE
differentiate between words and entities via intro-
ducing four different query matrices for matching
words and entities: one for each pair of input types
(entity-entity, entity-word, word-entity, and the stan-
dard word-word). The proposed modifications give
LUKE exceptional performance improvements over
previous models in five tasks: Open Entity (entity
typing) [28], TACRED (relation classification) [205],
CoNLL-2003 (named entity recognition) [174], ReCoRD
(cloze-style question answering) [204], and SQuAD 1.1
(reading comprehension) [147].

Févry et al. [48] propose a method for training
a language model and entity representations jointly,
which they call Entities as Experts (EaE). The model is
based on the Transformer architecture and is similar to
KnowBERT [139]. However, in addition to the train-
able word embedding matrix, EaE features a separate
trainable matrix for entity embeddings referred to as
“memory”. The standard Transformer is also extended
with an “entity memory” layer, which takes the output
from the preceding Transformer layer and populates it
with entity embeddings of mentions in the text. The
retrieved entity embeddings are integrated into token
representations by summation before layer normaliza-
tion. To avoid dependence at inference on an external
mention detector, the model applies a classifier to the
output of Transformer blocks as in a sequence labeling
model.

Analogously to [196], the EaE is trained on a cor-
pus annotated with mentions and entity links. The final
loss function sums up of three components: the stan-
dard MLM objective, mention boundary detection loss
as in a sequence labeling model LNER, and an entity
linking objective that facilitates entity representations
generated in the model to be close to entity embedding
of an annotated entity.

LEaE = LMLM + LNER + LEL. (34)

This approach to integrating knowledge about en-
tities into LMs provides a significant performance
boost in open domain question answering. EaE, hav-
ing only 367 million of parameters, outperforms the
11 billion parameter version of T5 [145] on the Triv-
iaQA task [79]. The authors also show that EAE con-
tains more factual knowledge than a comparably-sized
BERT model.

Poerner et al. [142] present an E-BERT language
model that also takes advantage of entity representa-
tions. This model is close to [206] as it also injects
entities directly into the text and mixes entity repre-
sentations with word embeddings in a similar way.
However, instead of updating the weights of the whole
pre-trained language model, they train only a linear
transformation for aligning pre-trained entity repre-
sentations with representations of word piece tokens
of BERT. Such a small modification helps this model
to outperform baselines on unsupervised question an-
swering, supervised relation classification, and end-to-
end entity linking.

The considered works demonstrate that the integra-
tion of structured KGs and LMs usually helps to solve



knowledge-oriented tasks: question answering (includ-
ing open-domain QA), entity typing, relation extrac-
tion, and others. A high-precision supervision signal
from KGs either leads to notable performance im-
provements or allows to reduce the number of trainable
parameters of an LM while keeping a similar perfor-
mance. Entity linking acts as a bridge between highly
structured knowledge graphs and more flexible lan-
guage models. We expect this approach to be crucial
for the construction of future foundation models.

6. Conclusion

In this survey, we have analyzed recently proposed
neural entity linking models, which generally solve the
task with higher accuracy than classical methods. We
provide a generic neural entity linking architecture,
which is applicable for most of the neural EL systems,
including the description of its components, e.g. can-
didate generation, entity ranking, mention and entity
encoding. Various modifications of the general archi-
tecture are grouped into four common directions: (1)
joint entity mention detection and linking models, (2)
global entity linking models, (3) domain-independent
approaches, including zero-shot and distant supervi-
sion methods, and (4) cross-lingual techniques. Taxon-
omy figures and feature tables are provided to explain
the categorization and to show which prominent fea-
tures are used in each method.

The majority of studies still rely on external knowl-
edge for the candidate generation step. The mention
encoders have made a shift from convolutional and
recurrent models to self-attention architectures and
start using pre-trained contextual language models like
BERT. There is a current surge of methods that tackle
the problem of adapting a model trained on one do-
main to another domain in a zero-shot fashion. These
approaches do not need any annotated data in the target
domain, but only descriptions of entities from this do-
main to perform such adaptation. It is shown in several
works that the cross-encoder architecture is superior as
compared to models with separate mention and entity
encoders. The global context is widely used, but there
are few recent studies that focus only on local EL.

Among the solutions that perform mention detec-
tion and entity disambiguation jointly, the leadership is
owned by the entity-enhanced BERT model (E-BERT)
of Poerner et al. [142] and the autoregressive model of
De Cao et al. [33] based on BART. Among published
local models for disambiguation, the best results are

reported by Shahbazi et al. [158] and Wu et al. [191].
The former solution leverages entity-aware ELMo (E-
ELMo) trained to additionally predict entities along
with words as in language-modelling task. The latter
solution is based on a BERT bi-/cross-encoder and can
be used in the zero-shot setting. Yamada et al. [198]
report results that are consistently better in comparison
to all other solutions. Their high scores are attributed to
the masked entity prediction mechanism for entity em-
bedding and the usage of the pre-trained model based
on BERT with a multi-step global scoring function.

7. Future Directions

We identify five promising directions of future work
in entity linking listed below:

1. More end-to-end models without an explicit
candidate generation step: The candidate gen-
eration step relies on pre-constructed external
resources or heuristics, as discussed in Section
3.1.1. Both the recall and precision of EL systems
depend on their completeness and ambiguity. The
necessity of building such resources is also an
obvious obstacle for applying models in zero-
shot / cross-lingual settings. Several recent works
demonstrate that it is possible to achieve high EL
performance without external pre-built resources
[55, 191] or eliminate the candidate generation
step [16, 17]. There is also a line of works de-
voted to methods that perform mention detection
and entity disambiguation jointly [33, 82], which
helps to avoid error propagation through multiple
independent processing steps in an EL pipeline.
We believe that a possible further research direc-
tion would be the development of entirely end-to-
end trainable EL pipelines similar in spirit to the
system of Broscheit [17].

2. Further development of zero-shot approaches
to address emerging entities: We also expect
that zero-shot EL will rapidly evolve, engaging
other features like global coherence across all en-
tities in a document, NIL prediction, joining MD
and ED steps together, or providing completely
end-to-end solutions. The latter would be an es-
pecially challenging task but also a fascinating re-
search direction. To allow for a proper compari-
son, more standardized benchmarks and evalua-
tion processes for zero-shot methods are dearly
needed.



3. More use-cases of EL-enriched language mod-
els: Some studies [139, 142, 188, 206] have
shown improvements over contextual language
models by including knowledge stored in KGs.
They incorporate entity linking into these deep
models to use information in KGs. In future work,
more use-cases are expected to enhance language
models by using entity linking. The enriched rep-
resentations would be used in downstream tasks,
enabling improvements there.

4. Integration of EL loss in more neural models:
It may be interesting to integrate EL loss in other
neural models distinct from the language models,
but in a similar fashion as the models described in
Section 5.2. Due to the fact that an end-to-end EL
model is also just a neural network, such integra-
tion with other networks is technically straight-
forward. Some multi task learning methods have
been already proposed, e.g. joint relation extrac-
tion and entity linking [10]. Since entity linking
is a key step in information extraction, inject-
ing information about entities contained in an EL
model and multitask learning are expected to be
useful for solving other related tasks.

5. Multimodal EL: We witness the rise of a fasci-
nating information extraction research direction
that aims to build models capable of processing
not only text, but also data from other modalities
like images. For example, Moon et al. [113] and
Adjali et al. [2] leverage both text and images in
social media posts for entity linking. Without tak-
ing into account an additional modality it would
be impossible to correctly disambiguate entities
in a very noisy and limited textual context. En-
tity linking methods in the near future poten-
tially could take advantage of multimodal cross-
attention and a surge of other techniques recently
developed to improve processing multiple types
of data in a single architecture [72, 120]. We con-
sider that vice-versa is also possible: EL could
be seamlessly integrated into models for process-
ing data with multiple modalities. EL not only
provides disambiguation of mentions in the text
but also connects a data instance to a knowledge
graph, which opens the possibility of using rea-
soning elements during the solution of the final
task.
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Appendix A. Public Implementations of Neural Entity Linking Models

Table 7
Publicly available implementations (either provided in the paper or available at PapersWithCode.com) of the neural models presented in Table 2.

Model Link for Source Code

Sun et al. (2015) [171] -
Francis-Landau et al. (2016) [49] https://github.com/matthewfl/nlp-entity-convnet
Fang et al. (2016) [42] -
Yamada et al. (2016) [194] https://github.com/wikipedia2vec/wikipedia2vec
Zwicklbauer et al. (2016b) [211] https://github.com/quhfus/DoSeR
Tsai and Roth (2016) [176] -
Nguyen et al. (2016b) [127] -
Globerson et al. (2016) [56] -
Cao et al. (2017) [19] https://github.com/TaoMiner/bridgeGap
Eshel et al. (2017) [40] https://github.com/yotam-happy/NEDforNoisyText
Ganea and Hofmann (2017) [53] https://github.com/dalab/deep-ed
Moreno et al. (2017) [114] -
Gupta et al. (2017) [62] https://github.com/nitishgupta/neural-el
Nie et al. (2018) [129] -
Sorokin and Gurevych (2018) [168] https://github.com/UKPLab/starsem2018-entity-linking
Shahbazi et al. (2018) [157] -
Le and Titov (2018) [85] https://github.com/lephong/mulrel-nel
Newman-Griffis et al. (2018) [125] https://github.com/OSU-slatelab/JET
Radhakrishnan et al. (2018) [144] https://github.com/priyaradhakrishnan0/ELDEN
Kolitsas et al. (2018) [82] https://github.com/dalab/end2end_neural_el
Sil et al. (2018) [164] -
Upadhyay et al. (2018a) [179] https://github.com/shyamupa/xelms
Cao et al. (2018) [20] https://github.com/TaoMiner/NCEL
Raiman and Raiman (2018) [146] https://github.com/openai/deeptype
Mueller and Durrett (2018) [116] https://github.com/davidandym/wikilinks-ned
Shahbazi et al. (2019) [158] -
Logeswaran et al. (2019) [100] https://github.com/lajanugen/zeshel
Gillick et al. (2019) [55] https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
Peters et al. (2019) [139] https://github.com/allenai/kb
Le and Titov (2019b) [87] https://github.com/lephong/dl4el
Le and Titov (2019a) [86] https://github.com/lephong/wnel
Fang et al. (2019) [43] -
Martins et al. (2019) [107] -
Yang et al. (2019) [200] https://github.com/YoungXiyuan/DCA
Xue et al. (2019) [192] https://github.com/DeepLearnXMU/RRWEL
Zhou et al. (2019) [207] https://github.com/shuyanzhou/burn_xel
Broscheit (2019) [17] https://github.com/samuelbroscheit/entity_knowledge_in_bert
Hou et al. (2020) [69] https://github.com/fhou80/EntEmb
Onoe and Durrett (2020) [131] https://github.com/yasumasaonoe/ET4EL
Chen et al. (2020) [23] -
Wu et al. (2020b) [191] https://github.com/facebookresearch/BLINK
Banerjee et al. (2020) [9] https://github.com/debayan/pnel
Wu et al. (2020a) [190] https://github.com/wujsAct/DGCN_EL
Fang et al. (2020) [44] https://github.com/fangzheng123/SGEL
Chen et al. (2020) [25] -
Botha et al. (2020) [16] http://goo.gle/mewsli-dataset
Yao et al. (2020) [201] https://github.com/seasonyao/Zero-Shot-Entity-Linking
Li et al. (2020) [94] https://github.com/facebookresearch/BLINK/tree/master/elq
Poerner et al. (2020) [142] https://github.com/npoe/ebert
Fu et al. (2020) [50] http://cogcomp.org/page/publication_view/911
Mulang’ et al. (2020) [117] https://github.com/mulangonando/Impact-of-KG-Context-on-ED
Yamada et al. (2021) [198] https://github.com/studio-ousia/luke
Gu et al. (2021) [60] -
Tang et al. (2021) [173] -
De Cao et al. (2021) [33] https://github.com/facebookresearch/GENRE

https://paperswithcode.com
https://github.com/matthewfl/nlp-entity-convnet
https://github.com/wikipedia2vec/wikipedia2vec
https://github.com/quhfus/DoSeR
https://github.com/TaoMiner/bridgeGap
https://github.com/yotam-happy/NEDforNoisyText
https://github.com/dalab/deep-ed
https://github.com/nitishgupta/neural-el
https://github.com/UKPLab/starsem2018-entity-linking
https://github.com/lephong/mulrel-nel
https://github.com/OSU-slatelab/JET
https://github.com/priyaradhakrishnan0/ELDEN
https://github.com/dalab/end2end_neural_el
https://github.com/shyamupa/xelms
https://github.com/TaoMiner/NCEL
https://github.com/openai/deeptype
https://github.com/davidandym/wikilinks-ned
https://github.com/lajanugen/zeshel
https://github.com/google-research/google-research/tree/master/dense_representations_for_entity_retrieval
https://github.com/allenai/kb
https://github.com/lephong/dl4el
https://github.com/lephong/wnel
https://github.com/YoungXiyuan/DCA
https://github.com/DeepLearnXMU/RRWEL
https://github.com/shuyanzhou/burn_xel
https://github.com/samuelbroscheit/entity_knowledge_in_bert
https://github.com/fhou80/EntEmb
https://github.com/yasumasaonoe/ET4EL
https://github.com/facebookresearch/BLINK
https://github.com/debayan/pnel
https://github.com/wujsAct/DGCN_EL
https://github.com/fangzheng123/SGEL
http://goo.gle/mewsli-dataset
https://github.com/seasonyao/Zero-Shot-Entity-Linking
https://github.com/facebookresearch/BLINK/tree/master/elq
https://github.com/npoe/ebert
http://cogcomp.org/page/publication_view/911
https://github.com/mulangonando/Impact-of-KG-Context-on-ED
https://github.com/studio-ousia/luke
https://github.com/facebookresearch/GENRE


References

[1] F. Abel, C. Hauff, G.-J. Houben, R. Stronkman and
K. Tao, Twitcident: Fighting Fire with Information from
Social Web Streams, in: Proceedings of the 21st Interna-
tional Conference on World Wide Web, WWW ’12 Com-
panion, Association for Computing Machinery, New York,
NY, USA, 2012, pp. 305–308–. ISBN 9781450312301.
doi:10.1145/2187980.2188035.

[2] O. Adjali, R. Besançon, O. Ferret, H. Le Borgne and B. Grau,
Multimodal Entity Linking for Tweets, in: Advances in In-
formation Retrieval, J.M. Jose, E. Yilmaz, J. Magalhães,
P. Castells, N. Ferro, M.J. Silva and F. Martins, eds, Springer
International Publishing, Cham, 2020, pp. 463–478. ISBN
978-3-030-45439-5.

[3] T. Al-Moslmi, M. Gallofré Ocaña, A.L. Opdahl and C. Veres,
Named Entity Extraction for Knowledge Graphs: A Lit-
erature Overview, IEEE Access 8 (2020), 32862–32881.
doi:10.1109/ACCESS.2020.2973928.

[4] R. Aly, A. Vlachos and R. McDonald, Leveraging Type
Descriptions for Zero-shot Named Entity Recognition and
Classification, in: Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), Association for
Computational Linguistics, Online, 2021, pp. 1516–1528.
doi:10.18653/v1/2021.acl-long.120. https://aclanthology.org/
2021.acl-long.120.

[5] H. Amiri, M. Mohtarami and I. Kohane, Attentive Multiview
Text Representation for Differential Diagnosis, in: Proceed-
ings of the 59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 2: Short
Papers), Association for Computational Linguistics, Online,
2021, pp. 1012–1019. doi:10.18653/v1/2021.acl-short.128.
https://aclanthology.org/2021.acl-short.128.

[6] A.R. Aronson and F.-M. Lang, An overview of MetaMap: his-
torical perspective and recent advances, Journal of the Amer-
ican Medical Informatics Association 17(3) (2010), 229–236.
doi:10.1136/jamia.2009.002733.

[7] D. Bahdanau, K. Cho and Y. Bengio, Neural machine transla-
tion by jointly learning to align and translate, in: 3rd Interna-
tional Conference on Learning Representations, ICLR 2015,
San-Diego, California, USA, 2015. http://arxiv.org/abs/1409.
0473.

[8] L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Grif-
fitt, U. Hermjakob, K. Knight, P. Koehn, M. Palmer and
N. Schneider, Abstract Meaning Representation for Sem-
banking, in: Proceedings of the 7th Linguistic Annota-
tion Workshop and Interoperability with Discourse, Associ-
ation for Computational Linguistics, Sofia, Bulgaria, 2013,
pp. 178–186. https://aclanthology.org/W13-2322.

[9] D. Banerjee, D. Chaudhuri, M. Dubey and J. Lehmann,
PNEL: Pointer Network Based End-To-End Entity Linking
over Knowledge Graphs, in: The Semantic Web – ISWC
2020 - 19th International Semantic Web Conference, Athens,
Greece, November 2-6, 2020, Proceedings, Part I, Vol. 12506,
J.Z. Pan, V. Tamma, C. d’Amato, K. Janowicz, B. Fu,
A. Polleres, O. Seneviratne and L. Kagal, eds, Springer In-
ternational Publishing, Cham, 2020, pp. 21–38. ISBN 978-3-
030-62419-4. doi:10.1007/978-3-030-62419-4_2.

[10] T. Bansal, P. Verga, N. Choudhary and A. McCallum, Si-
multaneously Linking Entities and Extracting Relations from
Biomedical Text without Mention-Level Supervision, Pro-
ceedings of the AAAI Conference on Artificial Intelligence
34(05) (2020), 7407–7414. doi:10.1609/aaai.v34i05.6236.
https://ojs.aaai.org/index.php/AAAI/article/view/6236.

[11] Y. Bengio, R. Ducharme, P. Vincent and C. Janvin, A Neu-
ral Probabilistic Language Model, J. Mach. Learn. Res.
– Journal of Machine Learning Research 3(null) (2003),
1137–1155–.

[12] O. Bodenreider, The Unified Medical Language Sys-
tem (UMLS): integrating biomedical terminology, Nu-
cleic Acids Research 32(suppl_1) (2004), D267–D270.
doi:10.1093/nar/gkh061.

[13] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, En-
riching Word Vectors with Subword Information, Trans-
actions of the Association for Computational Linguis-
tics 5 (2017), 135–146. doi:10.1162/tacl_a_00051. https://
aclanthology.org/Q17-1010.

[14] K. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Tay-
lor, Freebase: A Collaboratively Created Graph Database
for Structuring Human Knowledge, in: Proceedings of the
2008 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, Association for Computing Ma-
chinery, New York, NY, USA, 2008, pp. 1247–1250–. ISBN
9781605581026. doi:10.1145/1376616.1376746.

[15] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston and
O. Yakhnenko, Translating Embeddings for Modeling Multi-
relational Data, in: Advances in neural information process-
ing systems, Vol. 26, C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani and K.Q. Weinberger, eds, Stateline, Nevada,
USA, 2013, pp. 2787–2795. https://papers.nips.cc/paper/
2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

[16] J.A. Botha, Z. Shan and D. Gillick, Entity Linking in
100 Languages, in: Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguistics, On-
line, 2020, pp. 7833–7845. doi:10.18653/v1/2020.emnlp-
main.630. https://aclanthology.org/2020.emnlp-main.630.

[17] S. Broscheit, Investigating Entity Knowledge in BERT
with Simple Neural End-To-End Entity Linking, in:
Proceedings of the 23rd Conference on Computa-
tional Natural Language Learning (CoNLL), Asso-
ciation for Computational Linguistics, Hong Kong,
China, 2019, pp. 677–685. doi:10.18653/v1/K19-1063.
https://aclanthology.org/K19-1063.

[18] H. Cai, V.W. Zheng and K. Chang, A Comprehen-
sive Survey of Graph Embedding: Problems, Tech-
niques, and Applications, IEEE Transactions on Knowl-
edge & Data Engineering 30(09) (2018), 1616–1637.
doi:10.1109/TKDE.2018.2807452.

[19] Y. Cao, L. Huang, H. Ji, X. Chen and J. Li, Bridge Text and
Knowledge by Learning Multi-Prototype Entity Mention Em-
bedding, in: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), Association for Computational Linguistics, Van-
couver, Canada, 2017, pp. 1623–1633. doi:10.18653/v1/P17-
1149. https://aclanthology.org/P17-1149.

[20] Y. Cao, L. Hou, J. Li and Z. Liu, Neural Collective Entity
Linking, in: Proceedings of the 27th International Conference
on Computational Linguistics, Association for Computational

https://aclanthology.org/2021.acl-long.120
https://aclanthology.org/2021.acl-long.120
https://aclanthology.org/2021.acl-short.128
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://aclanthology.org/W13-2322
https://ojs.aaai.org/index.php/AAAI/article/view/6236
https://aclanthology.org/Q17-1010
https://aclanthology.org/Q17-1010
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://papers.nips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://aclanthology.org/2020.emnlp-main.630
https://aclanthology.org/K19-1063
https://aclanthology.org/P17-1149


Linguistics, Santa Fe, New Mexico, USA, 2018, pp. 675–686.
https://aclanthology.org/C18-1057.

[21] D. Ceccarelli, C. Lucchese, S. Orlando, R. Perego and
S. Trani, Learning Relatedness Measures for Entity Link-
ing, in: Proceedings of the 22nd ACM International Con-
ference on Information & Knowledge Management, CIKM
’13, Association for Computing Machinery, New York,
NY, USA, 2013, pp. 139–148. ISBN 9781450322638.
doi:10.1145/2505515.2505711.

[22] A. Chang, V.I. Spitkovsky, C.D. Manning and E. Agirre,
A comparison of Named-Entity Disambiguation and Word
Sense Disambiguation, in: Proceedings of the Tenth Inter-
national Conference on Language Resources and Evalu-
ation (LREC’16), European Language Resources Associa-
tion (ELRA), Portorož, Slovenia, 2016, pp. 860–867. https:
//aclanthology.org/L16-1139.

[23] H. Chen, X. Li, A. Zukov Gregoric and S. Wadhwa, Contextu-
alized End-to-End Neural Entity Linking, in: Proceedings of
the 1st Conference of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing, Associ-
ation for Computational Linguistics, Suzhou, China, 2020,
pp. 637–642. https://aclanthology.org/2020.aacl-main.64.

[24] L. Chen, G. Varoquaux and F.M. Suchanek, A Lightweight
Neural Model for Biomedical Entity Linking, 2021,
pp. 12657–12665. https://ojs.aaai.org/index.php/AAAI/
article/view/17499.

[25] S. Chen, J. Wang, F. Jiang and C.-Y. Lin, Improving Entity
Linking by Modeling Latent Entity Type Information, Pro-
ceedings of the AAAI Conference on Artificial Intelligence
34(05) (2020), 7529–7537. doi:10.1609/aaai.v34i05.6251.
https://ojs.aaai.org/index.php/AAAI/article/view/6251.

[26] X. Cheng and D. Roth, Relational Inference for Wikifica-
tion, in: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, Association for
Computational Linguistics, Seattle, Washington, USA, 2013,
pp. 1787–1796. https://aclanthology.org/D13-1184.

[27] A. Chisholm and B. Hachey, Entity Disambiguation with
Web Links, Transactions of the Association for Computa-
tional Linguistics 3 (2015), 145–156. doi:10.1162/tacl_a_-
00129. https://aclanthology.org/Q15-1011.

[28] E. Choi, O. Levy, Y. Choi and L. Zettlemoyer, Ultra-Fine En-
tity Typing, in: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long
Papers), Association for Computational Linguistics, Mel-
bourne, Australia, 2018, pp. 87–96. doi:10.18653/v1/P18-
1009. https://aclanthology.org/P18-1009.

[29] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, Empirical eval-
uation of gated recurrent neural networks on sequence mod-
eling, in: NIPS 2014 Workshop on Deep Learning, Montréal,
Canada, 2014. https://arxiv.org/abs/1412.3555.

[30] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu and P. Kuksa, Natural Language Processing
(Almost) from Scratch, J. Mach. Learn. Res. – Journal of
Machine Learning Research 12(null) (2011), 2493–2537–.

[31] R. Cotterell and K. Duh, Low-Resource Named Entity Recog-
nition with Cross-lingual, Character-Level Neural Condi-
tional Random Fields, in: Proceedings of the Eighth Inter-
national Joint Conference on Natural Language Processing
(Volume 2: Short Papers), Asian Federation of Natural Lan-

guage Processing, Taipei, Taiwan, 2017, pp. 91–96. https:
//aclanthology.org/I17-2016.

[32] S. Cucerzan, Large-Scale Named Entity Disambiguation
Based on Wikipedia Data, in: Proceedings of the 2007
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning
(EMNLP-CoNLL), Association for Computational Linguis-
tics, Prague, Czech Republic, 2007, pp. 708–716. https://
aclanthology.org/D07-1074.

[33] N. De Cao, G. Izacard, S. Riedel and F. Petroni, Autoregres-
sive Entity Retrieval, in: International Conference on Learn-
ing Representations, 2021. https://openreview.net/forum?id=
5k8F6UU39V.

[34] D. Dessì, F. Osborne, D. Reforgiato Recupero, D. Bus-
caldi and E. Motta, Generating knowledge graphs by
employing Natural Language Processing and Machine
Learning techniques within the scholarly domain, Fu-
ture Generation Computer Systems 116 (2021), 253–264.
doi:10.1016/j.future.2020.10.026. https://www.sciencedirect.
com/science/article/pii/S0167739X2033003X.

[35] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Convo-
lutional 2D Knowledge Graph Embeddings, Proceedings of
the AAAI Conference on Artificial Intelligence 32(1) (2018).
https://ojs.aaai.org/index.php/AAAI/article/view/11573.

[36] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, BERT:
Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding, in: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), Association for Computa-
tional Linguistics, Minneapolis, Minnesota, 2019, pp. 4171–
4186. doi:10.18653/v1/N19-1423. https://aclanthology.org/
N19-1423.

[37] M. Ehrmann, M. Romanello, A. Flückiger and S. Clematide,
Overview of CLEF HIPE 2020: Named Entity Recogni-
tion and Linking on Historical Newspapers, in: Experimen-
tal IR Meets Multilinguality, Multimodality, and Interac-
tion, A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis,
H. Joho, C. Lioma, C. Eickhoff, A. Névéol, L. Cappellato and
N. Ferro, eds, Springer International Publishing, Cham, 2020,
pp. 288–310. ISBN 978-3-030-58219-7. doi:10.1007/978-3-
030-58219-7_21.

[38] C.B. El Vaigh, F. Goasdoué, G. Gravier and P. Sébillot, Using
Knowledge Base Semantics in Context-Aware Entity Link-
ing, in: Proceedings of the ACM Symposium on Document En-
gineering 2019, DocEng ’19, Association for Computing Ma-
chinery, New York, NY, USA, 2019. ISBN 9781450368872.
doi:10.1145/3342558.3345393.

[39] J. Ellis, J. Getman, D. Fore, N. Kuster, Z. Song,
A. Bies and S.M. Strassel, Overview of Linguistic Re-
sources for the TAC KBP 2015 Evaluations: Methodolo-
gies and Results, in: Proceedings of the 2015 Text Analy-
sis Conference, TAC 2015, NIST, Gaithersburg, Maryland,
USA, 2015. https://tac.nist.gov/publications/2015/additional.
papers/TAC2015.KBP_resources_overview.proceedings.pdf.

[40] Y. Eshel, N. Cohen, K. Radinsky, S. Markovitch, I. Yamada
and O. Levy, Named Entity Disambiguation for Noisy Text,
in: Proceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), Association
for Computational Linguistics, Vancouver, Canada, 2017,

https://aclanthology.org/C18-1057
https://aclanthology.org/L16-1139
https://aclanthology.org/L16-1139
https://aclanthology.org/2020.aacl-main.64
https://ojs.aaai.org/index.php/AAAI/article/view/17499
https://ojs.aaai.org/index.php/AAAI/article/view/17499
https://ojs.aaai.org/index.php/AAAI/article/view/6251
https://aclanthology.org/D13-1184
https://aclanthology.org/Q15-1011
https://aclanthology.org/P18-1009
https://arxiv.org/abs/1412.3555
https://aclanthology.org/I17-2016
https://aclanthology.org/I17-2016
https://aclanthology.org/D07-1074
https://aclanthology.org/D07-1074
https://openreview.net/forum?id=5k8F6UU39V
https://openreview.net/forum?id=5k8F6UU39V
https://www.sciencedirect.com/science/article/pii/S0167739X2033003X
https://www.sciencedirect.com/science/article/pii/S0167739X2033003X
https://ojs.aaai.org/index.php/AAAI/article/view/11573
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_resources_overview.proceedings.pdf


pp. 58–68. doi:10.18653/v1/K17-1008. https://aclanthology.
org/K17-1008.

[41] H. Eyre, A.B. Chapman, K.S. Peterson, J. Shi, P.R. Alba,
M.M. Jones, T.L. Box, S.L. DuVall and O.V. Patter-
son, Launching into clinical space with medspaCy: a new
clinical text processing toolkit in Python, arXiv preprint
arXiv:2106.07799 ((in press, n.d.)).

[42] W. Fang, J. Zhang, D. Wang, Z. Chen and M. Li, En-
tity Disambiguation by Knowledge and Text Jointly Em-
bedding, in: Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning, As-
sociation for Computational Linguistics, Berlin, Germany,
2016, pp. 260–269. doi:10.18653/v1/K16-1026. https://
aclanthology.org/K16-1026.

[43] Z. Fang, Y. Cao, Q. Li, D. Zhang, Z. Zhang and
Y. Liu, Joint Entity Linking with Deep Reinforcement
Learning, in: The World Wide Web Conference, WWW
’19, Association for Computing Machinery, New York,
NY, USA, 2019, pp. 438–447–. ISBN 9781450366748.
doi:10.1145/3308558.3313517.

[44] Z. Fang, Y. Cao, R. Li, Z. Zhang, Y. Liu and S. Wang, High
Quality Candidate Generation and Sequential Graph Atten-
tion Network for Entity Linking, in: Proceedings of The Web
Conference 2020, WWW ’20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 640–650–. ISBN
9781450370233. doi:10.1145/3366423.3380146.

[45] M. Färber, F. Bartscherer, C. Menne and A. Rettinger, Linked
Data Quality of DBpedia, Freebase, OpenCyc, Wikidata, and
YAGO, Semantic Web 9(1) (2018), 77–129. doi:10.3233/SW-
170275. https://content.iospress.com/articles/semantic-web/
sw275.

[46] C. Fellbaum (ed.), WordNet: An Electronic Lexical Database,
MIT Press, Cambridge, MA, 1998. ISBN 978-0-262-06197-
1.

[47] P. Ferragina and U. Scaiella, TAGME: On-the-Fly Anno-
tation of Short Text Fragments (by Wikipedia Entities),
in: Proceedings of the 19th ACM International Confer-
ence on Information and Knowledge Management, CIKM
’10, Association for Computing Machinery, New York,
NY, USA, 2010, pp. 1625–1628. ISBN 9781450300995.
doi:10.1145/1871437.1871689.

[48] T. Févry, L. Baldini Soares, N. FitzGerald, E. Choi and
T. Kwiatkowski, Entities as Experts: Sparse Memory Access
with Entity Supervision, in: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Process-
ing (EMNLP), Association for Computational Linguistics,
Online, 2020, pp. 4937–4951. doi:10.18653/v1/2020.emnlp-
main.400. https://aclanthology.org/2020.emnlp-main.400.

[49] M. Francis-Landau, G. Durrett and D. Klein, Capturing Se-
mantic Similarity for Entity Linking with Convolutional Neu-
ral Networks, in: Proceedings of the 2016 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Asso-
ciation for Computational Linguistics, San Diego, Califor-
nia, 2016, pp. 1256–1261. doi:10.18653/v1/N16-1150. https:
//aclanthology.org/N16-1150.

[50] X. Fu, W. Shi, X. Yu, Z. Zhao and D. Roth, Design Chal-
lenges in Low-resource Cross-lingual Entity Linking, in:
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Association
for Computational Linguistics, Online, 2020, pp. 6418–6432.

doi:10.18653/v1/2020.emnlp-main.521. https://aclanthology.
org/2020.emnlp-main.521.

[51] G. Fumera, F. Roli and G. Giacinto, Reject option with mul-
tiple thresholds, Pattern recognition 33(12) (2000), 2099–
2101.

[52] E. Gabrilovich, M. Ringgaard and A. Subramanya, FACC1:
Freebase annotation of ClueWeb corpora, version 1 (release
date 2013-06-26, format version 1, correction level 0), 2013,
Note: http://lemurproject.org/clueweb09/.

[53] O.-E. Ganea and T. Hofmann, Deep Joint Entity Dis-
ambiguation with Local Neural Attention, in: Proceed-
ings of the 2017 Conference on Empirical Methods in
Natural Language Processing, Association for Computa-
tional Linguistics, Copenhagen, Denmark, 2017, pp. 2619–
2629. doi:10.18653/v1/D17-1277. https://aclanthology.org/
D17-1277.

[54] O.-E. Ganea, M. Ganea, A. Lucchi, C. Eickhoff and T. Hof-
mann, Probabilistic Bag-Of-Hyperlinks Model for Entity
Linking, in: Proceedings of the 25th International Conference
on World Wide Web, WWW ’16, International World Wide
Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 2016, pp. 927–938. ISBN 9781450341431.
doi:10.1145/2872427.2882988.

[55] D. Gillick, S. Kulkarni, L. Lansing, A. Presta, J. Baldridge,
E. Ie and D. Garcia-Olano, Learning Dense Representa-
tions for Entity Retrieval, in: Proceedings of the 23rd
Conference on Computational Natural Language Learning
(CoNLL), Association for Computational Linguistics, Hong
Kong, China, 2019, pp. 528–537. doi:10.18653/v1/K19-1049.
https://aclanthology.org/K19-1049.

[56] A. Globerson, N. Lazic, S. Chakrabarti, A. Subramanya,
M. Ringgaard and F. Pereira, Collective Entity Res-
olution with Multi-Focal Attention, in: Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Asso-
ciation for Computational Linguistics, Berlin, Germany,
2016, pp. 621–631. doi:10.18653/v1/P16-1059. https://
aclanthology.org/P16-1059.

[57] A. Goyal, V. Gupta and M. Kumar, Recent Named En-
tity Recognition and Classification techniques: A system-
atic review, Computer Science Review 29 (2018), 21–43.
doi:10.1016/j.cosrev.2018.06.001. https://www.sciencedirect.
com/science/article/pii/S1574013717302782.

[58] P. Goyal and E. Ferrara, Graph embedding techniques, appli-
cations, and performance: A survey, Knowledge-Based Sys-
tems 151 (2018), 78–94. doi:10.1016/j.knosys.2018.03.022.
https://www.sciencedirect.com/science/article/pii/
S0950705118301540.

[59] A. Grover and J. Leskovec, Node2vec: Scalable Feature
Learning for Networks, in: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 855–864. ISBN
9781450342322. doi:10.1145/2939672.2939754.

[60] Y. Gu, X. Qu, Z. Wang, B. Huai, N.J. Yuan and X. Gui, Read,
Retrospect, Select: An MRC Framework to Short Text Entity
Linking, Proceedings of the AAAI Conference on Artificial
Intelligence 35(14) (2021), 12920–12928. https://ojs.aaai.org/
index.php/AAAI/article/view/17528.

https://aclanthology.org/K17-1008
https://aclanthology.org/K17-1008
https://aclanthology.org/K16-1026
https://aclanthology.org/K16-1026
https://content.iospress.com/articles/semantic-web/sw275
https://content.iospress.com/articles/semantic-web/sw275
https://aclanthology.org/2020.emnlp-main.400
https://aclanthology.org/N16-1150
https://aclanthology.org/N16-1150
https://aclanthology.org/2020.emnlp-main.521
https://aclanthology.org/2020.emnlp-main.521
https://aclanthology.org/D17-1277
https://aclanthology.org/D17-1277
https://aclanthology.org/K19-1049
https://aclanthology.org/P16-1059
https://aclanthology.org/P16-1059
https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://www.sciencedirect.com/science/article/pii/S1574013717302782
https://www.sciencedirect.com/science/article/pii/S0950705118301540
https://www.sciencedirect.com/science/article/pii/S0950705118301540
https://ojs.aaai.org/index.php/AAAI/article/view/17528
https://ojs.aaai.org/index.php/AAAI/article/view/17528


[61] Z. Guo and D. Barbosa, Robust named entity disambigua-
tion with random walks, Semantic Web 9(4) (2018), 459–
479. doi:10.3233/SW-170273. https://content.iospress.com/
articles/semantic-web/sw273.

[62] N. Gupta, S. Singh and D. Roth, Entity Linking via Joint
Encoding of Types, Descriptions, and Context, in: Pro-
ceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, Association for Computa-
tional Linguistics, Copenhagen, Denmark, 2017, pp. 2681–
2690. doi:10.18653/v1/D17-1284. https://www.aclweb.org/
anthology/D17-1284.

[63] X. Han, H. Zhu, P. Yu, Z. Wang, Y. Yao, Z. Liu and
M. Sun, FewRel: A Large-Scale Supervised Few-Shot Rela-
tion Classification Dataset with State-of-the-Art Evaluation,
in: Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Association for Com-
putational Linguistics, Brussels, Belgium, 2018, pp. 4803–
4809. doi:10.18653/v1/D18-1514. https://aclanthology.org/
D18-1514.

[64] M.E. Hellman, The Nearest Neighbor Classification
Rule with a Reject Option, IEEE Transactions on Sys-
tems Science and Cybernetics 6(3) (1970), 179–185.
doi:10.1109/TSSC.1970.300339.

[65] R. Herbei and M.H. Wegkamp, Classification with Reject Op-
tion, The Canadian Journal of Statistics / La Revue Canadi-
enne de Statistique 34(4) (2006), 709–721. http://www.jstor.
org/stable/20445230.

[66] S. Hochreiter and J. Schmidhuber, Long Short-Term
Memory, Neural Computation 9(8) (1997), 1735–1780–.
doi:10.1162/neco.1997.9.8.1735.

[67] J. Hoffart, M.A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal,
M. Spaniol, B. Taneva, S. Thater and G. Weikum, Robust Dis-
ambiguation of Named Entities in Text, in: Proceedings of
the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing, Association for Computational Linguis-
tics, Edinburgh, Scotland, UK., 2011, pp. 782–792. https:
//aclanthology.org/D11-1072.

[68] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G.D. Melo,
C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neu-
maier, A.-C.N. Ngomo, A. Polleres, S.M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab and A. Zimmermann,
Knowledge Graphs, ACM Computing Surveys 54(4) (2021).
doi:10.1145/3447772.

[69] F. Hou, R. Wang, J. He and Y. Zhou, Improving En-
tity Linking through Semantic Reinforced Entity Em-
beddings, in: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, As-
sociation for Computational Linguistics, Online, 2020,
pp. 6843–6848. doi:10.18653/v1/2020.acl-main.612. https://
aclanthology.org/2020.acl-main.612.

[70] H. Huang, L. Heck and H. Ji, Leveraging deep neural
networks and knowledge graphs for entity disambiguation,
arXiv preprint arXiv:1504.07678 (2015). https://arxiv.org/
abs/1504.07678.

[71] S. Humeau, K. Shuster, M.-A. Lachaux and J. Weston,
Poly-encoders: Architectures and Pre-training Strategies for
Fast and Accurate Multi-sentence Scoring, in: Interna-
tional Conference on Learning Representations, 2020. https:
//openreview.net/forum?id=SkxgnnNFvH.

[72] A. Jaegle, F. Gimeno, A. Brock, O. Vinyals, A. Zisser-
man and J. Carreira, Perceiver: General Perception with It-
erative Attention, in: Proceedings of the 38th International
Conference on Machine Learning, M. Meila and T. Zhang,
eds, Proceedings of Machine Learning Research, Vol. 139,
PMLR, 2021, pp. 4651–4664. https://proceedings.mlr.press/
v139/jaegle21a.html.

[73] K. Järvelin and J. Kekäläinen, Cumulated Gain-
Based Evaluation of IR Techniques, ACM Transac-
tions on Information Systems 20(4) (2002), 422–446–.
doi:10.1145/582415.582418.

[74] H. Ji and R. Grishman, Knowledge Base Population: Suc-
cessful Approaches and Challenges, in: Proceedings of the
49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, Association for
Computational Linguistics, Portland, Oregon, USA, 2011,
pp. 1148–1158. https://aclanthology.org/P11-1115.

[75] H. Ji, R. Grishman, H.T. Dang, K. Griffitt and J. Ellis,
Overview of the TAC 2010 knowledge base population track,
in: Third Text Analysis Conference (TAC), Gaithersburg,
Maryland, USA, 2010. https://blender.cs.illinois.edu/paper/
kbp2010overview.pdf.

[76] H. Ji, J. Nothman, B. Hachey and R. Florian, Overview of
TAC-KBP2015 Tri-lingual Entity Discovery and Linking,
in: Proceedings of the 2015 Text Analysis Conference, TAC
2015, NIST, Gaithersburg, Maryland, USA, 2015, pp. 16–17.
https://tac.nist.gov/publications/2015/additional.papers/
TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_
overview.proceedings.pdf.

[77] S. Ji, S. Pan, E. Cambria, P. Marttinen and P.S. Yu,
A Survey on Knowledge Graphs: Representation, Acqui-
sition, and Applications, IEEE Transactions on Neural
Networks and Learning Systems 33(2) (2022), 494–514.
doi:10.1109/TNNLS.2021.3070843.

[78] K.S. Jones, S. Walker and S.E. Robertson, A Probabilis-
tic Model of Information Retrieval: Development and Com-
parative Experiments Part 2, Information Processing &
Management 36(6) (2000), 809–840–. doi:10.1016/S0306-
4573(00)00016-9.

[79] M. Joshi, E. Choi, D. Weld and L. Zettlemoyer, TriviaQA:
A Large Scale Distantly Supervised Challenge Dataset for
Reading Comprehension, in: Proceedings of the 55th An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), Association for Compu-
tational Linguistics, Vancouver, Canada, 2017, pp. 1601–
1611. doi:10.18653/v1/P17-1147. https://aclanthology.org/
P17-1147.

[80] R. Kar, S. Reddy, S. Bhattacharya, A. Dasgupta and
S. Chakrabarti, Task-Specific Representation Learning for
Web-Scale Entity Disambiguation, Proceedings of the AAAI
Conference on Artificial Intelligence 32(1) (2018). https://ojs.
aaai.org/index.php/AAAI/article/view/12066.

[81] R. Khare, J. Li and Z. Lu, LabeledIn: Cataloging labeled
indications for human drugs, Journal of Biomedical Infor-
matics 52 (2014), 448–456. doi:10.1016/j.jbi.2014.08.004.
https://www.sciencedirect.com/science/article/pii/
S1532046414001853.

[82] N. Kolitsas, O.-E. Ganea and T. Hofmann, End-to-End
Neural Entity Linking, in: Proceedings of the 22nd Con-
ference on Computational Natural Language Learning,
Association for Computational Linguistics, Brussels, Bel-

https://content.iospress.com/articles/semantic-web/sw273
https://content.iospress.com/articles/semantic-web/sw273
https://www.aclweb.org/anthology/D17-1284
https://www.aclweb.org/anthology/D17-1284
https://aclanthology.org/D18-1514
https://aclanthology.org/D18-1514
http://www.jstor.org/stable/20445230
http://www.jstor.org/stable/20445230
https://aclanthology.org/D11-1072
https://aclanthology.org/D11-1072
https://aclanthology.org/2020.acl-main.612
https://aclanthology.org/2020.acl-main.612
https://arxiv.org/abs/1504.07678
https://arxiv.org/abs/1504.07678
https://openreview.net/forum?id=SkxgnnNFvH
https://openreview.net/forum?id=SkxgnnNFvH
https://proceedings.mlr.press/v139/jaegle21a.html
https://proceedings.mlr.press/v139/jaegle21a.html
https://aclanthology.org/P11-1115
https://blender.cs.illinois.edu/paper/kbp2010overview.pdf
https://blender.cs.illinois.edu/paper/kbp2010overview.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://tac.nist.gov/publications/2015/additional.papers/TAC2015.KBP_Trilingual_Entity_Discovery_and_Linking_overview.proceedings.pdf
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://ojs.aaai.org/index.php/AAAI/article/view/12066
https://ojs.aaai.org/index.php/AAAI/article/view/12066
https://www.sciencedirect.com/science/article/pii/S1532046414001853
https://www.sciencedirect.com/science/article/pii/S1532046414001853


gium, 2018, pp. 519–529. doi:10.18653/v1/K18-1050. https:
//aclanthology.org/K18-1050.

[83] Z. Kraljevic, T. Searle, A. Shek, L. Roguski, K. Noor,
D. Bean, A. Mascio, L. Zhu, A.A. Folarin, A. Roberts,
R. Bendayan, M.P. Richardson, R. Stewart, A.D. Shah,
W.K. Wong, Z. Ibrahim, J.T. Teo and R.J.B. Dob-
son, Multi-domain clinical natural language process-
ing with MedCAT: The Medical Concept Annotation
Toolkit, Artificial Intelligence in Medicine 117 (2021),
102083. doi:10.1016/j.artmed.2021.102083. https://www.
sciencedirect.com/science/article/pii/S0933365721000762.

[84] N. Lazic, A. Subramanya, M. Ringgaard and F. Pereira,
Plato: A Selective Context Model for Entity Resolution,
Transactions of the Association for Computational Linguis-
tics 3 (2015), 503–515. doi:10.1162/tacl_a_00154. https://
aclanthology.org/Q15-1036.

[85] P. Le and I. Titov, Improving Entity Linking by Mod-
eling Latent Relations between Mentions, in: Proceedings
of the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Associa-
tion for Computational Linguistics, Melbourne, Australia,
2018, pp. 1595–1604. doi:10.18653/v1/P18-1148. https://
aclanthology.org/P18-1148.

[86] P. Le and I. Titov, Boosting Entity Linking Performance
by Leveraging Unlabeled Documents, in: Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, Flo-
rence, Italy, 2019a, pp. 1935–1945. doi:10.18653/v1/P19-
1187. https://aclanthology.org/P19-1187.

[87] P. Le and I. Titov, Distant Learning for Entity Linking
with Automatic Noise Detection, in: Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, Flo-
rence, Italy, 2019b, pp. 4081–4090. doi:10.18653/v1/P19-
1400. https://aclanthology.org/P19-1400.

[88] Q. Le and T. Mikolov, Distributed Representations of Sen-
tences and Documents, in: Proceedings of the 31st Inter-
national Conference on Machine Learning, E.P. Xing and
T. Jebara, eds, Proceedings of Machine Learning Research,
Vol. 32, PMLR, Bejing, China, 2014, pp. 1188–1196. https:
//proceedings.mlr.press/v32/le14.html.

[89] D.-H. Lee, Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks, in:
Workshop on challenges in representation learning, ICML,
Vol. 3, JMLR, Atlanta, USA, 2013, p. 2. http://deeplearning.
net/wp-content/uploads/2013/03/pseudo_label_final.pdf.

[90] J. Lee, S.S. Yi, M. Jeong, M. Sung, W. Yoon, Y. Choi,
M. Ko and J. Kang, Answering Questions on COVID-
19 in Real-Time, in: Proceedings of the 1st Workshop
on NLP for COVID-19 (Part 2) at EMNLP 2020, As-
sociation for Computational Linguistics, Online, 2020.
doi:10.18653/v1/2020.nlpcovid19-2.1. https://aclanthology.
org/2020.nlpcovid19-2.1.

[91] S. Lee, D. Kim, K. Lee, J. Choi, S. Kim, M. Jeon, S. Lim,
D. Choi, S. Kim, A.-C. Tan and J. Kang, BEST: Next-
Generation Biomedical Entity Search Tool for Knowledge
Discovery from Biomedical Literature, PLOS ONE 11(10)
(2016), 1–16. doi:10.1371/journal.pone.0164680.

[92] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas,
P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer
and C. Bizer, DBpedia - A Large-scale, Multilingual Knowl-

edge Base Extracted from Wikipedia, Semantic Web Jour-
nal 6(2) (2015), 167–195, doi:10.3233/SW-140134. https:
//content.iospress.com/articles/semantic-web/sw134.

[93] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov and L. Zettlemoyer, BART: Denois-
ing Sequence-to-Sequence Pre-training for Natural Language
Generation, Translation, and Comprehension, in: Proceedings
of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguis-
tics, Online, 2020, pp. 7871–7880. doi:10.18653/v1/2020.acl-
main.703. https://aclanthology.org/2020.acl-main.703.

[94] B.Z. Li, S. Min, S. Iyer, Y. Mehdad and W.-t. Yih, Ef-
ficient One-Pass End-to-End Entity Linking for Questions,
in: Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), Association
for Computational Linguistics, Online, 2020, pp. 6433–6441.
doi:10.18653/v1/2020.emnlp-main.522. https://aclanthology.
org/2020.emnlp-main.522.

[95] J. Li, A. Sun, J. Han and C. Li, A Survey on Deep Learn-
ing for Named Entity Recognition, IEEE Transactions on
Knowledge and Data Engineering 34(1) (2022), 50–70.
doi:10.1109/TKDE.2020.2981314.

[96] X. Ling and D.S. Weld, Fine-Grained Entity Recognition, in:
Proceedings of the Twenty-Sixth AAAI Conference on Artifi-
cial Intelligence, AAAI’12, AAAI Press, 2012, pp. 94–100–.
https://ojs.aaai.org/index.php/AAAI/article/view/8122.

[97] X. Ling, S. Singh and D.S. Weld, Design Challenges for En-
tity Linking, Transactions of the Association for Computa-
tional Linguistics 3 (2015), 315–328. doi:10.1162/tacl_a_-
00141. https://aclanthology.org/Q15-1023.

[98] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer and V. Stoyanov, Ro{BERT}a: A
Robustly Optimized {BERT} Pretraining Approach, 2020.
https://openreview.net/forum?id=SyxS0T4tvS.

[99] R. Livni, S. Shalev-Shwartz and O. Shamir, On the Com-
putational Efficiency of Training Neural Networks, in: Ad-
vances in Neural Information Processing Systems, Vol. 27,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence
and K.Q. Weinberger, eds, Curran Associates, Inc., 2014,
pp. 855–863–. https://proceedings.neurips.cc/paper/2014/file/
3a0772443a0739141292a5429b952fe6-Paper.pdf.

[100] L. Logeswaran, M.-W. Chang, K. Lee, K. Toutanova, J. De-
vlin and H. Lee, Zero-Shot Entity Linking by Reading
Entity Descriptions, in: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, Florence, Italy,
2019, pp. 3449–3460. doi:10.18653/v1/P19-1335. https://
aclanthology.org/P19-1335.

[101] D. Loureiro and A.M. Jorge, MedLinker: Medical En-
tity Linking with Neural Representations and Dictio-
nary Matching, in: Advances in Information Retrieval,
J.M. Jose, E. Yilmaz, J. Magalhães, P. Castells, N. Ferro,
M.J. Silva and F. Martins, eds, Springer International Pub-
lishing, Cham, 2020, pp. 230–237. ISBN 978-3-030-45442-5.
doi:10.1007/978-3-030-45442-5_29.

[102] G. Luo, X. Huang, C.-Y. Lin and Z. Nie, Joint Entity Recog-
nition and Disambiguation, in: Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Process-
ing, Association for Computational Linguistics, Lisbon, Por-
tugal, 2015, pp. 879–888. doi:10.18653/v1/D15-1104. https:
//aclanthology.org/D15-1104.

https://aclanthology.org/K18-1050
https://aclanthology.org/K18-1050
https://www.sciencedirect.com/science/article/pii/S0933365721000762
https://www.sciencedirect.com/science/article/pii/S0933365721000762
https://aclanthology.org/Q15-1036
https://aclanthology.org/Q15-1036
https://aclanthology.org/P18-1148
https://aclanthology.org/P18-1148
https://aclanthology.org/P19-1187
https://aclanthology.org/P19-1400
https://proceedings.mlr.press/v32/le14.html
https://proceedings.mlr.press/v32/le14.html
http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf
https://aclanthology.org/2020.nlpcovid19-2.1
https://aclanthology.org/2020.nlpcovid19-2.1
https://content.iospress.com/articles/semantic-web/sw134
https://content.iospress.com/articles/semantic-web/sw134
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.emnlp-main.522
https://aclanthology.org/2020.emnlp-main.522
https://ojs.aaai.org/index.php/AAAI/article/view/8122
https://aclanthology.org/Q15-1023
https://openreview.net/forum?id=SyxS0T4tvS
https://proceedings.neurips.cc/paper/2014/file/3a0772443a0739141292a5429b952fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/3a0772443a0739141292a5429b952fe6-Paper.pdf
https://aclanthology.org/P19-1335
https://aclanthology.org/P19-1335
https://aclanthology.org/D15-1104
https://aclanthology.org/D15-1104


[103] G. Luo, T. Darrell and A. Rohrbach, NewsCLIPpings: Auto-
matic Generation of Out-of-Context Multimodal Media, in:
Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing, Association for Computa-
tional Linguistics, Online and Punta Cana, Dominican Re-
public, 2021, pp. 6801–6817. doi:10.18653/v1/2021.emnlp-
main.545. https://aclanthology.org/2021.emnlp-main.545.

[104] S. MacAvaney, S. Sotudeh, A. Cohan, N. Goharian, I. Talati
and R.W. Filice, Ontology-Aware Clinical Abstractive Sum-
marization, in: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR’19, Association for Computing Ma-
chinery, New York, NY, USA, 2019, pp. 1013–1016–. ISBN
9781450361729. doi:10.1145/3331184.3331319.

[105] C.D. Manning, P. Raghavan and H. Schütze, Introduction
to Information Retrieval, Cambridge University Press, USA,
2008. ISBN 0521865719.

[106] J.L. Martínez-Rodríguez, A. Hogan and I. López-Arévalo,
Information extraction meets the Semantic Web: A sur-
vey, Semantic Web 11(2) (2020), 255–335. doi:10.3233/SW-
180333. https://content.iospress.com/articles/semantic-web/
sw180333.

[107] P.H. Martins, Z. Marinho and A.F.T. Martins, Joint Learn-
ing of Named Entity Recognition and Entity Linking, in:
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research Work-
shop, Association for Computational Linguistics, Florence,
Italy, 2019, pp. 190–196. doi:10.18653/v1/P19-2026. https:
//aclanthology.org/P19-2026.

[108] P.N. Mendes, M. Jakob, A. García-Silva and C. Bizer, DB-
pedia Spotlight: Shedding Light on the Web of Documents,
in: Proceedings of the 7th International Conference on Se-
mantic Systems, I-Semantics ’11, Association for Comput-
ing Machinery, New York, NY, USA, 2011, pp. 1–8–. ISBN
9781450306218. doi:10.1145/2063518.2063519.

[109] Z. Miftahutdinov, A. Kadurin, R. Kudrin and E. Tutubalina,
Drug and Disease Interpretation Learning with Biomedi-
cal Entity Representation Transformer, in: Advances in In-
formation Retrieval, D. Hiemstra, M.-F. Moens, J. Mothe,
R. Perego, M. Potthast and F. Sebastiani, eds, Springer Inter-
national Publishing, Cham, 2021, pp. 451–466. ISBN 978-3-
030-72113-8. doi:10.1007/978-3-030-72113-8_30.

[110] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado and J. Dean,
Distributed Representations of Words and Phrases and Their
Compositionality, in: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Vol-
ume 2, NIPS’13, Curran Associates Inc., Red Hook, NY,
USA, 2013a, pp. 3111–3119–. https://papers.nips.cc/paper/
2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf.

[111] T. Mikolov, K. Chen, G.S. Corrado and J. Dean, Efficient Es-
timation of Word Representations in Vector Space, in: 1st In-
ternational Conference on Learning Representations, ICLR
2013, Scottsdale, Arizona, USA, 2013b.

[112] D. Milne and I.H. Witten, Learning to Link with
Wikipedia, in: Proceedings of the 17th ACM Confer-
ence on Information and Knowledge Management, CIKM
’08, Association for Computing Machinery, New York,
NY, USA, 2008, pp. 509–518–. ISBN 9781595939913.
doi:10.1145/1458082.1458150.

[113] S. Moon, L. Neves and V. Carvalho, Multimodal Named
Entity Disambiguation for Noisy Social Media Posts, in:
Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Pa-
pers), Association for Computational Linguistics, Melbourne,
Australia, 2018, pp. 2000–2008. doi:10.18653/v1/P18-1186.
https://aclanthology.org/P18-1186.

[114] J.G. Moreno, R. Besançon, R. Beaumont, E. D’hondt, A.-
L. Ligozat, S. Rosset, X. Tannier and B. Grau, Combin-
ing Word and Entity Embeddings for Entity Linking, in:
The Semantic Web, E. Blomqvist, D. Maynard, A. Gangemi,
R. Hoekstra, P. Hitzler and O. Hartig, eds, Springer Interna-
tional Publishing, Cham, 2017, pp. 337–352. ISBN 978-3-
319-58068-5. doi:10.1007/978-3-319-58068-5_21.

[115] A. Moro, A. Raganato and R. Navigli, Entity Linking
meets Word Sense Disambiguation: a Unified Approach,
Transactions of the Association for Computational Linguis-
tics 2 (2014), 231–244. doi:10.1162/tacl_a_00179. https://
aclanthology.org/Q14-1019.

[116] D. Mueller and G. Durrett, Effective Use of Context in
Noisy Entity Linking, in: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, Association for Computational Linguistics, Brussels,
Belgium, 2018, pp. 1024–1029. doi:10.18653/v1/D18-1126.
https://aclanthology.org/D18-1126.

[117] I.O. Mulang’, K. Singh, C. Prabhu, A. Nadgeri, J. Hof-
fart and J. Lehmann, Evaluating the Impact of Knowl-
edge Graph Context on Entity Disambiguation Models,
in: Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management, CIKM
’20, Association for Computing Machinery, New York,
NY, USA, 2020, pp. 2157–2160–. ISBN 9781450368599.
doi:10.1145/3340531.3412159.

[118] C. Möller, J. Lehmann and R. Usbeck, Survey on En-
glish Entity Linking on Wikidata: Datasets and approaches,
Vol. Pre-press, IOS Press, 2022, pp. 1–42. doi:10.3233/SW-
212865. https://content.iospress.com/articles/semantic-web/
sw212865.

[119] D. Nadeau and S. Sekine, A survey of named entity recog-
nition and classification, Lingvisticæ Investigationes 30(1)
(2007), 3–26. doi:10.1075/li.30.1.03nad.

[120] A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid
and C. Sun, Attention Bottlenecks for Multimodal Fusion,
in: Advances in Neural Information Processing Systems,
A. Beygelzimer, Y. Dauphin, P. Liang and J.W. Vaughan, eds,
2021. https://openreview.net/forum?id=KJ5h-yfUHa.

[121] R. Navigli, Word Sense Disambiguation: A Sur-
vey, ACM Computing Surveys 41(2) (2009).
doi:10.1145/1459352.1459355.

[122] M. Nayyeri, S. Vahdati, J. Lehmann and H.S. Yazdi, Soft
Marginal TransE for Scholarly Knowledge Graph Comple-
tion, CoRR abs/1904.12211 (2019). http://arxiv.org/abs/1904.
12211.

[123] M. Nayyeri, S. Vahdati, C. Aykul and J. Lehmann, 5* Knowl-
edge Graph Embeddings with Projective Transformations,
Proceedings of the AAAI Conference on Artificial Intelli-
gence 35(10) (2021), 9064–9072. https://ojs.aaai.org/index.
php/AAAI/article/view/17095.

[124] R. Nedelchev, D. Chaudhuri, J. Lehmann and A. Fis-
cher, End-to-End Entity Linking and Disambiguation lever-

https://aclanthology.org/2021.emnlp-main.545
https://content.iospress.com/articles/semantic-web/sw180333
https://content.iospress.com/articles/semantic-web/sw180333
https://aclanthology.org/P19-2026
https://aclanthology.org/P19-2026
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://aclanthology.org/P18-1186
https://aclanthology.org/Q14-1019
https://aclanthology.org/Q14-1019
https://aclanthology.org/D18-1126
https://content.iospress.com/articles/semantic-web/sw212865
https://content.iospress.com/articles/semantic-web/sw212865
https://openreview.net/forum?id=KJ5h-yfUHa
http://arxiv.org/abs/1904.12211
http://arxiv.org/abs/1904.12211
https://ojs.aaai.org/index.php/AAAI/article/view/17095
https://ojs.aaai.org/index.php/AAAI/article/view/17095


aging Word and Knowledge Graph Embeddings, CoRR
abs/2002.11143 (2020). https://arxiv.org/abs/2002.11143.

[125] D. Newman-Griffis, A.M. Lai and E. Fosler-Lussier, Jointly
Embedding Entities and Text with Distant Supervision, in:
Proceedings of The Third Workshop on Representation Learn-
ing for NLP, Association for Computational Linguistics, Mel-
bourne, Australia, 2018, pp. 195–206. doi:10.18653/v1/W18-
3026. https://aclanthology.org/W18-3026.

[126] D.B. Nguyen, M. Theobald and G. Weikum, J-NERD: Joint
Named Entity Recognition and Disambiguation with Rich
Linguistic Features, Transactions of the Association for Com-
putational Linguistics 4 (2016a), 215–229. doi:10.1162/tacl_-
a_00094. https://aclanthology.org/Q16-1016.

[127] T.H. Nguyen, N. Fauceglia, M. Rodriguez Muro, O. Hassan-
zadeh, A. Massimiliano Gliozzo and M. Sadoghi, Joint Learn-
ing of Local and Global Features for Entity Linking via Neu-
ral Networks, in: Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguistics: Tech-
nical Papers, The COLING 2016 Organizing Committee, Os-
aka, Japan, 2016b, pp. 2310–2320. https://aclanthology.org/
C16-1218.

[128] M. Nickel, V. Tresp and H.-P. Kriegel, A Three-Way Model
for Collective Learning on Multi-Relational Data, in: Pro-
ceedings of the 28th International Conference on Interna-
tional Conference on Machine Learning, ICML’11, Om-
nipress, Madison, WI, USA, 2011, pp. 809–816–. ISBN
9781450306195.

[129] F. Nie, Y. Cao, J. Wang, C.-Y. Lin and R. Pan, Mention
and Entity Description Co-Attention for Entity Disambigua-
tion, Proceedings of the AAAI Conference on Artificial In-
telligence 32(1) (2018). https://ojs.aaai.org/index.php/AAAI/
article/view/12043.

[130] I.L. Oliveira, R. Fileto, R. Speck, L.P.F. Garcia, D. Mous-
sallem and J. Lehmann, Towards holistic Entity Linking: Sur-
vey and directions, Information Systems 95 (2021), 101624.
doi:10.1016/j.is.2020.101624. https://www.sciencedirect.
com/science/article/pii/S0306437920300958.

[131] Y. Onoe and G. Durrett, Fine-Grained Entity Typing for
Domain Independent Entity Linking, Proceedings of the
AAAI Conference on Artificial Intelligence 34(05) (2020),
8576–8583. doi:10.1609/aaai.v34i05.6380. https://ojs.aaai.
org/index.php/AAAI/article/view/6380.

[132] P. Orponen, Computational Complexity of Neural Networks:
A Survey, Nordic Journal of Computing 1(1) (1994), 94–110–
.

[133] L. Page, S. Brin, R. Motwani and T. Winograd, The PageR-
ank Citation Ranking: Bringing Order to the Web., Technical
Report, 1999-66, Stanford InfoLab, 1999, Previous number =
SIDL-WP-1999-0120. http://ilpubs.stanford.edu:8090/422/.

[134] X. Pan, B. Zhang, J. May, J. Nothman, K. Knight and H. Ji,
Cross-lingual Name Tagging and Linking for 282 Languages,
in: Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), Association for Computational Linguistics, Vancouver,
Canada, 2017, pp. 1946–1958. doi:10.18653/v1/P17-1178.
https://aclanthology.org/P17-1178.

[135] A. Parravicini, R. Patra, D.B. Bartolini and M.D. Santam-
brogio, Fast and Accurate Entity Linking via Graph Em-
bedding, in: Proceedings of the 2nd Joint International
Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA),

GRADES-NDA’19, Association for Computing Machin-
ery, New York, NY, USA, 2019. ISBN 9781450367899.
doi:10.1145/3327964.3328499.

[136] B. Perozzi, R. Al-Rfou and S. Skiena, DeepWalk: Online
Learning of Social Representations, in: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, Association for Com-
puting Machinery, New York, NY, USA, 2014, pp. 701–710–.
ISBN 9781450329569. doi:10.1145/2623330.2623732.

[137] M. Pershina, Y. He and R. Grishman, Personalized Page Rank
for Named Entity Disambiguation, in: Proceedings of the
2015 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Association for Computational Linguistics,
Denver, Colorado, 2015, pp. 238–243. doi:10.3115/v1/N15-
1026. https://aclanthology.org/N15-1026.

[138] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark,
K. Lee and L. Zettlemoyer, Deep Contextualized Word
Representations, in: Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), Association for Computa-
tional Linguistics, New Orleans, Louisiana, 2018, pp. 2227–
2237. doi:10.18653/v1/N18-1202. https://aclanthology.org/
N18-1202.

[139] M.E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi,
S. Singh and N.A. Smith, Knowledge Enhanced Contex-
tual Word Representations, in: Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), Association
for Computational Linguistics, Hong Kong, China, 2019,
pp. 43–54. doi:10.18653/v1/D19-1005. https://aclanthology.
org/D19-1005.

[140] F. Piccinno and P. Ferragina, From TagME to WAT: A
New Entity Annotator, in: Proceedings of the First Inter-
national Workshop on Entity Recognition &; Disambigua-
tion, ERD ’14, Association for Computing Machinery, New
York, NY, USA, 2014, pp. 55–62–. ISBN 9781450330237.
doi:10.1145/2633211.2634350.

[141] T. Pires, E. Schlinger and D. Garrette, How Multilingual
is Multilingual BERT?, in: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
Association for Computational Linguistics, Florence, Italy,
2019, pp. 4996–5001. doi:10.18653/v1/P19-1493. https://
aclanthology.org/P19-1493.

[142] N. Poerner, U. Waltinger and H. Schütze, E-BERT: Efficient-
Yet-Effective Entity Embeddings for BERT, in: Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, Association for Computational Linguistics,
Online, 2020, pp. 803–818. doi:10.18653/v1/2020.findings-
emnlp.71. https://aclanthology.org/2020.findings-emnlp.71.

[143] V. Provatorova, S. Vakulenko, E. Kanoulas, K. Dercksen and
J.M. van Hulst, Named Entity Recognition and Linking on
Historical Newspapers: UvA.ILPS & REL at CLEF HIPE
2020, in: Working Notes of CLEF 2020 - Conference and
Labs of the Evaluation Forum, L. Cappellato, C. Eickhoff,
N. Ferro and A. Névéol, eds, CEUR Workshop Proceed-
ings, Vol. 2696, CEUR-WS.org, Thessaloniki, Greece, 2020.
http://ceur-ws.org/Vol-2696/paper_209.pdf.

https://arxiv.org/abs/2002.11143
https://aclanthology.org/W18-3026
https://aclanthology.org/Q16-1016
https://aclanthology.org/C16-1218
https://aclanthology.org/C16-1218
https://ojs.aaai.org/index.php/AAAI/article/view/12043
https://ojs.aaai.org/index.php/AAAI/article/view/12043
https://www.sciencedirect.com/science/article/pii/S0306437920300958
https://www.sciencedirect.com/science/article/pii/S0306437920300958
https://ojs.aaai.org/index.php/AAAI/article/view/6380
https://ojs.aaai.org/index.php/AAAI/article/view/6380
http://ilpubs.stanford.edu:8090/422/
https://aclanthology.org/P17-1178
https://aclanthology.org/N15-1026
https://aclanthology.org/N18-1202
https://aclanthology.org/N18-1202
https://aclanthology.org/D19-1005
https://aclanthology.org/D19-1005
https://aclanthology.org/P19-1493
https://aclanthology.org/P19-1493
https://aclanthology.org/2020.findings-emnlp.71
http://ceur-ws.org/Vol-2696/paper_209.pdf


[144] P. Radhakrishnan, P. Talukdar and V. Varma, ELDEN:
Improved Entity Linking Using Densified Knowledge
Graphs, in: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), Association for Computational
Linguistics, New Orleans, Louisiana, 2018, pp. 1844–
1853. doi:10.18653/v1/N18-1167. https://aclanthology.org/
N18-1167.

[145] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li and P.J. Liu, Exploring the
Limits of Transfer Learning with a Unified Text-to-Text
Transformer, Journal of Machine Learning Research 21(140)
(2020), 1–67. http://jmlr.org/papers/v21/20-074.html.

[146] J. Raiman and O. Raiman, DeepType: Multilingual En-
tity Linking by Neural Type System Evolution, in:
AAAI Conference on Artificial Intelligence, New Orleans,
Louisiana, USA., 2018. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17148.

[147] P. Rajpurkar, J. Zhang, K. Lopyrev and P. Liang, SQuAD:
100,000+ Questions for Machine Comprehension of Text,
in: Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, Association for
Computational Linguistics, Austin, Texas, 2016, pp. 2383–
2392. doi:10.18653/v1/D16-1264. https://aclanthology.org/
D16-1264.

[148] L. Ratinov, D. Roth, D. Downey and M. Anderson, Local and
Global Algorithms for Disambiguation to Wikipedia, in: Pro-
ceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies -
Volume 1, HLT ’11, Association for Computational Linguis-
tics, USA, 2011, pp. 1375–1384–. ISBN 9781932432879.
http://dl.acm.org/citation.cfm?id=2002472.2002642.

[149] N. Reimers and I. Gurevych, Reporting Score Distributions
Makes a Difference: Performance Study of LSTM-networks
for Sequence Tagging, in: Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Process-
ing, Association for Computational Linguistics, Copenhagen,
Denmark, 2017, pp. 338–348. doi:10.18653/v1/D17-1035.
https://aclanthology.org/D17-1035.

[150] N. Reimers and I. Gurevych, Sentence-BERT: Sentence Em-
beddings using Siamese BERT-Networks, in: Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), Asso-
ciation for Computational Linguistics, Hong Kong, China,
2019, pp. 3982–3992. doi:10.18653/v1/D19-1410. https://
aclanthology.org/D19-1410.

[151] S. Rijhwani, J. Xie, G. Neubig and J. Carbonell, Zero-Shot
Neural Transfer for Cross-Lingual Entity Linking, Proceed-
ings of the AAAI Conference on Artificial Intelligence 33(01)
(2019), 6924–6931. doi:10.1609/aaai.v33i01.33016924.
https://ojs.aaai.org/index.php/AAAI/article/view/4670.

[152] G. Rizzo, M. van Erp and R. Troncy, Benchmarking the Ex-
traction and Disambiguation of Named Entities on the Se-
mantic Web, in: Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation (LREC’14),
European Language Resources Association (ELRA), Reyk-
javik, Iceland, 2014, pp. 4593–4600. http://www.lrec-conf.
org/proceedings/lrec2014/pdf/176_Paper.pdf.

[153] M. Röder, R. Usbeck and A.N. Ngomo, GERBIL - Bench-
marking Named Entity Recognition and Linking consistently,
Semantic Web 9(5) (2018), 605 – 625–. doi:10.3233/SW-
170286. https://content.iospress.com/articles/semantic-web/
sw286.

[154] D. Ruffinelli, S. Broscheit and R. Gemulla, You CAN
Teach an Old Dog New Tricks! On Training Knowledge
Graph Embeddings, in: International Conference on Learn-
ing Representations, 2020. https://openreview.net/forum?id=
BkxSmlBFvr.

[155] G.K. Savova, J.J. Masanz, P.V. Ogren, J. Zheng, S. Sohn,
K.C. Kipper-Schuler and C.G. Chute, Mayo clinical Text
Analysis and Knowledge Extraction System (cTAKES): ar-
chitecture, component evaluation and applications, Journal of
the American Medical Informatics Association 17(5) (2010),
507–513. doi:10.1136/jamia.2009.001560.

[156] Ö. Sevgili, A. Panchenko and C. Biemann, Improving Neu-
ral Entity Disambiguation with Graph Embeddings, in:
Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics: Student Research Work-
shop, Association for Computational Linguistics, Florence,
Italy, 2019, pp. 315–322. doi:10.18653/v1/P19-2044. https:
//aclanthology.org/P19-2044.

[157] H. Shahbazi, X. Fern, R. Ghaeini, C. Ma, R.M. Obeidat and
P. Tadepalli, Joint Neural Entity Disambiguation with Output
Space Search, in: Proceedings of the 27th International Con-
ference on Computational Linguistics, Association for Com-
putational Linguistics, Santa Fe, New Mexico, USA, 2018,
pp. 2170–2180. https://aclanthology.org/C18-1184.

[158] H. Shahbazi, X.Z. Fern, R. Ghaeini, R. Obeidat and
P. Tadepalli, Entity-aware ELMo: Learning Contextual En-
tity Representation for Entity Disambiguation, arXiv preprint
arXiv:1908.05762 (2019). https://arxiv.org/abs/1908.05762.

[159] R. Sharnagat, Named entity recognition: A literature survey,
Center For Indian Language Technology (2014). http://www.
cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf.

[160] W. Shen, J. Wang and J. Han, Entity Linking with a Knowl-
edge Base: Issues, Techniques, and Solutions, IEEE Transac-
tions on Knowledge & Data Engineering 27(02) (2015), 443–
460. doi:10.1109/TKDE.2014.2327028.

[161] W. Shen, J. Han, J. Wang, X. Yuan and Z. Yang, SHINE+: A
General Framework for Domain-Specific Entity Linking with
Heterogeneous Information Networks, IEEE Transactions on
Knowledge and Data Engineering 30(2) (2018), 353–366.
doi:10.1109/TKDE.2017.2730862.

[162] W. Shi, S. Zhang, Z. Zhang, H. Cheng and J.X. Yu, Joint
Embedding in Named Entity Linking on Sentence Level,
arXiv preprint arXiv:2002.04936 (2020). https://arxiv.org/
abs/2002.04936.

[163] I. Shnayderman, L. Ein-Dor, Y. Mass, A. Halfon, B. Sz-
najder, A. Spector, Y. Katz, D. Sheinwald, R. Aharonov
and N. Slonim, Fast End-to-End Wikification, arXiv preprint
arXiv:1908.06785 (2019).

[164] A. Sil, G. Kundu, R. Florian and W. Hamza, Neural Cross-
Lingual Entity Linking, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 32(1) (2018). https://ojs.aaai.
org/index.php/AAAI/article/view/11964.

[165] J. Šíma and P. Orponen, General-Purpose Computation
with Neural Networks: A Survey of Complexity Theoretic
Results, Neural Computation 15(12) (2003), 2727–2778.
doi:10.1162/089976603322518731.

https://aclanthology.org/N18-1167
https://aclanthology.org/N18-1167
http://jmlr.org/papers/v21/20-074.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17148
https://aclanthology.org/D16-1264
https://aclanthology.org/D16-1264
http://dl.acm.org/citation.cfm?id=2002472.2002642
https://aclanthology.org/D17-1035
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://ojs.aaai.org/index.php/AAAI/article/view/4670
http://www.lrec-conf.org/proceedings/lrec2014/pdf/176_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/176_Paper.pdf
https://content.iospress.com/articles/semantic-web/sw286
https://content.iospress.com/articles/semantic-web/sw286
https://openreview.net/forum?id=BkxSmlBFvr
https://openreview.net/forum?id=BkxSmlBFvr
https://aclanthology.org/P19-2044
https://aclanthology.org/P19-2044
https://aclanthology.org/C18-1184
https://arxiv.org/abs/1908.05762
http://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf
http://www.cfilt.iitb.ac.in/resources/surveys/rahul-ner-survey.pdf
https://arxiv.org/abs/2002.04936
https://arxiv.org/abs/2002.04936
https://ojs.aaai.org/index.php/AAAI/article/view/11964
https://ojs.aaai.org/index.php/AAAI/article/view/11964


[166] N. Slonim, Y. Bilu, C. Alzate, R. Bar-Haim, B. Bo-
gin, F. Bonin, L. Choshen, E. Cohen-Karlik, L. Dankin,
L. Edelstein et al., An autonomous debating system, Nature
591(7850) (2021), 379–384. doi:10.1038/s41586-021-03215-
w.

[167] L. Soldaini and N. Goharian, QuickUMLS: a fast, unsuper-
vised approach for medical concept extraction, in: MedIR
workshop, SIGIR, 2016, pp. 1–4. http://medir2016.imag.fr/
data/MEDIR_2016_paper_16.pdf.

[168] D. Sorokin and I. Gurevych, Mixing Context Granulari-
ties for Improved Entity Linking on Question Answering
Data across Entity Categories, in: Proceedings of the Sev-
enth Joint Conference on Lexical and Computational Se-
mantics, Association for Computational Linguistics, New
Orleans, Louisiana, 2018, pp. 65–75. doi:10.18653/v1/S18-
2007. https://aclanthology.org/S18-2007.

[169] V.I. Spitkovsky and A.X. Chang, A Cross-Lingual Dic-
tionary for English Wikipedia Concepts, in: Proceed-
ings of the Eighth International Conference on Lan-
guage Resources and Evaluation (LREC’12), European Lan-
guage Resources Association (ELRA), Istanbul, Turkey,
2012, pp. 3168–3175. http://www.lrec-conf.org/proceedings/
lrec2012/pdf/266_Paper.pdf.

[170] F.M. Suchanek, G. Kasneci and G. Weikum, YAGO: A
Core of Semantic Knowledge, in: Proceedings of the
16th International Conference on World Wide Web, WWW
’07, Association for Computing Machinery, New York,
NY, USA, 2007, pp. 697–706–. ISBN 9781595936547.
doi:10.1145/1242572.1242667.

[171] Y. Sun, L. Lin, D. Tang, N. Yang, Z. Ji and X. Wang, Mod-
eling Mention, Context and Entity with Neural Networks for
Entity Disambiguation, in: Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence, IJCAI’15, AAAI
Press, 2015, pp. 1333–1339–. ISBN 9781577357384.

[172] M. Sung, H. Jeon, J. Lee and J. Kang, Biomedical Entity Rep-
resentations with Synonym Marginalization, in: Proceedings
of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguis-
tics, Online, 2020, pp. 3641–3650. doi:10.18653/v1/2020.acl-
main.335. https://www.aclweb.org/anthology/2020.acl-main.
335.

[173] H. Tang, X. Sun, B. Jin and F. Zhang, A Bidirectional
Multi-paragraph Reading Model for Zero-shot Entity Link-
ing, 2021, pp. 13889–13897. https://ojs.aaai.org/index.php/
AAAI/article/view/17636.

[174] E.F. Tjong Kim Sang and F. De Meulder, Introduction to the
CoNLL-2003 Shared Task: Language-Independent Named
Entity Recognition, in: Proceedings of the Seventh Confer-
ence on Natural Language Learning at HLT-NAACL 2003,
2003, pp. 142–147. https://aclanthology.org/W03-0419.

[175] T. Trouillon, J. Welbl, S. Riedel, E. Gaussier and
G. Bouchard, Complex Embeddings for Simple Link Predic-
tion, in: Proceedings of The 33rd International Conference
on Machine Learning, M.F. Balcan and K.Q. Weinberger,
eds, Proceedings of Machine Learning Research, Vol. 48,
PMLR, New York, New York, USA, 2016, pp. 2071–2080.
https://proceedings.mlr.press/v48/trouillon16.html.

[176] C.-T. Tsai and D. Roth, Cross-lingual Wikification Using
Multilingual Embeddings, in: Proceedings of the 2016 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-

gies, Association for Computational Linguistics, San Diego,
California, 2016, pp. 589–598. doi:10.18653/v1/N16-1072.
https://aclanthology.org/N16-1072.

[177] C.-T. Tsai and D. Roth, Learning Better Name Translation for
Cross-Lingual Wikification, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 32(1) (2018). https://ojs.aaai.
org/index.php/AAAI/article/view/12018.

[178] E. Tutubalina, A. Kadurin and Z. Miftahutdinov, Fair Eval-
uation in Concept Normalization: a Large-scale Compara-
tive Analysis for BERT-based Models, in: Proceedings of
the 28th International Conference on Computational Lin-
guistics, International Committee on Computational Lin-
guistics, Barcelona, Spain (Online), 2020, pp. 6710–6716.
doi:10.18653/v1/2020.coling-main.588. https://aclanthology.
org/2020.coling-main.588.

[179] S. Upadhyay, N. Gupta and D. Roth, Joint Multilingual Super-
vision for Cross-lingual Entity Linking, in: Proceedings of the
2018 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, Brus-
sels, Belgium, 2018a, pp. 2486–2495. doi:10.18653/v1/D18-
1270. https://aclanthology.org/D18-1270.

[180] S. Upadhyay, J. Kodner and D. Roth, Bootstrapping Translit-
eration with Constrained Discovery for Low-Resource Lan-
guages, in: Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, Asso-
ciation for Computational Linguistics, Brussels, Belgium,
2018b, pp. 501–511. doi:10.18653/v1/D18-1046. https://
aclanthology.org/D18-1046.

[181] J.M. van Hulst, F. Hasibi, K. Dercksen, K. Balog and
A.P. de Vries, REL: An Entity Linker Standing on the Shoul-
ders of Giants, in: Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, Association for Computing Machin-
ery, New York, NY, USA, 2020, pp. 2197–2200–. ISBN
9781450380164. https://doi.org/10.1145/3397271.3401416.

[182] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A.N. Gomez, L. Kaiser and I. Polosukhin,
Attention is All You Need, in: Proceedings of the
31st International Conference on Neural Information
Processing Systems, NIPS’17, Curran Associates Inc.,
Red Hook, NY, USA, 2017, pp. 6000–6010–. ISBN
9781510860964. https://papers.nips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[183] O. Vinyals, M. Fortunato and N. Jaitly, Pointer Net-
works, in: Advances in Neural Information Process-
ing Systems 28, C. Cortes, N.D. Lawrence, D.D. Lee,
M. Sugiyama and R. Garnett, eds, Curran Associates,
Inc., 2015, pp. 2692–2700. http://papers.nips.cc/paper/
5866-pointer-networks.pdf.
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