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Abstract. The testing of machine learning (ML) based systems has gained interest in recent years. In particular, the development
of critical systems incorporating ML models, such as autonomous vehicles, has raised concerns about their safety and security.
Furthermore, given the diversity of models and systems using ML, it is essential to have a good understanding of the testing
techniques that can be applied to these models, in order to test them properly and thoroughly. However, while several secondary
studies have been published on the subject, there is currently no comparative framework of these testing methods, that would
allow practitioners to find the most suitable methods for their needs. In this article, we present RATIONALE: a secuRity and
sAfety TestIng ONtoLogy for mAchine LEarning-based systems. An ontology defines the concepts, relationships and individuals
that are relevant for modeling a domain. Thus, RATIONALE allows the sharing and reuse of knowledge around the safety and
security of machine learning-based systems, in terms of threats, defences, and testing techniques. To make our approach helpful
in practice, RATIONALE has been integrated into a web application to make it easily and automatically queryable by target
users from a wide range of backgrounds. The completeness and validity of this ontology was assessed against the outcomes of
secondary studies on the subject. A usability test was also conducted to assess the usefulness and usability of the web application.
Overall, the results support the value of RATIONALE to effectively assists testers on the development and maintenance of ML
test methods and tools.

Keywords: Ontology, security, safety, software testing, machine learning

1. Introduction

Machine learning (ML) is a branch of artificial intelligence (AI) that enable systems to learn and improve from
data and experience, without explicit instructions. The development of ML algorithms has made significant progress
in the past few years, and they are now matching or exceeding humans level performance in multiple tasks, such
as natural language processing [1] or image classification [2]. As a result, machine learning algorithms have been
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increasingly deployed in many critical systems, like self-driving autonomous vehicles [3] or medical diagnosis
systems [4]. The critical nature of such applications, however, has raised concerns about their safety and security,
partially exacerbated by incidents such as the fatal Uber car's crash that killed a woman in Arizona (USA) [5]. In
this context, safety is the minimization of risk and uncertainty of harmful events [6, 7], while security is concerned
with protecting systems from attackers [8].

ML programs differ signi�cantly from traditional software components by nature and construction, raising new
challenges, for instance, regarding testing. Conventional software testing approaches cannot be applied as is, due
to the statistical, non-deterministic nature of ML-based systems. They also suffer from theTest Oracle Problem,
making it extremely dif�cult, sometimes unfeasible, to tell whether their behaviour is correct or not [9, 10]. In
addition, since they are based on data-driven learning, their behaviour may change as new data is injected, making
testing even harder. Those issues have led some researchers to consider ML-based systems as “non-testable” or
“untestable” programs with respect to traditional testing methods [11–13].

In response to these challenges, novel techniques and their associated frameworks have recently emerged in the
literature to assess the quality of ML-based systems on aspects such as robustness [14] or fairness [15]. Simultane-
ously, studies have focused on extending current software testing techniques to test ML-based systems [16, 17]. The
literature has thus been quite proli�c in the past few years, regarding the safety and security testing of ML-based
systems [18–20].

Given the diversity of machine learning models, it is necessary to have a good understanding of the different
emerging approaches and to be able to compare them in a relevant way. Several secondary studies have been pub-
lished about machine learning testing, in order to provide a comprehensive overview of the �eld [21–23]. However,
there is no comparative framework of these methods that would allow testers to choose the most suitable methods
for their needs, and researchers to evaluate their own methods. Indeed, it can be tedious to extract the desired infor-
mation from a secondary study, as they do not provide a tool to query it. Thus, the main objective of our work is to
address the following research questions:What methods and tools are more suitable for testing the security and the
safety of a given ML-based system? And how can these methods and tools be compared and evaluated?

We propose a domain ontology called RATIONALE (secuRity and sAfety TestIng ONtology for mAchine LEarn-
ing), as a way to describe the domain of safety and security testing of machine learning based systems. An ontology
de�nes the concepts (i.e. classes), relationships and individuals (i.e. instances of classes) that are relevant for mod-
eling a domain. Studer et al. [24] de�ned an ontology as a “formal, explicit speci�cation of a shared conceptualisa-
tion”. As such, it allows for sharing and reuse of a common understanding of a domain and is a fundamental step
in the construction of a comparative framework. In addition, in order to make it usable by target users from a wide
range of backgrounds, our ontology has been made easily queryable through the development of a web application1.
In particular, SPARQL queries can be automatically generated from a form.

The remainder of this paper is structured as follows: Section 2 de�nes some terminology related to machine learn-
ing and software testing. Section 3, discusses related work and relevant standards. Section 4 presents the construc-
tion of the ontology, and its concepts, while Section 5 presents its implementation. Section 6 reports the evaluation
of the ontology. Finally, Section 7 concludes the paper and describes future work directions.

2. Machine learning overview

Machine learning (ML) is a branch of arti�cial intelligence (AI) that enable systems to learn and improve from
data and experience, without explicit instructions. In practice, an ML algorithm is used to build a model capable of
recognising and generalising certain patterns or properties, based on a training dataset. Once trained, the model is
used on new data, for instance to infer its unknown characteristics.

ML algorithm are usually separated in three categories, depending on the nature of the training and the informa-
tion available [25, 26].Predictiveor supervised learningalgorithms require a training dataset with labelled data,
where each sample consists in an input and the desired corresponding output value. In contrast,descriptiveor unsu-

1Available at http://rationale.kereval.com/
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pervised learningalgorithms train a model with unlabelled data (i.e. only input data). This learning method focus
on discovering the structure of the data, rather than learning it directly. The third category is calledreinforcement
learning, which consists, for an agent, in learning the actions to be taken (based on experience) in order to optimise
a reward over time.

The tasks that ML models can perform are very varied and depends on the type of learning algorithm used [25, 26].
Thus, supervised learning leads to tasks such as classi�cation (the model must assign a class to each input) or re-
gression (the model predicts a continuous value based on the input), performed by predictive models. Unsupervised
learning leads to clustering analysis or dimensionality reduction, while reinforcement learning leads to controlling
or scheming tasks.

In addition, ML models differ in their structure [25, 27]. The type of architecture that has attracted the most atten-
tion recently are neural networks. These consist of several layers of arti�cial neurons, elementary units composed of
a weighted sum function followed by a non-linear function, called the activation function. Their purpose is thus to
aggregate the inputs from the previous layers and return a single output. The structure of the layers of neurons and
their connections determine the type of neural network. In particular, a distinction is made between feedforward,
recurrent and convolutional networks [25, 27].

3. Related work

3.1. Ontologies and Systematization of Knowledge

Given the novelty of the �eld of ML-based systems testing, little work has been done to conceptualise it. To the
best of our knowledge, AI-T [28] is the �rst and only ontology on AI-based systems testing. The author describes
it as "a middle-out, domain ontology", implemented in the Web Ontology Language (OWL) using Protégé IDE and
the inbuilt FaCT++ reasoner. It aims to assist human testers and intelligent agents in the production and management
of tests. To do so, it gathers knowledge about Software Testing and Explainable Arti�cial Intelligence (AI) from
vocabularies, standards, and guidelines (e.g., the SWEBOK guide, the ISTQB glossary, the IEEE 29119 standards,
and the IEEE Ethically Aligned Design guidelines). The scope of the AI-T ontology is however limited to AI's
ethical principles (e.g., fairness and accountability) and does not cover the security and safety of such systems. Fur-
thermore, its body of knowledge consists mainly of concepts about conventional software testing, which means that
this ontology does not consider the speci�cs of machine learning models, as mentioned in the introduction. Despite
an implementation on the Protégé IDE, it is not clear how AI-T is made available in practice, and little information
is given on how queries on the ontology are supported (e.g., query language).

Papernot et al. [29] proposed a systematization of knowledge (SoK) paper about the security of ML-based systems
in 2018. The aim of such papers is to analyse the literature and systematize existing knowledge, for example by
means of taxonomies. In particular, this article structures the �eld of security, with regard to the speci�cs of ML-
based systems: the main contribution consists in the establishment of a threat model for ML, which allows the
categorisation of attacks and defences within an adversarial framework.

Our approach complements those works by formalizing knowledge about not only the security but also the safety
of ML-based systems. Implementing an ontology, we provide a tool to facilitate the reuse of this domain knowledge
and go further in helping practitioners choosing or evaluating relevant testing methods.

3.2. Standards

As evidenced by the work of the ISO/IEC technical committee about standardization of Arti�cial Intelligence
(ISO/IEC JTC 1/SC 42)2, few standards have yet been published regarding the safety and security of these systems.
However, many are in active development. For instance, the ISO/IEC FDIS 22989 [30], which is expected to be
published in 2022, aims to establish terminology for AI and to describe concepts in the �eld of AI. This 60-page

2https://www.iso.org/committee/6794475/x/catalogue/
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document is intended to be supplemented by other standards from the committee. The ISO/IEC AWI TR 5469 [31],
for functional safety and AI systems, has been approved as work item in 2020. The report is expected to be pub-
lished in 2022, however no details are yet available. The �rst part of ISO/IEC TR 24029 [32], an overview of the
assessment of the robustness of neural networks, has been published in 2021 as a 30-page document. A second part
regarding the use of formal methods is currently under development and planned for 2023.

Although it does not target exclusively AI, VDE-AR-E-2842-61 [33] (published in mid-2021) is an application
rule, developed by the working group DKE AK 801.0.8 of the VDE Association for Electrical, Electronic and Infor-
mation Technologies, that describes a generic framework for the development of trustworthy autonomous systems.
In particular, it de�nes a reference lifecycle in analogy to the key functional safety standards (e.g., IEC 61508) as
an approach to achieve and maintain the overall performance and the intended behavior and trustworthiness of the
system.

In addition to these standards on the �eld of arti�cial intelligence, there is a rise in application-oriented standards
for the safety and security of machine learning-based systems. For instance, between 2015 and 2021, the number
of standards addressing autonomous vehicles has exploded. Some of these standards are: IEC 61508 ("Functional
safety of electrical/electronic/programmable electronic safety-related systems"), ISO 26262 ("Road vehicles – Func-
tional safety") and ISO 21448 ("Road vehicles – Safety of the intended functionality"), ISO/TR 4804 ("Road vehi-
cles – Safety and cybersecurity for automated driving systems – Design, veri�cation and validation"), and UL4600
(“Standard for Safety for the Evaluation of Autonomous Vehicles and Other Products”).

However, while these documents help to structure knowledge of the �eld, their complexity and inertia in the face
of the emergence of new, more relevant methods make them dif�cult to use to choose a testing approach in practice.
According to ISO3, it takes about three years to develop an international standard, and such standards are reviewed
at least every �ve years. In comparison, our objective is to develop a tool that is continuously updatable with the
latest methods and easily queryable to access the most relevant one, with respect to a system for instance.

4. RATIONALE ontology

This section presents our main contribution, an ontology for security and safety testing of ML-based software
systems. To develop this ontology, we adapted the ontology construction method proposed by Fernández López et
al. [34]. In particular, we did not perform the integration phase since we are not aware of any related ontology on
safety and security of ML-based systems. The construction process contains �ve main steps (see Figure 1): speci-
�cation (objective and scope de�nition), knowledge acquisition, conceptualization, implementation and evaluation.
In what follows, we detail each of these steps.

4.1. Objective and scope

The main objective of the ontology is to provide a platform for knowledge sharing around the safety and security
of machine learning-based systems, both in terms of threats and defences. This ontology will support the testing of
ML-based systems and the development of new methods and tools adapted to these systems. In particular, it will
allow queries to be made to easily retrieve information from it.

4.2. Knowledge acquisition

As mentioned in section 3.1, no standard is yet established for testing the safety or security of ML-based systems.
However, several secondary studies—surveys, systematic mapping studies (SMS), and systematic literature reviews

3https://www.iso.org/developing-standards.html
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Fig. 1. Construction phases of the ontology

Table 1

Terms

Criterion Terms

Population Machine Learning

Deep Learning

Arti�cial Intelligence

(Deep) Neural Network

Intervention Testing

Veri�cation

Comparison -

Outcomes Safety

Security

Context Survey

Systematic mapping study

Systematic literature review

(SLR)— have been published on the subject. Thus, the acquisition of the knowledge started from these secondary
studies, as they provide a comprehensive and updated overview of the �eld.

We analysed 15 papers on security or safety testing of ML-based systems; the full list of these studies and the
automated search process we used can be found in section 4.2.2.

4.2.1. Search string and automated search
Following Kitchenham's guidelines [35], we used the PICOC criteria (Population, Intervention, Comparison,

Outcomes and Context) to elicit the search terms, based on the scope and objective of our ontology. Table 1 shows
the different categories that were then combined to form the �nal search string. The �nal search string is:

(safety OR security) AND (testing OR veri�cation) AND ("machine learning" OR "neural network" OR "deep
*" OR "arti�cial intelligence") AND (survey OR "literature review" OR "mapping study")
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Table 2

Automated search results

Repository Results before exclusion Results after exclusion

Scopus 109 9

IEEEXplore 130 7

ScienceDirect 20 5

ACM DL 10 1

We use `*' as a wildcard in order to retrieve expressions such as "deep learning", "deep neural network", and so on.
As shown in Table 2, we search digital libraries and scienti�c databases using the search string. To reduce the

amount of irrelevant results, we also apply some restrictions to the automated search. Thus, we search for: (i) articles
or conference papers, (ii) written in English, and (iii) related to Computer Science. There is no restriction on the
publication period. The research was conducted in January 2022.

To determine if a paper is relevant, the title, abstract and keywords were �rst checked and the following inclusion
and exclusion criteria, based on the scope of the ontology, were used. Were included papers explicitly mentioning
machine learning, deep learning or neural networks, in the context of software testing or software engineering. Re-
garding exclusion criteria, were discarded: (i) papers that are not secondary studies, (ii) papers outside the software
testing domain, (iii) papers focusing on machine learning for software engineering, and (iv) multiple papers report-
ing the same study (only the most recent paper is included). Only one author participated in this phase; in case of
doubt, a reading of the full article and informal discussions with the other authors helped solve the issue.

Table 2 and Figure 1 summarises the databases, the number of papers �rst retrieved, and the number of papers
retained after applying the exclusion criteria. From this automated search, 15 papers were retrieved, out of which
10 are surveys, 3 are SLRs, 1 is a SMS, and 1 is a state of the art. All the retrieved papers were published between
2018 and 2021 (we did not restrict the search to a speci�c time period).

4.2.2. Knowledge extraction
Relevant concepts and relationships were extracted through a systematic analysis of the 15 secondary studies

retrieved. These secondary studies cover various �elds and offer different levels of understanding (see Table 3).
Riccio et al. [21] propose a systematic mapping study that focuses on functional testing techniques for Machine

Learning based Systems. The point of view considered in this article is generic and therefore many of the extracted
concepts were related to traditional software testing techniques, testing metrics and the different types of ML-based
systems.

Myllyaho et al. [23] propose a systematic literature review on methods used in the validation of machine learn-
ing based systems. In particular, they distinguish between initial validation, before deployment, and continuous
validation, after deployment and throughout the life of the system.

The papers of Zhang and Li [36], Rajabli et al. [37], Dey and Lee [7], Huang et al. [38] and Wu et al. [39] cover
the safety of machine learning based systems at various levels. Most of the concepts extracted on this subject were
shared by the majority of the studies, however slight differences were noted. The multilayered review of Dey and
Lee offers a view of safety during the different phases of development. The study proposed by Rajabli et al. focuses
on safe autonomous cars, while Zhang and Li considered safety-critical control software in general. In addition,
Huang et al. propose a very broad view of safety, addressing the notions of safety properties, testing, veri�cation,
but also adversarial examples in this context.

Seven papers are surveys on security of ML-based systems and defensive techniques, with respect to adversarial
examples [20, 40–45] or physical attacks and cyber-attacks [44]. However, while the core concepts are shared by all
six articles, it was noted that the vocabulary to refer to them was not always identical.

Finally, Hains et al. [22] provide a survey of early work on the safety and security of deep learning-based systems.
In particular, they discuss the �rst attacks, as well as the �rst testing and veri�cation methods proposed in the
literature.

Figure 1 schematizes the knowledge acquisition and conceptualization phases. After the extraction of the relevant
concepts and relationships from the body of knowledge (the secondary studies), we proceeded to the concepts
alignment, and built a glossary with the resulting concepts, in order to harmonize the vocabulary used. These steps
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Table 3

Secondary studies

Paper Type of study Domain Venue/Journal Publication date

[21] Systematic Mapping Study Software Testing (generic) Empirical Software Engineering 2020

[36] Systematic Literature Review Safety Information and Software Technology 2020

[37] Systematic Literature Review Safety IEEE Access 2021

[23] Systematic Literature Review Validation Journal of Systems and Software 2021

[22] Survey Security and Safety SysCon 2018 2018

[38] Survey Safety Computer Science Review 2020

[7] Survey Safety The Journal of Systems & Software 2021

[40] Survey Security IEEE Access 2018

[41] Survey Security Journal of Parallel and Distributed Computing 2019

[20] Survey Security IEEE Access 2020

[42] Survey Security IEEE Access 2021

[43] Survey Security ACM Computing Surveys 2021

[44] Survey Security IEEE Transactions on Industrial Informatics 2021

[45] Survey Security MASSW 2019 2019

[39] State of the Art Safety IAENG International Journal of Computer Science 2020

were performed manually, relying essentially on tables to align the terms, and our results were cross-validated
through discussions between the authors.

4.3. Conceptualization

Based on the outcomes of the knowledge acquisition step, concepts were organized and structured in a glossary.
The names of the concepts and the relationships of the RATIONALE ontology were chosen according to the number
of occurrences in the sources, and the generality and understandability of the terms. For instance, in the case of
the concept "Defence strategy" (a strategy used to protect and/or react against malicious attacks) the terms strategy,
technique, mechanism, approach and method are often used interchangeably. Thus, we have manually retrieved for
each secondary study the term speci�cally used to refer to that concept (see Table 4). We then counted the number
of occurrences of each of these terms in the table and concluded that 'strategy' is the most used among the sources.
For further information, Section 6.1 and Table 5 detail the choices made regarding the concepts when the terms
differ from those used in the sources.

The concepts of the ontology are organized around four main perspectives: the System, the Threat, the Security,
and the Testing Strategy. The System perspective includes a description of the components of an ML-based system
(dataset, model, learning method), as well as the defences/mitigation techniques that can be deployed. The Threat
perspective distinguishes between the notions of intentional, accidental or natural threat and describes the concept
of risk with regard to system requirements (security, safety, performance, etc.). The Security perspective is strongly
linked to the notion of intentional threat. It describes the goal, knowledge, capability, and strategy of an adversary,
as well as the attacks. Finally, the Testing Strategy perspective includes the concepts of oracle, test case generator
and metrics for testing, in the context of ML-based systems. In the following, the main concepts (inbold) and
relationships of each perspective are described.

4.3.1. System perspective
A ML-based system is considered to have three components [41, 43]:

– A datasetseparated into training data and test data,
– A ML algorithm that trains the model from the training data,
– A ML model resulting from the training phase; this model performs a speci�ctask, such as classi�cation.

The life-cycle of an ML-based system is separated into the training phase, during which the model is created, and
the inference phase, during which the model is used or tested.
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Table 4

Most frequently used term to refer to the concept of "Defence strategy"

Paper Term

Riccio et al. [21] N/A

Zhang and Li [36] Defense method / Defense strategy

Rajabli et al. [37] N/A

Myllyaho et al. [23] N/A

Hains et al. [22] N/A

Huang et al. [38] Defence technique

Dey and Lee [7] Defense mechanism

Liu et al. [40] Defensive technique

Wang et al. [41] Defense strategy

Xue et al. [20] Defense technique

Vakhshiteh et al. [42] Defense strategy

Serban et al. [43] Defense strategy

Deng et al. [44] Defense method

Zhou et al. [45] N/A

Wu et al. [39] N/A

During the development of the system,threat mitigation strategies may be put in place. There are three types
of threat mitigation strategies:

– Evaluation mechanisms[21, 40, 41] are methods that allow the performance of the system to be assessed at the
end of its development cycle. These mechanisms are generally used upstream of veri�cation and validation of
the system; this is why they are called evaluation, not testing. In addition, they usually make use of performance
metrics and loss functions. For instance, the holdout method is a simple validation method (by comparison to
cross-validation) using the test dataset to evaluate the performance of the model.

– Error mitigation mechanisms [21, 36] are used to prevent or compensate for the effects of faults or errors,
such as one-off misclassi�cation or high prediction error. For example, to mitigate some bias, there are mech-
anisms such as oversampling [46].

– Defence strategies[40, 41, 43, 44] are used to protect and/or react against malicious attacks (see section 4.3.3
for descriptions of attacks). A proactive defence analyses the threats upstream to deployment, based on an
adversarial model, and proposes the corresponding countermeasures. In contrast, a reactive defense analyses
the threats continuously and tries to improve as attacks occur.

Furthermore, the way in which a system feature is accessed (both in use and in an attack or test) is called the
access[21]. A distinction is made between black-box access, when only the outputs of the model are accessible,
and white-box access, when information about the model, the training algorithm or the dataset used is available.

4.3.2. Threat perspective
A threat is a negative event, facilitated by avulnerability and caused by afault [21], that can impact the system.

Such events may beintentional, accidental or natural , depending on the source of the threat. For instance, a
security violation will be categorised as an intentional threat, while a misaligned objective function, in reinforcement
learning, may be an accidental threat, caused by negative side effects or reward hacking. A failure occurs when
the model fails to perform its required functions [21], such as producing a correct and safe outcome. For example,
distributional shift is a failure where the system is optimized in one kind of environment and fails to adapt to changes
in a new one.

Systemrequirements [7] are used to limit the risks generated by threats. For example, speci�cations on the
performance of the models or safety properties that must be valid throughout the life of the system are de�ned.

4.3.3. Security perspective
Thesecurity model[41] consists of anattack surface, anadversarial modelandattacks that lead to an inten-

tional threat.



A.-L. Wozniak et al. / RATIONALE: A Security and Safety Testing Ontology for Machine Learning-based systems 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An attack surface[41] is the set of entry points that an attacker can use to access the system, using in particular
the vulnerabilities of that attack surface. For instance, during the training phase, an adversary can �nd an injection
point in the database to poison the training dataset. Furthermore, if the adversary accesses the learning parameters
(e.g., if the training is outsourced), he can create a backdoor within the model [47].

Theadversarial modelindicates the type of attack that will be used. It is de�ned along four axes [40, 41, 43]:

– The adversarial goal corresponds to the level of destruction the attacker wishes to achieve, i.e. the type of
security violation. For instance, an adversary can have an impact on the con�dentiality, privacy, availability or
integrity of the system.

– The adversarial knowledge includescomplete knowledgeof the system (i.e. white-box access) orcon-
strained knowledge(e.g., black-box access).

– The adversarial capability corresponds to the behaviour of the attack used. These are the attack vectors
available to the attacker. For example, during the inference phase, the attacker can steal information about the
model (parameters, or architecture). During the training phase, the adversarial capability may be read or write
access.

– Theadversarial strategyis the method used to attack the system. In particular, in the context of evasion attacks
(see below), this corresponds to the way in which adversarial examples are generated.

In addition, the following taxonomy of attacks on ML-based systems has been widely adopted by the community
[29, 40, 41]:

– Causative vs. Exploratory attacks: causative attacks, which affect the model by controlling its training data
(see poisoning attacks), are opposed to exploratory attacks, which affect the results of the model without
modifying the training data.

– Integrity, Availability, Con�dentiality and Privacy attacks : integrity attacks try to control the model outputs
and to allow malicious data to be treated as inoffensive. For example, if we consider a spam detection system,
an integrity attacks will attempt to increase the false negatives, so that spam will not be correctly detected.
Availability attacks focus on reducing the overall performance of the system. If we consider a spam detection
system, it means that the attack will try to increase the false positives, so that an harmless mail could be
classi�ed as spam. Con�dentiality and privacy attacks attempt to steal information about the model or from the
data about other users for instance (see inversion attacks).

– Targeted vs. Untargeted attacks: targeted attacks aim to steer the prediction of a model towards a particular
value (e.g., a class), while non-targeted attacks aim to increase the rate of model misprediction regardless of
the value of the prediction.

There are several types of attacks, impacting all types of ML programs, which can be classi�ed in the above taxon-
omy:

– Evasion attacks:they are exploratory attacks that aim at manipulating the input data to get the attacker desired
output from the ML model. They can be targeted or untargeted, and have an impact on the availability and
integrity of systems. For example, in the case of a model performing object detection, an evasion attack may
consist in slightly perturbating the input image in such way that a human does not see the difference, but the
model fail to identify the object. Such perturbed images are called adversarial examples [14].

– Impersonate attacks:they are exploratory attacks that aim at deceiving the system by impersonating a sample
from another class. They have an impact on the availability and the integrity of the system.

– Poisoning attacks:they are causative attacks that aim at injecting malicious samples to the training dataset.
They have an impact on the availability and the integrity of the system.

– Inversion attacks: also called model stealing attacks, they aim at stealing information about the system in
order to reconstruct all or part of it (e.g., the training dataset). They have an impact on con�dentiality.

4.3.4. Testing Strategy perspective
A testing strategyconsists of atest case generator, a test oracleandtest adequacy criteria[21].
Test case generators[21, 38, 39] include input mutation approaches, random generation, manual generation,

search-based approaches, and adversarial example generators. Atest casecan be an input to the system or a scenario
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of use of the system that allows the evaluation of the system under certain conditions. In particular, an adversarial
example could be a test case when testing the security of the system.

Thetest oracle[21] is used to determine whether a test has been passed, i.e. whether the result returned by the
system is correct. A distinction is made betweenspeci�ed oracles, derived oracles, implicit oracles andhuman
oracles, as de�ned by Barr et al. [10]. Thus, a speci�ed oracle judges whether the behaviour of a system conforms to
a formal speci�cation. A derived oracle uses information derived from artefacts of the system (e.g., multiple system
executions) or properties and versions of the system. An implicit oracle relies on general, implicit knowledge and
requires neither domain knowledge nor a formal speci�cation.

Finally, thetest adequacy criterion[21, 38] is used to check the quality of the tests and to ensure that the system
has been thoroughly tested. This criterion is usually based on coverage metrics, but other methods have been adapted
to the machine learning domain, such as mutation testing [17, 48].

5. Implementation and tooling

The ontology was implemented using Protégé4 (version 5.5.0), which is an editor and a framework for creating
and managing ontologies. It includes tools to develop ontologies in various formats, to check their consistency and
to infer knowledge through reasoning. We used the OWL 2 Web Ontology Language to develop the ontology, as
recommended by the World Wide Web Consortium (W3C), and the inbuilt OWL reasoner HermiT (version 1.4.3).
SPARQL (SPARQL Protocol and RDF Query Language) is used to perform queries on this ontology, in order to
evaluate it and extract relevant knowledge about the testing of machine learning based systems.

As mentioned above, our goal is for this ontology to be a support for the testing of ML-based systems and the
development of new methods and tools adapted to these systems. Because of this dual purpose, the target users of
the ontology come from a variety of backgrounds and it is necessary to provide a tool that is suitable for everyone.
In order to make the ontology usable by users who are not familiar with Protégé and SPARQL, a web application
based on the Django web framework has been developed5 (Figure 2). This application (i) provide a graphical tool for
exploring the concepts and relationships of the ontology, (ii) automatically generates the relevant SPARQL queries
for a user who does not master this language, depending on his needs, (iii) allow the creation of custom SPARQL
queries by an experienced user, and (iv) facilitate the continuous improvement of the ontology by offering the
possibility for users to contribute. It was evaluated in a usability test, the results of which are reported in Section 6.3.

The graphical tool for ontology exploration is based on WebVOWL, a web application speci�cally designed for
the interactive visualisation of ontologies [49].

In order to allow the creation of queries using the SPARQL language, even by a non-initiated user, we have set
up a generic form. It contains the main concepts of the ontology, separated into the different perspectives of the
ontology (see Figure 2). To best guide the user, the use of drop-down lists is preferred. This also prevents any type
of typing error and ensures the existence of a concept or an individual in the ontology and, consequently, a solution
to the query. Once the form is validated (i.e., all �elds have a correct value), each �eld is processed and the SPARQL
query is generated, based on a mapping table (see Appendix A). Then, we use the Owlready2 API6 to execute the
newly created SPARQL query. The results of the queries are displayed on a result page, as shown in Figure 2. First,
a table lists the results returned by the query, with a description of the techniques that could be potentially used,
and a link to the original article if available, for further information. The results are, for the time being, ordered by
date, based on the assumption that older methods are more easily outdated. New metrics may be implemented in
the future to provide a better prioritisation of results. The next part shows all the form �elds that have been �lled in.
Finally, the grey box contains the query that was executed based on the form. This not only allows the user to check
the query, but also to retrieve it for customisation.

If the user is familiar with the SPARQL language and has mastered the various components of the ontology, a
separate page is available to execute custom SPARQL queries.

4https://protege.stanford.edu/
5Available at http://rationale.kereval.com/
6https://owlready2.readthedocs.io/en/v0.36/index.html
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Fig. 2. Screenshots of the web application: left, the form for automatic SPARQL query generation; top right, the ontology visualisation tool;
bottom right, a query result page.

6. Evaluation

Several approaches for the evaluation of ontologies have been proposed in the literature to ensure their quality and
correctness [50, 51]. In order to evaluate the proposed ontology and its tooling support, we assessed the following
quality criteria:

– Completeness: This criterion measures if the domain of interest is appropriately covered by the ontology [50].
In practice, this criterion is evaluated by mapping our ontology to the secondary studies found during the
knowledge acquisition phase.

– Validity: This criterion measures the ability of the ontology to provide reliable and consistent answers to a
set of questions using its terminology. The results from the ontology are compared with the results from the
literature in the �eld of security and safety testing of ML-based systems.

– Usability: This criterion assesses “the extent to which a product can be used by speci�ed users to achieve
speci�ed goals with effectiveness, ef�ciency and satisfaction in a speci�ed context of use” (ISO 9241-11,
1998). In our case, we check how the ontology and its user interface can be used in the preparation and planning
of tests of ML-based systems, and in the development of new methods and tools.

6.1. Completeness

Since we did not �nd any safety and security testing ontology for ML-based software systems in the literature,
the completeness criterion veri�es that our ontology integrates the knowledge that exists in the secondary studies
retrieved during the acquisition knowledge phase. Following corpus-based methods [50], a concepts alignment table
was constructed, based on the glossary built during the conceptualisation phase (see Section 4.3), with the main
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concepts from our ontology on the one hand, and the concepts from the secondary study corpus on the other (see
Table 5). This work was carried out by one author, with the assistance of the other authors for con�ict resolution
(e.g., possible missing terms).

Overall, our ontology covers all the concepts addressed in the secondary studies. However, there are some differ-
ences in the terms used. In particular:

– Use of the term adversarial: from Table 5, there seems to be a consensus around its use in the term "adversarial
model". However, this is not the case when talking about the characteristics of the adversarial model (goal,
knowledge, capability, strategy), and one can see the use of the words adversary or attacker, for example. For
the sake of consistency, we choose to keep the use of 'adversarial'.

– Use of the term generator, instead of generation in the concept "Test case generator": there is a difference in
meaning between the two terms. In our case, we are not talking about the action of generating test cases, but
about the method or process used to do so.

– Use of the term metric, instead of criterion in the concept "Test adequacy metric": there is a difference in
meaning between the two terms. A metric refers to the way in which a measurement is made, while a criterion
is a judgement about the measurement (or a speci�c value returned by the metric).

In addition, where there is no consensus in the literature as to which term to use, the most frequently used term (i.e.,
that with more appearances in the reviewed secondary studies) was considered.
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Table 6

Questions to the ontology

Category Question Extract of the results

Risk analysis

What are the threats to the system ?
SELECT ?threat WHERE { ?threat a/rdfs:subClassOf *
ML_Testing:Threat . }

Privacy Violation, Integrity Viola-
tion, Availability Violation, Con�-
dentiality Violation, Failure

What are the attacks that could lead to an "availability violation"?
SELECT ?attack WHERE { ?attack ML_Testing:induces
ML_Testing:Availability_Violation . }

FGSM, DeepFool, JSMA, C&W,
ZOO, UAP

What is the adversarial model associated with an "FGSM" attack?
SELECT ?goal, ?knowledge, ?capability, ?strategy
WHERE { ML_Testing:FGSM ML_Testing:induces ?goal .
ML_Testing:FGSM ML_Testing:isLimitedBy ?knowledge .
ML_Testing:FGSM ML_Testing:usesAttackVector
?capability .
ML_Testing:FGSM ML_Testing:isOptimizedBy ?strategy .
}

Goal: Availability violation, In-
tegrity violation
Knowledge:Complete knowledge
Capability: Architecture, model
Strategy: One-shot strategy

Threat mitigation
proposal

What defences can be put in place against "availability violation"?
SELECT ?defence WHERE { ?defence
ML_Testing:protectsAgainst
ML_Testing:Availability_Violation . }

Adversarial training, data sanitiza-
tion, defensive distillation

Test strategy
development

What approaches can be used to check the safety property "local robustness"?
SELECT ?approach WHERE { ?approach
ML_Testing:verifies ML_Testing:Local_Robustness . }

Metamorphic testing, DeepXplore,
DeepTest, DeepRoad

What generators are used by those test strategies to generate test input data?
SELECT ?generator WHERE { ?approach
ML_Testing:verifies ML_Testing:Local_Robustness .
?approach ML_Testing:hasTestCaseGenerator ?generator
. }

Metamorphic relation, Gradient-
guided local search, af�ne transfor-
mation, UNIT

Which test oracles are used in those test strategies?
SELECT ?oracle WHERE { ?approach ML_Testing:verifies
ML_Testing:Local_Robustness .
?approach ML_Testing:hasOracle ?oracle . }

Metamorphic oracle, differential or-
acle

What are the existing metrics for test adequacy?
SELECT ?metric WHERE { ?metric a/rdfs:subClassOf *
ML_Testing:Test_adequacy_metric . }

Mutation score, Surprise Adequacy
coverage, Scenario coverage, Neu-
ron coverage

6.2. Validity

One way to evaluate the ontology validity is to ask speci�c informal and formal questions, and check the reliability
and consistency of its answers with respect to the literature on the subject. To do so, the ontology was applied to the
computer vision and we manually populated the ontology with individuals (i.e. concepts instances) related to this
domain.

This section lists several questions that software testers are likely to ask when planning tests of an ML-based
system. The questions relate to: risk analysis, threat mitigation proposal, and test strategy development. Each ques-
tion is expressed informally in natural language and formally using the SPARQL language. Table 6 summarizes the
questions and the answers from the ontology. An equivalent version, using the web application form, is available in
Appendix B. However, in its current version, the web form does not allow to speci�cally search for threats, adver-
sarial model, test case generators or metrics. While waiting for these options to be implemented, users wishing to
perform such searches should use the custom SPARQL query form.

The results returned by the queries are found in the literature on the subject. This shows the different aspects
that ontology can deal with and reason about, as well as how it can be exploited in the context of testing ML-based
systems. Through a use scenario in the �eld of computer vision, the ontology was shown to be able to deliver the
necessary knowledge to software testers.
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Fig. 3. Usability test activities

6.3. Usability

In this section, we present a usability test of the ontology web application. The main idea is to answer the follow-
ing question :Is the web application a usable tool to support the deployment of the ontology?

The test was developed and conducted according to the ISO/IEC 25062:2006 standard [52], which provides a
Common Industry Format (CIF) for usability test reports. In the following, we present the method and the results.

6.3.1. Method
The usability test was designed as a process with four activities, as shown in Figure 3. While the �rst activity was

carried out by the authors, the next three were carried out by the participants autonomously and asynchronously, via
an online form7. In the following, each of these activities is detailed.

Participant's selection. In order to cover all the target users of the application as well as possible, we selected
participants with various occupation and �elds of activity. Thus, four engineers, one assistant professor, four PhD
students and one graduate student participated in this study. All participants were familiar with software testing or
ML development.

Pre-test questionnaire.After a short presentation of the objectives of the test, participants were requested to com-
plete a pre-test questionnaire related to their background and their ML development and software testing experi-
ence. This questionnaire was designed using a Likert scale, which had a �ve-point format: (1) strongly disagree,
(2) somewhat disagree, (3) neither agree nor disagree, (4) somewhat agree, and (5) strongly agree. In addition to
collecting information about their experience in software testing and machine learning, the objective was to �nd out
whether the participants had ever manipulated ontologies and, since the application is available online, whether they
had had the curiosity to use it prior to the test – only two participants reported so.

Experiment. The participants were asked to perform three different tasks related to (i) the visualisation of the
ontology, (ii) the automatic query form, and (iii) the SPARQL query tool. During the �rst task, participants were
asked to inspect the graph of the ontology using the graphical tool. Then, they were asked four questions about
the concepts of the ontology. To answer these questions, they had to use the information in the graphical tool. The
second task was about using the form to automatically generated queries. Three usage scenarios were proposed to
the participants who then had to �ll in the form and obtain a result according to the scenario. The last task was about
using the SPARQL query tool: participants had to �rst run a query written in SPARQL and then modify it to obtain
new results. This task was designed so that no speci�c knowledge of the SPARQL language was required.

Post-test questionnaire.After the experiment, the participants were submitted a post-test questionnaire, which
included questions about (i) experiment environment (external factors), (ii) web application design (visual design,
interaction design, and features), (iii) ontology terminology, and (iv) overall satisfaction when using the application.

6.3.2. Results
Metrics. As stated in the ISO/IEC 25062:2006 standard [52], usability is measured by three type of metrics: ef-
fectiveness, ef�ciency, and satisfaction. For the effectiveness, we recorded task completion rate (i.e., percentage
of the task goals being completely and correctly achieved by the participants), and errors (de�ned as a task being
wrongly completed). In particular, for task 2, a participant could have completed the task objective (e.g., obtained

7https://forms.gle/uphb6EJDhnZ8sMDN7
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Table 7

Participants' performance result summary

Completion rate Errors Total task time (min) Ef�ciency

Mean 87.8 1.6 26 4.0

Standard dev. 9.2 0.9 15.4 1.2

Standard error 2.9 0.3 4.9 0.4

Min 77.8 0.0 17.0 1.1

Max 100.0 3.0 71.0 5.3

Fig. 4. Participants' average time (minutes) to complete each task

the correct output), but made an error in �lling in the form (e.g., if a �eld can take two values). For the ef�ciency,
we recorded task time (i.e., the amount of time to complete each task), and completion rate ef�ciency (de�ned as
completion rate/mean time-on-task). Finally, satisfaction is assessed through the post-test questionnaire. In particu-
lar, we measure the participant's perception of clarity and understandability, usefulness, ease of use, and subjective
satisfaction.

Performance results. On average, participants completed 88% of the tasks (see Table 7) and made at least one
error during the test. A total of 16 errors were made by the participants, 10 of which during the second task, as they
�lled in a �eld instead of leaving it blank. However, such errors were mostly benign, as they had no impact on the
task goal itself (i.e., the query generation and the results). The 6 remaining errors were made during the task 1, as
the participants did not �nd the correct answers while exploring the ontology. Figure 4 shows that the participants
spent most of the time on the �rst two tasks, which corroborates the fact that these tasks were the most complex.
Participants also equally rated these tasks as the most dif�cult of the three, on average, in the post-test questionnaire.

Satisfaction results. Satisfaction results were obtained from the post-test questionnaire answers. Scores between 0
and 5 were given to each participants, based on their answers to 16 questions, to measure their perception of: clarity
and understandability, usefulness, ease of use, and subjective satisfaction. In particular, 7 questions were related
to clarity and understandability, 4 questions to usefulness, 4 questions to ease of use, and 1 question to subjective
satisfaction. Each of the questions had equal weight in the �nal score. Figure 5 shows the average satisfaction scores.

Overall, the participants were satis�ed with their use of the application, with an average score of 4. The lowest
satisfaction result was about clarity and understandability, with scores ranging from 1.4 to 5 and an average of 3.7
(see Table 8). Some participants indicated that they were not always familiar with some of the terms used in the form.
Tooltips with de�nitions were available for each of the terms, but in view of the feedback we will highlight them
further. The graphical ontology visualisation tool and the form for automatic query generation were the features that
participants found most useful (with 5 votes each).

6.4. Threats to validity

In the following, we report the threats to validity of our work and how we mitigated them according to the
classi�cation proposed by Wohlin et al. [53].
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Table 8

Participants' satisfaction result summary

Clarity and understandability Usefulness Ease of use Subjective satisfaction

Mean 3.7 4.2 3.9 4.0

Standard dev. 1.4 0.6 0.5 0.6

Standard error 0.4 0.2 0.2 0.2

Min 1.4 3.0 2.8 3.0

Max 5.0 5.0 4.8 5.0

Fig. 5. Participants' average satisfaction scores

6.4.1. Conclusion Validity
Threats to conclusion validity affects the ability to draw correct conclusions about relationships between the

treatment and the outcome of an experiment.
The main threat to conclusion validity, regarding the ontology evaluation, is the fact that some satisfaction results

of the usability test may not be based on statistical relationships, but rather on qualitative data. As satisfaction de-
scribes a user's subjective response (in terms of behaviour and opinion) when using a product, qualitative research
methods are well suited. In addition, to mitigate this threat, we have followed the the ISO/IEC 25062:2006 stan-
dard [52] recommendations regarding the evaluation of satisfaction. In particular, Likert scales and custom satisfac-
tion metrics are used to obtain quantitative data from the qualitative answers.

6.4.2. Internal Validity
Internal validity threats are other factors, apart from the treatment, that may have caused the outcome of the

experiment, and of which we have no control or have not measured.
The main threat to internal validity, regarding the ontology evaluation, is the fact that the web application is

available online. Participants could have accessed the website before taking the test, and obtained better results due
to a better familiarity with the tool. To ensure that this was not the case in our study, we speci�cally asked the
question in advance of the tests.

6.4.3. Construct Validity
Construct validity focus on the relation between the theory underlying the experiment, and the settings and ob-

servations of the experiment. The main threat to construct validity is that the experiments may under-represent
reality.

In the case of the validity evaluation of the ontology, the experiment was conducted on a single application domain
– computer vision – and a list of questions was established based on our knowledge. However, according to Riccio
et al. [21], most of the techniques proposed to test ML-based systems are domain-agnostic, or apply to systems
falling into the �eld of computer vision, so that experiment should be representative of the reality.
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The design of the tasks for the usability test may also be affected by construct validity threats, as we need to
ensure that tasks are design for all the target users of the web application to be representative of reality. To mitigate
this threat, the tasks have been designed in such a way that no prior knowledge is required. In Task 2, de�nitions of
the terms used were available in the form. Task 3 involved a modi�cation of a SPARQL query that did not require
speci�c knowledge of the syntax or keywords of the language.

6.4.4. External Validity
External validity threats limits the ability to generalize the results outside the scope of the experiment.
Possible external threats include the fact that the usability test participants sample may not be fully representative

of the target users population. In fact, the number of participants to the usability test may seem relatively small.
However, the ISO/IEC 25062:2006 standard states that eight or more subjects are recommended [52]. In addition,
it was ensured that the background and occupations of the participants adequately covered the scope of the target
users.

Another threat to external validity may be that, since the usability test was conducted remotely, we could not
control the participants' environment. However, we ensured in the �rst two questions of the post-test questionnaire
that the participants had an conducive environment to carry out the experiment and that they were not distracted in
any way.

7. Conclusion and future work

This paper presents RATIONALE, an ontology for safety and security testing of ML-based systems that aims
to help practitioners select, compare, evaluate and develop test methods. RATIONALE is organised around several
perspectives: the system under test and its defence and error mitigation mechanisms, intentional or accidental threats,
security from an attacker's point of view, and the test strategy. The completeness and validity of this ontology
was assessed against the outcomes of secondary studies on the subject. A web application was also developed to
facilitate its use. It provides a graphical tool for exploring the concepts and relationships of the ontology, as well as
forms to automatically generate relevant SPARQL queries and to query the ontology. A usability test demonstrated
that the ontology and its application helps practitioners in �nding suitable tools or methods for their needs. In this
way, RATIONALE is a �rst step towards a comparative framework to support the testing of ML-based systems and
accelerate the development of new methods and tools adapted to machine learning based systems.

In future work, it is planned to further populate the ontology, with testing methods applied to a wider range
of domains, and to continuously improve it. For this purpose, the web application offers the possibility for the
users to contribute, by giving feedback and proposing new instances, concepts or relationships. The feedback from
the community will also help us to improve the web application through more user-friendly results and different
prioritization criteria according to the needs of practitioners.
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Appendix A. Example of mapping between form �elds and SPARQL query snippets

In that example, we consider that the information sought by the user is an attack. That is, he answered “Attack”
to the question “What you would like to know?”. This �rst information is used to complete the header of the query:
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Table 9

Mapping table for an "Attack" query

Field Corresponding SPARQL query snippet

?x a/(owl:intersectionOf/rdf:rest+/rdf:first) *
Task /owl:someValuesFrom/(owl:intersectionOf/rdf:rest * /rdf:first) *

?ptask . ?ptask owl:onProperty ML_Testing:performs ; owl:hasValue

?x a/(owl:intersectionOf/rdf:rest+/rdf:first) *
Data type /owl:someValuesFrom/(owl:intersectionOf/rdf:rest * /rdf:first) *

?pdata . ?pdata owl:onProperty ML_Testing:Data_Type ; owl:hasValue

ML algorithm ?x ML_Testing:appliesTo

ML model type ?x ML_Testing:appliesTo

?x a/(owl:intersectionOf/rdf:rest+/rdf:first) *
Access /owl:someValuesFrom/(owl:intersectionOf/rdf:rest * /rdf:first) *

?paccess . ?paccess owl:onProperty ML_Testing:hasAccess ; owl:hasValue

Intentional threat ?x ML_Testing:induces

Test case generator ?x ML_Testing:generates

Targeted phase ?x ML_Testing:targetsPhase

Adversarial knowledge ?x ML_Testing:isLimitedBy

Adversarial strategy ?x ML_Testing:isOptimizedBy

Adversarial capability ?x ML_Testing:usesAttackVector

Adversarial goal ?x ML_Testing:induces

PREFIX ML_Testing: <urn:absolute:ML_Testing#>
SELECT ?x ?desc ?link WHERE {
?x a ML_Testing:Attack .

Then, the rest of the query is determined according to the �elds that have been �lled in, as shown in Table 9. The
value of the �eld is added at the end of the corresponding SPARQL query snippet to form a complete query. If a
�eld missing from this table has been completed, its value is simply ignored. When a �eld value can be used via
multiple relationships within the ontology, alternatives are also included in the query.

Finally, the end of the query allows to retrieve a de�nition and a link an article related to the searched individual
or class. This information is contained in annotations called "comment" and "seeAlso" in the ontology:

?x rdfs:comment ?desc .
?x rdfs:seeAlso ?link . }

Appendix B. Validity results using the web application form

In its current version, the web application form does not allow to speci�cally search for threats, adversarial
model, test case generators, test oracles or metrics. Thus, using the form, we only provide answers for the following
questions.

B.1. Q1: What are the attacks that could lead to an "availability violation"?

The result page of the web application is shown in Figure 6. Only three �elds have been �lled in the form, the
others have been left empty:

– Looking for...: Attack
– Threat type: Intentional threat
– Intentional threat : Availability violation
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Fig. 6. Result page for Q1

B.2. Q2: What defences can be put in place against "availability violation"?

The result page of the web application is shown in Figure 7. Only three �elds have been �lled in the form, the
others have been left empty:

– Looking for...: Threat Mitigation Strategy
– Threat type: Intentional threat
– Intentional threat : Availability violation

B.3. Q3: What approaches can be used to check the safety property "local robustness"?

The result page of the web application is shown in Figure 8. Only three �elds have been �lled in the form, the
others have been left empty:

– Looking for...: Testing Approach
– Veri�ed requirement : Safety requirement
– Safety requirement: Local robustness
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