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Abstract. The diffusion of Human-Robot Collaborative cells is prevented by several barriers. Classical control approaches seem
not yet fully suitable for facing the variability conveyed by the presence of human operators beside robots. The capabilities of
representing heterogeneous knowledge representation and performing abstract reasoning are crucial to enhance the flexibility of
control solutions. To this aim, the ontology SOHO (Sharework Ontology for Human Robot Collaboration) has been specifically
designed for representing Human-Robot Collaboration scenarios, following a context-based approach. This work brings several
contributions. This paper proposes an extension of SOHO to better characterize behavioral constraints of collaborative tasks.
Furthermore, this work shows a knowledge extraction procedure designed to automatize the synthesis of Artificial Intelligence
plan-based controllers for realizing a flexible coordination of human and robot behaviors in collaborative tasks. The generality
of the ontological model and the developed representation capabilities as well as the validity of the synthesized planning domains
are evaluated on a number of realistic industrial scenarios where collaborative robots are actually deployed.

Keywords: Ontology, Knowledge Representation and Reasoning, Human-Robot Collaboration, Automated Planning and
Scheduling, Artificial Intelligence

1. Introduction

Nowadays, robots are successfully deployed in a large spectrum of real-world applications. Nevertheless, research
activities are still ongoing to enable robots to autonomously operate in “open environments" for, e.g., understanding
the actual situation, planning their tasks and acting to safely and effectively achieve some given goals. In particular
in manufacturing, an open problem is the design of control systems that can robustly deal with quick and frequent
changes of the production requirements. Higher levels of flexibility and adaptability of industrial robots is indeed
crucial to face the challenges of Industry 4.0 [1, 2]. Modern manufacturing systems should evolve towards customer-
oriented production as well as towards different production paradigms that see humans and robots working side by
side as interchangeable production resources [3, 4].

Classical control processes that usually rely on static models of robot capabilities and production dynamics are
today obsolete since they do not provide robotic systems (and more in general manufacturing systems) with the
flexibility needed to effectively support dynamic production environments. This is especially true in Human-Robot
Collaboration (HRC) where robots and humans share the working space and tightly interact together to achieve com-
mon (production) objectives. The symbiotic coexistence of human operators and robots raises several technological
challenges because the behavior of human workers is neither predictable nor controllable. To realize safe, effec-
tive and efficient cooperation between humans and robots is therefore necessary to robustly deal with a significant
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amount of uncertainty requiring higher levels of flexibility and adaptability of robot controllers [5]. HRC scenarios
entail thus the integration of Artificial Intelligence (AI) and Robotics solutions to enrich collaborative robots with
advanced cognitive capabilities [6, 7] and thus allow robots (and collaborative systems as a whole) to: (i) perceive
the environment, correctly interpret occurring events and situations to properly build and maintain knowledge about
the production context; (ii) reason about their own capabilities/skills and dynamically contextualize possible actions
according to the known state of a production scenario and; (iii) autonomously decide how to act and interact with
the environment and other “actors" (i.e., human operators but also other robots if necessary) in order to carry out
(assigned) tasks and dynamically support production needs.

In this context, we are investigating the enrichment of collaborative robot controllers through a “perceive-reason-
act" paradigm implementing advanced cognitive features. Such features would allow a robot to perceive the produc-
tion environment, recognize events and activities, and dynamically adapt its behavior accordingly. In particular, the
integration of AI-based Knowledge Representation & Reasoning technologies with Automated Planning and Exe-
cution technologies has shown to be effective in enhancing the flexibility and adaptability of autonomous behaviors
of robots in a number of (heterogeneous) scenarios ranging from service and assistive robotics [8–10] to Recon-
figurable Manufacturing Systems [11, 12]. Semantic technologies are crucial to realize the cognitive capabilities
needed to provide robot controllers with the semantics necessary to represent heterogeneous information coming
from different sources (e.g., deployed sensing devices or domain expert knowledge about production processes) and
reason about the resulting knowledge in order to (autonomously) understand the state of a production environment
and make contextualized decisions.

This paper advances a recent work extending an ontological model for Human-Robot Collaboration in manufac-
turing [13] and investigating the integration between Knowledge Representation & Reasoning and Automated Plan-
ning to enhance awareness, adaptability and flexibility of collaborative robots. On the one hand, the paper refines
the context-based ontological model given in [13] to better characterize collaborative dynamics and contextualize
them with respect to the production needs of a HRC scenario. On the other hand, the paper proposes knowledge
reasoning mechanisms that contextualize production knowledge and synthesize plan-based control models suitable
for the flexible and robust coordination of collaborative robots [14, 15]. More specifically, the paper first contribu-
tion is a refined domain ontology characterizing HRC scenarios from different synergetic perspectives (defined as
contexts). The ontology defines the key concepts and properties necessary to describe and characterize human and
robot capabilities, production objectives, production procedures, constraints and also collaboration modalities.

An original and novel aspect of the proposed approach is the use of ontology design patterns [16] as a mean to
facilitate the description of HRC production processes by taking into account consolidated schema of interaction
between humans and robots [17]. Similarly to software design patterns, ontology design patterns are here proposed
to narrow user design choices and define sufficiently general and reusable concepts characterizing typical collab-
oration dynamics. Such patterns are thus suitable to characterize behavioral constraints of humans and robots, ac-
cording to the (expected) types of collaboration required by tasks. Developed knowledge reasoning and knowledge
extraction procedures automatically generate and validate planning models. They also show how ontological pat-
terns are translated into behavioral constraints that generally characterize collaboration dynamics of humans and
robots within the execution of production tasks. Such procedures are crucial to enable the dynamic synthesis and
adaptation of plan-based controllers. The integration of planning and semantic technologies thus realize the cogni-
tive skills necessary to support production awarenss and reconfigurable capabilities, necessary to guarantee higher
levels of reliability and autonomy under evolving conditions and states of a production environment (e.g., changing
production requirements, changing capabilities of a robotic platform or changing skills of human operators, etc.).

The validity and generality of the proposed approach are evaluated on a number of real HRC production scenar-
ios extracted from an EU H2020 research project, called Sharework1. These scenarios concern different types of
production environments with different production entities, tools and objectives. The assessment shows that the pro-
posed approach supports a proper definition of suitable production knowledge and the synthesis of valid plan-based
controllers that can be concretely used to coordinate human and robot behaviors.

1https://sharework-project.eu

https://sharework-project.eu
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2. Ontology in Computer Science and Robotics

Ontologies can be seen as formal descriptions of objects, properties and relationships among objects collected in a
particular data structure called Knowledge Base (KB). In computer science, ontologies have been defined in different
ways by different scientists. Studer et al. [18] combined the definitions by Gruber [19] and Borst [20] stating that
an ontology is “an explicit, formal specification of a shared conceptualization”. The different characterizations of
ontology are complementary and can be combined together. According to [21], it can be said that “an ontology is an
artificial representation, that represents types or universals of a certain domain and the relations that hold according
to a certain theory in a formal structure”. Depending on the specific application needs, four types of ontology can
be defined, supporting different levels of generality of underlying concepts and properties [22]: (i) Top-level or
Upper ontologies describe very general concepts like e.g., space, time, event or action, that are independent from a
particular problem or domain; (ii) Domain ontologies describe general concepts related to a specific domain; (iii)
Task ontologies describe generic tasks or activities. (iv) Application ontologies characterize a specific application
and describe concepts whose relevance is limited to a specific domain and task.

2.1. Foundations

Upper ontologies aim at describing reality from a quite general perspective in order to define very general con-
cepts that are the same across all domains. The concepts and the properties defined by upper ontologies may seem
too abstract and not really useful in concrete applications but the use of this kind of ontologies (also known as foun-
dational ontologies) is generally recommended [21, 23]. The use of upper ontologies indeed represents a good design
choice to build new domain ontologies. As shown in [21], these concepts represent a stable theoretical foundation
fostering a clear structuring and disambiguation of new concepts and related relationships. According to [23], upper
ontologies guide a correct classification of knowledge entities of a particular domain and facilitate interoperability
among different ontologies.

A number of upper ontologies exist in the literature. SUMO, DOLCE and BFO are probably the most famous
and used. Each upper ontology has its own basic assumptions that characterize general and abstract concepts. For
example, DOLCE is an “ontology of particulars”. It does have universal (classes and properties), but the claim is
that they are only employed in the service of describing particulars. In contrast, SUMO could be described as an
ontology of both particulars and universals. Also, DOLCE uses meta-properties as a guiding methodology, while
SUMO pursues a formal definition of such meta-properties directly in the ontology itself (axiomatization). The work
[23] gives a first comparison of these and other upper ontologies known in the literature.

Although similar, these ontologies cannot be directly integrated without introducing contradictions. Some works
have focused on the definition of the so called upper-upper ontologies for the integration of different foundational
ontologies [24]. Since CORA and SSN rely on two different upper ontologies and since upper-upper ontologies
like e.g., COSMO (COmmon Semantic MOdel) have obtained poor practical results, a first design choice was the
selection of an upper ontology for SOHO. Given the variety of information the system should deal with and the
needed representation flexibility, we decided to use DOLCE [25] as theoretical background in order to support
a flexible interpretation of temporally evolving entities and, also, to rely on a recognized standard representation
framework (ISO 213838-3).

2.2. What is Missing for HRC?

In addition to DOLCE, SOHO is built on top of other two ontologies: (i) the CORA ontology [26] and; (ii)
the SSN ontology [27]. CORA is an IEEE standard ontology for robotics and automation. It has been defined
with the aim of promoting a common language in the robotics and automation domain. It proposes a semantics
to formally characterize knowledge about robots and robot parts, robot positions and configurations and groups
of robots. This standard relies on SUMO as theoretical foundation and integrates the framework ALFUS [28] to
characterize the autonomy levels of a robot. SSN is a W3C standard ontology for IoT devices and sensor network.
It defines basic concepts and properties characterizing the capabilities of sensing devices, their deployment into
a physical environment and the physical phenomena such devices can observe. SSN relies on DUL (a subset of
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DOLCE) as theoretical background. It extends abstract concepts like e.g., DUL:Quality and DUL:Region to
represent respectively physical properties that can be observed and metrics that can be used to measure the outcome
of sensing processes.

CORA and SSN are well structured ontologies defining concepts and properties that are relevant for HRC but they
do not cover all the necessary information. The scope of SSN is limited to the characterization of a physical environ-
ment in terms of properties that can be observed and sensing devices that carry out “sensing processes". This ontol-
ogy is quite “self-contained" and can be easily integrated with CORA to represent also robot interfaces and sensing
parts. CORA has a broader scope. It focuses on robot parts, robot configurations and levels of autonomy. However,
CORA does not support the contextualization and interpretation of behaviors of robots and other autonomous agents
(e.g., human operators) with respect to the global production objectives and processes. For example, CORA does
not consider the Human as an autonomous agent operating in autonomy or in collaboration with robots to achieve a
common (production) objective. Also, CORA does not support a structured description of production processes in
terms of tasks, relationships among tasks, operational constraints and needed capabilities/skills for their execution.
More specifically, three main limitations can be pointed out.

– Functions, Tasks and Capabilities. A detailed description of production processes and tasks that agents (e.g.,
human workers or robots) can perform is necessary to dynamically coordinate the available resources. Such a
structured description is crucial to realize a flexible collaboration between humans and robots.

– Humans as collaborative agents. A detailed description of human operators in terms of capabilities and their
“autonomy level" is crucial to dynamically adapt and coordinate collaborative processes. In this regard, it would
be interesting to extend the ALFUS [28] model to human workers. This knowledge together with a model
of possible collaboration modalities of tasks is necessary to reason about safety requirements and synthesize
collaborative plans accordingly.

– Intentions, commitment and coordination issues. The envisaged system should be capable of recognizing hu-
man behaviors from sensor observations and contextualize them with respect to production objectives. It is nec-
essary to represent and reason about abstract concepts like e.g., human intentions and link observed behaviors
to (known) production processes in order to react or adapt planned operations accordingly.

3. A Domain Ontology for HRC

In manufacturing, ontologies have mainly focused on (cyber-physical) production systems as a whole or rather on
specific production aspects like e.g., [29–31]. Such works have not taken into account collaboration dynamics and
symbiotic interaction for the achievement of shared (production) goals. In this paper, we propose a refinement of
SOHO (Sharework Ontology for Human Robot Collaboration) to pursue a stricter focus on collaboration dynamics.
An overview of the structure of SOHO and a brief description of main concepts and properties has been given in [13].
Figure 1 shows the general organization of SOHO which follows a context-based approach to characterize domain
entities from different perspectives and abstraction levels. This flexibility is crucial to support a multi-perspective
representation and interpretation of domain (production) knowledge.

SOHO considers three main contexts, i.e., the environment, the behavior and the production contexts. Broadly
speaking, the environment context characterizes the physical configuration of a working environment and the “qual-
itative" properties of the elements that are part of it. The behavior context characterizes the “acting elements" of
the environment (i.e., the worker and the robot) in terms of operational capabilities, performances and behavioral
qualities. The production context characterizes goals, procedures and functional operations that should be performed
and how “acting elements" could interact to correctly carry out them.

3.1. Capabilities, Functions and Production Requirements

The goal of SOHO is to define humans and robots capabilities as well as operations they should perform in a
production environment. These “acting entities" are represented through the concepts Cobot and HumanWorker
that are defined as specializations of the concept DUL:Agent. The acting qualities of each agent are represented



A. U. Umbrico et al. / Deploying Ontology-based Reasoning in Collaborative Manufacturing 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

DUL/
DOLCE

SSN

CORA

EN
VI

RONMEN
T BEHAVIOR

HUMAN FACTOR

SAFE
TY

PRODUCTION

(a) (b)

Fig. 1. Overview of SOHO: (a) general structure and defined contexts; (b) excerpt of concepts and properties

by means of Capability and Function. Capabilities characterize the operations an agent can “intrinsically"
carry out according to their structure and skills. For example, a human worker can perform welding operations only
if she is skilled in that task. Similarly, a robot can perform “pick and place" of objects only if it is endowed with a
gripper or other suitable functional parts.

While capabilities do not depend on the features of a production context, the concept of Function integrates the
Taxonomy of Functions defined in [32] to characterize low-level production tasks that a human and a robot should
perform in a manufacturing environment. In this taxonomy, different types of Function are defined according to
the effects they have on the DUL:Quality of objects. The functions an (either human or robotic) agent can perform
in a context can be dynamically inferred according to the actual capabilities of that agent. The separation between
functions and capabilities supports contextual reasoning since functions contextualize general agents’ capabilities
with respect to the needs and features of a production scenario.

Function v ProductionTask u
∃ isDescribedBy.ProductionNorm u
∃ canBePerformedBy.DUL:Agent u
∃ hasEffectOn.DUL:Quality u
∃ hasTarget.ProductionObject u
∃ requires.ProductionObject u
∃ requires.Capability

(1)

The description of a production process follows a task-oriented approach [33, 34]. The top-level element is the
goal which defines the general objectives of a production context. Each ProductionGoal is associated with a
number of ProductionMethod (at least one method for each goal is necessary) defining the rules that must be
considered to successfully achieve the desired production goal. Each ProductionMethod always refers to one
specific ProductionGoal and is composed by a hierarchical organization of ProductionTask. The ontology
specifically defines three types of task: (i) ComplexTask (either disjunctive or conjunctive); (ii) SimpleTask
and; (iii) Function. A ComplexTask is a ProductionTask (i.e., an instance of DUL:Method) representing
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a compound logical operation. The hierarchical structure is enforced by the property hasConstituent which
associates ComplexTask with either SimpleTask or other ComplexTask.

ComplexTask v ProductionTask u
∃ (hasConstituent.ComplexTask t
hasConstituent.SimpleTask) u
∃ isConformTo.OperativeConstraint

(2)

A SimpleTask represents a leaf of the hierarchical structure of a ProductionMethod. This concept de-
scribes primitive production operations that could be carried out leveraging the functional capabilities of the agents.
A SimpleTask requires thus the execution of a number of Function instances by the agents.

SimpleTask v ProductionTask u
∃ hasConstituent.Function u
∃ hasConstituent.SimpleWorkpiece u
∃ (isConformTo.InteractionModality t
isConformTo.OperativeConstraint)

(3)

The execution of tasks should comply with operational constraints that are represented as ExecutionNorm.
Two main types of execution norms can be defined: the concept OperativeConstraint describes norms re-
quiring the sequential or parallel execution of tasks; the concept InteractionModality instead characterizes
norms about how agents should cooperate to carry out a task.

3.2. Reification of Collaborative Modalities

Although the “boundaries" of the representation space are well delimited within a domain ontology [22] the defi-
nition of a Knowledge Base (KB) is not straightforward (i.e., the “instantiation" of an ontological model). Mapping
a general ontology (TBox) to a concrete, and effective, model (ABox) (e.g., a HRC work-cell as in this case) entails
a significant number of design choices. Ontology design patterns [16] can play a role in supporting knowledge defi-
nition. Patterns can indeed specialize an ontological model without losing generality but defining useful “structures"
that may facilitate knowledge definition.

In the considered domain, a crucial point is the representation of the hierarchical structure of production processes
and the correlations between production tasks and the functions the human and the robot can actually perform.
Ontological patterns in this case characterize typical and/or recurrent associations between tasks and functions. We
specifically propose an extension of SOHO by introducing “domain-level" patterns that characterize different ways
of performing collaborative tasks. The concept HRCTask is introduced as a particular type of SimpleTask. The
basic assumption is that a HRCTask requires a minimum of one Function and a maximum of two Function
to be correctly performed. Each required Function should be performed by a HumanWorker or by a Cobot.
When two instances of Function are required, exactly one function should be performed by a HumanWorker
and exactly one function should be performed by a Cobot. Furthermore, all the considered functions should have
effect on the same target entity of the environment (i.e., ProductionObject).

According to [17], the execution of a collaborative task (i.e., an individual of HRCTask) entails one of four
different collaboration modalities: (i) Independent, human and robot perform their tasks on different work pieces
without collaboration; (ii) Simultaneous, human and robot perform distinct tasks on the same work piece at the same
time, still without physical interaction; (iii) Supportive, human and robot perform the same task on the same work
piece and they work simultaneously and cooperatively on the same task. (iv) Synchronous, human and robot should
complete sequential tasks on the same work piece. Figure 2 shows a graphical representation of these four types of
collaborative tasks.

Following this classification, the concept HRCTask has been further specialized into four types of (collaborative)
task. These four types are reified as four patterns characterizing specific knowledge structures in terms of associated



A. U. Umbrico et al. / Deploying Ontology-based Reasoning in Collaborative Manufacturing 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 2. Graphical representation of collaboration modalities

concepts and cardinality restrictions above related properties. Tasks of type IndependentTask are implemented
by a single Function that can be performed by a HumanWorker or by a Cobot. A human/robot performs the
function independently from the other.

IndependentTask v HRCTask u
∃! (hasConstituent.HumFunction t
hasConstituent.RobFunction) u
∃! isConformTo.Independent

(4)

Tasks of type SimultaneousTask are implemented by exactly two instances of Function, one function per-
formed by a HumanWorker (i.e., HumanFunction), another performed by a Cobot (i.e., RobotFunction).
In this case, the human and the robot work on the same WorkPiece performing two different functions that can
be carried out without any specific constraint.

SimultaneousTask v HRCTask u
∃! hasConstituent.HumFunction u
∃! hasConstituent.RobFunction u
∃! isConformTo.Simultaneous

(5)

Tasks of type SynchronousTask are implemented by a RobotFunction and a HumanFunction. The
pattern in this case forces the human and the robot at performing these two functions following a strict sequential
order (this type of task is associated to the production norm SequentialExecutionConstraint).

SynchronousTask v HRCTask u
∃! hasConstituent.HumFunction u
∃! hasConstituent.RobFunction u
∃! isConformTo.SequentialExec u
∃! isConformTo.Synchronous

(6)
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Tasks of type SupportiveTask are implemented by a RobotFunction and a HumanFunction. In this
case the pattern forces the human and the robot at performing two functions in parallel (this type of task is associated
to the production norm ParallelExecutionConstraint) achieving the highest level of collaboration.

SupportiveTask v HRCTask u
∃! hasConstituent.HumFunction u
∃! hasConstituent.RobFunction u
∃! isConformTo.ParallelExec u
∃! isConformTo.Supportive

(7)

The definitions (4), (5), (6) and (7) constitute representation schema that facilitate the definition of typical pro-
duction tasks of HRC scenarios that should be performed following a well-defined procedure (execution modality).
Such reusable structures thus can help the definition of KB as well as the definition process of control models such
as, e.g., plan-based specification by providing a known, formal and well founded reference for the definition of
operative and behavioral constraints.

4. Knowledge Definition and Automated Synthesis of Plan-based Control Models

A production knowledge defined according to the semantics proposed by SOHO characterizes a particular HRC
scenario from different perspectives. The obtained knowledge represents a kind of “standard" model of “acting
dynamics" that can be used to support control features. In this work, we are interested in investigating how the
knowledge can be leveraged to autonomously synthesize plan-based control models and, thus, support dynamic
reconfiguration and flexible control of industrial (collaborative) robots.

In this work, we are interested in investigating how this knowledge can be leveraged to automatically generate
planning specifications and endow collaborative robots with control features to support dynamic reconfiguration
and flexible control of industrial (collaborative) robots. We thus design a knowledge extraction procedure to au-
tomatically generate suitable planning domain specifications and dynamic configure a robot controller to support
collaborative production processes. This procedure bridges the gap between (production) knowledge representa-
tion and robot control and enables the realization of a cognitive “perceive-reason-act" loop as shown in [11] for
Reconfigurable Manufacturing Systems.

Although the production knowledge relies on standard semantic technologies and therefore is “planning agnos-
tic", we here design a general procedure that complies production knowledge into a temporal planning model that
complies with the timeline-based planning formalism [35].

4.1. Timeline-based Approach to Planning

Task planning and scheduling capabilities rely on the timeline-based paradigm formalized in [35]. A timeline-
based specification consists of a number of state variables that describe possible behaviors of domain features to be
controlled over time. A state variable is defined as a tuple S V = 〈V,T,D, γ〉 where: (i) V is a set of values vi ∈ V
representing states or actions the feature can assume or perform over time; (ii) T : V → 2V is a transition function
specifying valid sequences of values vi ∈ V; (iii) D : V → R× R is a duration function associating to each value
vi ∈ V lower and upper bounds to its execution (i.e., duration bounds); (iv) γ : V → {c, pc, u} is the controllability
tagging function specifying if the execution of a value vi ∈ V is controllable (c), partially controllable (pc) or
uncontrollable (u).

Information about controllability is necessary to reliably deal with temporal uncertainty and uncontrollable dy-
namics of the environment during the execution of a (timeline-based) plan. This is known as the controllability
problem [36] and is particularly relevant in scenarios like HRC where an artificial system like e.g., a collaborative
robot, interacts with “unpredictable" agents like e.g., a human worker. Complex behaviors of a system (e.g., a HRC
work-cell) are modeled by means of synchronization rules that constrain simultaneous behaviors of state variables
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whose temporal evolution are the timelines of a plan. A rule is a kind of logical entailment specifying a behavioral
dependency among timelines. Every time a value vx is assumed by a variable S Vi a number of values vy should be
assumed by other state variables S V j. The temporal occurrences of such values should satisfy the set of temporal
constraints of the rule.

The task planning model follows a hierarchical decomposition methodology and (in the case of HRC scenarios)
is generally structured as follows: (i) a state variable S VG describes the high-level production goals that can be per-
formed within the HRC work-cell; (ii) a number of state variables S V i

L where i = 0, ...,K describe the production
tasks to be performed at a specific abstraction level i, where K is the number of hierarchy levels of the procedure;
(iii) a state variable S VR and a state variable S VH describe the low-level operations (i.e., instances of Function)
the robot and the human can actually perform; (iv) a set of synchronization rules S describes the procedural de-
composition of high-level goals (i.e., values of state variable S VG) into increasingly simpler production tasks (i.e.,
values of state variables S V i

L), until they are associated to a number of functions (i.e., values of state variables S VR

and S VH) the human and the robot should perform to complete production tasks and achieve high-level goals.

4.2. Knowledge Extraction and Model Synthesis

The designed knowledge processing mechanism relies on the extended version of SOHO to retrieve contextual-
ized knowledge and also uses ontological patterns to model planning domain constraints. A pseudo-code description
of the main steps composing this procedure is given in Algorithm 1.

Algorithm 1 Timeline-based specification extraction
Input: KB
Output: M

1: S G ← goals (KB)
2: {FH , FR} ← functions (KB)
3: {S VG, S VH , S VR} ← createSVs (M, S G, FH , FR)
4: for g ∈ S G do
5: S M ← methods (g,KB)
6: for m ∈ S M do
7: Gg,m ← decompositions (g,m,KB)
8: {T1, ..., Tl} ← hierarchy (Gg,m)
9: for Ti ∈ {T1, ..., Tl} do

10: S Vg
m,i ← createSV (M, Ti)

11: for g ∈ S G do
12: S M ← methods (g,KB)
13: for m ∈ S M do
14: T ← tasks (m,KB)
15: for t ∈ T do
16: T t ← decomposition (t,m,KB)
17: Rt ← createRule (M, t, T t)
18: return M

First, the procedure extracts information about which production goals and functions can be actually per-
formed by the human and the robot (rows 1-2). This information is easily retrieved by extracting individuals of
ProductionGoal and individuals of Function that can be performed by the agents HumanWorker and
Cobot. The procedure then defines the state variables characterizing possible goals of the planning model (S VG)
and possible (operational) behaviors of the human and the robot (S VH and S VR). The extracted individuals are then
used to define the values of these state variables (row 3). Next steps define the state variables that model production
processes (rows 4-17) and thus correlate production goals (i.e., possible planning goals) to the operations the human
and the robot should perform over time (i.e., their functions). A specific state variable is defined for each hierarchical
decomposition level of a production process. For each production goal the procedure retrieves the list of associated
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ProductionMethod (row 5). For each method the procedure retrieves the described decomposition by extracting
ProductionTask associated through the property hasConstituent (row 7). The decomposition is internally
represented as a graph (Gg,m) where a root node represents a ProductionGoal, the leaves represent Functions
and intermediate nodes represent instances of ComplexTask or SimpleTask.

The graph Gg,m is acyclic by construction. A topological sort algorithm extracts hierarchical information as a
partitioning of production tasks in a number of equivalent sets {T1, ..., Tl} (row 8). Ignoring the root and the leaves
of Gg,m, each equivalent set Ti ∈ {T1, ..., Tl} represents a hierarchical level of the decomposition procedure. For
each equivalent set of production tasks Ti the procedure defines a dedicated state variable S Vg

m,i (rows 9-10). The
values of such state variables represent ComplexTask or SimpleTask that belong to the same decomposition
level of the (hierarchical) production process described by a ProductionMethod m ∈ SM .

When all the state variables have been defined, the procedure generates the synchronization rules (rows 11-17).
For each goal g ∈ SG and for each associated method m ∈ SM , the procedure retrieves the set of production tasks
T (row 14). For each task t ∈ T the procedure retrieves its direct decomposition extracting the set of tasks T t

associated to t through the property hasConstituent (i.e., without transitivity). For each couple of task t and
subtasks T t, the procedure creates a new synchronization rule Rt (rows 15-17). The reference task t is the head of
the rule while tasks T t compose the body. Temporal constraints are defined according to the type of the reference
task t.

If t is a ComplexTask then the rule models a decomposition constraint by means of contains constraints be-
tween t and subtasks in T t (|T t| > 1). Eventually, a number of before temporal constraints between subtasks T t can
be added for each OperativeConstraint. If t is a SimpleTask then the constraints of the rule follow onto-
logical patterns. In case of IndependentTask the set of subtasks T t is composed by only one robotic or human
function (|T t| = 1) and a contains constraint is set between t and its subtask. In case of SimultaneousTask
the set of subtasks T t is composed by one robotic function and one human function (|T t| = 2). Two contains con-
straints are set between t and the two subtasks. In case of SupportiveTask the set of subtasks T t is composed by
one robotic function and one human function (|T t| = 2). Two during constraints between the two subtasks and the
reference task t are set to enforce the simultaneous execution of subtasks. Finally, in case of SynchronousTask
the set of subtasks T t is again composed by one robotic function and one human function (|T t| = 2). In addition to
the contains constraints between t and its subtasks, a meets temporal constraint is set between the two subtasks in
order to satisfy the desired synchronism.

5. Representation and Reasoning Assessment on Real-World Scenarios

The feasibility of the proposed ontology-based representation and reasoning approach has been assessed on a
set of real HRC manufacturing scenarios, elicited from a H2020 research project, called Sharework. The ontology
and production knowledge have been defined in Protégé. The reasoning mechanisms and the knowledge extraction
procedure of Algorithm 1 have been developed in Java using Apache Jena2. Furthermore, these functionalities have
been integrated into ROS3 through ROSJava4 and supporting the dynamic configuration of the task planning module
developed within the project.

The envisaged evaluation considers a number of collaborative scenarios representing realistic production situ-
ations, needs and constraints. Such scenarios are well suited to assess the generality of the proposed ontological
model as well as its efficacy in capturing the requirements of real-world applications and synthesizing valid task
planning models. The scenarios are the following: (i) AUTOMOTIVE; (ii) METAL; (iii) CAPITAL-GOODS; (iv) RAIL-
WAYS. These four scenarios are extracted from the pilots of the projects and thus characterize actual production
processes. They constitute a realistic benchmark to assess the proposed the reasoning capabilities of the developed
AI-based technologies against the flexibility required by real production scenarios.

2https://jena.apache.org
3Distribution ROS Melodic - http://wiki.ros.org/melodic
4http://wiki.ros.org/rosjava

https://jena.apache.org
http://wiki.ros.org/melodic
http://wiki.ros.org/rosjava
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In addition, we consider an advanced (and futuristic) productive scenario where task allocation and possible al-
ternative behaviors of the human and the robot are largely more variable. This scenario is called MOSAIC and takes
inspiration from a typical collaborative assembly scenario [37]. Although it does not correspond to a concrete pro-
duction process, MOSAIC describes a highly flexible (collaborative) production process entailing the representation
of various possible (alternative) behaviors of the robot and the human into the knowledge and the resulting task
planning model.

5.1. Industrial Scenarios

5.1.1. The AUTOMOTIVE Scenario
This scenario takes into account a specific station of an assembly line of vehicles. The considered collaborative

process specifically focuses on a door assembly task of chassis on the conveyor of the production line. The collabo-
rative robot is in charge of moving and holding the heavy parts of the vehicle (i.e., pick-and-place of front and rear
doors to be assembled on the chassis) while the human carries out assembly tasks in the same working-area of the
robot (i.e., fix the doors to the body of the vehicle). Figure 3 shows some pictures of the layout of the working-are
and “mount point" of the front door on the chassis.

(a) (b)

Fig. 3. Design of the collaborative cell for the AUTOMOTIVE scenario (a) and structure of the production line for the assembly of the chassis (b).

This scenario is characterized by a flat production process where the human and the robot play different roles
and carry out tasks autonomously but following a strict order. There is a variety of Function the human
and the robot should perform in this scenario. The robot (a robotic arm), according to its capabilities, can per-
form only PickPlace functions on the rear and front doors of the vehicles (i.e., the front and rear
doors are two WorkPiece of the environment). The robot (individual of Cobot) can perform two instances of
PickPlace, one function on the target door front and the other one on the target door rear. The human
instead carries out the actual assembly operations and should therefore perform functions of different type like
e.g., Assemble, ManualGuidance, ChangeOver and Screw on the vehicle body (WorkPiece). These
types of Function are defined in SOHO as a “specialization" of the integrated Taxonomy of Functions [32] (e.g.,
Assemble and Join are specialization of Join).

In this case, all the production tasks the human and the robot can perform through their functions are modeled
as IndependentTask. This means that each task requires a single Function the human or the robot carries
out autonomously and independently from each other (from an operational perspective). For example the robotic
task of moving a door to the front assembly area of the layout is modeled as and independent collaborative task
(i.e., instance of IndependentTask) and implemented by a pick-place operation of the robot (i.e., an instance of
PickPlace function).

Figure 13(a) shows the hierarchical structure of the planning model automatically generated from the knowl-
edge base of the described production process. The top-level element of the hierarchy is associated to predicates
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Fig. 4. Decomposition graph of the production process of AUTOMOTIVE. The top-level goal is decomposed into a single ComplexTask which
is in turn decomposed into a number of IndependentTask that compose the state variable ProductionL1 shown in the hierarchy of Figure
13(a). Each IndependentTask entails the execution of a Function by the human or by the robot.

associated to the instances of ProductionGoal extracted from the knowledge base. The low-level elements of
the hierarchy corresponds to the predicates associated to the functions the human and the robot can perform. The
intermediate levels are instead associated to the predicates (and state variables) that characterize the hierarchical
decomposition of complex tasks (i.e. production goals) into more and more simple tasks.

More in details Figure 4 shows the task decomposition graph extracted from the knowledge base to build the
(timeline-based) planning model through Algorithm 1. The levels of the graph correspond to the hierarchical levels
of Figure 13(a). As can be seen the process obtained for this scenario is quite simple, requiring a direct decomposi-
tion of a single ComplexTask in a number of SimpleTask that should be performed sequentially by the human
and the robot. Each simple task is specifically modeled as IndependentTask each requiring the execution of a
specific Function by the human or by the robot (as stated in 4). The task planning model encapsulates this kind of
collaborative behavior through a single contains relation [35] requiring the predicate associated to the Function
of the human or the robot to be executed during the execution of the predicate associated to the (simple) production
task.

5.1.2. The METAL Industrial Scenario
This scenario takes into account the logistic station of the manufacturing system of electrical connectors. The

workshop for the assembly of pallets and fixtures in load/unload stations is divided into two main areas: (i) a
transporter panel buffer, where pallets are stored and moved, and; (ii) some CNC (Computerized Numerical Control)
machines, where the pallets are moved to perform the machining operations. In this scenarios operators are generally
responsible for transporting pallets and components to be mounted in a tombstone that goes inside the Flexible
Manufacturing System where each part is machined. The scenario is characterized by a high variability of parts to be
produced. Operators therefore should be highly trained in order to correctly perform the suitable assembly procedure
for each different product as well as perform the quality inspection on the pallets before and after machining. The
collaborative robot is in charge of assisting operators when moving across the station, understanding operator’s
behavior and anticipating tasks in order to facilitate the work of operators and speedup the production, i.e., increasing
the throughput.

Figure 5 shows some pictures of the layout of the designed collaborative logistic station. The working area is
characterized by a central/shared conveyor where different types of products are loaded and processed in order to
be machined. The worker and the robot (a UR10 robotic arm) are placed at both sides of the conveyor and works
simultaneously on the products. Products are placed and move on the central conveyor which represents the shared
working area where operations take place and where the human and the robot physically interact.

The considered production process is characterized by different types of operations depending on the specific
types of work-piece entering the collaborative cell. In all the cases however the structure of the process is similar
in terms of task allocation choices since the human and the robot can perform the same types of task (e.g., screw,
unscrew, pick, place, etc.). The worker and the robot represent two autonomous and “functionally equivalent" actors
that work independently on each task. The synthesis of collaborative processes thus concerns the correct allocation
of tasks to these two resource (i.e., autonomous agents).
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(a) (b)

Fig. 5. Structure of the shop-floor of the METAL industrial scenario (a) and the fixturing system where collaboration takes place (b).
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Fig. 6. Decomposition graph of the production process of METAL. The top-level goal is decomposed into a single ComplexTask which is
further decomposed into a number of IndependentTask that compose the state variable ProductionL1 shown in the hierarchy of Figure
13(a). Each IndependentTask entails the execution of a Function by the human or by the robot.

Figure 6 shows an excerpt of the inferred task decomposition graph concerning a process of work-pieces that
mainly entails pick and place operations. The considered process concerns the substitution of a WorkPiece from
the “base" moving on the conveyor with another WorkPiece available into the collaborative cell. The substitution
is realized through pick & place operations that can be performed by both the worker and the robot. The worker
or the robot Pick the current WorkPiece from the “base" and Place it into available containers e.g., Box-A,
Box-B that are modeled as CapacityResource (i.e., they can “store" a limited number of WorkPiece).

In this case functions of type Pick and Place are represented separately (i.e., not as atomic instances of
PickPlace) in order to capture operational requirements and properly characterize possible planning choices
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(e.g., which box to use to place a work-piece). The decomposition graph of Figure 6 thus contains several
DisjunctiveComplexTask representing decomposition choices. For example, the excerpt of Figure 6 shows
four pick & place tasks to be performed. Each task can be performed either by the worker or by the robot. Such
tasks are represented as DisjunctiveComplexTask and decomposed into human and robotic pick & place
ComplexProductionTask through OR nodes. Such tasks are further decomposed into two distinct pick and
place ProductionTask to characterize the specific Pick and Place functions the worker and the robot should
perform. Tasks that concern pick operations are generally represented as IndependentTask and directly mapped
to the instances of Pick functions of the worker and the robot. Tasks that concern place operations are instead rep-
resented as DisjunctiveComplexTask and associated to alternative decomposition through OR nodes. Each
decomposition represents an alternative human or robotic task that places a WorkPiece into one of the available
boxes (i.e., Box-A and Box-B). Each task is then represented as an IndependentTask and directly linked to
the Place function of the worker or the robot

5.1.3. The CAPITAL-GOODS Industrial Scenario
This scenario takes into account the shop-floor of a company offering differential and global solutions in power

transmission and spraying components. This scenario specifically considers a servo rotary table that is assembled
in seven fixed assembly stations. In each station there is an operator performing a specific task of the assembly
process. All tasks are carried out manually, just using cranes and lifters to transport the heavy components from one
station to another. The collaboration between the human operator and the robot concerns three out of seven tasks of
the rotary table assembly process. The introduction of collaborative robots in this scenario represents an example of
how such technology can support operators workers in handling heavy parts and generally facilitate operations by
passing parts to be assembled or tools to be used. In the current assessment we specifically consider the task bolt
tightening and torque measuring. Figure 7 shows the designed physical environment with the rotary table equipped
with the collaborative robot (a UR10 robotic arm). The operator applies adhesives on the bolts of the rotary table to
allow the robot to simultaneously determines their position and dimension through perception modules developed
with the project. Information about detected bolts is then used by the robot to automatically screw them.

(a) (b)

Fig. 7. Working area of the CAPITAL-GOODS scenario (a) and structure of the workpiece (b) where a collaborative robot is deployed to support
workers in repetitive screwing/unscrewing tasks.

The scenario has been designed as “reactive" where the robot uses perception capabilities to autonomously react
to the observed behavior of the worker (“bolt placing"). However, to evaluate the representation capability of the
ontological model and synthesis of the task planning model, we have modeled the whole production process as
collaborative. Namely, we have considered the process of screwing a number N = 8 of bolts. The worker places
the bolts on the holes of the rotary table and the robot screw them simultaneously. Although simple, an interesting
aspect of this scenario is the synchronization required between the human and the robot. The robot can start screw-
ing a bolt only after the worker has placed the bolt on one of the holes of the rotary table. This means that pro-
duction task of “screwing a bolt" should be represented as SynchronousTask since required human and robotic
functions have the same target (i.e., a particular hole-X that can be seen as a SimpleWorkPiece composing the
CompoundWorkPiece rotary table) and should follow a strict temporal ordering. In this case the Screw function of
the robot must always be performed after the PickPlace function of the human has been executed.
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Fig. 8. Decomposition graph of the production process of CAPITAL-GOODS.

Figure 8 shows the obtained decomposition graph of the described production process. The high-level production
goal rotary-table-assembly is decomposed into a number of (complex) ConjunctiveProductionTask,
one for each hole of the rotary table to be screwed. Each screw task is represented as SynchronousTask and
thus decomposed into two functions. A PickPlace function like e.g., pick-place-H3 requiring the operator
to pick and place a bolt on a particular hole (e.g., H3 represented as SimpleWorkPiece). A Screw function like
e.g., screw-H3 requiring the operator to screw the bolt placed by the worker. Notably, the ontological pattern used
to describe this type of collaborative behavior is translated into a well-defined structure of temporal constraints into
the task planning model. In this case for example the pattern determines a synchronization rule requiring; (i) the
state variable of the worker to assume the value associated to function of picking and placing a bolt on hole-X;
(ii) the state variable of the robot to assume the value associated to the function of screwing a bolt on hole-X; (iii)
to schedule (and thus execute) the value of the human before the value of the robot.

5.1.4. The RAILWAYS Industrial Scenario
This scenario takes into account the shop-floor of a railways transportation company supplying rolling stocks,

services and system infrastructure. The workshop is composed by six main stations each one dedicated to a specific
set of operations concerning the assembly of trains. The project specifically focuses on the pre-assembly process of
tram-way’s windows and door frames. Among the tasks involved into the considered processes, riveting represents
a repetitive and demanding task for human workers. It consists of the insertion of rivets in drilled holes along the
metal pieces of window frames. This task is especially critical from safety perspective since it may cause significant
injuries after a prolonged utilization of the riveting tool which weights up to 5 kg.

(a) (b)

Fig. 9. Design of the collaborative cell of the the RAILWAYS scenario to support workers in the assembly of door frames.

Figure 9 shows the physical layout of the shop-floor of the scenario and the structure of the window frames that
are the target of the considered production process. The introduction of collaborative robots into the production line
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is designed to relieve human workers from physically demanding tasks like e.g., the riveting task in order to improve
their working condition and reduce the risk of injuries.

A collaborative robot is thus supposed to work close to the window frame of Figure 9(b) and tightly collaborate
with the human worker to carry out the pre-assembly tasks of window frames. The collaboration especially takes
place within the riveting task. The human operator is in charge of spreading the silicone over the corners of the
frame structure then, the robot insert the rivets using a riveting tool. It can be observed that the riveting task entails
a synchronous behavior of the two actors since the robot can insert the rivets only after the worker has correctly
applied the silicone. Such task will be represented as instances of SynchronousTask i.e., collaborative tasks
(HRCTask) entailing a Synchronous execution modality).
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Fig. 10. Decomposition graph of the production process of the RAILWAYS scenario.

Figure 10 shows the decomposition graph of the considered production process. Also in this case there are
not disjunctive tasks to be considered into the decomposition since the roles and “responsibilities" of the worker
and the robot are quite fixed. The key aspect in this case similar to the CAPITAL-GOOD scenario is the use of
SynchronousTask to represent riveting tasks. Such tasks are indeed associated to a Join function of the worker
representing the application of the silicone over a particular corner of the frame structure and, to a Join function of
the robot representing the use of the rivet Tool to insert the rivets. Given the needed synchronization the execution
of these two functions is constrained by a before temporal constraint and thus constrain the robot to wait for the
completion of the function of the worker. As seen for the CAPITAL-GOODS scenario, such behavioral pattern is
properly encoded into the task planing model to correctly synthesize and execute the collaborative process.

5.1.5. The MOSAIC Collaborative Scenario
This scenario considers a general collaborative assembly of a compound work-piece. The layout of the work-

cell is characterized by a shared central space where the work-piece is placed and where the human and the robot
simultaneously carry out assembly operations. Figure 11 shows the layout of the designed collaborative environment
and the layout of the mosaic. The mosaic is modeled as a CompoundWorkPiece since it can be seen as composed
by simpler parts like e.g., rows (still CompoundWorkPiece) and cells (SimpleWorkPiece).

(a) (b)

Fig. 11. Configuration of the MOSAIC use case: (a) Structure of the ROS-based simulation of the collaborative cell; (b) Layout of the mosaic
collaboratively assembled by the human and the robot

The collaborative process consists in the execution of a set of pick & place operations. Each pick & place is
performed by a single agent but their execution (and assignment) should satisfy some physical constraints. Pick &



A. U. Umbrico et al. / Deploying Ontology-based Reasoning in Collaborative Manufacturing 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

place operations whose targets are coloured objects placed in different areas: blue objects can be handled by both
the human and the robot; orange objects for short) can be performed by the robot only; white area (i.e., white objects
for short) can be performed by the human only.
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Fig. 12. Decomposition graph of the production process of MOSAIC. The top-level goal mosaic_goal is decomposed into a number
of ComplexTask hierarchically organized as shown in Figure 13(b). State variable ProductionL0 concerns a single ComplexTask
doMosaic. This task is further decomposed into a number of row-level ComplexTask doRow1, ..., doRow5 that are part of state vari-
able ProductionL1. Each row-level task is further decomposed into a number of IndependetTask like e.g., doCellI3 and disjunctive
ComplexTask like e.g., doCellJ3. These tasks composed the state variable ProductionL2. The state variable ProductionL3 thus
contains IndependnetTask representing alternative decomposition of disjunctive cell-level tasks. Each IndependentTask entails the
execution of a specific PickPlace by the human or by the robot.

The ASSEMBLY scenario is characterized by a more structured process where the human and the robot play
the same role and carry out tasks autonomously without a specific order. The process can be seen as the prob-
lem of moving some WorkPiece from an initial location to a desired one in order to form a desired shape.
The structure of the process is given by the structure of the desired shape. The shape can be seen as a mosaic
composed by a certain number of rows (e.g., 5 rows) and a certain number of columns (e.g., 10 columns). Each
specific location of the mosaic (i.e., cell(1,1), ..., cell(5,10)) represents a specific destination of a PickPlace
function, moving a specific WorkPiece. The human and the robot have the same capabilities and should per-
form the same type of Function i.e., PickPlace. Each PickPlace moves a particular instance wp1, ...,
wpN of WorkPiece to a specific location of the mosaic like e.g., pickplace-wp1-cell(1,1)-human and
pickplace-wp1-cell(1,1)-robot. Each SimpleTask of the production process is defined as an instance
of IndependentTask which should be associated to a PickPlace function of the human or a PickPlace
function of the robot (see Eq. 4).

The resulting production process should contain a disjunction of tasks every time the needed pick-and-
place functions can be performed by both agents. For example, a disjunctive ComplexTask doCell(1,1)
would be associated to (alternative) IndependentTask human-doCell(1,1) (entailing PickPlace
pickplace-wp1-cell(1,1)-human) and IndependentTask robot-doCell(1,1) (PickPlace
pickplace-wp1-cell(1,1)-robot). No disjunction should be considered if a particular task can be per-
formed only by one agent. Suppose for example that cell(5,10) cannot be reached by the robot, only the human
would be able to perform that task. The production process will therefore specify only a IndependentTask
doCell(5,10) (PickPlace function pickplace-wp1-cell(5,10)-human).

Figure 13(b) shows the hierarchical structure of the designed production process. The top-level element of the
hierarchy describes the production goals of the scenario. The low-level elements of the hierarchy corresponds to
the description of the pick-and-place functions the human and the robot should perform. The intermediate levels
describe the hierarchical decomposition of complex tasks in simple tasks. More in details Figure 12 shows the task
decomposition graph extracted from the knowledge and used to build the (timeline-based) planning model through
Algorithm 1.

5.2. Generation of Planning Specification from Knowledge

Table 1 summarizes and compare data about the defined knowledge bases, the characteristics of the synthesized
planning models and reasoning time of Algorithm 1. As a general comment, the obtained knowledge bases have
the same number of defined classes and properties since they share the same ontological framework but, it can be
observed a different number of individuals for each of them and a different number of constraints and predicates in
the resulting planning models.

The structure and the “size" of the obtained planning models indeed differ significantly from each other (see
“Planning Model" columns in Table 1) leading to different model generation time. The planning model obtained for
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Table 1
Data about the size of knowledge bases and planing models and performance of model synthesis

Domain Knowledge Base Planning Model Model Generation
#Classes #Properties #Individuals #SVs #Predicates #Synchs #Cons Time (msecs)

AUTOMOTIVE 284 186 61 5 34 15 28 4189
METAL 284 186 45 8 38 57 68 7885

CAPITAL-GOODS 284 186 42 5 31 9 16 4165
RAILWAYS 284 186 75 6 64 29 48 8879

MOSAIC 284 186 215 7 195 137 186 20408

AUTOMOTIVE for example is characterized by a lower number of predicates and synchronization rules/constraints.
The planning model obtained for MOSAIC instead, given its structural augmented complexity, entails a higher num-
ber of predicates (195) as well as synchronization rules and constraints (respectively 137 and 186). In all cases the
ontology was capable of capturing all the needed information and that the obtained planning models were valid and
feasible for a correct deployment of the task planning module in the associated scenario. The performances of the
generation process are reasonable (e.g., 4 seconds for AUTOMOTIVE and 20 seconds for MOSAIC) demonstrating
the feasibility of the proposed approach. The model generation time should be seen as a “constant" setup time of
the task planner. Although it may vary significantly according to the size of the knowledge base, this “cost" is neg-
ligible with respect to the online functioning of a task planner since it does not introduce latency that may affect the
efficiency of the system.

Results have been obtained by configuring the Apache Jena framework with an ontological model compliant
with OWL-DL semantics 5. This semantics supports many OWL features and represents a good trade-off between
expressiveness and efficiency of the resulting functionalities. Examples are disjoint classes and all different axioms
that allow the reasoner to correctly interpret individuals of the same class (siblings) as unique knowledge entities.

Generated planning models have been validated using PLATINUm6, a timeline-based planning and scheduling
framework [38]. Figure 13 shows the hierarchical structures of the different planning models, automatically synthe-
sized through Algorithm 1. Each level represents a specific abstraction level of the defined hierarchical production
procedures. The highest level of the hierarchy characterizes the high-level production goals that are incrementally
decomposed in lower-level tasks (i.e., production operations). The lowest level of the hierarchy characterizes the
tasks the worker and the robot can perform to support the associated production procedures. Following this hier-
archy and according to [35], each hierarchy level is described through a dedicated state variable. Values of such
state variables (i.e., the predicates of Table 1) describe tasks that should be performed at the associated abstraction
level of the production procedure. State variables of the last hierarchical layer describe the tasks (i.e., the concrete
operations) the worker and the operator can perform over time and thus define their possible behaviors within a
specific production scenario.

Given a timeline-based model, plans specify for each state variable of the model a sequences of tokens deter-
mining the production tasks performed and the low-level production operations carried out by the worker and the
operator. Such sequences of tokens (i.e., timelines), as shown in other works [14, 15, 37], describe the planned
decomposition of modeled production procedures and planned temporal behaviors of collaborating actors (i.e., the
worker and the robot). Following [35, 39] then, each token instantiates a value of a state variable to a flexible ex-
ecution interval (the intervals associated to each token represent respectively the end-time interval and the dura-
tion interval of the execution). Timelines therefore are said to encapsulate envelopes of temporal behaviors. One
interesting aspects to point out is how the defined ontological patterns that formally characterize the representation
structure of collaborative tasks, entail a clear and well defined structure of the defined synchronization constraints
that “implement" that collaborative behavior.

5More specifically, we have defined a basic ontological model with OWL-DL-MEM specification combined with an rule-based inference
model based on OWL-MEM-MICRO-RULE-INF which encapsulates optimized rule-based reasoner with OWL rules. - https://jena.apache.org/
documentation/ontology

6https://github.com/pstlab/PLATINUm.git

https://jena.apache.org/documentation/ontology
https://jena.apache.org/documentation/ontology
https://github.com/pstlab/PLATINUm.git
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Fig. 13. Hierarchical structure of the generated planning models. The two graphs show the inferred hierarchical relationships between the state
variables generated for: (a) AUTOMOTIVE; (b) METAL; (c) CAPITAL-GOODS; (d) RAILWAYS; (e) MOSAIC

6. Final Remarks and Future Works

SOHO (Sharework Ontology for Human Robot Collaboration) is a novel domain ontology for Human-Robot
Collaboration defined within the Sharework H2020 research project. It formally characterizes HRC manufacturing
scenarios by considering different perspectives. Indeed, its main original feature relies on the use of a context-based
approach to ontology design, supporting flexible representation of collaborative production processes.

This paper proposes an extension of SOHO by defining ontology design patterns that formally characterize col-
laboration dynamics that are typical in many Human-Robot Collaboration manufacturing scenarios. Furthermore we
have defined a general knowledge extraction procedure that relies on the semantics proposed by SOHO to analyze
production knowledge and automatically synthesize timeline-based plan-based controllers that are suitable to effec-
tively coordinate human and robot behaviors [14, 37]. An experimental evaluation of the developed representation
and reasoning technology shows the efficacy of properly capturing the complexity of real industrial collaborative
scenarios and the capability of automatically “compiling" such knowledge into suitable planning domains.

Future research directions will focus on further extensions of SOHO to better characterize the human factors and
support the representation of preferences, expertise levels, physical and cognitive conditions of human workers that
are crucial to serve advanced personalization and finer adaptation features in collaborative processes. In addition,
we plan to integrate developed ontology-based representation and reasoning into a knowledge engineering tools
to facilitate domain experts in the design of collaborative process as well as in the deployment of AI-based task
planning technologies for the coordination of collaborative cells [40].
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