
Semantic Web 1 (0) 1–4 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

DegreEmbed: incorporating entity embedding
into logic rule learning for knowledge graph
reasoning
Haotian Li a, Hongri Liua, Yao Wanga, Guodong Xina and Yuliang Wei a,*

a School of Computer Science and Technology, Harbin Institute of Technology at Weihai, China
E-mails: lcyxlihaotian@126.com, wei.yl@hit.edu.cn

Abstract. Knowledge graphs (KGs), as structured representations of real world facts, are intelligent databases incorporating
human knowledge that can help machine imitate the way of human problem solving. However, KGs are usually huge and there
are inevitably missing facts in KGs, thus undermining applications such as question answering and recommender systems that
are based on knowledge graph reasoning. Link prediction for knowledge graphs is the task aiming to complete missing facts
by reasoning based on the existing knowledge. Two main streams of research are widely studied: one learns low-dimensional
embeddings for entities and relations that can explore latent patterns, and the other gains good interpretability by mining logical
rules. Unfortunately, previous studies rarely pay attention to heterogeneous KGs. In this paper, we propose DegreEmbed, a
model that combines embedding-based learning and logic rule mining for inferring on KGs. Specifically, we study the problem
of predicting missing links in heterogeneous KGs that involve entities and relations of various types from the perspective of the
degree of nodes. Experimentally, we demonstrate that our DegreEmbed model outperforms the state-of-the-art methods on real
world datasets and the rules mined by our model are of high quality and interpretability.

Keywords: Knowledge graph reasoning, Link prediction, Logic rule mining, Degree embedding, Interpretability of model

1. Introduction

Recent years have witnessed the growing attrac-
tion of knowledge graphs in a variety of applications,
such as dialogue systems [1, 2], search engines [3]
and domain-specific softwares [4, 5]. Capable of in-
corporating large-scale human knowledge, KGs pro-
vide graph-structured representation of data that can
be comprehended and examined by humans. Knowl-
edge in KGs is stored in triple form (es, r, eo), with
es and eo denoting subject and object entities and r
a binary relation (a.k.a. predicate). For example, the
fact that Mike is the nephew of Pete can be formed
as (Mike,nephewOf,Pete). However, information
incompleteness can be seen in most modern KGs, that
is, missing links in the graph, e.g., the work of [6, 7]

shows that there are more than 66% of the person enti-
ties missing a birthplace in two open KGs Freebase [8]
and DBpedia [9].

Predicting missing triples based on the existing
facts is usually called link prediction as a subtask
of knowledge graph completion (KGC) [10], and nu-
merous models have been developed for solving such
problems. One prominent direction in this line of re-
search is representation learning methods that learn
distributed embedding vectors for entities and rela-
tions, such as TransE [11] and ComplEx [12]. In this
work, they are referred to as embedding-based meth-
ods. This kind of models are capable of capturing la-
tent knowledge through low-dimensional vectors, e.g.
we can classify male and female entities in a family

*Corresponding author.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:lcyxlihaotian@126.com
mailto:wei.yl@hit.edu.cn

2 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

nephewOf

nephewOf

readwrite

studyIn

Mike

read

workIn

Steve

bro
ther

Of

teachIn

Pete

paper1

Baidu

readBy

paper2

THU

paper3

PKU

Fig. 1. An example of KG containing heterogeneous entities and relations: paper, person and institution. Entities in different colors mark their
type. The existing links in the KG are presented as solid black lines, the missing one as dashed lines in red and the proper rule for inferring the
link as blue lines.

KG by clustering their points at the semantic space.
In spite of achieving high performance, these models
suffer from non-transparency and can poorly be under-
stood by humans, which is a common issue for most
deep learning models. In addition, most embedding-
based methods work in a transductive setting, where
they require the entities in training and test data to
overlap, hindering the way to generalize in some real-
world situations.

Another popular approach is rule mining that dis-
covers logical rules through mining co-occurrences of
frequent patterns in KGs [13, 14]. This paper studies
the problem of learning first-order logical Horn clauses
for knowledge graph reasoning (KGR). As illustrated
in Fig. 1, there is a missing link (i.e. nephewOf)
between the subject Mike and the object Steve,
but we can complete the fact through a logic rule
nephewOf(Mike, Pete) ∧ brotherOf(Pete,
Steve) ⇒ nephewOf(Mike, Steve), meaning that
if Mike is the nephew of Pete and Steve has a brother
Pete, then we can infer that Mike is the nephew of
Steve. Reasoning on KGs through Horn clauses has
been previously studied in the area of Inductive Logic
Programming [15]. One representative method, Neu-
ral LP [16], is the first fully differentiable neural sys-
tem that successfully combines learning discrete rule
structures as well as confidence scores in continuous
space. Although learning logical rules equips a model
with strong interpretability and the ability to general-
ize to similar tasks [17, 18], these methods often focus
only on the relations of which the rules are made up,
while the intrinsic properties of the involved entities

are not considered. For example, in the KG shown in
Fig. 1, it is definitely wrong to infer by a rule contain-
ing a female-type relation path like sisterOf start-
ing from Mike, because Mike is the nephew of Pete,
which indirectly tells us he is a male. This sort of de-
ficiency is more severe in heterogeneous KGs where
there are entities and relations of different types mix-
ing up. In these KGs, there might be multiple rules
of no use, which decreases the performance and inter-
pretability of ILP models.

In this paper, in order to bridge the gap between
the two lines of research mentioned above, we pro-
pose DegreEmbed, a model of logic rule learning that
integrates the inner attributes of entities by embed-
ding nodes in the graph from the perspective of their
degrees. DegreEmbed is not only interpretable to hu-
mans, but also able to mine relational properties of en-
tities. We also evaluate our model on several knowl-
edge graph datasets, and show that we are able to
learn more accurately, and meanwhile, gain strong in-
terpretability of mined rules.

Our main contributions are summarized below:

– We propose an original model based on logic rule
learning to predict missing links in heterogeneous
KGs. Specifically, a new technique for encoding
entities, called degree embedding, is designed to
capture hidden features through the relation type
of edges incident to a node.

– Comparative experiments on knowledge graph
completion task with five benchmark datasets
prove that our DegreEmbed model outperforms

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

baseline models. Besides, under the evaluation
of a metric called Saturation, we show that our
method is capable of mining meaningful logic
rules from knowledge graphs.

– Visualizing learned entity embeddings, we
demonstrate that clear features of entities can be
obtained by our model, thus benefitting the pre-
diction in heterogeneous settings. Moreover, we
prove the necessity of each component of our
model using ablation study.

This paper is structured as follows. We briefly in-
troduce our related work and review preliminary defi-
nitions of knowledge graphs respectively in Section 2
and Section 3. Section 4 introduces our proposed De-
greEmbed model based on logic rule learning for link
prediction in heterogeneous KGs. We present the ex-
perimental results in Section 5 and conclude our work
by pointing out the future direction.

2. Related work

Our work is first related to previous efforts on re-
lational data mining, based on which, a large body of
deep rule induction models have been developed for
link prediction. Since our approach achieves a com-
bination of logic rule learning and knowledge graph
embedding, we conclude related work in this topic as
well.

Relational data mining. The problem of learning
relational rules has been traditionally addressed in the
field of inductive logic programming (ILP) [15]. These
methods often view the task of completing a miss-
ing triple as a query q(h, t) where they learn a prob-
ability as confidence score for each rule between the
query entity and answer entity. Among these studies,
Path-Ranking Algorithm (PRA) [19] investigated the
framework of random walk inference, where they se-
lect a relational path under a set of constraints and
perform maximum-likelihood classification. An RNN
model was developed by [20] to compose the seman-
tics of relations for arbitrary-length reasoning. Chain-
Reasoning proposed by [21], enabling multi-hop rea-
soning through a neural attention mechanism, reveals
logical rules across all relations and entities. Although
ILP models are capable of mining interpretable rules
for humans, these models typically take both positive
and negative examples for training and suffer from
a potentially large version space, which is a critical
shortage since most modern KGs are huge and contain
only positive instances.

Neural logic programming. In recent years, mod-
els borrowing the idea of logic rule learning in a deep
manner have emerged as successful approaches for
link prediction task. Extending the idea of TensorLog
that tackles the problem of rule-based logic reason-
ing through sparse matrix multiplication, Neural LP
[16] is the first end-to-end differentiable approach to
simultaneously learn continuous parameters and dis-
crete structure of rules. Some recent methods [22–
24] have improved the framework done by Neural LP
[16] in different manners. DRUM [22] introduces ten-
sor approximation for optimization and reformulate
Neural LP to support rules of varied lengths. Neural-
Num-LP [23] extends Neural LP to learn numerical
relations like age and weight with dynamic program-
ming and cumulative sum operation. NLIL [24] pro-
poses a multi-hop reasoning framework for general
ILP problem through a divide-and-conquer strategy as
well as decomposing the search space into three sub-
spaces. However, the existing methods ignore the ef-
fects caused by the entities while reasoning over a spe-
cific relational path, thus witness a more obvious fail-
ure where heterogeneous entities and relations are in-
volved in the KGs.

Representation learning. Capturing their seman-
tic information by learning low-dimensional embed-
dings of entities and relations, also known as knowl-
edge graph embedding, is a vital research issue in
KGC, and we term those models as embedding-based
models. Newly proposed methods, including RotatE
[25], ConvE [26] and TuckER [27], predict missing
links by learning embedding vectors from various per-
spectives of the problem. Specifically, the work of Ro-
tatE [25] focuses on inferring patterns such as sym-
metry and inversion, where they proposed a rotational
model that rotates the relation from the subject to the
object in the complex space as eo = es ◦ r where the
◦ denotes the element-wise Hadamard product. ConvE
introduces a highly parameter efficient model, which
uses 2D convolution over embeddings and multiple
layers of nonlinear features to express semantic in-
formation. TuckER, inspired by the Tucker decompo-
sition [28] that factorizes a tensor into a core tensor
along with a set of matrices, is a linear model for link
prediction that has good expressive power. Unfortu-
nately, the biggest problem is that these sort of meth-
ods can hardly be comprehended by humans, but we
relate to these methods for their ability to capture la-
tent information of entities and relations through em-
bedding.

4 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

We also notice that there are methods trying to es-
tablish a connection between learning logical rules and
learning embedding vectors [29, 30], where they ex-
plore new triplets from the existing ones in the KG us-
ing pre-defined logical rules to deal with the sparsity
problem, which differs from our goal to learn in het-
erogeneous graphs.

3. Preliminaries

In this section, we introduce background concepts of
logic rule learning for knowledge graph reasoning as
well as the definition of topological structure of KGs.

3.1. Knowledge graph reasoning

Knowledge graph can be modeled as a collec-
tion of factual triples G = {(es, r, eo) | es, eo ∈
E , r ∈ R}, with E ,P representing the set of en-
tities and binary relations (a.k.a. predicates) respec-
tively in the knowledge graph, and (es, r, eo) the
triple (subject,relation,object) in form of
es

r→ eo. During reasoning over KGs, each triple is usu-
ally presented in the form r(es, eo). The subgraph re-
garding a specific relation ri is described as a sub-
set of G containing all triples with ri being the con-
nection between the subject and object: G(ri) =
{(es, r, eo) | es, eo ∈ E ,ri ∈ R, r = ri}.

Logic rule reasoning. We perform reasoning on
KGs by learning a confidence score α ∈ [0, 1] for a
first-order logic rule in the form

r1(x, z1) ∧ · · · ∧ rl(zl−1, y) ⇒ q(x, y) : α, (1)

r(x, y) ⇒ q(x, y) for short, with r1, . . . , rl, q ∈ R,
z1, . . . , zl−1 ∈ E , where r = ∧iri, is called a rule
pattern. For example, the rule brotherOf(x, z) ∧
fatherOf(z, y) ⇒ uncleOf(x, y) intuitively states
that if x is the brother of z and z is the father of y, then
we can conclude that x is the uncle of y. All rule pat-
terns of length l (l ⩾ 2) can be formally defined as a set
of relational tuples Hl = {(r1, r2, . . . , rl) | ri ∈ R, 1 ⩽
i ⩽ l} = Rl, and the set of patterns no longer than L is

denoted as HL =
L
∪

l=2
Hl. A rule path p is an instance

of a certain pattern r via different sequences of entities,
which can be denoted as p▷r, e.g., (ra(x, z1), rb(z1, y))
and (ra(x, z2), rb(z2, y)) are different paths of the same
pattern.

The link prediction task here is considered to con-
tain a variety of queries, each of which is composed

of a query body q ∈ R, an entity head h which the
query is about, and an entity tail t that is the answer
to the query such that (h, q, t) ∈ G. Finally we want to
find the most possible logic rules h r1→· · · rl→ t to predict
the link q. Thus, given maximum length L, we assign a
single confidence score (i.e. probability) to a set of rule
paths p’s adhering to the same pattern r that connects
h and t:

{pi(h, t) ⇒ q(h, t) | pi ▷ r, r ∈ HL} : α (2)

During inference, given an entity h, the unified score
of the answer t can be computed by adding up the con-
fidence scores of all rule paths that infer q(h, t), and
the model will produce a ranked list of entities where
higher the score implies higher the ranking.

3.2. Graph structure

Definition 1 (Directed Labeled Multigraph). A di-
rected labeled multigraph G is a tuple G = (V, E),
where V denotes the set of vertices, and E ⊆ V × V is
a multiset of directed, labeled vertex pairs (i.e. edges)
in the graph G.

Because of its graph structure, a knowledge graph
can be regarded as a directed labeled multigraph [31].
In this paper, "graph" is used to refer to "directed la-
beled multigraph" for the sake of simplicity. G(r) =

(V(r), E(r)) is the corresponding topological struc-
ture of G(r). m = |V| and n = |E| stand for the num-
ber of vertices and number of edges respectively for
a graph G. Particularly in a KG, |E| = m and the to-
tal number of triplets (es, r, eo) equals the number of
edges, i.e. |G| = n.

Formally, in a graph G = (V, E), the degree of a ver-
tex v ∈ V is the number of edges incident to it. When it
comes to directed graphs, in-degree and out-degree of
a vertex v is usually distinguished, which are defined
as

deg+(v) = |{(u, v) | u ∈ V, (u, v) ∈ E}| (3)

deg−(v) = |{(v, u) | u ∈ V, (v, u) ∈ E}| (4)

But in this paper, we use "degree" to represent the
edges incident to a specific node v for conciseness.

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

sisterO
f

auntOf

auntOf

wifeOf unc
leO

f

nieceOf

fatherOf

fatherOf

auntOf

wifeOf

sisterO
f

unc
leO

f

Fig. 2. A KG example of family members and the relations between
them.

4. Methodology

Capable of simultaneously learning representations
and logical rules, Neural LP [16] is the first differen-
tiable neural system for knowledge graph reasoning
that combines structure learning and parameter learn-
ing. Our work follows the work of Neural LP and ex-
tensive studies based on it to consider the problem
of reasoning in heterogeneous KGs, from the view of
mining intrinsic properties of the entities in KGs.

4.1. Neural LP for logic reasoning

4.1.1. TensorLog
The work of TensorLog [32, 33] successfully simu-

lates the reasoning process using first-order logic rules
by performing sparse matrix multiplication, based on
which, Neural LP [16] proposed a fully differentiable
reasoning system. In the following, we will first intro-
duce the TensorLog operator. In a KG involving a set
of entities E and a set of relations R, factual triplets
w.r.t. the relation rk are restored in a binary matrix Mrk

∈ {0, 1}|E|×|E|. Mrk , an adjacency matrix, is called a
TensorLog operator meaning that (ei, rk, e j) is in the
KG if and only if the (i, j)-th entry of Mrk is 1. Let
vei ∈ {0, 1}|E| be the one-hot encoded vector of en-
tity ei, then s⊤ = v⊤

ei
Mr1Mr2Mr3 is the path features

vector [24], where the j-th entry counts the number of
unique rule paths following the pattern r1∧r2∧r3 from
ei to e j [34].

For example, every KG entity e ∈ E in Fig. 2 is en-
coded into a 0-1 vector of length |E| = 7. For every
relation r ∈ R and every pair of entities ei, e j ∈ E ,
the TensorLog operator relevant to r is define as a
sparse matrix Mr with its (i, j)-th element being 1 if
(ei, r, e j) ∈ G. Considering the KG in Fig. 2, for the
relation r = auntOf we have

Mr =

x1 x2 z1 z2 z3 z4 z5

0 0 1 0 0 1 0 x1
0 0 1 0 0 0 0 x2
0 0 0 0 0 0 0 z1
0 0 0 0 0 0 0 z2
0 0 0 0 0 0 0 z3
0 0 0 0 0 0 0 z4
0 0 0 0 0 0 0 z5

And the rule sisterOf(X, Z) ∧ fatherOf(Z, Y)
⇒ auntOf(X, Y) can be simulated by performing the
following sparse matrix multiplication:

Mr′ = MsisterOf MfatherOf =

0 0 1 0 0 1 0 x1
0 0 1 0 0 1 0 x2
0 0 0 0 0 0 0 z1
0 0 0 0 0 0 0 z2
0 0 0 0 0 0 0 z3
0 0 0 0 0 0 0 z4
0 0 0 0 0 0 0 z5
x1 x2 z1 z2 z3 z4 z5

By setting vx1 = [1, 0, 0, 0, 0, 0, 0]⊤ as the one-hot
vector of x1 and multiplying by v⊤x1 on the left, we ob-
tain s⊤ = v⊤

x1 · Mr′ = [0, 0, 1, 0, 0, 1, 0]. The resultant
s⊤ selects the row in Mr′ actually identified by x1. By
operating right-hand side multiplication with vz1 , we
get the number of unique paths following the pattern
sisterOf∧ fatherOf from x1 to z1: s⊤ · vz1 = 1.

4.1.2. Neural LP
Neural LP [16] inherits the idea of TensorLog.

Given a query q(h, t), after L steps of reasoning, the
score of the query induced through rule pattern rs of
length L is computed as

score(t | q, h, rs) = v⊤h
L∏

l=1

Ml · vt, (5)

6 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

where Ml is the adjacency matrix of the relation used
at the l-th hop.

The operators above are used to learn for query q by
calculating the weighted sum of all possible patterns:∑

s

αs

∏
k∈βs

Mrk , (6)

where s indexes over all potential patterns with maxi-
mum length of L, αs is the confidence score associated
with the rule rs and βs is the ordered list of relations
appearing in rs.

To summarize, we update the score function in Eq.
(5) by finding an appropriate α in

φ(t | q, h) = v⊤h
∑

s

αs ·

∏
k∈βs

Mrk · vt

, (7)

and the optimization objective is

max
αs

∑
(h,q,t)∈G

φ(t | q, h), (8)

where αs is to be learned.
Whereas the searching space of learnable param-

eters is exponentially large, i.e. O(|R|L), direct op-
timization of Eq. (8) may fall in the dilemma of
over-parameterization. Besides, it is difficult to apply
gradient-based optimization. This is because each vari-
able αs is bound with a specific rule pattern, and it is
obviously a discrete work to enumerate rules. To over-
come these defects, the parameter of rule rs can be re-
formulated by distributing the confidence to its inclu-
sive relations at each hop, resulting in a differentiable
score function:

ϕL(t | q, h) =

v⊤
h

L∏
l=1

|R|∑
k=0

al
kMrk

 · vt, (9)

where L is a hyperparameter denoting the maximum
length of patterns and |R| is the number of relations
in KG. Mr0 is an identity matrix I that enables the
model to include all possible rule patterns of length L
or smaller [22].

To perform training and prediction over the Neural
LP framework, we should first construct a KG from a
large subset of all triplets. Then we remove the edge
(h, t) from the graph when facing the query (h, q, t), so
that the score of t can get rid of the influence imposed

from the head entity h directly through the edge (h, t)
for the correctness of reasoning.

4.2. Our DegreEmbed model

In this section, we propose our DegreEmbed model
based on Neural LP [16] as a combination of models
relying on knowledge graph embedding and ILP mod-
els where the potential properties of individual enti-
ties are considered through a technique we call degree
embedding. We discover that the attributes of nodes in
a KG can make a difference via observation on their
degrees. In Fig. 1, we notice that Mike is a male be-
cause he is a nephew of someone, hence it is incor-
rect indeed to reason by a rule containing a female-
type relation starting from Mike. Also, the in-degree
(i.e. studyIn) of entity THU proves its identity as a
university. Besides, as illustrated in Section 4.1.1, all
knowledge of a KG is stored in the relational matri-
ces, which is our aim to reconstruct for harboring type
information of entities. For a query q(h, t), the final
score is a scalar obtained by Eq. (9), where the path
feature vector is s⊤ = v⊤h

∏L
l=1

∑|R|
k=0 al

kMrk , and vt

selects the t-th element of s⊤ through matrix multipli-
cation. In fact, the vector s⊤ ∈ R|E| is a row of matrix∏L

l=1

∑|R|
k=0 al

kMrk , each value of which is the "influ-
ence" passed from head entity h to the regarding entity.
As a result, we can consider the attributes of the entity
ei by changing the i-th row of adjacency matrices from
the perspective of the type of degrees of ei.

For any entity e ∈ E , we collect the ones of unique
types among all of its in and out degrees separately
to form a d-dimensional degree feature vector, where
d is the number of unique degrees. Then we project
the vector onto a semantic space by looking up in a
row-vector embedding matrix E|R|×m, and the result is
number of d vectors arranged in a matrix M ∈ Rd×m,
where m is the embedding dimension. The embedding
vectors are input into a bidirectional LSTM [35] at dif-
ferent time steps. Finally, we perform attention oper-
ation on the hidden state of BiLSTM at the last time
step to get the |R|-dimensional attention vector of e for
1 ⩽ i ⩽ d:

hi,h′
d−i+1 = BiLSTM(hi−1,h′

d−i,M), (10)

where h and h′ are the hidden states of the forward and
backward path LSTMs, with the subscripts denoting
their time step, and H, the actual embedding vector
of entity e, is obtained by concatenating hd and h′

1.

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

auntOf

fatherOf

wifeOf

nieceOf

sisterOf

uncleOf

auntOf (
-)

wifeOf (
-)

fatherOf (
-)

wifeOf (
+)

uncleOf (
-)

BiSTLM
+

Attention

auntOf
fatherOf

wifeOf

auntOf
fatherOf

wifeOf

Entities DegreEmbed embedding matrix Degree embedding vectors
each

BiSTLM-Attention
network

Degree feature vectors
each

DegreEmbed operators
each

Fig. 3. An illustration of computing the DegreEmbed operators for the KG shown in Fig. 2. Superscripts (+) and (-) of the labels of degree
embedding vectors denote their in and out direction. All DegreEmbed operators are initialized to zero matrices.

To compute the attention value on each relation im-
posed by entity e, we have

ρe = softmax(WH + b) (11)

Elements in ρe ∈ R|R| can be viewed as the weights
for relations. At last, we replace the elements that are
in the row identified by e and equal 1 in each ad-
jacency matrix Mrk by the k-th value of ρe. By fol-
lowing the same procedure for the other entities in
the KG, we construct a new set of relational matri-
ces Br1 , . . . , Br|R| , which are called DegreEmbed oper-
ators. The score function shown in Eq. (9) is updated
accordingly as follows:

ϕ′L(t | q, h) =

v⊤h
L∏

l=1

|R|∑
k=0

al
kBrk

 · vt, (12)

where the Br1 , . . . ,BrR is our new DegreEmbed oper-
ators, and Br0 is still the identity matrix. The whole
process to compute the operators makes it possible to
incorporate the information of entities for rule learn-
ing models, where the degree feature vector ρe can be
viewed as the identification of the entity e. Remark-
ably, the DegreEmbed operators can be pre-trained due
to its belonging to the inner attribute of a KG, thus re-
sulting in a model that can be easily deployed in simi-
lar tasks. An overview of computing the DegreEmbed
operators is illustrated in Fig. 3

Finally, the confidence scores are learned over the
bidirectional LSTM followed by the attention using
Eqs (13) and (14) for the temporal dependency among
several consecutive steps. The input in Eq. (13) is
query embedding from another lookup table. For
1 ⩽ i ⩽ L we have

hi,h′
L−i+1 = BiLSTM(hi−1,h′

L−i, input), (13)

[ai,1, . . . , ai,|R|] = fθ
(
[hi || h′

L−i]
)
, (14)

where [ai,1, . . . , ai,|R|] is the attention vector obtained
by performing a linear transformation over concate-
nated forward and backward hidden states, followed
by a softmax operator: fθ(H) = softmax(WH + b).

4.3. Optimization of the model

Loss construction. In general, this task of link pre-
diction is treated as a classification of entities to build
the loss. For each query q(h, t) in a KG, we first split
the objective function Eq. (12) into two parts: target
vector vt and prediction vector

s⊤ = v⊤
h

L∏
l=1

|R|∑
k=0

al
kBrk , (15)

and then our goal is to minimize the cross-entropy loss
between vt and s⊤:

ℓq(h, t) = −
|E|∑
i=1

{vt[i] · log (s[i])+

(1− vt[i]) · log (1− s[i])},

where i indexes elements in vector vt and s.
Low-rank approximation. It can be shown that the

final confidences obtained by expanding ϕ′L are a rank
one estimation of the confidence value tensor [22], and
low-rank approximation is a popular method for ten-
sor approximation. Hence we follow the work of [22]
and rewrite Eq. (12) using rank of T approximation, as
shown in Eq. (16).

ΦL(t | q, h) =

v⊤h
T∑

j=1

L∏
l=1

|R|∑
k=0

al
j,kBrk

·vt, (16)

8 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
Statistics of datasets.

Dataset # Relation # Entity # Triplets # Facts # Train # Validation # Test

FB15K-237 237 14541 310116 204087 68028 17535 20466
WN18 18 40943 151442 106088 35353 5000 5000
Family 12 3007 28356 17615 5868 2038 2835
Kinship 25 104 10686 6375 2112 1099 1100
UMLS 46 135 6529 4006 3009 569 633

More concretely, we update Eqs. (13) and (14), as
is shown in Eqs. (17) and (18), by deploying number
of T BiLSTMs of the same network structure, each of
which can extract features from various dimensions.

h(j)
i ,h

′(j)
L−i+1 = BiLSTM j(h

(j)
i−1,h

′(j)
L−i, input) (17)

[a(j)
i,1 , . . . , a

(j)
i,|R|] = fθ

(
[h

′(j)
i || h

′(j)
L−i]

)
, (18)

where the superscripts of the hidden states identify
their bidirectional LSTM.

5. Experiment

In this section, we report the evaluation results of
our model on a knowledge graph completion task,
where we compare the effectiveness of our model
against the state-of-the-art learning systems for link
prediction. Meanwhile, as DegreEmbed takes advan-
tage in the interpretability in contrast to embedding-
based methods, we also examine the rules mined by
DegreEmbed with the help of the indicator satura-
tion, which assesses the quality of rules from the cor-
responding topological structure of a KG. We show
that the top-scored rules mined by our method coincide
with those of high saturation scores, which in turn re-
flect the interpretability of our model. To this end, we
use ablation study to show how different components
of our model contribute to its performance.

The knowledge graph completion task we use is
a canonical one as described in [16]. When training
the model, the query and head are part of incom-
plete triplets for training, and the goal is to find the
most possible entity as the answer tail. For exam-
ple, if nephewOf(Mike, Steve) is missing from the
knowledge graph, our goal is to learn rules for reason-
ing over the existing KG and retrieve Steve when
presented with the query nephewOf(Mike, ?).

5.1. Experiment setting

5.1.1. Datasets
To evaluate our method for learning logic rules in

heterogeneous KGs, we select the following datasets
for knowledge graph completion task:

– FB15K-237 [36], a more challenging version of
FB15K [11] based on Freebase [8], a growing
knowledge graph of general facts.

– WN18 [26], a subset of knowledge graph Word-
Net [37, 38] constructed for a widely used dictio-
nary.

– Medical Language System (UMLS) [39], from
biomedicine, where the entities are biomedical
concepts (e.g. organism, virus) and the rela-
tions consist of affects and analyzes, etc.

– Kinship [39], containing kinship relationships
among members of a Central Australian native
tribe.

– Family [39], containing individuals from multiple
families that are biologically related.

Statistics about each dataset used in our experiments
are presented in Table 1. All datasets are randomly
split into 4 files: facts, train, valid and test, and the
ratio is 6:2:1:1. The facts file contains a relatively
large proportion of the triplets for constructing the KG.
The train file is composed of query examples q(h, t).
The valid and test files both contain queries q(h, t), in
which the former is used for early stopping and the lat-
ter is for testing. Unlike the case of learning embed-
dings, our method does not necessarily require the en-
tities in train, valid and test to overlap.

5.1.2. Evaluation metrics
During training on the task of knowledge graph

completion, for each triplet (h, q, t), two queries are de-
signed as (h, q, ?) and (?, q, t) with answers t and h for
data augmentation. During evaluation, for each query,
we manually remove the edge (h, t) from KG for the
correctness of reasoning results and the score is com-

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Saturations of the Family dataset. γpl

q , δpl
q , ηpl

q are macro, micro and comprehensive saturations. The results relating to a specific relation are
sorted by the comprehensive saturation in descending order.

Rule ⇒ Relation γ
pl
q δ

pl
q η

pl
q

X brotherOf
=======⇒ Z brotherOf

=======⇒ Y ⇒ X brotherOf
=======⇒ Y .86 .14 .12

X
nephewOf
======⇒ Z uncleOf

=====⇒ Y ⇒ .77 .13 .10

X brotherOf
=======⇒ Z sisterOf

======⇒ Y ⇒ .81 .13 .10

X sonOf
====⇒ Z fatherOf

======⇒ Y ⇒ 1.00 .08 .08

X
nephewOf
======⇒ Z auntOf

=====⇒ Y ⇒ .68 .11 .08

X sonOf
====⇒ Z motherOf

======⇒ Y ⇒ .98 .07 .07

puted for each entity, as well as the rank of the correct
answer. For the computed ranks from all queries, we
report the Mean Reciprocal Rank (MRR) and Hit@k
under the filtered protocol [11]. MRR averages the re-
ciprocal ranks of the answer entities and Hit@k com-
putes the percentage of how many desired entities are
ranked among top k.

When evaluating the interpretability of rules, we
choose a set of indicators called macro, micro and com-
prehensive saturations that measure the probability of
a rule pattern occurring in a certain relational subgraph
G(r) from different angles. More specifically, these
computational methods analyze the reasoning com-
plexity from the inherent attributes of the graph struc-
ture G w.r.t. a KG G.

Definition 2 (Macro Reasoning Saturation). Given a
query q ∈ R and the maximum length L of a rule
pattern rl ∈ HL, the macro reasoning saturation of
rl in relation to relation q, i.e. γrl

q , is the percent-
age of triples (hi, q, t j) in subgraph G(q) such that
rl(hi, t j) ⇒ q(hi, t j).

We can compute the macro reasoning saturation γrl
q

using the following equation:

γrl
q =

|Url |
nq , (19)

with Url being the set Url = {(h, q, t) | (h, q, t) ∈
G(q), rl(h, t) ⇒ q(h, t)} that collects the factual
triplets in G(q) as the reasoning candidates of rule rl,
and nq = |G(q)| being the number of edges (i.e. the
number of triples) in G(q). We can reasonably say that
the larger γrl

q grows, the more likely rl can be as a
proper inference of the query q. When γrl

q equals 1, it
means we can reason out every factual triple in G(q)
through at least one rule path following the pattern rl.

Definition 3 (Micro Reasoning Saturation). Given the
maximum length L of a rule pattern, we define the mi-
cro reasoning saturation of pattern rl ∈ HL as follow-
ing. Firstly, for a specific triple tri = (h, q, t) ∈ G,
i.e. δrl

tri, is the percentage of the paths pli ▷rl such that
rl(h, t) ⇒ q(h, t) as to all paths from h to t.

The equation to compute δrl
tri is

δrl
tri =

|Vrl |
|VL|

(20)

where Vrl = {pli | pli ▷ rl, rl(h, t) ⇒ q(h, t)}, VL =
{pk j

| pk j
▷ rk, ∀rk ∈ HL, rk(h, t) ⇒ q(h, t)}. Vrl de-

notes the set of rule paths derived from the pattern rl

that is able to infer the fact (h, q, t), and VL involves all
the rules with their lengths no longer that L.

Then, we average δrl
tri over all triples (h, q, t) ∈

G(q) and get the micro reasoning saturation of the
pattern rl ∈ HL for query q:

δrl
q =

1

nq

∑
tri∈G(q)

δrl
tri (21)

In Eqs. (19) and (21), γrl
q and δrl

q assess how the
probability to infer q following the pattern rl respec-
tively from a macro and a micro perspective. The
higher the two indicators are, the easier for models to
gain the inference rl(h, t) ⇒ q(h, t). In order to ob-
tain an overall result, we define the comprehensive rea-
soning saturation ηrl

q by combining the two indicators
through multiplication, as revealed in Eq. (22).

ηrl
q = γrl

q × δrl
q (22)

We can imagine that the computation of comprehen-
sive saturation on a certain logical rule rl to infer
the relation q involves two procedures: (1) select the

10 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

triplets (h, q, t) in subgraph G(q) that imply rl(h, t) ⇒
q(h, t) and (2) for each selected triplets, calculate the
percentage of rule paths following the pattern rl within
all possible paths that imply q(h, t).

We can take the relation q = auntOf and the rule
rl = sisterOf ∧ fatherOf in Fig. 2 as an ex-
ample to show the computation of saturations. In sub-
graph G(q), there are totally three triples (presented in
red), thus nq = 3. For the triple (x2,auntOf, z2), two
rule paths can contribute to its inference: wifeOf(x2,
z1) ∧ uncleOf(z2, z1) and sisterOf(x2, z3) ∧
fatherOf(z3, z1). In the same way, we can see
there are one and two rule paths for (x1,auntOf, z1)
and (x1,auntOf, z4) respectively. The rule rl =
sisterOf ∧ fatherOf appears as an inference
among all these three triples, therefore the macro satu-
ration is γrl

q = 3/nq = 100%. More detailed informa-
tion can be extracted through computing the micro sat-
uration. The rule rl takes a percentage of 50% among
all paths for the triple (x2,auntOf, z1), while 100%
and 50% for the other two triples. Thus, the micro sat-
uration of rl for q is δrl

q = (0.5 + 1 + 0.5)/nq = 67%.
Finally, we can compute the comprehensive saturation
ηrl

q = γrl
q × δrl

q = 67%.
We show a small subset of saturations computed

from Family dataset in Table. 2 for joint evaluation
with logical rules mined by our model. More results
can be obtained in App. C.

5.1.3. Comparison of algorithms
In experiment, the performance of our model is

compared with that of the following algorithms:

– Rule learning algorithms. Since our model is
based on neural logic programming, we choose
Neural LP and a Neural LP-based method DRUM

[22]. We also consider a probabilistic model
called RNNLogic [40].

– Embedding-based algorithms. We choose sev-
eral embedding-based algorithms for comparison
of the expressive power of our model, includ-
ing TransE [11], DistMult [41], ComplEx [12],
TuckER [27] and RotatE [25].

The implementations of the above models we use
are available at the links listed in App. A.

5.1.4. Model configuration
Our model is implemented using PyTorch [42]

and the code will be publicly available. We use the
same hyperparameter setting during evaluation on all
datasets. The query and entity embedding have the di-
mension 128 and are both randomly initialized. The
hidden state dimension of BiLSTM(s) for entity and
degree embedding are also 128. As for optimization al-
gorithm, we use mini-batch ADAM [43] with the batch
size 128 and the learning rate initially set to 0.001. We
also observe that the whole model tends to be more
trainable if we use the normalization skill.

Note that Neural LP [16], DRUM [22] and our
method all conform to a similar reasoning framework.
Hence, to reach a fair comparison, we ensure the same
hyperparameter configuration during experiments on
these models, where the maximum rule length L is 2
and the rank T is 3 for DRUM and DegreEmbed, be-
cause Neural LP is not developed using the low-rank
approximation method.

5.2. Results on KGC task

We compare our DegreEmbed to several baseline
models on the KGC benchmark datasets as stated in
the Section 5.1.1 and Section 5.1.3. Our results on the

Table 3
Knowledge graph completion performance comparison. Hit@k (H@k) is in %.

Family Kinship UMLS

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE .34 7 53 86 .26 1 42 76 .57 28 84 96
DistMult .58 39 71 91 .51 36 57 87 .73 63 81 90
ComplEx .83 72 94 98 .61 44 71 92 .79 69 87 95
TuckER .43 28 52 72 .60 46 70 86 .73 63 81 91
RotatE .90 85 95 99 .65 50 76 93 .73 64 82 94

RNNLogic .93 91 95 99 .64 50 73 93 .75 63 83 92
Neural LP .91 86 95 99 .62 48 69 91 .75 62 86 92

DRUM .94 90 98 99 .58 43 67 90 .80 66 94 97
DegreEmbed .95 91 99 100 .70 57 79 94 .80 65 94 98

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Top rules without reverse queries mined by DegreEmbed on the Family dataset.

Rule ⇒ Relation Confidence

X brotherOf
=======⇒ Z sisterOf

======⇒ Y ⇒ X brotherOf
=======⇒ Y 1.00

X brotherOf
=======⇒ Z brotherOf

=======⇒ Y ⇒ 0.81

X sonOf
====⇒ Z motherOf

======⇒ Y ⇒ 0.55

X sonOf
====⇒ Z fatherOf

======⇒ Y ⇒ 0.18

Table 5
Top rules without reverse queries mined by DRUM on the Family dataset.

Rule ⇒ Relation Confidence

X sonOf
====⇒ Z motherOf

======⇒ Y ⇒ X brotherOf
=======⇒ Y 1.00

X brotherOf
=======⇒ Z brotherOf

=======⇒ Y ⇒ 0.52

X mohterOf
======⇒ Z motherOf

======⇒ Y ⇒ 0.50

X sonOf
====⇒ Z fatherOf

======⇒ Y ⇒ 0.48

X brotherOf
=======⇒ Z sisterOf

======⇒ Y ⇒ 0.35

X motherOf
======⇒ Z fatherOf

======⇒ Y ⇒ 0.13

selected benchmark datasets are summarized in Table
3 and App. B.

We notice that except that ComplEx [12] produces
the best result among all methods on UMLS under
the evaluation of Hit@1, all models are outperformed
by DegreEmbed with a clear margin in Table 3, espe-
cially on the dataset Kinship where we can see about
10% improvement on some metrics. As expected, in-
corporating entity embedding enhances the expressive
power of DegreEmbed and thus benefits to reasoning
on heterogeneous KGs. In Table 7, our model achieves
state-of-the-art performance on WN18. It is intriguing
that embedding-based methods provide better predic-
tions on FB15K-237 dataset, with rule based methods,
including RNNLogic, Neural LP, DRUM and ours,
left behind. As pointed in [26], there are inverse rela-
tions from the training data present in the test data in
FB15K, which is called the problem of test set leakage,
resulting in the variant FB15K-237 where inverse rela-
tions are removed. No wonder that methods depending
on logic rule learning fails on this dataset.

Notably, DegreEmbed not only is capable of pro-
ducing state-of-the-art results on KGC task thanks to
the degree embedding of entities, but also maintains
the advantage of logic rule learning that enables our
model to be interpretable to humans, which is of vi-
tal significance in current research of intelligent sys-

tems. We will show the experiment results on the in-
terpretability of our DegreEmbed model later.

5.3. Interpretability of our model

To demonstrate the interpretability of our method,
we first report the logical rules mined by our model
and compare them with those by DRUM [22]. Then
we visualize the embedding vectors learned through
the proposed technique degree embedding to prove its
expressive power.

5.3.1. Quality of mined rules
Apart from reaching state-of-the-art performance on

KGC task which is largely thanks to the mechanism
of entity embedding, our DegreEmbed, as a knowl-
edge graph reasoning model based on logic rule min-
ing, is of excellent interpretability as well. Our work
follows the Neural LP [16] framework, which success-
fully combines structure learning and parameter learn-
ing to generate rules along with confidence scores.

In this section, we report evaluation results on expla-
nations of our model where some of the rules learned
by DegreEmbed and DRUM are shown. As for evalua-
tion metrics, we use the indicator saturations to objec-
tively assess the quality of mined rules in a computable
manner. We conduct two separate KGC experiments
for generating the logical rules where the only differ-

12 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ence is whether the inverted queries are learned. For
better visualization purposes, experiments are done on
the Family dataset, while other datasets such as UMLS
produce similar results.

We sort the rules by their normalized confidence
scores, which are computed by dividing by the maxi-
mum confidence of rules for each relation, and show
top rules mined by our DegreEmbed and DRUM with-
out augmented queries respectively in Table 4 and Ta-
ble 5. Saturations of rules according to specific rela-
tions are shown in Table 2. For more results of satu-
rations, learned rules w.r.t. both pure and augmented
queries, please refer to the appendix.

By referring to the results given by computing sat-
urations, we can see the rules mined by our model
solidly agree with the ones with high saturation level.
Meanwhile, our model obviously gets rid of the noises
rendered by the heterogeneousness of the dataset
through blending entity attributes (e.g. gender of en-
tities) into rule learning. The rules mined for predict-
ing the relation brotherOf, such as brotherOf
∧ sisterOf and brotherOf ∧ brotherOf, all
show up with a male-type relation at the first hop.
However, there are logically incorrect rules mined by
DRUM which are highlighted by red in Table 5. We
think this is mainly because DRUM does not take en-
tity attributes in to account. In this case, our DegreEm-
bed model is capable of learning meaningful rules,
which indeed proves the interpretability of our model.

5.3.2. Learned entity embeddings
To explain the learned degree embedding, we vi-

sualize the embeddings vectors of some entities from
the Family dataset. We use t-SNE [44] to project the
embeddings to two-dimensional space and plot them
in Fig. 4. In order to obtain the entity embeddings,
we first train our DegreEmbed model on Family with
the same hyperparameter settings mentioned in Sec-
tion 5.1.4, and store the entire entity embedding matrix
given by Eq. 10. Then, we classify the entities accord-
ing to their degree feature vector proposed in Section
4.2 and choose top ten most populated clusters marked
with various colors to plot in Fig. 4.

Fig. 4. A t-SNE plot of the entity embedding of our trained model
on Family dataset. Node colors denote their classes (i.e. degree fea-
ture vectors).

Note that, we use a logarithmic scale for the embed-
ding plot to get better visualization results. In fact, the
representation of entities exhibits localized clustering
in the projected 2D space, which verifies the capabil-
ity of our model to encode latent features of entities in
heterogeneous KGs through their degrees.

5.4. Ablation study

To study the necessity of each component of our
method, we gradually change the configuration of each
component and observe how the model performance
varies.

Degree embedding. In this work, degree embed-
ding is proposed as a new technique of entity em-
bedding for incorporating heterogeneous information
in KGs. We successively replace this component
with learned entity embeddings from five pre-trained
embedding-based models listed in Section 5.1.3 on
three datasets. We measure the Hit@1, Hit@3 and
Hit@10 metrics and show the results on Family in Fig.
5. Results on another two datasets are placed in the ap-
pendix. In summary, the original model using degree
embedding to encode entities produces the best results
among all variants. We hypothesis that this is due to
the fact that many inner attributes of entities are lost in
the embeddings of those variants while DegreEmbed
can learn to utilize these features implicitly.

Low-rank approximation. Tensor approximation
of rank T enables our model to learn latent features
from various dimensions, as show Eqs. (17) and (18).
We conduct experiments on three datasets and show
how model behavior differs with rank ranging from 1
to 4 in Fig. 6. Training curves in Fig. (6a) imply that
model may converge faster with lower training loss
as rank goes up. However, Fig. 6b demonstrates that

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Method0

20

40

60

80

100

Hi
t@

1
(%

)

43 45 43

72 71

91

Hit@1

Method0

20

40

60

80

100

Hi
t@

3
(%

)

60

72 72

90 90
98

Hit@3

Method0

20

40

60

80

100

Hi
t@

10
 (%

)

95 95 95 95 96 99
Hit@10

TransE ComplEx DistMult TuckER RotatE DegreEmbed

Fig. 5. Model performance on Family with the original entity embeddings replaced by pre-trained ones from embedding-based methods. Hit@k
is in %. The number inside each bar indicates its Hit@k value.

3 6 9 12
Epoch

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Family

rank=1
rank=2
rank=3
rank=4

0 5 10 15 20 25
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

Kinship

rank=1
rank=2
rank=3
rank=4

0 5 10 15 20
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Lo
ss

UMLS

rank=1
rank=2
rank=3
rank=4

(a) Quantitative loss values showing the learning curve at training time. Various lengths of curves result from early stopping when model accuracy
on validation set remains less or equal than the best within 3 continuous training epochs.

Hit@1 Hit@3 Hit@10
Metric

0

20

40

60

80

100

Hi
t@

k
(%

)

86

97 99

88
98 99

91
98 99

89
98 99

Family

Hit@1 Hit@3 Hit@10
Metric

0

20

40

60

80

100

Hi
t@

k
(%

)

52

75

93

55

76

94

57

78

94

55

77

93

Kinship

Hit@1 Hit@3 Hit@10
Metric

0

20

40

60

80

100

Hi
t@

k
(%

)

64

93 97

64

94 97

64

93 96

62

94 97

UMLS

rank=1 rank=2 rank=3 rank=4

(b) Model performance under the evaluation of Hit@k on test datasets.

Fig. 6. Comparison among DegreEmbed variants with different ranks on three benchmark datasets.

higher rank does not necessarily bring better test re-

sults. We conjecture that this is because the amount of

learnable features of distinct dimensions varies from

dataset to dataset, where the choice of rank matters a

lot. An intriguing insight can be obtained by combin-

ing Fig. (6a) and Fig. (6b): training loss degrades as

model rank increases while it barely contributes to re-
sults on test sets, which provides a view of over-fitting.

6. Conclusions

In this paper, a logic rule learning model called De-
greEmbed has been proposed for reasoning more ef-

14 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

fectively in heterogeneous knowledge graphs, where
there exist entities and relations of different types.
Based on mining logic rules, DegreEmbed simultane-
ously leverages latent knowledge of entities by learn-
ing embedding vectors for them, where the degrees
of the entities are closely observed. Experiment re-
sults show that our model benefits from the advantages
of both embedding-based methods and rule learning
systems, as one can see DegreEmbed outperforms the
state-of-the-art models with a clear margin, and it pro-
duces high-quality rules with great interpretability. In
the future, we would like to optimize the way of entity
embedding to increase the expressive power of logic
rule learning models for knowledge graph reasoning.

Acknowledgements

The work of this paper is supported by the "National
Key R&D Program of China" (2020YFB2009502),
"the Fundamental Research Funds for the Central Uni-
versities" (Grant No. HIT.NSRIF.2020098).

References

[1] Z. Liu, Z.-Y. Niu, H. Wu and H. Wang, Knowledge aware
conversation generation with explainable reasoning over aug-
mented graphs, arXiv preprint arXiv:1903.10245 (2019).

[2] S. Moon, P. Shah, A. Kumar and R. Subba, Opendialkg: Ex-
plainable conversational reasoning with attention-based walks
over knowledge graphs, in: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
2019, pp. 845–854.

[3] C. Xiong, R. Power and J. Callan, Explicit semantic ranking
for academic search via knowledge graph embedding, in: Pro-
ceedings of the 26th international conference on world wide
web, 2017, pp. 1271–1279.

[4] R.T. Sousa, S. Silva and C. Pesquita, Evolving knowledge
graph similarity for supervised learning in complex biomedical
domains, BMC bioinformatics 21(1) (2020), 1–19.

[5] S.K. Mohamed, V. Nováček and A. Nounu, Discovering pro-
tein drug targets using knowledge graph embeddings, Bioinfor-
matics 36(2) (2020), 603–610.

[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Mur-
phy, T. Strohmann, S. Sun and W. Zhang, Knowledge vault: A
web-scale approach to probabilistic knowledge fusion, in: Pro-
ceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp. 601–610.

[7] D. Krompaß, S. Baier and V. Tresp, Type-constrained represen-
tation learning in knowledge graphs, in: International semantic
web conference, Springer, 2015, pp. 640–655.

[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge and J. Taylor,
Freebase: a collaboratively created graph database for structur-
ing human knowledge, in: Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, 2008,
pp. 1247–1250.

[9] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and
Z. Ives, Dbpedia: A nucleus for a web of open data, in: The
semantic web, Springer, 2007, pp. 722–735.

[10] S. Ji, S. Pan, E. Cambria, P. Marttinen and S.Y. Philip, A survey
on knowledge graphs: Representation, acquisition, and appli-
cations, IEEE Transactions on Neural Networks and Learning
Systems (2021).

[11] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston and
O. Yakhnenko, Translating embeddings for modeling multi-
relational data, Advances in neural information processing sys-
tems 26 (2013).

[12] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier and G. Bouchard,
Complex embeddings for simple link prediction, in: In-
ternational conference on machine learning, PMLR, 2016,
pp. 2071–2080.

[13] Y. Chen, S. Goldberg, D.Z. Wang and S.S. Johri, Ontological
pathfinding, in: Proceedings of the 2016 International Confer-
ence on Management of Data, 2016, pp. 835–846.

[14] L. Galárraga, C. Teflioudi, K. Hose and F.M. Suchanek, Fast
rule mining in ontological knowledge bases with AMIE

+

+, The VLDB Journal 24(6) (2015), 707–730.
[15] S. Muggleton and L. De Raedt, Inductive logic programming:

Theory and methods, The Journal of Logic Programming 19
(1994), 629–679.

[16] F. Yang, Z. Yang and W.W. Cohen, Differentiable learning
of logical rules for knowledge base reasoning, arXiv preprint
arXiv:1702.08367 (2017).

[17] M. Qu and J. Tang, Probabilistic logic neural networks for rea-
soning, arXiv preprint arXiv:1906.08495 (2019).

[18] Y. Zhang, X. Chen, Y. Yang, A. Ramamurthy, B. Li, Y. Qi and
L. Song, Efficient probabilistic logic reasoning with graph neu-
ral networks, arXiv preprint arXiv:2001.11850 (2020).

[19] N. Lao and W.W. Cohen, Relational retrieval using a combi-
nation of path-constrained random walks, Machine learning
81(1) (2010), 53–67.

[20] A. Neelakantan, B. Roth and A. McCallum, Compositional
vector space models for knowledge base completion, arXiv
preprint arXiv:1504.06662 (2015).

[21] R. Das, A. Neelakantan, D. Belanger and A. McCallum, Chains
of reasoning over entities, relations, and text using recurrent
neural networks, arXiv preprint arXiv:1607.01426 (2016).

[22] A. Sadeghian, M. Armandpour, P. Ding and D.Z. Wang, Drum:
End-to-end differentiable rule mining on knowledge graphs,
arXiv preprint arXiv:1911.00055 (2019).

[23] P.-W. Wang, D. Stepanova, C. Domokos and J.Z. Kolter, Dif-
ferentiable learning of numerical rules in knowledge graphs,
in: International Conference on Learning Representations,
2019.

[24] Y. Yang and L. Song, Learn to explain efficiently via neu-
ral logic inductive learning, arXiv preprint arXiv:1910.02481
(2019).

[25] Z. Sun, Z.-H. Deng, J.-Y. Nie and J. Tang, Rotate: Knowl-
edge graph embedding by relational rotation in complex space,
arXiv preprint arXiv:1902.10197 (2019).

[26] T. Dettmers, P. Minervini, P. Stenetorp and S. Riedel, Con-
volutional 2d knowledge graph embeddings, in: Thirty-second
AAAI conference on artificial intelligence, 2018.

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[27] I. Balažević, C. Allen and T.M. Hospedales, Tucker: Tensor
factorization for knowledge graph completion, arXiv preprint
arXiv:1901.09590 (2019).

[28] L.R. Tucker, Some mathematical notes on three-mode factor
analysis, Psychometrika 31(3) (1966), 279–311.

[29] W. Zhang, B. Paudel, L. Wang, J. Chen, H. Zhu, W. Zhang,
A. Bernstein and H. Chen, Iteratively learning embeddings and
rules for knowledge graph reasoning, in: The World Wide Web
Conference, 2019, pp. 2366–2377.

[30] P. Wang, D. Dou, F. Wu, N. de Silva and L. Jin, Logic Rules
powered knowledge graph embedding, arXiv:1903.03772 [cs]
(2019).

[31] F.N. Stokman and P.H. de Vries, Structuring knowledge in
a graph, in: Human-computer interaction, Springer, 1988,
pp. 186–206.

[32] W.W. Cohen, Tensorlog: A differentiable deductive database,
arXiv preprint arXiv:1605.06523 (2016).

[33] W.W.C.F.Y. Kathryn and R. Mazaitis, Tensorlog: Deep learn-
ing meets probabilistic databases, Journal of Artificial Intelli-
gence Research 1 (2018), 1–15.

[34] K. Guu, J. Miller and P. Liang, Traversing knowledge graphs
in vector space, arXiv preprint arXiv:1506.01094 (2015).

[35] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural computation 9(8) (1997), 1735–1780.

[36] K. Toutanova and D. Chen, Observed versus latent features for
knowledge base and text inference, in: Proceedings of the 3rd

workshop on continuous vector space models and their com-
positionality, 2015, pp. 57–66.

[37] G.A. Miller, WordNet: a lexical database for English, Commu-
nications of the ACM 38(11) (1995), 39–41.

[38] G.A. Miller, WordNet: An electronic lexical database, MIT
press, 1998.

[39] S. Kok and P. Domingos, Statistical predicate invention, in:
Proceedings of the 24th international conference on Machine
learning, 2007, pp. 433–440.

[40] M. Qu, J. Chen, L.-P. Xhonneux, Y. Bengio and J. Tang, Rnn-
logic: Learning logic rules for reasoning on knowledge graphs,
arXiv preprint arXiv:2010.04029 (2020).

[41] B. Yang, W.-t. Yih, X. He, J. Gao and L. Deng, Embedding
entities and relations for learning and inference in knowledge
bases, arXiv preprint arXiv:1412.6575 (2014).

[42] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning
library, Advances in neural information processing systems 32
(2019), 8026–8037.

[43] D.P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv preprint arXiv:1412.6980 (2014).

[44] L. Van der Maaten and G. Hinton, Visualizing data using t-
SNE., Journal of machine learning research 9(11) (2008).

16 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix A. Algorithm URLs

Table 6
Available links to the models used in this work.

Algorithm Link

TransE, DistMult and ComplEx https://github.com/Accenture/AmpliGraph
TuckER https://github.com/ibalazevic/TuckER
RotatE https://github.com/liyirui-git/KnowledgeGraphEmbedding_RotatE
RNNLogic https://github.com/DeepGraphLearning/RNNLogic
Neural LP https://github.com/fanyangxyz/Neural-LP
DRUM https://github.com/alisadeghian/DRUM
DegreEmbed (ours) https://github.com/lirt1231/DegreEmbed

Appendix B. Results on FB15K-237 and WN18

Table 7
Knowledge graph completion results on FB15K-237 and WN18. Hit@k is in %.

FB15K-237 WN18

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE .15 5 19 25 .36 4 63 81
DistMult .25 17 28 42 .71 56 83 93
ComplEx .26 17 29 44 .90 88 92 94
TuckER .36 27 39 46 .94 93 94 95
RotatE .34 24 38 53 .95 94 95 96

RNNLogic .29 21 31 43 .94 93 94 96
Neural LP .25 19 27 37 .94 93 94 95

DRUM .25 19 28 38 .54 49 54 66
DegreEmbed .25 19 27 38 .95 94 95 97

https://github.com/Accenture/AmpliGraph
https://github.com/ibalazevic/TuckER
https://github.com/liyirui-git/KnowledgeGraphEmbedding_RotatE
https://github.com/DeepGraphLearning/RNNLogic
https://github.com/fanyangxyz/Neural-LP
https://github.com/alisadeghian/DRUM
https://github.com/lirt1231/DegreEmbed

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix C. Extension to Table 2: more saturations of Family

Table 8
Saturations of the Family dataset. γpl

q , δpl
q , ηpl

q are macro, micro and comprehensive saturations. The results relating to a specific relation are
sorted by the comprehensive saturation in descending order.

Rule ⇒ Relation γ
pl
q δ

pl
q η

pl
q

X
nephewOf
======⇒ Z brotherOf

=======⇒ Y ⇒ X
nephewOf
======⇒ Y .86 .25 .21

X
nephewOf
======⇒ Z sisterOf

======⇒ Y ⇒ .79 .22 .17

X brotherOf
=======⇒ Z

nephewOf
======⇒ Y ⇒ .79 .21 .16

X brotherOf
=======⇒ Z nieceOf

=====⇒ Y ⇒ .72 .17 .12

X sonOf
====⇒ Z brotherOf

=======⇒ Y ⇒ .64 .10 .06

X sonOf
====⇒ Z sisterOf

======⇒ Y ⇒ .36 .05 .02

X sisterOf
======⇒ Z sonOf

====⇒ Y ⇒ X
daughterOf
========⇒ Y .68 .25 .17

X sisterOf
======⇒ Z

daughterOf
========⇒ Y ⇒ .61 .20 .12

X
daughterOf
========⇒ Z husbandOf

=======⇒ Y ⇒ .46 .15 .07

X
daughterOf
========⇒ Z wifeOf

=====⇒ Y ⇒ .46 .14 .06

X sisterOf
======⇒ Z uncleOf

=====⇒ Y ⇒ X auntOf
=====⇒ Y .89 .26 .23

X sisterOf
======⇒ Z auntOf

=====⇒ Y ⇒ .85 .22 .19

X auntOf
=====⇒ Z brotherOf

=======⇒ Y ⇒ .83 .21 .17

X auntOf
=====⇒ Z sisterOf

======⇒ Y ⇒ .75 .18 .13

X sisterOf
======⇒ Z fatherOf

======⇒ Y ⇒ .66 .09 .06

X sisterOf
======⇒ Z motherOf

======⇒ Y ⇒ .34 .05 .02

X sisterOf
======⇒ Z brotherOf

=======⇒ Y ⇒ X sisterOf
======⇒ Y .89 .15 .13

X sisterOf
======⇒ Z sisterOf

======⇒ Y ⇒ .84 .14 .12

X nieceOf
=====⇒ Z uncleOf

=====⇒ Y ⇒ .78 .13 .10

X auntOf
=====⇒ Z

nephewOf
======⇒ Y ⇒ .67 .12 .08

X
daughterOf
========⇒ Z fatherOf

======⇒ Y ⇒ 1.00 .07 .07

X
daughterOf
========⇒ Z motherOf

======⇒ Y ⇒ .99 .07 .07

X brotherOf
=======⇒ Z sonOf

====⇒ Y ⇒ X sonOf
====⇒ Y .64 .24 .15

X brotherOf
=======⇒ Z

daughterOf
========⇒ Y ⇒ .56 .19 .10

X sonOf
====⇒ Z husbandOf

=======⇒ Y ⇒ .46 .16 .08

X sonOf
====⇒ Z wifeOf

=====⇒ Y ⇒ .46 .14 .06

X
nephewOf
======⇒ Z brotherOf

=======⇒ Y ⇒ .39 .12 .05

18 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix D. Extension to Table 4: top rules obtained by our model

Table 9
Top rules without reverse queries mined by DegreEmbed on the Family dataset.

Rule ⇒ Relation Confidence

X brotherOf
=======⇒ Z

nephewOf
======⇒ Y ⇒ X

nephewOf
======⇒ Y 1.00

X brotherOf
=======⇒ Z nieceOf

=====⇒ Y ⇒ 0.88

X sonOf
====⇒ Z sisterOf

======⇒ Y ⇒ 0.34

X sonOf
====⇒ Z brotherOf

=======⇒ Y ⇒ 0.16

X
nephewOf
======⇒ Z sisterOf

======⇒ Y ⇒ 0.13

X sisterOf
======⇒ Z sonOf

====⇒ Y ⇒ X
daughterOf
========⇒ Y 1.00

X sisterOf
======⇒ Z

daughterOf
========⇒ Y ⇒ 0.84

X
daughterOf
========⇒ Z wifeOf

=====⇒ Y ⇒ 0.72

X
daughterOf
========⇒ Z husbandOf

=======⇒ Y ⇒ 0.24

X sisterOf
======⇒ Z motherOf

======⇒ Y ⇒ X auntOf
=====⇒ Y 1.00

X sisterOf
======⇒ Z fatherOf

======⇒ Y ⇒ 0.77

X sisterOf
======⇒ Z auntOf

=====⇒ Y ⇒ 0.77

X sisterOf
======⇒ Z uncleOf

=====⇒ Y ⇒ 0.31

X sisterOf
======⇒ Z sisterOf

======⇒ Y ⇒ X sisterOf
======⇒ Y 1.00

X sisterOf
======⇒ Z brotherOf

=======⇒ Y ⇒ 0.90

X sisterOf
======⇒ Z motherOf

======⇒ Y ⇒ 0.39

X brotherOf
=======⇒ Z sonOf

====⇒ Y ⇒ X sonOf
====⇒ Y 1.00

X brotherOf
=======⇒ Z

daughterOf
========⇒ Y ⇒ 0.67

X sonOf
====⇒ Z husbandOf

=======⇒ Y ⇒ 0.56

X sonOf
====⇒ Z wifeOf

=====⇒ Y ⇒ 0.39

H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 10
Top rules with reverse queries mined by DegreEmbed on the Family dataset.

Rule ⇒ Relation Confidence

X inv_sisterOf
=========⇒ Z inv_uncleOf

========⇒ Y ⇒ X
nephewOf
======⇒ Y 1.00

X brotherOf
=======⇒ Z inv_auntOf

========⇒ Y ⇒ 0.39

X inv_sisterOf
=========⇒ Z inv_auntOf

========⇒ Y ⇒ 0.36

X inv_brotherOf
==========⇒ Z inv_auntOf

========⇒ Y ⇒ 0.32

X inv_sisterOf
=========⇒ Z nieceOf

=====⇒ Y ⇒ 0.29

X brotherOf
=======⇒ Z inv_uncleOf

========⇒ Y ⇒ 0.22

X inv_sisterOf
=========⇒ Z inv_motherOf

=========⇒ Y ⇒ X
daughterOf
========⇒ Y 1.00

X inv_sisterOf
=========⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.67

X inv_brotherOf
==========⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.31

X sisterOf
======⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.26

X inv_brotherOf
==========⇒ Z inv_motherOf

=========⇒ Y ⇒ 0.18

X sisterOf
======⇒ Z inv_motherOf

=========⇒ Y ⇒ 0.17

X brotherOf
=======⇒ Z inv_sisterOf

=========⇒ Y ⇒ X brotherOf
=======⇒ Y 1.00

X inv_brotherOf
==========⇒ Z inv_brotherOf

==========⇒ Y ⇒ 0.57

X brotherOf
=======⇒ Z brotherOf

=======⇒ Y ⇒ 0.55

X brotherOf
=======⇒ Z sisterOf

======⇒ Y ⇒ 0.37

X inv_brotherOf
==========⇒ Z inv_sisterOf

=========⇒ Y ⇒ 0.20

X inv_sisterOf
=========⇒ Z motherOf

======⇒ Y ⇒ X auntOf
=====⇒ Y 1.00

X sisterOf
======⇒ Z fatherOf

======⇒ Y ⇒ 0.26

X inv_sisterOf
=========⇒ Z

inv_nephewOf
=========⇒ Y ⇒ 0.26

X inv_sisterOf
=========⇒ Z inv_nieceOf

========⇒ Y ⇒ 0.23

X inv_sisterOf
=========⇒ Z

inv_daughterOf
===========⇒ Y ⇒ 0.18

X sisterOf
======⇒ Z sisterOf

======⇒ Y ⇒ X sisterOf
======⇒ Y 1.00

X sisterOf
======⇒ Z inv_brotherOf

==========⇒ Y ⇒ 0.72

X inv_sisterOf
=========⇒ Z inv_sisterOf

=========⇒ Y ⇒ 0.51

X inv_brotherOf
==========⇒ Z inv_sisterOf

=========⇒ Y ⇒ 0.16

X inv_sisterOf
=========⇒ Z inv_brotherOf

==========⇒ Y ⇒ 0.10

X inv_brotherOf
==========⇒ Z inv_motherOf

=========⇒ Y ⇒ X sonOf
====⇒ Y 1.00

X inv_sisterOf
=========⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.43

X brotherOf
=======⇒ Z inv_motherOf

=========⇒ Y ⇒ 0.37

X inv_sisterOf
=========⇒ Z inv_motherOf

=========⇒ Y ⇒ 0.31

X brotherOf
=======⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.28

X inv_brotherOf
==========⇒ Z inv_fatherOf

=========⇒ Y ⇒ 0.27

20 H. Li et al. / DegreEmbed: incorporating entity embedding into logic rule learning for knowledge graph reasoning

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Appendix E. Ablation results

Method0

20

40

60

80

100

Hi
t@

1
(%

)

11 11 12

45 48
57

Hit@1

Method0

20

40

60

80

100

Hi
t@

3
(%

)
32 32 32

70 70
79

Hit@3

Method0

20

40

60

80

100

Hi
t@

10
 (%

) 74 75 73

91 90 94

Hit@10

TransE ComplEx DistMult TuckER RotatE DegreEmbed

(a) Hit@1, Hit@3 and Hit@10 results on Kinship dataset. The number inside each bar indicates its Hit@k value.

Method0

20

40

60

80

100

Hi
t@

1
(%

)

12 12 11

63 64 64

Hit@1

Method0

20

40

60

80

100

Hi
t@

3
(%

)

30 30 30

89 89
94

Hit@3

Method0

20

40

60

80

100

Hi
t@

10
 (%

)

68 67 66

93 94 97

Hit@10

TransE ComplEx DistMult TuckER RotatE DegreEmbed

(b) Hit@1, Hit@3 and Hit@10 results on UMLS dataset. The number inside each bar indicates its Hit@k value.

Fig. 7. Model performance on Kinship and UMLS with the original entity embeddings replaced by pre-trained ones from embedding-based
methods. Hit@k is in %.

	Introduction
	Related work
	Preliminaries
	Knowledge graph reasoning
	Graph structure

	Methodology
	Neural LP for logic reasoning
	TensorLog
	Neural LP

	Our DegreEmbed model
	Optimization of the model

	Experiment
	Experiment setting
	Datasets
	Evaluation metrics
	Comparison of algorithms
	Model configuration

	Results on KGC task
	Interpretability of our model
	Quality of mined rules
	Learned entity embeddings

	Ablation study

	Conclusions
	Acknowledgements
	References
	Appendix A. Algorithm URLs
	Appendix B. Results on FB15K-237 and WN18
	Appendix C. Extension to Table 2: more saturations of Family
	Appendix D. Extension to Table 4: top rules obtained by our model
	Appendix E. Ablation results

