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Abstract. The interest in Explainable Artificial Intelligence (XAI) research is dramatically grown during the last few years. The
main reason is the need of having systems that beyond being effective are also able to describe how a certain output has been
obtained and to present such a description in a comprehensive manner with respect to the target users. A promising research
direction making black boxes more transparent is the exploitation of semantic information. Such information can be exploited
from different perspectives in order to provide a more comprehensive and interpretable representation of AI models. In this paper,
we focus on one of the key components of the semantic-based explanation generation process: the explanation graph. We discuss
its role and how it can work has a bridge for making an explanation more understandable by the target users, complete, and
privacy preserving. We show how the explanation graph can be integrated into a real-world solution and we discuss challenges
and future work.

Keywords: Explainable AI, Explanation Graph, Natural Language Explanations

1. Introduction

The role of Artificial Intelligence (AI) within real-world applications has significantly grown in the last years
with the increasing pervasiveness of AI-based algorithmic decision making in many disciplines like Digital Health
(e.g. diagnostics, digital twins) and Smart Cities (e.g. transportation, energy consumption optimization) among the
others.

Unfortunately, the usage of AI-based models that rely on deep neural networks (DNN) algorithms introduced the
issue that such models are black box in nature or, in general, it is often hard to understand why an AI-based system
provides a specific output. This aspect undermines the trustworthy of such systems since in several domains it is
mandatory to understand how AI-based systems work and generate decisions due to their impact on human interests,
rights, and lives (e.g., decision support in credit approval or digital diagnostics).

Explainable AI (XAI) is a research area born in the sixties [1] with the aim of providing justifications about
the behavior of rule-based systems. Later, the focus of the explanation systems shifted towards human-computer
systems (e.g., intelligent tutoring systems) to provide better cognitive support to users [2]. In the last decade, it
re-attracted a lot of attention as the need to advocate the principles mentioned above in order to promote the require-
ments of transparency and trustworthiness that data-driven AI-based decision-making system must have for actually
supporting experts in their activities [3].
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The primary reason for the renewed interest in XAI research has stemmed from recent advancements in AI
and ML, and their application to a wide range of areas, as well as prevailing concerns over the unethical use,
lack of transparency and undesired biases in the models. Many real-world applications in the Industrial Control
System (ICS) greatly increase the efficiency of industrial production from the automated equipment and production
processes [4]. However, in this setting, the use of black boxes is still not in a favorable position due to the lack
of explainability and transparency of the model and decisions. According to [5], XAI encompasses ML or AI
systems/tools for demystifying black models internals (e.g., what the models have learned) and/or for explaining
individual predictions. In general, explainability of an AI model’s prediction is the extent of transferable qualitative
understanding of the relationship between model input and prediction (i.e., selective/suitable causes of the event)
in a recipient friendly manner. The term interpretability, on the other hand, is more related to the mathematical
relationships between between input and output. Such relationship is more suitable for AI-system developers than
to the final users of an AI-system. The term explainability and interpretability are being used interchangeably
throughout the literature even if they are slightly different. To this end, in the case of an intelligent system (i.e.,
AI-based system), it is evident that explainability is more than interpretability in terms of importance, completeness,
and fidelity of prediction [6]. Based on that, we will use these terms accordingly where appropriate.

The work towards the design of a trustworthy AI-based system is not only a technical challenge due to the need
of controlling if generated explanations contain sensitive data that cannot be accessed by the user consuming the ex-
planations (e.g., medical or economic information of other people). For this reason, strategies for generating expla-
nations have to take into account also regulators’ laws like “European Union’s General Data Protection Regulation”
(GDPR) 1 [7] or the “US government’s Algorithmic Accountability Act of 2019” 2.

This aspect is fundamental for addressing the desiderata of Fairness, Privacy, Usability, Causality, Trust, and
Ethics within such automated decision making systems [8, 9]. The use of semantics would lead to meaningful
explanations to users and provide insights into the rationale the AI-based system used to draw a conclusion [9].
Indeed, four main aspects of semantic technologies lead to the generation of meaningful explanations:

– Shared human-machine vocabulary: machine uses the same concepts used in natural language.
– Reasoning: humans can trust the machine as reasoning services ensure that explanations respect ethical and

legal norms.
– Rules: explain the relation between an object and its attribute detected by a machine, i.e, not only correlation

but causality. Fairness: rules can formalizes the concepts accepted by bias, Trust: some rules can encode the
type of representation that best fits user’s needs/features.

– Structured knowledge: symbols linked between knowledge bases (or even knowledge graphs) ensure that
explanations have a structure that can be queried and represented into different ways.

In this paper, we target the challenges described above, as well as the benefits, of integrating knowledge into
the design of strategies supporting the generation of explanations adhering to the principles of the transparency of
the AI-based system, the understandability of the content with respect to the end user, and the privacy preservation
of the delivered content. Among the different types of explanation generation strategies mentioned in Section 2,
we want to highlight how the usage of a knowledge-based solution, may be one of the most suitable alternative
for satisfying the requirements mentioned above. We present a use-case showing how an ecosystem of ontologies
can be linked together for enabling the generation of effective, appropriate, and privacy-by-design explanations in
complex multi-actors scenarios.

The paper starts by surveying, in Section 2, the most significant categories of explanation generation and some
strategies for their rendering into a human understandable format. Then, we present in Section 3 the concept of
explanation graph and its crucial role towards the design of transparent AI-based systems. While, in Section 4
we show how the explanation graph can be rendered into a comprehensive natural language message. Section 5
describes a use cases where the explanation graph has been applied by discussing pros and cons of their integration
for supporting a transparent-by-design solution. In Section 6, we summarize lessons learned and future challenges
about the integration of explanation graphs within AI-based system. Finally, Section 7 concludes the paper.

1https://www.eugdpr.org
2https://www.senate.gov
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2. Related Work

Explainable AI (XAI) has been widely investigated in the last years [10], but most of the contributions limits
only on the analysis of how learning models (or black boxes) learn or predict. This limited view rarely exploits
domain knowledge that, if properly integrated with data and model analysis, is able to achieve a full-fledged ex-
plainable system [11]. Recent works further discussed the topics by stating that the integration of Semantic Web
technologies [12–14] with machine learning systems is the key for designing a completely explainable AI system.

Explanations are often categorized along two main aspects [15, 16]: (i) local explanations versus global explana-
tions, and (ii) self-explaining versus post-hoc explanations.

Local explanations relate to individual prediction and they provide information or justification for the model’s
prediction on a specific input. Global explanations concern to the whole model’s prediction process and they provide
similar justifications by revealing how the model’s predictive process works, independently of any particular input.
Instead, self-explaining explanations emerge directly from the prediction process which may also be referred to as
directly interpretable [17] and they are generated at the same time as the prediction by using information emitted
by the model as a result of the process of making that prediction. Examples of models belonging to this category
are decision trees and rule-based models. Finally, post-hoc explanations require post-processing since additional
operations to generate the explanations are performed after the predictions are computed. LIME [18] is an example
of producing a local explanation using a surrogate model applied following the predictor’s operation.

Beyond the challenge of generating an explanation, and AI-based system has also to decide how to present it de-
pending on the end user that will consume it. The capability of deciding which is the most appropriate way to render
an explanation is crucial for the overall success of a XAI approach. The literature presents three main categories
of approaches for rendering the generated explanations. The first category is saliency-based representations 3 that
are primarily used to visualize the importance scores of different types of elements in XAI learning systems, such
as showing input-output word alignment [19], highlighting words in input text [20] or displaying extracted rela-
tions [21]. Saliency-based representations were the first strategies used for rendering explanations and they became
very popular since they are frequently used across different AI domains (e.g., computer vision [22] and speech [23]).

The second category is represented by raw declarative representations. This visualization technique directly
presents the learned declarative representations, such as logic rules or trees, by using, as suggested by the name,
the corresponding raw representation [24]. The usage of these techniques implies that end users can understand the
adopted specific representations.

Finally, the third category concerns the exploitation of natural language explanations. This type of explanations
consists in their verbalization by using human-comprehensible natural language. The actual content of each ex-
planation can be generated by using data-driven strategies (e.g. deep generative models) [25] or by using simple
template-based approaches [26]. The latter are often combined with knowledge-based techniques where, based on
the target users, a proper terminology is selected [27].

Semantic Web technologies enable the design of strategies for the rendering of explanations in natural language
format [28, 29]. Explanations here are provided through textual rule-like notation. In addition, Natural Language
Generation (NLG) has been exploited also for generating natural language utterances from triples [30] and for trans-
lating SPARQL queries into a natural language form that can be understood by non-expert users [31]. Here, we
focused on the linking of machine learning with semantic information as enabler for both improving the compre-
hensiveness of XAI systems and underlying machine learning itself.

Explanations in the knowledge representation and reasoning community are implemented with two orthogonal
approaches: justifications and proofs. The former computes the minimal subset of the axioms in an ontology that
logically entails a given axiom. The latter computes also all the inference steps [32].

As explanations are necessary for improving the trust of users in an AI system, some works deal with user studies.
The work in [33] deals with explanations for entailments of OWL ontologies. The authors investigated the effective-
ness of different types of explanations for explaining unsatisfiable classes in OWL ontologies. Experiments proved
that the subjects receiving full debugging support performed best (i.e., faster) on the task, and that users approved

3Within many works in the literature are referred also as feature importance-based explanations
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of the debugging facilities. Similarly, in [34] a user study to evaluate an explanation tool is performed. However,
the authors did not report any detailed analysis of the difficulty users had at understanding the provided explana-
tions. In [35] the authors presented a user study that evaluates a model-exploration based approach to explanation
in OWL ontologies. The study revealed that the majority of participants could solve specific tasks with the help of
the developed model-exploration tool, however, there was no detailed analysis of which aspects of the ontology the
subjects struggled with and how they used the tool. The work in [36] presents a set of algorithms for computing all
the justifications of an entailment in a OWL-DL ontology. However, the capabilities of the computed justifications
of the logical entailments are not assessed through any study or user evaluation The authors of [37] developed and
implemented a framework that translates SWRL rules inconsistencies into natural language utterances. This returns
explanations, through justifications, of the disclosure of personal data to patients and staff of hospitals. The SWRL
rules translation is performed axiom by axiom, thus generating a quite long sentence. The side effect is that this
representation could require too much user’s time for reading and understanding.

The other form of explanation in the knowledge representation reasoning community regards the formal proofs.
The work in [38] developes a tool that provides proof-based explanations for entailments of the CLASSIC system.
All the intermediate steps are omitted but further filtering strategies are provided in order to generate short and
simple explanations. In [39] a proof-based explanation system for knowledge bases in ALC [40] Description Logic
is proposed. Here, proofs in sequent calculus style are generated by using an extension of a tableaux reasoning
algorithm. The proofs are then enriched to create natural language explanations. However, no user studies to assess
the effectiveness of these proofs are performed. Explanations can be rendered also with the use of visualizations
(tree, graphical, logical and hybrid), as performed in [41]. Here, defeasible logic proofs are rendered through several
visualizations and a user study is performed in order to assess the impact of the different approaches. However, these
representations are hard to understand for non-expert users. Indeed, the participants to the study have notions of
logic representation. They have attended a Semantic Web course or come from the research staff. In general, Tableau
techniques [40] are used for proof algorithms for Description Logic whereas the field of Automated Reasoning [42]
provides proof algorithms for other families of logics.

This set of approaches to explanation of logical entailments focuses more on the study of efficient algorithms
than on effective algorithms for common users. In all the mentioned works, the computed explanations consist of
sets of logical axioms that can be understood only by expert users. The aim of our work is to develop a framework
whose explanations are in a semantic format that can be easily rendered in an effective representation for all users.
This representation can be a verbalization in natural language (performed with methods that translate axioms of an
OWL ontology in Attempto Controlled English [43, 44] or in standard English [45]) or a graphical representation.
In addition, the synergies between learning models and semantic information in the presented framework allow the
automatic post-hoc analysis of the explanations in order to extract from the semantic features training bias or errors.
This information can be used as a feedback for refining the output classification.

Our work starts from the adoption of natural language explanations with the aim of designing explanations
generation pipelines able to exploit knowledge-based representations and repositories. Such pipelines support the
generation of texts tailored to the knowledge capabilities of the target users and by preserving also privacy and
ethical aspects connected with the information to deliver.

3. From Knowledge Fragments to Explanation Graph

Knowledge graphs represent one suitable road towards the design of a trustworthy AI-based solution [14]. As
introduced in Section 1 and discussed in Section 2, AI-based systems provide output that has to be processed before
making it comprehensive by target users. This issue can have different levels of severity depending on the type of
AI-based system adopted. By surveying the literature, the two antipodes are neural-based systems and rule-based
systems. The former are traditionally considered as black box since their transparency in understanding why a
specific classification has been provided is generally low. This aspect is amplified if input features do not have a
conceptual meaning that can be exploited in a later stage. The latter, on the one hand, are transparent since it is
possible to backtrack all possible choices performed by the system, but, on the other hand, their interpretability can
be very complex given the amount of rules that have to be checked.
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The scenarios in which an AI-based system is adopted can exacerbate the trustworthy need. As example, within
the medical domain a clinician must know why a system provides a specific recommendation for a given patient (e.g.,
which medical information it used, which patient’s data, how they have been combined), or, within the predictive
maintenance domain where technicians must know why the system suggests to perform a specific maintenance
operation. In these cases, the output of the AI-based system has to be linked with further information (e.g., external
knowledge) supporting the completeness and the comprehensiveness of the explanation provided to the target users.

A graph-based visualization representation helps towards this goal since it aims to convert the output generated
by AI-based systems, usually provided in a structured or semi-structured format, into a graphical representation. In
turn, such a representation would enable the design of different strategies for transforming the provided outputs into
a representation that can be easily understand and consumed by the target user.

Explanations generated starting from structured formats such as the one mentioned above help users in better
understanding the output of an AI system. A better understanding of this output allows users to increase the overall
acceptability in the system. An explanation should not only be correct (i.e. mirroring the conceptual meaning of the
output to explain), but also useful. An explanation is useful or actionable if and only if it is meaningful for the users
targeted by the explanation and provides the rationale behind the output of the AI system [46, 47]. Explanations
are meaningful if they are easily understandable by the targeted audience depending on the context in which the
explanations are received. For example, if an explanation has to be provided on a specific device, such a device
represents a constraint to be taken into account for deciding which is the most effective way for generating the
explanation. Such explanation can be in natural language/vocal messages, visual diagrams or even haptic feedback.

The end-to-end explanation generation process, from model output to an object usable by the target users, re-
quires a building block in the middle supporting the rendering activity. Such rendering requires explanations hav-
ing a formal representation with a logical language equipped with predicates for entities and relations. This formal
representation can be directly represented as an explanation graph with entities/nodes and relations/arcs. An expla-
nation graph is a conceptual representation of the structured output provided by the black box model where each
element of the output is represented by means of conceptual knowledge enriched with further information gathered
by external sources. The explanation graph has two main characteristics making it suitable to be integrated in sev-
eral complex domains. First, through the connections with further possible knowledge bases, it auto-enhance itself
with other concepts from domain ontologies or Semantic Web resources. Second, the adopted representation format
already provides an easy render in many human-comprehensible formats that can be understood also by less expert
actors. Such an explanation graph can be easily obtained from the XAI techniques explained above. The explanatory
features and the output class provided, for example, by a SHAP model [48, 49] can be regarded as the nodes of the
explanation graph, whereas arcs are computed on the basis of the SHAP features values. The explanation graph can
also work as bridge for accessing different types of knowledge usable, for example, to enrich the content of natural
language explanations by respecting privacy and ethical aspects connected with the knowledge to use.

Figure 1 shows the abstract representation end-to-end strategy to support the generation of comprehensive natural
language explanations by starting from knowledge fragments integrated into the explanation graph.

The end-to-end pipeline is composed by two main phases: (i) the generation of the explanation graph and (ii) the
exploitation of the explanation graph to generate natural language explanations.

In the next subsections, we show a methodology to build the explanation graph by integrating different knowledge
fragments (Section 3.1) and a narrative showing how the methodology can be applied within a concrete setting
(Section 3.2). While, in Section 4, we present the rendering process enabling the generation of a natural language
explanation from the created explanation graph.

3.1. Explanation Graph Building Methodology

As introduced above, the explanation graph provides and integrated representation of the knowledge fragments
produced by three main sources of information: (i) the knowledge fragment provided by the output of the AI-based
system; (ii) the knowledge fragment provided by public knowledge sources; and, (iii) the knowledge fragment pro-
vided by private knowledge sources. All such knowledge fragments contribute to provide an exhaustive representa-
tion of the context needed for creating a complete explanation to the target users. We present below a three-phase
methodology for building an explanation graph based on the knowledge fragments mentioned above.
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Fig. 1. Summary of the end-to-end pipeline transforming knowledge fragments (i) generated by the AI-system; (ii) provided by public knowledge
bases; and, (iii) provided by private knowledge bases, into the explanation graph object that is later transformed into a comprehensive natural
language explanation through a NLG component.

Knowledge Fragment From The AI-based System Output The first knowledge fragment is the one used to initial-
ize the explanation graph and it is provided by the transformation of the AI-based system output in a set of con-
cepts having a precise semantic meaning within the domain. This operation can be performed thanks to semantic
features. Semantic features work as bridge between the output of an AI-based system and the generation of the
whole explanation graph describing the explanation’s domain. Semantic features are strongly related to the output
of the AI-based system due to the manual definition of relationships having a precise semantic meaning enabling
the initialization of the explanation graph.

The definition of the relationships between the output of the AI-based system, the semantic features, and the
concepts between an underlying ontology is a manual effort, in some cases time consuming, that will be the most
important challenge to address in the future in order to foster the creation of this type of hybrid systems.

The amount of such an effort may vary depending on the type of AI-based system is deployed. Hence, it is
necessary to highlight an important difference between the two main categories of AI-based systems: symbolic
systems and connectionist systems.

The transforming operation for a symbolic system is a straightforward action since, by design, the semantic fea-
tures used within the implemented reasoning strategy are defined unambiguously in an ontology. Hence, the con-
struction of the explanation graph starts from the list of semantic features contained in the AI-based system that are
directly mapped to ontological concepts.

Different and more complex is the case of connectionist systems since it is necessary to define alignments be-
tween the features given as input to the connectionist systems and the conceptual knowledge used as the basis for
building the explanation graph. This operation follows the definition of comprehensible system provided by Doran
et al. [9], that is a system that computes its output along with symbols that allow users to understand what are the
main semantic features in the data that triggered that particular output. Here, we refine the work of Doran et al.
by introducing the concept of semantic feature. These are features that can be expressed through predicates of a
First-Order Logic (FOL) language and represent the common and shared attributes of an object/phenomenon that
allow its recognition. Examples can be ContainsBacon(x) or ContainsEggs(x) indicating the ingredients of a dish
in a picture. Semantic features in principle can be further explained by more fine-grained semantic features. For ex-
ample, the ChoppedBacon(x) feature can be explained by the HasCubicS hape(x) and HasPinkColor(x) features.
However, in a nutritional domain, these latter features do not add further comprehension to users and can represent
an overload of information. Therefore, the knowledge engineering and/or domain expert have to select the right
granularity of the semantic features to present to users and therefore ensuring a sort of atomic property of these fea-
tures. Semantic features are different from the learnt numeric (and not comprehensible) features of a connectionist
systems. The aim of a comprehensible system is to find an alignment between the learnt and the semantic features.
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The connection between a connectionist systems output and its semantic features is formalized through the defi-
nition of comprehension axiom.

Definition 1 (Comprehension axiom). Given a FOL language with P = {O}n
1 ∪ {A}m

1 the set of its predicate
symbols, a comprehension axiom is a formula of the form

k∧
i=1

Oi(x) ↔
l∧

i=1

Ai(x)

with {O}n
1 the set of output symbols of a connectionist systems and {A}m

1 the corresponding semantic features (or
attributes).

A comprehension axiom formalizes the main tasks of a connectionist systems:

Multiclass Classification: the predicate Oi(x) represents a class (e.g., pasta with Carbonara sauce or sushi) for
x and k = 1 as a softmax is applied in the last layer of the connectionist systems. The semantic features
represent, for example, ingredients contained in the recognized dish.

Multilabel Classification: Oi(x) is part of a list of predicates being computed by the connectionist systems (e.g.,
dinner and party) for x and k > 1 as a sigmoid is applied in the last layer of the connectionist systems.
The semantic features represent, for example, objects in the scene, such as, pizza, table, bottles, person and
balloons.

Regression: Oi(x) can be part of a list of predicates being computed by the connectionist systems (e.g., the asked
price and the real values of house) for x. Here k ⩾ 1 with a sigmoid applied in the last layer of the connectionist
systems. The semantic features are properties of interest for buying a house.

Once a set of comprehension axioms is returned by our comprehensible system, the former can be easily trans-
formed into a graph representation where the nodes are the unary predicates Oi and Ai plus other information such
as a possible neural network scores for these predicates. The edges are the logic relations between these predi-
cates, such as implications and n-ary predicates with n > 1. A single comprehension axiom can be represented as a
star-shape graph with O in the center, Ai at the end of the branches and the biimplications as edges.

Knowledge Fragment Public Knowledge The second knowledge fragment relates to the knowledge that can be
extracted from public knowledge bases and it is used to perform a first extension of the explanation graph. By
starting from the concepts generated from the AI-based output, ontology matching [50] strategies can be used to
define alignments between such concepts and possible candidates defined within the selected external ontologies.
These alignments allow to enhance the explanation graph with further knowledge that can be useful to generate the
final explanation. Indeed, information contained within external knowledge bases may provide the proper context to
better justify the content of the explanation. Examples of such knowledge bases are the Linked Open Data (LOD)
Cloud 4 or other publicly available ontologies and knowledge graphs (e.g., ontologies available on BioPortal 5).

There are two main aspects that are important to highlight in this phase. First, the selection of the ontologies for
the alignment operation. Not all ontologies publicly available are suitable for enhancing the explanation graph. For
example, if the AI-based system has to recommend if a maintenance operation has to be performed on a weather
station, the attempt of extending the explanation graph with concepts extracted from an ontology about agriculture
is useless. Ideally, the experts in charge of deploying and activating the AI-based system should select a group of
ontologies to use for performing the extension of the explanation graph. Like it has been mentioned above, also this
operation can be time consuming. However, it is warmly recommended to perform this task manually in order to
avoid the analysis of many out-of-domain ontologies.

Second, the effectiveness of the alignment algorithm. The literature discusses many ontology alignment strate-
gies [51] performed differently on different benchmarks. Clearly, the effectiveness of the alignment algorithm
adopted for extending the explanation graph affects, in turn, the quality and the appropriateness of the generated

4https://lod-cloud.net/
5https://bioportal.bioontology.org/
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explanations. What it has been discussed in the first point, may drive the alignment algorithm to define correct align-
ments and, in this case, alignment strategies favoring the precision metric, rather than the recall one, are preferable.

Knowledge Fragment Private Knowledge Finally, the third knowledge fragment integrated into the explanation
graph concerns private information associated with the user should receive the explanation. Such private information
can be exploited for tailoring the generated message with respect to the user profile or to decide which user, among
different alternatives, should receive the explanation (e.g., the clinician rather than the patient).

Operations performed in this last phase are the same described in the previous paragraph, i.e., the execution of
ontology alignment operations, with the difference that the private knowledge associated with the user is aligned
with the content of the explanation graph. This way, it is possible to tailoring the content of the final natural language
explanation with respect to the user profile. During this phase, privacy constraints are possibly introduced within
the explanation graph if some information are accessible by a subset of possible target users.

In the next section, we show a running example showing how these phase may be applied in a concrete setting.

3.2. Example of Explanation Graph Construction

In order to make the explanation graph building process more comprehensive we present in this section a running
example showing how the explanation graph is initialized with the starting knowledge fragment and then enriched
with the knowledge fragments coming from both public and private knowledge bases.

Let us consider a scenario occurring within the healthcare domain where patients suffering from a chronic nutri-
tional disease are monitored by a digital assistant system in charge of providing recommendations about healthy be-
haviors (i.e., diet and physical activities) based on what patients ate and which activities they did. The digital assis-
tant interacts with both clinicians and patients that are the two types of target users occurring in the scenario. Hence,
when an explanation is sent out, depending on the target user to reach, both content and language have to be tailored
with respect to her. A patient is associated with a set of guidelines that she should follow to maintain a healthy status
and to avoid disease exacerbation and that are defined within the private knowledge associated with her. When an
undesired behavior is detected (i.e., a guideline is violated), the digital assistant has to generate, as mentioned above,
two different explanations: one for the cliniciancontaining medical information linked with the detected undesired
behavior including also possible severe adverse consequences; and one for the patient omitting some medical details
and, possibly, including persuasive text inviting to correct the patient’s behavior in the future. Where needed, privacy
issue should be managed in order to avoid the delivery of sensitive information to an unauthorized user. Indeed, in
general, not all personal information of patients can be delivered in the generated explanations and the selection of
the proper ones are demanded to the constraints defined within the AI-based system.

The first phase is to initialize the explanation graph by creating a concept for each semantic feature and by
instantiating the relationships among them that are gathered by the domain ontology with which semantic features
are mapped. Let us consider our running example. The user can provide a picture of a food dish through a mobile
application and the back-end processes it in order to detect the recipe. The back-end implements a connectionist
model trained for extracting a list of recipes together with their confidence score and a gradient-based explainer
motivates the classification task by providing a set of pairs < f eature, value > where each feature corresponds to a
specific ingredient contained within the udnerlying knowledge base 6 . The explanation graph associated with this
specific event includes first concepts representing the event itself and the output of the classification task. Figure 2
shows how first concepts are created within the explanation graph by starting from the output of the AI-based
system. We provided a limited set of concepts by purpose in order to preserve the readability of the image. It is
important to notice that the gray concepts are the ones that are part of an underlying ontology, deployed within the
AI-based system, describing the scenario itself and that it is not part of the public neither the private knowledge used
for building the explanation graph. In this case, when an undesired behavior is detected, the explanation graph is
populated with a concept Violation representing the undesired behavior and a concept MonitoringRule representing
the guideline that has been violated. The Violation concept is then linked with the food category generated the

6For simplicity, we omit here all the aspects related to the validity of the classification provided and the fact that from the ingredients that have
been detected it would be possible to assess the confidence of the recipe.
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Violation. In this example, the ColdCuts food category that has been detected during the recipe image classification.
Then, since the AI-based system is in charge of monitoring people behavior, the User concept is generated as well
since the Violation refers to her.

Fig. 2. Transformation of the output provided by the AI-based system in the first knowledge fragment included in the final explanation graph.

The second phase consists in the defining the alignments between one or more concepts contained in the explana-
tion graph and concepts defined into external knowledge bases publicly available. Here, the concepts of interest are
the ingredients detected by the classifier. Hence, for each concept representing one of the ingredients contained in
the recognized recipe, it is possible (i) to associate nutritional information about both positive and negative proper-
ties of them, (ii) to extract correlations between each ingredient and the onset or exacerbation of specific nutritional
diseases, and (iii) to include nutritional-related relationships between the detected recipe and other foods based on
their nutritional information. This information can be extracted from knowledge sources like the Linked Open Data
(LOD) cloud, the UMLS7 knowledge base, or from domain-specific ontologies providing nutritional-related infor-
mation with a high level of granularity, like, in this specific case, the HeLiS ontology [52]. Within our example, by
starting from the ColdCuts concept it is possible to perform the following operations:

– to extract from the HeLiS ontology the list of the nutrients contained within the ColdCuts food category (e.g.,
AnimalFats, Salt);

– to find within the LOD cloud other knowledge bases defining the ColdCuts concept (e.g., AGROVOC 8) that
can be used as starting point for exploring the cloud to look for further relevant knowledge;

– to exploit the alignments between the disease taxonomy defined in AGROVOC and the UMLS knowledge base
in order to extract possible correlations between food categories and nutritional diseases (e.g., the excess of
ColdCuts consuption may lead to Cardiovascular diseases.

Figure 3 shows how the explanation graph is extended with new concepts extracted from publicly available
knowledge bases. For brevity, we report only the concepts that are relevant with respect to our running example.

7https://www.nlm.nih.gov/research/umls/index.html
8http://aims.fao.org/vest-registry/vocabularies/agrovoc

https://www.nlm.nih.gov/research/umls/index.html
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Fig. 3. Enrichment of the explanation graph by introducing knowledge coming from public resources.

Finally, in the third phase, the explanation graph is extended with knowledge fragments extracted from private
knowledge bases, e.g., the structured representation of a personal health record (PHR) or the financial status of a
person. By considering our running example, the knowledge included within the patient’s PHR can be linked to
the nutritional information already included in the explanation graph. By analyzing the PHR of our user, we may
extract both the age and possible ongoing diseases (e.g., Hypertension). Then, thanks to the integration of the UMLS
knowledge base, we may infer that the Hypertension is a sub-concept of Cardiovascular diseases. Hence, we can
instantiate the isA relationship and, in turn, to exploit it to reinforce the explanation provided to the target user by
including further reasons about why the detected behavior is undesired. In particular, as it will be shown in the use
case provided in Section 5, the natural language generator relies this knowledge to decide which linguistic strategy
to adopt for generating the explanation. Finally, depending on the target user, all the content generated by starting
from this information may be excluded from the rendered explanation due to privacy constraints defined within the
target user’s profile. Figure 4 shows the last two concepts added into the explanation graph and the relationships
instantiated with existing concepts.

The result of this process is the explanation graph object containing the structured, and semantically validated,
knowledge generated by starting from the output of the AI-based system extended with further knowledge coming
from both public and private knowledge bases. Both the domains to consider for building the explanation graph as
well as the amount of knowledge to include is left to the AI-system engineer depending on the desired granularity
of the explanations. Figure 5 shows the explanation graph generated for our running example.

In the next Section, we discuss a possible strategy to convert the explanation graph into a natural language
explanation. This aspect emphasizes the role of the knowledge into this process since, without having a complete
understanding of the seed information to use for generating explanations, it would not be possible to design a
trustworthy AI-based system.

4. From Explanation Graph to Explanation Rendering

A described in Section 3, the explanation graph works as a bridge between the signals produced by a black box
model or a symbolic approach to an understandable rendering of such signals. Producing such explanation carries
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Fig. 4. Enrichment of the explanation graph by introducing knowledge coming from private resources.

Fig. 5. Explanation graph for users exceeding in cold cuts consumption in the diet & healthy lifestyle adherence application. Concepts with the
orange background belong to the knowledge fragment generated from the AI-based system output. Concepts with the green background belong
to the knowledge fragment generated from public knowledge bases. Finally, concepts with the red background belong to the knowledge fragment
generated from private knowledge bases.
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a challenge, given the requirement of adopting a proper language with respect to the targeted audience [47] and
the related context. The explanation graph provides a formal (graph-like) representation to be easily rendered and
personalized through natural language text [53]. Terms in the explanation graph encode the rationale behind the
AI-based system decision, whereas the domain knowledge base encodes further terms that help the user’s compre-
hension by: (i) enhancing the final rendered explanation with further information about the output; and, (ii) using
terms or arguments that are tailored to that particular user and increase the comprehension of the explanation. The
generation of such natural language explanations can rely on a generation pipeline composed by three elements
described below and shown in Figure 6.

1. The rendering component. This component is in charge of transforming the explanation graph into its equiv-
alent natural language form enhanced with contextual information tailored to both the domain and the target
user.

2. The explanation graph build by starting from the output of the AI-based system as described in Section 3.
3. The strategy to adopt. A strategy encodes the what, when, and how of a natural language explanation.

Fig. 6. Abstract view of the rendering process.

The rendering component is a machinery receiving as input the explanation graph to render and the strategy to
adopt. The rendering component itself may be considered as a flexible container that is agnostic with respect to both
the domain, the content of the explanation to render, and the strategy to adopt. Depending on the internal structure
of the rendering component and by the implemented strategy, the linguistic realization is performed through sev-
eral steps that may be different from one instance to another [54]. Indeed, the rendering component integrate the
methodology adopted for constructing the structure of the actual natural language explanation. One of the possible
methodology to render an explanation graph into a natural language text is to adopt a template-based system. Tem-
plates are formal grammars whose terminal symbols are a mixture of terms/data taken from the nodes/arcs of the
explanation graph and from a domain knowledge base.

The core of the rendering operation is represented by the strategy integrated into the rendering component. We
said above that a strategy encodes the what, when, and how of a natural language explanation.

The what is the content that has to be included into the message. The content is generated by starting from the
explanation graph and, depending on both the scenario and the target user, it may vary in terms of which part of
the explanation graph should be published or not. For example, if there are privacy constraints associated with the
target user, some nodes of the explanation graph are not considered during the rendering process. Other examples
are emergency scenarios where the generation process has to be as fast as possible: here, only the core nodes of the
explanation graph are took into account in order to include the minimum amount of knowledge able to provide a
complete explanation to the target user.
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The when represents the timing adopted to provide the natural language explanation to the target user. The timing
aspect is directly connected to the context of the explanation and it is used to decide when a generated explanation
as to be provided to the target user. For example, in an emergency scenario it is straightforward to guess that the
explanation has to be sent as soon as possible. In other scenarios the timing aspect may consist in a precise schedule
that the AI-based system must follow to communicate with the target user, e.g.: within a predictive maintenance
scenario, the AI-based system may provide every two hours a report containing the status of the monitored device
by explaining if a maintenance operation is required (or not) and why.

Finally, the how is related to the the communication technique to adopt when the actual generation of explana-
tion’s content is performed. Communication techniques may range from short and prescriptive messages, used for
example in case of an emergency, to more complex, persuasive, and argumentative messages when the explanation
does not have only the goal of providing a specific information, but also to introduce elements aiming to trigger a
behavior change in the target user.

Before presenting the use case described in Section 5, we mention some possible scenarios giving an idea about
how the encoding of the strategy can be different with respect to their context and aim.

– High-risk scenarios (e.g., volcanoes, earthquakes, flooding). An AI-based system is in charge of processing
real-time data provided by a network of sensors and to inform target users about emergency situations. The
content of the explanations should be as much short and clear as possible. The when is definitely in real-time.
The communication strategy has to be prescriptive.

– Predictive maintenance scenarios (e.g., industrial equipment, smart lifts). An AI-based system is in charge of
collecting data from IoT devices concerning the status of a specific machinery and to process them at a regular
basis in order to detect possible situations of interested that have to be notified to proper users. The content
of the explanations should be as much complete as possible in order to properly report every detail about the
status of the monitored machinery. The when is defined through a precise schedule (e.g., every hour) and it may
work as trigger to the AI-based system to process the collected data and to generate the explanation. Also in
this case the communication strategy may be mostly prescriptive. In some case, if some danger level is reached,
the explanation may include suggested actions for the target user.

– Event-based scenarios (e.g., data input, external trigger). An AI-based system is in charge of reacting to a spe-
cific event (e.g., data provided by a user, temporal trigger) and to process data and generate explanations based
on the data snapshot collected at the time the trigger is received. Here, both the content and the communication
strategy are adapted depending on the specific scenario. The important aspect to manage is the when one since
the effectiveness of the strategy strongly depends on the appropriateness of the events defined to trigger the
generation of explanations.

– Privacy-based scenarios (e.g., situations where any kind of personal and sensitive data are involved in the
generation of the explanations). The explanation graphs generated by the AI-based system includes sensitive
information (e.g., economic, medical) of the user which data refers to. In these scenarios, the important aspect
to manage is to decide which content to include into the generated explanation by taking into account which
is the access control policies of the target users with respect to each single information. Here, the use of
knowledge bases is very important since it is possible to define data access constraints directly at ontological
level [55]. Hence, when part of the explanation content is generated by starting from a specific node of the
explanation graph, the rendering component can check if the target user has the grants to access that specific
node in order to decide if the textual fragment generated from that node can be included in the explanation or
not. A more complex scenarios, where explanations have to be provided to different target users, this process
is performed for all of them.

– Behavior change scenarios (e.g., digital therapeutics). An AI-based system is responsible of monitoring the
behavior of patients and to detect if undesired situations are detected. Here, the important aspect to analyze
is the communication strategy. Indeed, within behavior change scenarios, how the message is presented to the
target user is crucial for determining the effectiveness of the entire system. The use case we present in Section 5
targets this specific scenario.

Now, in Section 5, we present a complete use cases showing how the explanation graph concept has been instan-
tiated into a specific scenario by showing also the impact that it had on the behavior of target users.
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5. Use Case: Natural Language Persuasive Explanations For Healthy Lifestyle Adherence

In this section, we describe a use case exploiting the explanation graph to generate natural language explanations
towards persuading users about adhering to suggested healthy behaviors. In this use case, with the term user we
intend both healthy citizens or patients since the use case fits well for both of them. Indeed, in the first case the goal
is to preserve healthy conditions, while in the second case such guidelines can be used to monitor the behaviors
of patients affected by chronic diseases or that are recovering from severe medical issues and that have to avoid
relapses.

In this use case, the rendering component we integrated is the one described in [53], hereafter called Template
System For Natural Language Explanations (TS4NLE), and we refer to it throughout this section as a candidate
solution, but not limited to it, to adopt for the actual generation of a natural language explanation. TS4NLE realizes
templates that can be structured as a decision tree where the first level contains high-level and generic information
that is progressively specialized and enriched according to the user’s features specified in the user model. Once
templates are filled with terminal terms, the lexicalization 9 and linguistic realization of the filled template are
performed with standard natural language processing engines such as RosaeNLG 10.

In this use case, the TS4NLE has been instantiated integrating as strategy the persuasion model proposed by
den Akker [56], and expanded taking into consideration additional strategies presented in [57], where generated
messages are composed by three parts: Feedback, Argument, and Suggestion. Below, we present the description of
the scenario and we report the results concerning the impact of the generated explanations on the behavior of a
selected group of users.

As support external knowledge base, we rely on the HeLiS ontology [52]. HeLiS is a state-of-the-art ontology that
formalizes the food and recipes composition, the rules of the Mediterranean diet, the physical activities domain and
user preferences and habits in order to support the promotion of healthy lifestyles. The relevance of this ontology
with respect to this use case pivots around the integrated model representing a fine-grained description of food (i.e.,
nutrients) and the correlation between nutrients and the onset or exacerbation of possible allergies or diseases.

Preamble. Each user is associated with a profile containing a set of guidelines, related to both nutrition and phys-
ical activity behaviors, that she has to follow. Once the user provides her behavioral data, the AI-based system clas-
sifies the user behavior in classes ranging from very good to very bad depending on the implemented granularity.
When undesired situations (hereafter in this section called violations) are detected, the system has to inform all
the involved stakeholders (e.g., users, clinicians, caregivers) about such violations through the use of a natural lan-
guage generation (NLG) template-based strategy [27]. The communication provided has to include all information
relevant to explain (i) why the violation has been detected, (ii) which data led to such a violation, and, (iii) why
such a violation is dangerous for the user. Finally, in the case in which a multi-stakeholder scenario is foreseen,
privacy-wise filters have to be applied to avoid the communication of sensitive information to people do not have the
permission to see them. Explanation graphs were thought for supporting these kind of interactions in order to make
the system more trustworthy by the involved stakeholders. According to the user profile (e.g., whether the user has
to be encouraged or not or according to the users’ barriers or capacities), the NLG component explores all possible
options in order to reach the one it considers to be most effective.

A user study regarding the Mediterranean diet states that such tailored explanations are more effective at changing
users’ lifestyle with respect to a standard notification of a bad lifestyle [53].

As example, we still consider the explanation graph shown in Figure 5. Such a graph can be rendered through the
NLG component as: “This week you consumed too much (5 portions of a maximum 2) cold cuts. Cold cuts contain
animal fats and salt that can cause cardiovascular diseases. People over 60 years old are particularly at risk. Next
time try with some fresh fish”.

The generation of the natural language explanation shown above is performed by the TS4NLE component by
following the steps below. After the generation of the explanation graph, the message composition component

9Lexicalization is the process of choosing the right words (nouns, verbs, adjectives and adverbs) that are required to express the information
in the generated text, it is extremely important in NLG systems that produce texts in multiple languages. Thus, the template system chooses the
right words for an explanation, making it tailored.

10https://rosaenlg.org/rosaenlg/3.0.0/index.html

https://rosaenlg.org/rosaenlg/3.0.0/index.html
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of TS4NLE starts the generation of three textual messages for the feedback, the argument and the suggestion,
respectively.

The generation of the whole message leverages several persuasion strategies in order to compose a complex
persuasive message through templates. Templates are then rendered through natural language text. A template is
formalized as a grammar whose terminal symbols are filled according to the data in the violation package and new
information queried in the explanation graph . Once templates are filled, a sentence realizer (i.e., a producer of
sentences from syntax or logical forms) generates natural language sentences that respect the grammatical rules of
a desired language11. Below we describe the implemented strategies to automate the message generation, focusing
also on linguistic choices.

Explanation Feedback 13: is the part of the message that informs the user about the not compliant behavior,
hereafter called violation, with the goal that has been set up. Feedback is generated considering data included in the
explanation graph starting from the violation object: the food entity of the violation will represent the object of the
feedback, whereas the level of violation (e.g., deviation between food quantity expected and that actually taken by
the user) is used to represent the severity of the incorrect behavior. The intention of the violation represents the fact
that the user has consumed too much or not enough amount of a food entity. Feedback contains also information
about the kind of meal (breakfast, lunch, dinner or snack) to inform the user about the time span in which the
violation was committed.

The violation aligned with the terminal symbols of the template in our running example is in Figure 7.

Fig. 7. TS4NLE model (template and example of violation) for generating the text of the feedback. Choices on template and message chunks
depend on the violation package. This holds also for both the argument and suggestion. Dashed lines represent a dependency relation. A template
of type “informative” has been used in the example.

From a linguistic point of view, choices in the feedback type are related to the verb and its tense: e.g., beverages
imply use of the verb to drink while for solid food we use to eat. To increase the variety of the message, verbs to
consume and to intake are also used. Past simple tense is used when violation is related to a specific moment (e.g.

11Current version of TS4NLE supports the generation of messages in English and Italian. In particular, Italian language requires a morpho-
logical engine (based on the open-source tool called morph-it12) to generate well-formed sentences starting from the constraints written in the
template (e.g., tenses and subject consistency for verbs)

13The feedback concept in the message generation model of [56] must not be confused with the behavior change strategy element feedback in
the BIT model.
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You drank a lot of fruit juice for lunch), while present continuous is used when the violation is related to a period of
time of more days and the period is not yet ended (e.g., You are drinking a lot of fruit juice this week).

Explanation Argument: is the part of the message informing users about possible consequences of a behavior.
For example, in the case of diet recommendations, the Argument consists of two parts: (i) information about nutrients
contained in the food intake that caused the violation and (ii) information about consequences that nutrients have on
human body and health. Consequences imply the positive or negative aspects of nutrients. A A template example
for supporting the generation of an explanation argument is shown in Figure 8.

Fig. 8. TS4NLE model (template and example of violation) for generating the text of the argument given as part of the explanation when violating
diet restrictions.

In this case, TS4NLE uses the intention element contained in the selected violation package to identify the type
of argument to generate. Let us consider the violation of our running example where the monitoring rule limits the
weekly cold cuts consumption to maximum 2 portions per week since. In the presence of an excess in cold cuts
consumption (translating to a discouraging intention) the argument is constituted by a statement with the negative
consequences of this behavior on user health. On the contrary, the violation of a rule requiring the consumption of
at least 200 gr of vegetables per day brings the system to generate an argument explaining the many advantages of
getting nutrients contained in that food (an encouraging intention). In both cases, this information is stored within
the explanation graph.

Moreover, TS4NLE analyzes the message history to decide which property of the explanation graph to use in the
Argument, to generate a message content that depends on e.g., content sent in the past few days, ensuring a certain
degree of variability. With respect to linguistic choices, the type of nutrients and their consequences influence the
verb usage in the text. Finally, to emphasize different aspects of the detected violation, templates encode the use of
appropriate parts of speech. For example, for stressing the negative aspects of the violated food constraint, the verb
contain (nutrients) and can cause (for consequences) were used. On the other hand, positive aspects are highlighted
by the verb phrase is rich in and verb help are used for nutrients and consequences, respectively.

Explanation Suggestion: this part represents an alternative behavior that TS4NLE delivers to the user in order
to motivate him/her to change his/her lifestyle. Exploiting the information available within the explanation graph,
and possibly collected from both public and private knowledge, TS4NLE generates a post suggestion to inform the
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user about the healthy behavior that he/she can adopt as alternative. To do that, the data contained in the explanation
graph are not sufficient. TS4NLE performs additional meta-reasoning to identify the appropriate content that de-
pends on (i) qualitative properties of the entities involved in the event; (ii) user profile; (iii) other specific violations;
(iv) history of messages sent.

The model for generating a suggestion message is shown in Figure 9 where, for the sake of readability, we report
only the second point of the list: compliance with the user profile.

Fig. 9. TS4NLE model (template and example of violation) for generating text of the suggestion.

Continuing with the running example, first TS4NLE queries the explanation graph to provide a list of alternative
foods that are valid alternatives to the violated behavior (e.g., similar-taste relation, list of nutrients, consequences on
user health). These alternatives are queried according to some constraints: (i) compliance with the user profile and
(ii) compliance with other set up goals. Regarding the first constraint, the reasoner will not return alternative foods
that are not appropriate for the specific profile. Let us consider a vegetarian profile: the system does not suggest
vegetarian users to consume fish as an alternative to meat, even if fish is an alternative to meat by considering only
the nutrients. The second constraint is needed to avoid alternatives that could generate a contradiction with other
healthy behavior rules. For example, the system will not propose cheese as alternative to meat if the user has the
persuasion goal of cheese reduction.

Finally, a control on message history is executed to avoid the suggestion of alternatives recently proposed. Re-
garding the linguistic aspect, the system uses appropriate verbs, such as try or alternate, to emphasize the alternative
behavior.

Evaluation The strategy described above has been applied in the context of the Key to Health project and tested
during a user study last forty-nine days. This user study consisted in providing a group of users with a mobile appli-
cation we created based on the services included into our solution. We analyzed the usage of a mobile application
connected with our solution for the project timespan by monitoring the information provided by the users and the
associated violations, if any. One of our goals was to measure the effectiveness of the persuasive messages generated
by TS4NLE module by observing the evolution of the number of generated violations by the users.
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A total of 120 users have been involved in the Key to Health project and they have been split in two groups.
We used a non-randomized experiments setup, as described in [58].In particular, we relied on the setting using
Intervention and Control groups with post-test design. This design involves two groups where the intervention is
implemented in one group and compared with a second group without the intervention, based on a post-test measure
from both groups. A first group of 92 users (the intervention group) received messages according to all the strategy
implemented in the TS4NLE module. Whereas a second group of 28 users, that was our control group, did not
receive messages implementing the arguments about the consequences of a violation. Indeed, they received only
canned text messages with the feedback notifying when a violation was detected. An example of canned text is
“Today you have drunk too much (300 ml of maximum 200 ml) fruit juice” notified as soon as the related violation
is detected. Our hypothesis was that a persuasive message exploiting the strategy implemented in the TS4NLE
component allows a higher decrease in the number of violations along with the usage of the application. For the Key
to Health project, the domain experts validated and adopted three kinds of dietary rules:

– QB-Rules (Quantity-Based rules related to single meals) that check the proper amount of a given food category
to be consumed in a meal. Users were asked to insert 4 meals everyday: breakfast, lunch, snack, dinner. A pair
(meal, day), e.g., breakfast at day 1, is associated with an identifier number.

– DAY-Rules (related to a single day) that check the maximum (or minimum) amount (or portion) of a given
food category that can (or should) be daily consumed.

– WEEK-Rules (related to a single week) that check the maximum (or minimum) amount (or portion) of a given
food category that can (or should) be weekly consumed.

Figures 10, 11, and 12 present the evolution of the average number of violations detected per user related to the
QB-Rules, DAY-Rules, and WEEK-Rules sets respectively.
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Fig. 10. Evolution of the average number of detected violations through the Key To Health project timespan concerning the QB-Rules. The meal
sequence IDs is the sequence of the identifier numbers for each pair (meal, day).

The blue line represents the average number of violations whereas the red line the standard deviation observed
for each single event in the intervention group. Then, the green line represents the average number of violations
generated by the control group and the orange one the associated standard deviation. As mentioned above, QB-Rules
are verified every time a user stores a meal within the solution; DAY-Rules are verified at the end of the day; while
WEEK-Rules are verified at the end of each week. The increasing trend of the gap between the blue and green lines
demonstrates the positive impact of the persuasive messages sent to users. We can observe how for the QB-Rules
the average number of violations is below 1.0 after the first 7 weeks of the project. This means that some users
started to follow all the guidelines about what to consume during a single meal. A positive result has been obtained
also for the DAY-Rules and the WEEK-Rules. By considering the standard deviation lines, we can appreciate how
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Fig. 11. Evolution of the average number of detected violations through the Key To Health project timespan concerning the DAY-Rules.
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Fig. 12. Evolution of the average number of detected violations through the Key To Health project timespan concerning the WEEK-Rules.

both lines remain contained within low bounds and after a more in depth analysis of the data, we did not observe
the presence of outliers.

The analysis of the drop of violations after the 7 weeks timespan of the project reported in Table 1 shows that that
both QB and DAY rules obtained good drops. For the WEEK-Rules, however, such a drop remained limited. This

Intervention Group Control Group

QB-Rules 76.63% 50.00%
DAY-Rules 62.18% 41.98%
WEEK-Rules 40.12% 6.68%

Table 1
Drop of violations at the end of the project. The highest drops in violations occur with the more frequent rules.

can be explained with the fact that the QB and DAY-Rules are more frequently notified when violated: after every
meal and day violations, respectively. Whereas the WEEK-Rules are notified once a week. As a consequence, the
users pay more attention to the more frequent kind of notifications. For all the cases the intervention group has a
bigger drop with respect the control group.
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Further quantitative analysis regard the time spent by our system to be effective. Figures 10, 11, 12 show us that
the two groups tend to diverge at a certain point during the Key To Health time span. Here, we are interested the
day/week when the two groups start to diverge with a statistical significance. We report this analysis in Table 2 with
these days/week along with their p-values and average number of violations in the starting day/week for both the
intervention and control group.

Starting
day/week

p-value
Violations

Intervention Group
Violations

Control Group

QB-Rules 29th day 0.04 1.51± 1.26 2.10± 1.57

DAY-Rules 19th day 0.007 8.09± 2.75 9.82± 2.91

WEEK-Rules 4th week 0.004 14.03± 3.24 17.03± 3.97

Table 2
Key days/week where the intervention and control groups start to diverge with statistical significance.

The DAY-Rules have the quickest starting point as the two groups diverge from the 19th day, that is, the system
took less than of the 39% of the project timespan to be effective. On the other hand, the QB-Rules are the slowest
to be effective taking 29 days of system usage. This is due to the fact that these rules regard strong dietary habits
of users that require a constant attention and effort to be changed in order to respect the QB-rules. Indeed, for both
intervention and control group the average number of violations is quite small. The WEEK-Rules have a similar
starting point of the QB-Rules. This can be explained with the fact that WEEK-Rules require some organization to
be respected. Indeed users need some planning of their meals for the week and consequently they have to buy the
proper food with these rules in mind. This planning requires the proper effort and time.

6. Discussions and Lessons Learned

The use of explanation graphs is an intuitive and effective way for transforming meaningless model outputs into
a comprehensive artifact that can be leveraged by targeted users. Explanation graphs convey formal semantics that:
(i) can be enriched with other knowledge sources publicly available on the web (e.g. Linked Open Data cloud) or
privacy-protected (e.g. user profiles); (ii) allow rendering in different formats (e.g. natural language text or audio);
and, (iii) allow full control over the rendered explanations (i.e. the content of the explanations). Natural language
rendering with a template-system allows full control on the explanations at the price of high effort in domain
and user modeling by domain experts. This aspect can be considered the major bottleneck of the template-based
approach described in Section 4. Such bottleneck can be mitigated by using machine learning with human-in-the-
loop techniques to increase variability in the generated natural language explanations. However, in some domains
(e.g., the medical one) it is necessary to keep the full control on the explanations generated by the AI-based system,
thus, it is not possible to avoid the effort of building a template library.

Concerning the effort needed for improving the flexibility of the overall approach, it is important to highlight that,
also on the knowledge management side, links between features provided as output by a connectionist model and
ontological concepts have to be defined. Depending on the complexity of the domain (or task) in which the system
is deployed, this activity may have a different impact.

In [59] as well as we reported at the beginning of the previous section, we demonstrated how working with se-
mantic features allows the development of more comprehensible classification systems since it is possible to provide
explanations about how a given instance of the dataset has been classified with a specific class. This aspect repre-
sents an interesting starting point for exploiting the generated explanations as a trigger for refining the classification
model in order to increase the overall effectiveness of the system. Indeed, thanks to the links between the dataset and
the semantic feature mentions contained within the explanations, we are able to detect the impact of each semantic
feature on the effectiveness of the classification model. In particular when a specific semantic feature is the main
actor of a wrong classification.



M. Dragoni and I. Donadello / A Knowledge-based Strategy For XAI: The Explanation Graph 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

These aspects represent the main challenges that we aim to address in the future. In particular, we aim to abstract
the conceptual model on top of the explanation graph to make it more general across domains. Then, we intend
to enhance the template-based approach by designing a strategy for reducing the experts’ effort in designing new
templates. Finally, we plan to set up a use case with real users for performing the validation about the usage of ex-
planation graphs. A candidate, and challenging, scenario is the monitoring of people affected by chronic nutritional
diseases where data from both sensors and users (e.g., food images [60]) can be linked with conceptual knowledge
in order to support the generation and exploitation of explanation graphs.

7. Conclusions

Explainable Artificial Intelligence aims at providing black-box algorithms with strategies that explain or justify
their outputs. These algorithms need to be trusted by humans and easily understood. Knowledge bases provide
a formal semantics, encoded with a logical language, that enables the connection between the concepts used by
humans and the numeric features of a black box model. Indeed, an explanation in a logical language format can be
automatically rendered in natural language sentences or in another formats.

In this paper, a semantic-based explainable framework based on explanation graphs has been presented. The
framework aim is the exploitation of semantic information for making AI-based systems more human comprehen-
sible and supports the connection between the semantic concepts of a knowledge base with the learned features
in order to generate an explanation in a logical language. This allows reasoning on the black box output and its
explanation, the improvement of the knowledge base and of the black box output. The annotations in the dataset are
aligned with the semantics in the knowledge base.

In the future work some experiments will be performed to assess the alignment between the semantic and the
learned features. This allows the evaluation of the degree of causality of the semantic features with respect to the
black-box output and to study how to increase the attention of a black box towards the semantic features in order to
improve the model performance.
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