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Abstract. Traditional approaches for querying the Web of Data involve centralised warehouses that replicate remote data. Con-
versely, Linked Data principles allow for answering queries live over the Web by dereferencing URIs to traverse remote data
sources at runtime. A number of authors have looked at answering SPARQL queries in such a manner; these link-traversal based
query execution (LTBQE) approaches for Linked Data offer up-to-date results and decentralised (i.e., client-side) execution, but
must operate over incomplete dereferenceable knowledge available in remote documents, thus affecting response times and “re-
call” for query answers. In this paper, we study the recall and effectiveness of LTBQE, in practice, for the Web of Data. Further-
more, to help bridge data heterogeneity in diverse sources, we propose lightweight reasoning extensions to help find additional
answers. From the state-of-the-art which (1) considers only dereferenceable information and (2) follows rdfs:seeAlso links, we
propose extensions to consider (3) owl:sameAs links and reasoning, and (4) lightweight RDFS reasoning. We then estimate the
recall of link-traversal query techniques in practice: we analyse a large crawl of the Web of Data (the BTC’11 dataset), looking
at the ratio of raw data contained in dereferenceable documents vs. the corpus as a whole and determining how much more raw
data our extensions make available for query answering. We then stress-test LTBQE (and our extensions) in real-world settings
using the FedBench and DBpedia SPARQL Benchmark frameworks, and propose a novel benchmark called QWalk based on
random walks through diverse data. We show that link-traversal query approaches often work well in uncontrolled environments
for simple queries, but need to retrieve an unfeasible number of sources for more complex queries. We also show that our rea-
soning extensions increase recall at the cost of slower execution, often increasing the rate at which results returned; conversely,
we show that reasoning aggravates performance issues for complex queries.
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1. Introduction

A rich collection of RDF data has been published on
the Web as Linked Data, by governments, academia,
industry, communities and individuals alike [34]. Such
publishing is governed by four Linked Data Principles,
here paraphrasing Berners Lee [4]:

LDP1: use URIs to name things, such that
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LDP2: those URIs can be dereferenced via HTTP,
such that

LDP3: dereferencing yields useful RDF content about
that which is named, such that

LDP4: the returned content includes links (mentions
external URIs) for further discovery.

The resulting collective of interlinked contributions
from a wide variety of publishers has been dubbed the
“Web of Data”: a novel corpus of structured data dis-
tributed across the entire Web, described using the Se-
mantic Web standards and made available to all under
the above Linked Data principles.
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On the Web of Data, the URIs that are used to name
resources (often) map through HTTP to the physical
location of structured data about them. As such, the
Web of Data itself can be viewed as forming a scale-
free, decentralised database, consisting of millions of
Web documents exposing (or one could even say in-
dexing) structured data [6, 32, 56]. Further still, thanks
to the provision of typed “RDF links” between such
documents [34, § 4.5], agents can traverse and navi-
gate the Web of Data to discover related information in
an ad hoc manner.

Given this rich collection of diverse structured data,
an open challenge is how to query this Web of Data
in an efficient and effective manner. SPARQL [49]—
the W3C standardised RDF query language—provides
a powerful declarative means to formulate structured
queries over RDF data. However, processing SPARQL
queries over the Web of Data broaches many technical
challenges. Traditional centralised approaches cache
information from the Web of Data in local optimised
indexes, executing queries over the replicated content.
However, maintaining up-to-date coverage of a broad
selection of the Web of Data is exceptionally costly;
centralised caches of the Web of Data must settle for
either limited coverage and/or for indexing some out-
of-date information [62]. Thus, if a source is missing
from the replicated index or if the remote version of
the source has changed since index time, users of the
centralised query engine will often encounter stale or
even missing results [62].

As opposed to considering a monolithic RDF graph,
SPARQL encodes the notion of Named Graphs, which
(loosely) corresponds to a means of logically partition-
ing some RDF corpus, such that combinations of parti-
tions can be queried in isolation. Often, these partitions
are based on the provenance of data, with the named-
graph URI corresponding to the location from which
an RDF document is retrieved; e.g., a Web location.1

Thus, given a (HTTP) correspondence between graph
names and addresses, SPARQL over the Web of Data
could be supported by means of live querying such that
the content of these graphs is retrieved from the Web
and processed at runtime to generate answers. By cir-
cumventing the need for replicated indexes and instead
accessing remote data in situ, live querying would no
longer suffer problems with incomplete or stale data.

1More correctly, SPARQL operates over Internationalized Re-
source Identifiers (IRIs), but we stick with the more familiar notion
of “URIs” for readability.

However, SPARQL semantics considers a fixed
dataset from which to generate query answers, whereas
live querying explores an a priori unbounded Web of
Data for on-the-fly answers without ever considering
the dataset it operates over in its entirety. Furthermore,
SPARQL queries need not specify the graphs (using,
e.g., FROM, FROM NAMED or GRAPH clauses) over which it
should be run; oftentimes, queries are run over a de-
fault graph informally considered to consist of a merge
of all sources. Thus, given a SPARQL query with-
out any explicit graphs mentioned, a live query en-
gine would still need to automatically determine which
sources on the Web of Data could be query-relevant.

For finding such sources, the live query engine could
leverage Linked Data principles, which state that URIs
should be dereferenceable and give follow-your-nose
cues as to where RDF data about a given resource
(mentioned in queries or in intermediate results) might
be found on the Web of Data. As of yet, SPARQL
does not formally leverage the former set of princi-
ples. However, this observation prompted Hartig et
al. [29] to investigate using dereferenceable URIs in
the query—and recursively, in the intermediate results
of the query—to automatically determine a focused set
of sources which, by Linked Data principles, are likely
to help answer a SPARQL query. These query-relevant
sources are then retrieved and used to generate answers
to the user query, and possibly recursively, to traverse
links and find further query relevant sources. When op-
erating over sufficiently compliant Linked Data, their
approach bypasses the need for source graphs to be
replicated locally or to be explicitly named in the orig-
inal SPARQL query and allows for new sources to be
discovered in an ad hoc manner by traversing links at
query time. Later work by Hartig [27] calls this par-
ticular live querying approach: “Link Traversal Based
Query Execution” (which we abbreviate to LTBQE).

However, in the LTBQE approach, remote lookups
can often taken seconds to yield content, many lookups
may be required, and subsequent lookups to the same
remote server may need to be artificially delayed to
ensure “polite” and sustainable consumption (i.e., to
avoid inadvertent denial-of-service attacks). In the live
querying scenario, remote sources are accessed while
a user is waiting for answers to their queries: thus
response times are often (necessarily) much slower
when compared with centralised query engines operat-
ing over locally replicated content. Thus, a core chal-
lenge for LTBQE is to retrieve a minimal number of re-
mote sources (to keep response times low) while max-
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imising the number of answers returned; the approach
relies on Linked Data principles as cues to identify a
minimal amount of sources that maximise results. Re-
latedly, the success of LTBQE is premised on the as-
sumption that most (or ideally all) query relevant data
about a resource can be found in its respective deref-
erenced document; as we show later, this assumption
only partially holds.

Herein, we look at the recall of LTBQE in prac-
tice and propose extensions to find additional an-
swers. In particular, we propose that lightweight rea-
soning extensions—specifically relating to owl:sameAs
and RDFS semantics—can help to “‘squeeze” addi-
tional answers from sources, to find additional query-
relevant sources, and to generally bridge diversity be-
tween different data providers on the Web of Data.
We apply analysis over a large sample of the Web
of Data to get insights into what ratio of raw data is
available to LTBQE through dereferenceable princi-
ples vs. raw data in the entire corpus; we also anal-
yse to what extent our proposed extensions make ad-
ditional query-relevant data available. We then apply
LTBQE and our extensions to three different SPARQL
query benchmarks to stress-test how the approaches
work in real-world, uncontrolled settings. In general,
we find that LTBQE works best for simple queries that
require traversing a handful (∼≤ 100) sources. We
also show that our reasoning extensions often help to
find additional answers at the cost of increased query
time, but can run into trouble when accessing data
from domains such as DBpedia (which has a high fan-
out of owl:sameAs and schema level links) and exacer-
bate performance issues with complex queries.

Paper contributions and structure. This paper is an
extended version of previous work [60] where we orig-
inally proposed and evaluated our reasoning exten-
sions. Herein, we additionally propose different mech-
anisms for dynamically importing schema data, add
two more benchmarks for testing LTBQE and its ex-
tensions, and greatly extend discussion, particularly in
the context of related work and the performance of LT-
BQE in uncontrolled environments.

More concretely, this paper is structured as follows:

§ 2 We first present some background work in the
area of Linked Data querying and reasoning.

§ 3 We present some formal preliminaries for RDF,
Linked Data, SPARQL, RDFS and OWL.

§ 4 We reintroduce the LTBQE approach using con-
crete HTTP-level methods.

§ 5 We introduce LiDaQ (Linked Data Query en-
gine): our implementation of LTBQE, which em-
ulates the iterator-based model of SQUIN [29],
but also features novel reasoning extensions and
optimisations.

§ 6 We analyse a crawl of ∼7.4 m RDF/XML doc-
uments from the Web of Data (viz., the BTC’11
dataset), looking at the ratio of triples returned in
documents dereferenced to by some URI vs. all
data available about that URI in the entire sample;
we also look at how much more raw dereference-
able data our reasoning extensions make available
to LTBQE.

§ 7 We give an overview of current SPARQL bench-
marks that can be run against real-world Linked
Data sources, and survey how related Linked Data
querying papers evaluate their works. We propose
a novel benchmark methodology called QWalk,
which addresses shortcomings of existing bench-
marks.

§ 8 We test LTBQE and its extensions for three query
benchmarks in a realistic, uncontrolled setting,
presenting detailed measures comparing perfor-
mance, result sizes, sources accessed, and so
forth.

§ 9 We conclude with a summary of contributions
and remarks on future directions.

2. Background and Related Work

Our work relates to research on querying over RDF
data; more precisely, we focus on executing SPARQL
queries over the Web of Data in a manner adhering
to the Linked Data principles. A very comprehensive
and detailed overview about the existing different ap-
proaches to query Linked Data was recently published
by Hose et al. [37]. We similarly classify relevant
query approaches into three categories:

1. materialised systems and data warehouses,
2. systems which federate SPARQL engines and
3. live query approaches.

Although our own work falls into the third category,
in order to provide a broader background, in this sec-
tion we also summarise developments in the first two
categories. We focus throughout on the execution of
SPARQL queries against the Web of Data.

With respect to the extensions that we propose for
LTBQE, our work also relates to ongoing research into
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reasoning approaches that are tailored for execution
over Web data. We thus also cover some background
research and techniques in this area.

2.1. Materialised Systems

Materialised query-engines locally replicate the
content of remote Web of Data sources in a quad store
and execute SPARQL queries over the local copy. Such
approaches typically feature a crawler or other data
acquisition component which, e.g., follows links be-
tween documents to discover new information, and/or
downloads documents which have been requested for
indexing by remote parties. The primary targets for
such materialised engines are:

1. to have as much coverage of the Web of Data as
possible,

2. to keep results up to date, and
3. to be able to process potentially expressive (i.e.,

expensive) SPARQL queries in an efficient man-
ner and with high concurrency.

These objectives are (partially) met using distribution
techniques, replication, optimised indexes, compres-
sion techniques, data synchronisation, and so on [8,17,
25, 46]. Still, given that such services often index mil-
lions of documents, they require large amounts of re-
sources to run. In particular, maintaining a local, up-
to-date index with good coverage of the Web of Data
is a Sisyphean task.

In previous years, we supported such a service pow-
ered by YARS2 [25] allowing for querying over mil-
lions of RDF Web documents (and some of their
entailments), but have since discontinued the end-
point due to prohibitive running and maintenance
overheads (in a research setting). Current centralised
SPARQL endpoints harvesting Linked Data include
“FactForge” [7]2 (powered by BigOWLIM [8]), Open-
Link’s LOD cache3 and Sindice’s “Semantic Web In-
dex” [46]4 (both powered by Virtuoso [17]).

Unlike these materialised approaches, the LTBQE
approach and our extensions do not require all content
to be indexed locally prior to query execution.

2http://factforge.net/sparql
3http://lod.openlinksw.com/sparql
4http://sparql.sindice.com/

2.2. SPARQL Federation

Given the recent spread of independently operated
SPARQL endpoints on the Web of Data hosting vari-
ous closed datasets with varying degrees of overlap5,
federated SPARQL querying is enjoying growing at-
tention in the research community. The core idea is
to execute queries over a federation of endpoints: to
split an input query, send the relevant sub-queries to
individual (and possibly remote) endpoints in situ, and
subsequently merge and process the final result set.

A primary challenge for federated SPARQL engines
is to decide which parts of a query are best routed
to which endpoint. Some systems—such as SPARQL-
DQP [3]—require that sub-queries are annotated with
the SPARQL 1.1 SERVICE keyword, which allows
users to invoke remote endpoints and, more generally,
to state which parts should be routed where.

Other federated SPARQL engines locally index
“service descriptions” or “catalogues”, which describe
the contents of remotes endpoints and are used to split
and route sub-queries without explicit SERVICE annota-
tions [50]. One of the earliest works going in this direc-
tion (and which predated SPARQL by over three years)
was by Stuckenschmidt et al. [57], who proposed sum-
marising the content of distributed RDF repositories
using schema paths (non-empty property chains). The
SemWIQ [42] architecture uses counts of the exten-
sion of each class and property in an endpoint to cre-
ate a catalogue used for routing queries; later work ex-
tended the set of available statistics using a tool called
RDFStats [41], which also provides histograms cover-
ing e.g., subjects or data types, as well as estimated car-
dinalities of selected (sub-)queries. SPLENDID [21] is
another federation infrastructure, which uses the Vo-
cabulary of Interlinked Datasets (VoID) to describe
the content of endpoints [1]. An alternative to pre-
computed service descriptions—used by FedX [54]
and SPLENDID—is to instead probe SPARQL end-
points with ASK sub-queries to see if they have relevant
information during query-time; this information can be
cached and re-used.

In recognition of the growing popularity of feder-
ated SPARQL, the SPARQL 1.1 W3C Working Group
has added some new federation features [24]. As al-
ready mentioned, the SERVICE keyword can be used
to invoke remote endpoints [24], and the new VALUES
(previously known as BINDINGS) feature can be used
to “ship” batches of intermediate bindings to an end-

5http://www4.wiwiss.fu-berlin.de/lodcloud/state/

http://factforge.net/sparql
http://lod.openlinksw.com/sparql
http://sparql.sindice.com/
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
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point [24]. In addition, the “SPARQL 1.1 Service De-
scription” proposes a vocabulary for describing the
functionalities and datasets of SPARQL endpoints in a
standard way [67].

Like the LTBQE approach and our proposed exten-
sions, federated SPARQL engines may involve retriev-
ing content from remote sources at runtime. However,
unlike federated SPARQL, our work operates over raw
data sources on the level of HTTP, and does not require
the availability of SPARQL interfaces.

2.3. Live Linked Data Querying

Live querying approaches access raw data sources
at runtime to dynamically select, retrieve and build a
dataset over which SPARQL queries can be evaluated.
Conceptually, Ladwig & Tran [39] identify three cat-
egories of such approaches: (i) top-down query evalu-
ation, (ii) bottom-up query evaluation, and (iii) mixed
strategy query evaluation.

Top-down evaluation determines the query relevant
sources before the actual query execution using knowl-
edge about the available sources stored in a so-called
“source-selection index”. These source-selection in-
dexes can vary from simple inverted-index struc-
tures [43, 46], to query-routing indexes [59], schema-
level indexes [57], and lightweight hash-based struc-
tures [61].

The bottom-up query evaluation strategy involves
discovering query-relevant sources on-the-fly during
the evaluation of queries. The LTBQE approach [29]
and the work in the present paper fall into this cate-
gory. A “seed set” of remote query-relevant sources
are dereferenced from URIs mentioned in the query;
links are followed from these initial sources to find fur-
ther query relevant sources and to find more answers
or satisfy additional sub-goals in the query; the process
continues recursively until all known query-relevant
sources have been exhausted. Since no local index is
required, this approach can be used in decentralised
scenarios, where clients can execute queries remotely
over the Web without accessing a centralised service.
The unique challenges for such an approach are (i) to
find as many query-relevant sources as possible to im-
prove recall of answers; (ii) to conversely minimise
the amount of sources accessed to avoid traffic and
slow query-response times; (iii) to optimise query ex-
ecution in the absence of typical selectivity estimates,
etc. [27, 29]. In this paper, we focus on the first two
challenges. The theoretical foundation for LTBQE was

later published by Bouquet et al. [12] and further de-
veloped by Hartig et al. [28, 30]. We will elaborate
more upon the LTBQE approach in Section 4.

As its name suggests, the third strategy, the mixed
approach, combines top-down and bottom-up tech-
niques. This strategy uses (in a top-down fashion)
some knowledge about sources to map query terms
or query sub-goals to sources which can contribute
answers, then discovering additional query relevant
sources using a bottom-up approach [39]. There is
still huge variance possible between the different ap-
proaches, targeting different scenarios and use-cases.
For example, the traditional inverted index proposed
by Sindice [46] is still very much a lightweight ver-
sion of a centralised service. Conversely, our hash-
based data summaries approach [61] is more geared
towards lightweight, client-side processing. Depend-
ing on the particular approach taken, challenges may
vary (as before) between those identified for top-down
and bottom-up strategies; for example, keeping local
knowledge up-to-date, or identifying a low number of
query-relevant sources, etc.

2.4. Hybrid and Navigational Query Engines

Moving towards a mature Linked Data query-
answering system, one could thus consider a com-
bination of approaches, where each has its comple-
mentary advantages and disadvantages. An interesting
and relatively novel research area would then be in-
vestigating how to combine local and remote query-
ing techniques—both on a theoretical, engineering,
and social level—to complement the fast but poten-
tially stale results of a centralised engine with slower
but fresher live results. A number of works have
tackled this combination on a variety of levels (see,
e.g., [32, 40, 62]). We see a lot of promise in this di-
rection: we believe that the real strength of live query
approaches such as LTBQE lie in combination with
other query paradigms. In fact, we have already be-
gun to look at combining LTBQE with materialised
approaches for answering SPARQL queries [62]. For
example, using materialised or top-down approaches
seems well suited for relatively static data (e.g., DBpe-
dia, DBLP, etc.), whereas bottom-up approaches seem
better suited for dynamic data [63] (e.g., identi.ca, Mu-
sicBrainz, etc.) or for accessing potentially sensitive
remote data (which may require user-specific access
control at runtime), with hybrid strategies required to
effectively blend support for both.

In this light, various authors have also questioned
whether SPARQL is the right language to query the
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Web of Data: again, SPARQL is defined for closed
datasets and was originally proposed with materialised
settings in mind. Relatedly, there have been a num-
ber of proposals to extend SPARQL with regular ex-
pressions that capture navigational patterns, includ-
ing work by Alkhateeb et al. [2] and work on the
nSPARQL language [48].6 Recently, Fionda et al. [18]
proposed NautiLOD, a novel declarative language for
navigating paths in the Web of Data guided by regular
expressions over RDF predicates, using SPARQL ASK

queries to test some conditions over the data encoun-
tered (i.e., to find data matching a query), and allow-
ing to trigger some actions whenever some condition
is met. Such work goes beyond pure SPARQL query-
ing, but perhaps touches upon some of the broader po-
tential of consuming the Web of Data in a declarative
manner.

2.5. Reasoning over Web Data

In this paper, we propose lightweight reasoning ex-
tensions for LTBQE, which leverage (some of) the se-
mantics of the RDFS and OWL standards to perform
inferencing. As we will show, these extensions help
to compute additional answers from query-relevant
sources on the Web of Data, as well as helping to dis-
cover additional sources. We now cover some related
works in the area of reasoning over RDF Web data,
which use the RDFS and OWL standards to integrate
data from different sources based on the well-defined
links provided by publishers.

For the moment, we wish to investigate a terse pro-
file of reasoning which is useful for Web data. Along
similar lines, Glimm et al. [20] surveyed the use of
RDFS and OWL features in a large crawl of the Web
of Data (viz., BTC’11), applying PageRank over the
documents contained within and summating the rank
of all documents using each feature. They found that
RDF(S) features were the most prominently used.7 Out
of the OWL features, they found that owl:sameAs oc-
curred most frequently, though other features of OWL
like owl:FunctionalProperty had a higher rank: the
most broadly linked (and thus highly ranked) docu-
ments in the Web of Data are vocabularies, not the

6SPARQL 1.1 includes a similar notion called property paths [24].
7Respectively from features ranked 1–6: rdf:Property, rdfs:-

range, rdfs:domain, rdfs:subClassOf, rdfs:Class, rdfs:subProp-
ertyOf.

“data-level documents” in which owl:sameAs relations
frequently appear.

With respect to scalable and efficient rule-based rea-
soning over RDFS (and OWL), a number of authors
have proposed separating schema data (aka. termino-
logical data or T-Box) from instance data (aka. as-
sertional data or A-Box) during inferencing [35, 64,
66]. The core assumptions are that the volume of
schema data is much smaller than instance data, that
schema data are the most frequently accessed part
of the knowledge-base during reasoning, that schema
data are often more static than instance data, and that
schema-level inferences do not depend on instance
data. Where these assumptions hold, the schema data
can be separated from the main body of data and “com-
piled” into an optimised form in preparation for rea-
soning over the bulk of instance data. We use sim-
ilar techniques herein when computing RDFS infer-
ences: we consider schema data separately from in-
stance data.

Aside from pure efficiency and scalability concerns,
the freedom associated with publishing on the Web—
where anyone can say anything (almost) anywhere—
causes significant obstacles with respect to the trust-
worthiness of data when performing automated infer-
encing. On a schema level, for example, various ob-
scure documents on the Web of Data make nonsen-
sical definitions that would (naïvely) affect reasoning
across all other documents [11]. Various authors have
proposed mechanisms to incorporate notions of prove-
nance for schema data into the inferencing process.
One such procedure, called authoritative reasoning,
only considers the schema definitions for a class or
property term that are given in its respectively derefer-
enceable document [11, 13, 35]. We later use authori-
tative reasoning to avoid the unwanted effects of third-
party schema contributions during RDFS reasoning.
Delbru et al. [15] propose an alternative solution called
context-dependent reasoning (or quarantined reason-
ing), where a closed scope is defined for each doc-
ument being reasoned over, incorporating the docu-
ment itself and (recursively) other documents it im-
ports or links. Thus, obscure third party documents
cannot inject unwanted schema into the inferencing
process since they fall outside the quarantined scope.
We later use a similar import mechanism to dynami-
cally collect schemata from the Web during RDFS rea-
soning.

Our extensions involving owl:sameAs semantics do
not directly involve schema data, but rather look at re-
solving coreferent resources in the corpus. Various au-
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thors have looked specifically at the use and the quality
of use of owl:sameAs on the Web of Data [16, 23, 36].
Halpin et al. [23] look at the semantics and quality
of owl:sameAs links in Linked Data; manually inspect-
ing five hundred owl:sameAs relations sampled from the
Web of Data; they found that judges often disagreed on
what resources should (not) be considered the same.
They estimated an accuracy for owl:sameAs links—
where sameness could be confidently asserted for the
sampled relations—at around 51% (±21%). These fig-
ures were much more pessimistic than a similar anal-
ysis that we conducted of one thousand owl:sameAs re-
lations, where we asked a different question—is there
anything between these two resources to confirm that
they are not the same?—and where we estimated a re-
spective precision of 97.2% [36].8 We do not tackle
issues relating to the quality of owl:sameAs relations
in this work, but acknowledge this as a general and
orthogonal challenge for Linked Data researchers to
overcome [23, 36].

Finally, we are not the first work to look at in-
corporating reasoning into SPARQL querying over
the Web of Data. Various materialised approaches
for querying Linked Data have incorporated forward-
chaining rule-based techniques to additionally materi-
alise inferences over remote data. In previous years,
the SAOR reasoner [35] (used later) provided reason-
ing for the (now discontinued) YARS2 SPARQL in-
dex over RDF Web data. As already discussed, Sindice
uses context-dependent reasoning to complement their
local indexes [15]. Factforge incorporates reasoning
techniques for the selected subsets of Linked Data
that they index [7]. In terms of reasoning for live
querying approaches, in their top-down system, Li and
Heflin [43] also use reasoning techniques to perform
query rewritings, as well as to generate inferences and
find further results.

2.6. Novelty of Present Work

Having covered various aspects of background and
related work, we briefly highlight our novelty. First and
foremost, we evaluate the bottom-up LTBQE approach
using various benchmarks—all in an uncontrolled,

8This analysis was applied over pairs sampled from the closure
of same-as relations. During our analysis, we found many pairs of
resources for which very little knowledge was locally or externally
available (for one or both). If there was no information to suggest
that they were not the same, we would give this pair the “benefit of
the doubt”, taking the perspective that merging (aka. consolidating)
the resources would not cause any notable data issues.

real-world setting—to look at what kinds of practical
expectations one can have for answering queries di-
rectly over the Web of Data. Second, we propose and
evaluate reasoning extensions for LTBQE to find ad-
ditional sources on-the-fly, and to generate further an-
swers from inferences. To the best of our knowledge,
no other work has looked at evaluating live querying
approaches over diverse sources live on the Web, nor
has any other work looked at the benefits of incorporat-
ing reasoning techniques into a bottom-up live query
engine for the Web of Data.

3. Preliminaries

In this section, we cover some necessary preliminar-
ies and notation relating to RDF (§ 3.2), Linked Data
(§ 3.3), SPARQL (§ 3.4) and RDFS & OWL (§ 3.5).
Before we continue, however, we introduce a running
example used to explain later concepts.

3.1. Running Example

Figure 1 illustrates an RDF (sub-)graph taken from
five real-world interlinked documents on the Web of
Data.9 Prefixes for the abbreviated CURIE names
used in this section, and throughout the paper, are
available in Appendix C. The graph models informa-
tion about two real-world persons and a paper that
they coauthored together. One author is identified
by the URIs oh:olaf and dblpA:Olaf_Hartig and the
other by cb:chris and dblpA:Christian_Bizer. The URI
dblpP:HartigBF09 refers to the publication both authors
share. The five documents are as follows:

ohDoc:, cbDoc: refer to the personal FOAF profile doc-
uments that each author created for themselves;

dblpADoc:Olaf..., dblpADoc:Chris... refer to information
exported from the “DBLP Computer Science Bib-
liography”10 for each author, including a publica-
tion list;

dblpPDoc:HartigBF09 provides information about the
co-authored paper exported from DBLP.

Each document is available as RDF/XML on the Web.
Dereferenceable relationships between resources and
documents are highlighted in Figure 1. Excluding
cbDoc: (which must be looked up directly), the other
four documents can be retrieved by dereferencing the

9As last accessed on 2012-06-23.
10http://www.informatik.uni-trier.de/~ley/db/

http://www.informatik.uni-trier.de/~ley/db/
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ohDoc:

oh:olaf

Olaf Hartig

http://...

cb:chris

cb:chris

http://...
Chris Bizer

dblpA:Christian_Bizer

dblpP:HartigBF09dblpA:Olaf_Hartig dblpA:Olaf_Hartig

owl:sameAs
foaf:name

foaf:img Olaf Hartig

rdfs:label

owl:sameAs

foaf:name

foaf:depiction

dblpP:HartigBF09

foaf:knows foaf:maker

dblpP:HartigBF09"2009"^^xsd:gYear

foaf:Agent

rdf:type

dcterms:issued

dblpADoc:Olaf_Hartig

dblpADoc:Christian_Bizer

cbDoc:

rdfs:seeAlso

cbDoc:

dbpedia:Berlin

foaf:based_near

dblpA:Olaf_Hartig

dblpA:Christian_Bizer

foaf:maker

dblpA:Christian_Bizer
foaf:maker

dblpPDoc:HartigBF09

dereferencesdereferences

dereferences

foaf:maker

Christian Bizer

foaf:name

Fig. 1. Snapshot of a subgraph of five documents from the Web of Data. Individual documents are associated with individual background panes.
The URI of each document is attached to its pane with a shaded tab. The same resources appearing in different documents are joined using
“bridges”. Links from URIs to the documents they dereference to are denoted with dashed links. RDF triples are denoted following usual
conventions within their respective document.

foafSpec:

foaf:img

foaf:depiction

foaf:Person

foaf:Agent foaf:Image

foaf:name

geo:SpatialThingrdfs:label

foaf:based_near rdfs:domain

rdfs:range rdfs:subPropertyOf rdfs:subPropertyOf rdfs:subClassOf rdfs:subClassOf rdfs:range

rdfs:range

Fig. 2. Snapshot of an example schema document from the Web of Data, taken from the Friend Of A Friend (FOAF) Ontology. External terms
are represented in ellipses with dashed lines.

URI of their main resource; for example, dereferenc-
ing oh:olaf over HTTP returns the document ohDoc:

describing said resource.
In addition, Figure 2 illustrates a subset of RDFS

definitions in a “schema document” extracted from the
real-world FOAF ontology. Although we leave it im-
plicit, all terms in the foaf: namespace (including the
predicates and values for rdf:type represented in Fig-
ure 1) dereference to this document. The relations be-
tween classes and properties shown in this document
are well defined (using model-theoretic semantics) by
the RDFS standard and can be used for automated in-
ference [33].

3.2. RDF

In order to formally define our methods later, we
must first provide some standard notation for dealing
with RDF [33].

Definition 1 (RDF Term, Triple and Graph).
The set of RDF terms consists of the set of URIs U, the
set of blank-nodes B and the set of literals L (which in-
cludes plain and datatype literals). An RDF triple t :=
(s, p, o) is an element of the set G := UB×U×UBL
(where, e.g., UB is a shortcut for set-union). Here s is
called subject, p predicate, and o object. A finite set of
RDF triples G ⊂ G is called an RDF graph. We use
the functions subj(G), pred(G), obj(G), terms(G), to
denote the set of all terms projected from the subject,
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predicate, object and any position of a triple t ∈ G
respectively.

3.3. Linked Data

As mentioned in the introduction, the four Linked
Data principles [4] are as follows:

LDP1: URIs are used to identify things
LDP2: URIs should be dereferenceable through HTTP
LDP3: Useful RDF content should be provided when

URIs are dereferenced
LDP4: Include links by using external URIs for fur-

ther discovery

We now provide some notation which helps to for-
malise these principles and relate them to RDF. As
per [29], we currently do not consider temporal issues
with, e.g., HTTP-level functions.

Definition 2 (Data Source and Linked Dataset).
We define the http-download function get : U → 2G

as the mapping from URIs to RDF graphs provided by
means of HTTP lookups which directly return status
code 200 OK and data in a suitable RDF format. We
define the set of (RDF) data sources S ⊂ U as the set
of URIs S := {s ∈ U : get(s) 6= ∅}. We define a
Linked Dataset as Γ ⊂ get; i.e., a finite set of pairs
(s, get(s)) such that s ∈ S. The “global” RDF graph
presented by a Linked Dataset is denoted as

merge(Γ) :=
⊎

(u,G)∈Γ

G

where the operator ‘]’ denotes the RDF merge of RDF
graphs: a set union where blank nodes are rewritten
to ensure that no two input graphs contain the same
blank node label [33].

Example 1. Taking Figure 1, e.g., get(ohDoc:) =
{(oh:olaf:, foaf:name, "Olaf Hartig"), . . .}, an RDF
graph containing the five triples in that document.
However, get(oh:olaf) = ∅ since it does not return
a 200 Okay (redirects are supported in the next step).
Thus, ohDoc: ∈ S whereas oh:olaf /∈ S. If we de-
note Figure 1 as the Linked Dataset Γ, we can say
that Γ = {

(
ohDoc:, get(ohDoc:

)
, . . .}, containing five

(URI,RDF-graph) pairs. Then, merge(Γ) is the set of
all 17 RDF triples shown in Figure 1.

Definition 3 (Dereferencing RDF).
A URI may issue a HTTP redirect to another URI with
a 30x response code, with the target URI listed in the

Location: field of the HTTP header. We model this redi-
rection function as redir : U → U, which first strips
the fragment identifier of a URI (if present) and would
then map a URI to its redirect target or to itself in the
case of failure (e.g., where no redirect exists). We de-
note the fixpoint of redir as redirs, denoting traversal
of a number of redirects (a limit may be imposed to
avoid cycles). We denote dereferencing by the compo-
sition deref := get ◦ redirs, which maps a URI to an
RDF graph retrieved with status code 200 OK after fol-
lowing redirects, or which maps a URI to the empty
set in the case of failure. We denote the set of deref-
erenceable URIs as D := {d ∈ U : deref(d) 6= ∅};
note that S ⊂ D and we place no expectations on what
deref(d) returns, other than returning some valid RDF.
As a shortcut, we denote by derefs : 2U → U × 2G;
U 7→ {(redirs(u), deref(u)) | u ∈ U ∩D)} the map-
ping from a set of URIs to the Linked Dataset it repre-
sents by dereferencing all URIs (only including those
in D which return some RDF).11

Example 2. Taking Figure 1, oh:olaf redirects to
ohDoc:, denoted redir(oh:olaf) = ohDoc:. No fur-
ther redirects are possible, and thus redirs(oh:olaf) =
ohDoc:. Dereferencing oh:olaf gives the RDF graph
in the document ohDoc:, where deref(oh:olaf) =
get
(
redirs(oh:olaf)

)
= get(ohDoc:). Instead taking

the URI cb:chris, redir(cb:chris) = cb:chris and
get(cb:chris) = ∅; this URI is not dereferenceable.
Thus we can say that oh:olaf ∈ D and ohDoc: ∈ D
whereas cb:chris /∈ D.

3.4. SPARQL

We now introduce some concepts relating to the
query language SPARQL [47, 49]. We herein focus on
evaluating simple, conjunctive, basic graph patterns
(BGPs), where although supported by our implemen-
tation, we do not formally consider more expressive
parts of the SPARQL language, which—with the ex-
ception of OPTIONAL in the original SPARQL specifi-
cation and MINUS/(NOT) EXISTS defined in SPARQL 1.1
which assume a closed dataset—can be layered on

11We instantiate the formal model of Hartig [28] with concrete
HTTP-level methods used for Linked Data; he models the Web of
Linked Data as a triple W = (D, data, adoc), where our set S is
equivalent to his set D of document IDs, our function get(.) instan-
tiates his (more general) function data(.) for mapping document
IDs to RDF graphs, and our function redirs(.) instantiates his func-
tion adoc(.) for partially mapping URI names to document IDs.
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top [47]. In addition, we consider URIs and not IRIs
for convenience with the RDF preliminaries.

Definition 4 (Variables, Triple Patterns & BGPs).
Let V be the set of variables ranging over UBL. A
triple pattern tp := (s, p, o) is an element of the set
Q := VUL×VU×VUL. For simplicity, we do not
consider blank-nodes in triple patterns (they could be
roughly emulated by an injective mapping from B to
V). A finite (herein, non-empty) set of triple patterns
Q ⊂ Q is called a Basic Graph Pattern, or herein,
simply a query. We use vars(Q) ⊂ V to denote the
set of variables in Q. Finally, we may overload graph
notation for queries, where, e.g., terms(Q) returns all
elements of VUL in Q.

Definition 5 (SPARQL solutions).
Call the partial function µ : dom(µ) ∪UL → UBL
a solution mapping with a domain dom(µ) ⊂ V. A
solution mapping binds variables in dom(µ) to UBL
and is the identify function for UL. Overloading no-
tation, let µ : Q → G and µ : 2Q → 2G also resp.
denote a solution mapping from triple patterns to RDF
triples, and basic graph patterns to RDF graphs such
that µ(tp) := (µ(s), µ(p), µ(o)) and µ(Q) := {µ(tp) |
tp ∈ Q}. We now define the set of SPARQL solutions
for a query Q over a (Linked) Dataset Γ as

[[Q]]Γ :={µ | µ(Q)⊆merge(Γ)∧dom(µ) = vars(Q)} .

For brevity, and unlike SPARQL, solutions are herein
given as sets (not multi-sets), implying a default
DISTINCT semantics for queries, and we assume that
answers are given over the default graph consisting of
the merge of RDF graphs in the dataset.

Example 3. Again taking Γ from Figure 1, if we let Q
be as follows:

SELECT ?maker ?issued WHERE {
dblpP:HartigBF09 foaf:maker ?maker ;

dcterms:issued ?issued .
}

Query 1: Authors and date of paper

Then [[Q]]Γ would be:

?maker ?issued
dblpA:Christian_Bizer "2009"^̂ xsd:gYear

dblpA:Olaf_Hartig "2009"^̂ xsd:gYear

3.5. RDFS and OWL

In preparation for defining our reasoning extensions
to LTBQE, we now give some preliminaries relating
to RDFS and OWL. We also give some definitions
relating to rule-based inferencing, which we will use
later. In particular, we support a small subset of OWL
2 RL/RDF rules, given in Table 1, which constitute
a partial axiomatisation of the OWL RDF-Based Se-
mantics. Our RDFS rules are the subset of the ρDF
rules proposed by Muñoz et al. [45] that deal with in-
stance data entailments (as opposed to schema-level
entailments).12 Our subset of OWL rules are specifi-
cally chosen to support the semantics of equality (par-
ticularly replacement) for owl:sameAs. Note that these
rules support the RDFS/OWL features originally rec-
ommended for use by Bizer et al. when publishing
Linked Data [9, §4.2, §6]. The rules we consider are
given in Table 1. More recent guidelines [34, §4.4.3]
recommend use of additional OWL features; we leave
support for more expressive OWL reasoning to future
work. For convenience, we re-use previous notation in
the following formalisms.

Definition 6 (Entailment Rules & Least Model).
An entailment rule is a pair r = (Body,Head)

(cf. Table 1) such that Body, Head ⊂ Q; and
vars(Head) ⊆ vars(Body). The immediate conse-
quences of r for a Linked Dataset Γ are denoted and
given as:

Tr(Γ) := {µ(Head) | µ ∈ [[Body]]Γ} \merge(Γ) .
In other words, Tr(Γ) denotes the direct unique in-
ferences from a single application of a rule r against
the merge of RDF data contained in Γ. Let R denote
a finite set of entailment rules. The immediate conse-
quences of R over Γ are given analogously as:

TR(Γ) :=
⋃
r∈R Tr(Γ) .

This is the union of a single application of all rules in
R over the data applied to the (raw) data in Γ. Further,
let υ ∈ U denote a fresh URI which names the graph
GR of data inferred by R, and let GR0 = ∅. Now, for
i ∈ N, define:

ΓRi := Γ ∪
{(
υ,GRi

)}
GRi+1 := TR(ΓRi ) ∪GRi

The least model of Γ with respect to R is ΓRn for the
least n such that ΓRn = ΓRn+1; at this stage the closure

12We drop implicit typing [45] rules as we allow generalised RDF
in intermediate inferences.
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ID Body Head

R
D

F
S

PRP-SPO1 ?p1 rdfs:subPropertyOf ?p2 . ?s ?p1 ?o . ?s ?p2 ?o .

PRP-DOM ?p rdfs:domain ?c . ?s ?p ?o . ?p a ?c .

PRP-RNG ?p rdfs:range ?c . ?s ?p ?o . ?o a ?c .

CAX-SCO ?c1 rdfs:subClassOf ?c2 . ?s a ?c1 . ?s a ?c2 .

Sa
m

e-
A

s

EQ-SYM ?x owl:sameAs ?y . ?y owl:sameAs ?x .

EQ-TRANS ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .

EQ-REP-S ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .

EQ-REP-P ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .

EQ-REP-O ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Table 1

RDFS (ρDF subset) and owl:sameAs (OWL 2 RL/RDF subset) rules

is reached and nothing new can be inferred.13 Hence-
forth, we denote this least model with Γ • R. Query
answers including entailments are given by [[Q]]Γ•R.

Example 4. Let R denote the set of rules in Table 1.
Also, consider Γ as the Linked Dataset comprising
of
(

ohDoc:, get(ohDoc:)
)

from Figure 1 and a second
named graph called foafSpec: with the following sub-
set of triples from Figure 2:

foaf:img rdfs:domain foaf:Person ;
rdfs:range foaf:Image ;
rdfs:subPropertyOf foaf:depiction .

foaf:Person rdfs:subClassOf foaf:Agent .

These (real-world) triples can be retrieved by derefer-
encing a FOAF term; e.g., deref(foaf:img). Now, given
Γ andR, thenGR0 = ∅,GR1 = GR0 ∪TR(ΓR0 ) where, by
applying each rule in R over Γ once, TR(ΓR0 ) contains
the following triples (abbreviating URIs slightly):

oh:olaf foaf:depiction <http. . .> . #PRP-SPO1
oh:olaf a foaf:Person . #PRP-DOM

<http. . .> a foaf:Image . #PRP-RNG

dblpA:Olaf owl:sameAs oh:olaf . #EQ-SYM

dblpA:Olaf foaf:knows cb:chris . #EQ-REP-S

...

Subsequently, ΓR1 = Γ ∪ {(υ,GR1 )}, where υ is any
built-in URI used to identify the graph of inferences
and where GR1 contains the unique inferences thus far
(listed above). Thereafter,GR2 = GR1 ∪TR(ΓR1 ), where
TR(ΓR1 ) contains:

13Since our rules are a syntactic subset of Datalog, there is a
unique and finite least model (assuming finite inputs).

oh:olaf a foaf:Agent . #CAX-SCO

dblpA:Olaf foaf:depiction <http. . .> . #EQ-REP-S

dblpA:Olaf a foaf:Person . #EQ-REP-S

dblpA:Olaf owl:sameAs dblpA:Olaf . #EQ-REP-S

oh:olaf owl:sameAs oh:olaf . #EQ-REP-S

...

As before, ΓR2 = Γ∪{(υ,GR2 )}, whereGR2 contains all
inferences collected thus far, andGR3 = GR2 ∪TR(ΓR2 ),
where TR(ΓR2 ) contains:

dblpA:Olaf a foaf:Agent . #CAX-SCO

This is then the closure since TR(ΓR3 ) = ∅; nothing
new can be inferred, and so ΓR3 = ΓR4 . And thus we
can say that Γ •R = ΓR3 = Γ ∪ (υ,GR3 ).

4. Link Traversal Based Query Execution

Having covered some necessary preliminaries, in
the following section, we introduce the Link Traver-
sal Based Query Execution (LTBQE) approach first
proposed by Hartig et al. [29] for executing SPARQL
queries over the Web of Data (§ 4.1). For this, we pro-
vide some formal definitions and examples (we tailor
our definitions for the purpose of this work; a compre-
hensive study of the semantics and computability of
LTBQE has been covered in [28]). We also highlight
the assumptions under which the LTBQE approach
works well.

4.1. Overview of Baseline LTBQE

Given a SPARQL query, the core operation of LT-
BQE is to identify and retrieve a focused set of query-
relevant RDF documents from the Web of Data from
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which answers can be extracted. The approach begins
by dereferencing URIs found in the query itself. The
documents that are returned are parsed, and triples
matching patterns of the query are processed; the URIs
in these triples are also dereferenced to look for fur-
ther information, and so forth. The process is recursive
up to a fixpoint wherein no new query-relevant sources
are found. New answers for the query can be computed
on-the-fly as new sources arrive. We now formally de-
fine the key notion of query-relevant documents in the
context of LTBQE, and give an indication as to how
these documents are derived. This is similar in prin-
ciple to the generic notion of reachability introduced
previously [28, 30], but relies here on concrete HTTP
specific operations:
Definition 7 (Query Relevant Sources & Answers).
First let uris(µ) := {u ∈ U | ∃v s.t. (v, u) ∈ µ}
denote the set of URIs in a solution mapping µ. Given
a query Q and an intermediate dataset Γ, we define
the function qrel, which extracts from Γ a set of URIs
that can (potentially) be dereferenced to find further
sources deemed relevant for Q:

qrel(Q,Γ) :=
⋃
tp∈Q

⋃
µ∈[[{tp}]]Γ

uris(µ)

To begin the recursive process of finding query-relevant
sources, LTBQE takes URIs in the query—denoted
with UQ := terms(Q) ∩ U—as “seeds”, and builds
an initial dataset by dereferencing these URIs: ΓQ0 :=
derefs(UQ). Thereafter, for i ∈ N, define:14

ΓQi+1 := derefs
(
qrel(Q,ΓQi )

)
∪ ΓQi

The set of LTBQE query relevant sources for Q is
given as the least n such that ΓQn = ΓQn+1, denoted
simply ΓQ. The set of LTBQE query answers for Q is
given as [[Q]]ΓQ , or simply denoted bbQcc.
Example 5. We illustrate this core concept of LTBQE
query-relevant sources with a simple example based on
Figure 1. Let Q be the following query looking for the
names of the authors of a named paper:

SELECT ?authorName WHERE {
dblpP:HartigBF09 foaf:maker ?author .
?author foaf:name ?authorName .

}

14In practice, URIs need only be dereferenced once; i.e., only
URIs in qrel(Q,ΓQ

i )\(qrel(Q,ΓQ
i−1)∪UQ) need be dereferenced

at each stage.

First, the process extracts all raw query URIs: UQ =
{dblpP:HartigBF09, foaf:name, foaf:maker}. In the next
stage, the engine dereferences these URIs. Given that
redirs(dblpP:HartigBF09) = dblpPDoc:HartigBF09 &
redirs(foaf:maker) = redirs(foaf:made) = foafSpec:,
dereferencingUQ gives two unique named graphs, viz.:(

dblpPDoc:HartigBF09, get(dblpPDoc:HartigBF09)
)

and(
foafSpec:, get(foafSpec:)

)
. These two named-graphs

comprise ΓQ0 . (In fact, only the former graph will ulti-
mately contribute answers.)

Second, LTBQE looks to extract additional query
relevant URIs by seeing if any query patterns are
matched in the current dataset. By reference to the
graph dblpPDoc:HartigBF09 in Figure 1, we see that for
the pattern “dblpP:HartigBF09 foaf:maker ?author .”,
the variable ?author is matched by two unique URIs,
namely dblpA:Christian_Bizer and dblpA:Olaf_Hartig,
which are added to qrel(Q,ΓQ0 ). Nothing else is
matched. Hence, these two URIs are dereferenced and
the results added to ΓQ0 to form ΓQ1 .

LTBQE repeats the above process until no new
sources are found. At the current stage, ΓQ1 now also
contains the two sources dblpADoc:Christian_Bizer and
dblpADoc:Olaf_Hartig needed to return:

?authorName
"Christian Bizer"

"Olaf Hartig"

Furthermore, no other query-relevant URIs are
found and so a fixpoint is reached and the process ter-
minates: bbQcc contains the above results.

4.2. (In)completeness of LTBQE

An open question is the decidability of collecting
query-relevant sources: does it always terminate? This
is dependent on whether one considers the Web of Data
to be infinite or finite. For an infinite Web of Data, this
process is indeed undecidable [28]. To illustrate this
case, Hartig [28] uses the example of a Linked Data
server describing all natural numbers15, where each
n ∈ N is given a dereferenceable URI, each n has a
link to n + 1 with the predicate ex:next, and a query
with the pattern “?n ex:next ?np1 .”) is given. In this
case, the traversal of query-relevant sources will span
the set of all natural numbers. However, if the (poten-
tial) Web of Data is finite, then LTBQE is decidable;

15Such a server has been made available by Vrandečíc et al. [65],
but unfortunately stops just shy of a billion. See, e.g., http://km.
aifb.kit.edu/projects/numbers/web/n42.

http://km.aifb.kit.edu/projects/numbers/web/n42
http://km.aifb.kit.edu/projects/numbers/web/n42
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in theory, it will terminate after processing all sources.
The question of whether the Web (of Data) is infinite
or not comes down to whether the set of URIs is infi-
nite or not: though they may be infinite in theory [5]
(individual URIs have no upper bound for length), they
are finite in practice (machines can only process URIs
up to some fixed length).16

Of course, this is a somewhat academic distinction.
In practice, the Web of Data is sufficiently large that
LTBQE may end up traversing an unfeasibly large
number of documents before terminating. A simple
worst case would be a query with a “open pattern” con-
sisting of three variables.

Example 6. The following query asks for a general
description of people known by oh:olaf:

SELECT ?s ?p ?o WHERE {
oh:olaf foaf:knows ?s .
?s ?p ?o .

}

The first query-relevant sources will be identi-
fied as the documents dereferenced from oh:olaf and
foaf:maker. Thereafter, all triples in these documents
will match the open pattern, and thus all URIs in
these documents will be considered as potential query-
relevant links. This will continue recursively, crawling
the entire Web of Data. Of course, this problem does
not occur only for open patterns. One could also con-
sider the following query which asks for the friends-
of-friends of oh:olaf:

SELECT ?o WHERE {
oh:olaf foaf:knows ?s .
?s foaf:knows ?o .

}

This would end up crawling the connected Web of
FOAF documents, as are linked together by derefer-
enceable foaf:knows links.

Partly addressing this problem, Hartig et al. [29] de-
fined an iterator-based execution model for LTBQE,
which rather approximates the answers provided by
Definition 7. This execution model defines an order-
ing of triple patterns in the query, similar to standard
nested-loop join evaluation. The most selective pat-
terns (those expected to return the fewest bindings)
are executed first and initial bindings are propagated

16It is not clear if URIs are (theoretically) finite strings. If so, they
are countable [28].

to bindings further up the tree. Crucially, later triple
patterns are partially bound when looking for query-
relevant sources. Thus, taking the previous example,
the pattern “?s foaf:knows ?o .” will never be used
to find query-relevant sources, but rather partially-
bound patterns like “cb:chris foaf:knows ?o .” will be
used. As such, instead of retrieving all possible query-
relevant sources, the iterator-based execution model
uses interim results to apply a more focused traversal
of the Web of Data. This also makes the iterator-based
implementation order-dependent: results may vary de-
pending on which patterns are executed first and thus
answers may be missed. However, it does solve the
problem of traversing too many sources when low-
selectivity patterns are present in the query.

Whether defined in an order-dependent or order-
independent fashion, LTBQE will often not return
complete answers with respect to the Web of Data [28].
We now enumerate some of the potential reasons LT-
BQE can miss answers.

No dereferenceable query URIs: The LTBQE ap-
proach cannot return results in cases where the query
does not contain dereferenceable URIs. For example,
consider posing the following query against Figure 1:

SELECT * WHERE {
cb:chris ?p ?o .

}

As previously explained, the URI cb:chris is not deref-
erenceable (deref(cb:chris) = ∅) and thus, the query
processor cannot compute and select relevant sources
from interim results.

Unconnected query-relevant documents: Similar to
the previous case of reachability, the number of results
might be affected if query relevant documents cannot
be reached. This is the case if answers are “connected”
by literals, blank-nodes or non-dereferenceable URIs.
In such situations, the query engine cannot discover
and dereference further query relevant data. The fol-
lowing query illustrates such a case:

SELECT ?olaf ?name WHERE {
oh:olaf foaf:name ?name .
?olaf foaf:name ?name .

}

Answers (other than oh:olaf) cannot be reached from
the starting URI oh:olaf because the relevant docu-
ments are connected by the literal "Olaf Hartig".
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Dereferencing partial information: In the general
case, the effectiveness of LTBQE is heavily dependent
on the amount of data returned by the deref(u) func-
tion. In an ideal case, dereferencing a URI u would re-
turn all triples mentioning u on the Web of Data. How-
ever, this is not always the case; for example:

SELECT ?s WHERE {
?s owl:sameAs dblpA:Olaf_Hartig .

}

This simple query cannot be answered since the triple
“oh:olaf owl:sameAs dblpA:Olaf_Hartig .” is not ac-
cessible by dereferencing dblpA:Olaf_Hartig. The as-
sumption that all RDF available on the Web of Data
about a URI u can be collected by dereferencing u is
clearly idealised; hence, later in Section 6 we will em-
pirically analyse how much the assumption holds in
practice, giving insights into the potential recall of LT-
BQE on an infrastructural level.

5. LiDaQ: Extending LTBQE with Reasoning

We now present the details of LiDaQ: our proposal
to extend the baseline LTBQE approach with compo-
nents that leverage lightweight RDFS and owl:sameAs
reasoning in order to improve recall. We first describe
the extensions we propose (§ 5.1), and then describe
our implementation of the system (§ 5.2).

5.1. LTBQE Extensions

Partly addressing some of the shortcomings of the
LTBQE approach in terms of completeness (or, per-
haps more fittingly, recall), Hartig et al. [29] proposed
an extension of the set of query relevant sources to con-
sider rdfs:seeAlso links, which sometimes overcomes
the issue of URIs not being dereferenceable (as per
cb:chris in our example). In the LiDaQ system, we
include this extension, and on top, we propose fur-
ther novel extensions that apply reasoning over query-
relevant sources to squeeze additional answers from
query-relevant sources, which in turn may lead to re-
cursively finding additional query-relevant sources.

First, we propose following owl:sameAs links, which,
in a Linked Data environment, are used to state that
more information about the given resource can be
found elsewhere under the target URI. Thus, to fully
leverage owl:sameAs information, we first propose to
follow relevant owl:sameAs links when gathering query-

relevant sources and subsequently apply owl:sameAs

reasoning, which supports the semantics of replace-
ment for equality, meaning that information about
equivalent resources is mapped to all available identi-
fiers and made available for query answering.

Second, we propose some lightweight RDFS rea-
soning, which takes schema-level information from
pertinent vocabularies and ontologies that describe the
semantics of class and property terms used in the
query-relevant data and uses it to infer new knowledge.
In a first step, we must make schema data available
to the query engine, where we propose three mecha-
nisms:

1. a static collection of schema data are made avail-
able as input to the engine;

2. the properties and classes mentioned in the query-
relevant sources are dereferenced to dynamically
build a direct collection of schema data; and

3. the direct collection of dynamic schema data is
expanded by recursively following links on a
schema level.

Using the schema data collected by one of these meth-
ods, in the second step, we apply rule-based RDFS rea-
soning to materialise inferences and make them avail-
able for query-answering.

We now describe, formally define and provide mo-
tivating examples for each of the three extensions: fol-
lowing rdfs:seeAlso links, following owl:sameAs links
and applying equivalence inferencing, and collecting
schema information for applying RDFS reasoning.

5.1.1. Following rdfs:seeAlso links:
First, let us motivate and give the intuition for the

legacy rdfs:seeAlso extension with a simple example.

Example 7. Consider executing the following sim-
ple query—which asks for images of the friends of
oh:olaf—against the data in Figure 1 using baseline
LTBQE methods:

SELECT ?f ?img WHERE {
oh:olaf foaf:knows ?f .
?f foaf:depiction ?img . }

The query processor evaluates this query by derefer-
encing the content of the query URI oh:olaf, follow-
ing and dereferencing all URI bindings for the vari-
able ?f and matching the second query pattern “?f

foaf:depiction ?n .” over the retrieved content to find
the pictures. However, the query processor needs to
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follow the rdfs:seeAlso link from cb:chris to cbDoc:

since the URI cb:chris is not dereferenceable (recall
that a dashed arrow in Figure 1 denotes dereference-
ability). In summary, in this example, to find the docu-
ment cbDoc: and ultimately answer the query, LTBQE
needs to be extended to follow rdfs:seeAlso links.

As such, Hartig et al. [29] proposed an extension
of LTBQE to follow rdfs:seeAlso when looking for
query-relevant sources. We briefly formalise this ex-
tension:

Definition 8 (LTBQE Extension 1: rdfs:seeAlso).
Reusing notation from Definition 7, given a dataset Γ
and a set of URIs U , first define:

seeAlso(Γ, U) := {v ∈ U | ∃u ∈ U s.t.

(u, rdfs:seeAlso, v) ∈ merge(Γ)}

Now, for a given query, expand the set of query relevant
sources as follows:

qrel′(Q,Γ) := qrel(Q,Γ) ∪ seeAlso
(
Γ, qrel(Q,Γ)

)
The rest of the definition follows from Definition 7 by
replacing qrel(.) with the extended function qrel′(.).

5.1.2. Following and reasoning over owl:sameAs links:
We next formalise and describe our novel extension

for following owl:sameAs links and applying equality
reasoning. We again begin with a motivating example
to cover the intuition.

Example 8. Consider the following query asking for
friends of oh:olaf that are also co-authors.

SELECT ?f WHERE {
oh:olaf foaf:knows ?f .
?pub dc:creator ?f , oh:olaf . }

Executing this query over the data in Figure 1 using
the baseline LTBQE approach will not return any an-
swers, since explicit equality information about URIs
is not supported. The owl:sameAs relationship between
oh:olaf and dblpA:Olaf_Hartig states that both URIs
are equivalent and referring to the same real world en-
tity, and hence that the information for one applies to
the other. In summary, to answer this query, LTBQE
must be extended to follow owl:sameAs links and apply
reasoning to materialise inferences with respect to the
semantics of replacement.

We now formalise the details of this novel extension.

Definition 9 (LTBQE Extension 2: owl:sameAs). We
propose an extension of LTBQE to consider owl:sameAs

links and inferences. First, given a set of URIs U and
a dataset Γ, as before, define:

sameAs(Γ, U) := {v ∈ U | ∃u ∈ U s.t.

(u, owl:sameAs, v) ∈ merge(Γ)}

And define by extension:

qrel′′(Q,Γ) := qrel(Q,Γ) ∪ sameAs(Γ, qrel(Q,Γ))

By replacing qrel(.) with qrel′′(.), this latter function
is used to find addition query-relevant sources by ana-
logue to Definition 7.

Now we must define the role of inference. Let R de-
note the set of rules of the form EQ-* in Table 1. Ex-
tending the notation from Definition 7, define:

′ΓQi := ΓQi •R

In other words, ′ΓQi denotes the closure of the raw
ΓQi dataset with respect to owl:sameAs data. The full
owl:sameAs extension is then described by replacing
qrel(.) with qrel′′(.) (to follow owl:sameAs links) and
ΓQi with ′ΓQi (for all i; to apply inferencing at each
stage) in Definition 7.

5.1.3. Incorporating RDFS schemata and reasoning
Finally, we formalise and describe our novel ex-

tension for retrieving and reasoning with respect to
RDFS descriptions of classes and properties used in
the query-relevant data. We again start with a motivat-
ing example.

Example 9. Take the following query, which asks for
the images(s) depicting oh:olaf:

SELECT ?d WHERE {
oh:olaf foaf:depiction ?d . }

From Figure 2, we know that foaf:depiction is a sub-
property of foaf:img, and we would thus hope to get
the answer "Olaf Hartig". However, returning this an-
swer requires two thing: (i) retrieving the RDFS defini-
tions of the FOAF vocabulary; and (ii) performing rea-
soning using the first four rules in Table 1. In this case,
finding the relevant schema information (the first step)
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is quite straightforward and can be done dynamically
since the relevant terms (foaf:img and foaf:depiction)
are within the same namespace and are described by
the same dereferenceable document. However, con-
sider instead:

SELECT ?d WHERE {
oh:olaf rdfs:label ?d . }

In this case, we know from the FOAF schema that
foaf:name is a sub-property of rdfs:label, and so "Olaf

Hartig" should be an answer. However, no FOAF vo-
cabulary term is mentioned in the query, and so the
FOAF schema will not be in the query-relevant scope.
To overcome this, we can provide a static set of schema
information to the query engine as input, or we can
dereference property and class terms mentioned in the
query-relevant data to dynamically retrieve the rele-
vant definitions at runtime.

Definition 10 (LTBQE Extension 3: RDFS). We pro-
pose an extension of LTBQE to consider RDFS schema
data and inferences. Let Ψ denote an auxiliary Linked
Dataset that contains some schema data. Let R denote
rules {PRP-SPO1, PRP-DOM, PRP-RNG, CAX-SCO} in
Table 1 (other finite RDFS rules can be added as nec-
essary). Extending the notation from Definition 7, de-
fine:

′′ΓQi := ΓQi ∪Ψi •R

In other words, ′′ΓQi denotes the closure of the raw
ΓQi dataset and the schema data in Ψi at each stage
(the subscript on Ψi indicates that schema data can be
collected recursively, on the fly). The RDFS extension
is then described by replacing ΓQi with ′′ΓQi (for all i;
to apply inferencing at each stage) in Definition 7.

We are then left to describe how Ψi may be ac-
quired, where we provide three options (Ψ1–3

i ).

1. A static corpus of schema data Ψ can be provided
as input, such that Ψ1

i := Ψ.
2. The class and property terms used to describe
′′ΓQi can be dereferenced. Letting preds(Γ) de-
note the set of all URIs mentioned in the pred-
icate position of some triple in the merge of Γ,
and letting o-type(Γ) denote the set of all URIs
mentioned in the object position of a triple in the
merge of Γ whose predicate is rdf:type, we can
define Ψ2

i as:

Ψ2
i := derefs

(
preds(ΓQi ) ∪ o-type(ΓQi )

)

or, in other words, the schema data obtained by
directly dereferencing all predicates and values
for rdf:type mentioned in the query-relevant data
thus far.

3. Finally, it is possible to extend the schema data
by following schema-level links. For a Linked
Dataset Γ, let sl(Γ) be a “schema links” func-
tion which extracts the set of all URIs u such
that u is the subject or object of some triple
t ∈ merge(Γ) with predicate rdfs:subPropertyOf,
rdfs:subClassOf, rdfs:domain or rdfs:range; or
u is the object of some triple t ∈ merge(Γ)
with owl:imports as predicate. Now, taking Ψ2

i as
above, let Ψ3

i,0 := Ψ2
i , and thereafter, for j ∈ N

define:

Ψ3
i,j+1 := derefs

(
sl(Ψ3

i,j)
)
∪Ψ3

i,j

such that links are recursively followed up to a
fixpoint: the least j such that Ψ3

i,j = Ψ3
i,j+1. This

fixpoint then represents Ψ3
i . In other words, the

third method of collecting schema extends upon
the second method by recursively following core
RDFS links and owl:imports links from the direct
schema data.

The second and third methods involve dynamically
collecting schemata at runtime. The third method of
schema-collection is potentially problematic in that it
recursively follows links, and may end up collecting
a large amount of schema documents (a behaviour we
encounter in evaluation later). However, where, for ex-
ample, class or property hierarchies are split across
multiple schema documents, this recursive process is
required to “recreate” the full hierarchy.

All three extensions—following rdfs:seeAlso links,
following owl:sameAs links & applying owl:sameAs rea-
soning, retrieving RDFS data (using one of three ap-
proaches) & applying RDFS reasoning—can be com-
bined in a straightforward manner. In fact, some an-
swers may only be possible through the combination
of all extensions. We will later explore the effects of
combining all extensions in Section 8.

5.2. LiDaQ Implementation

In order to build the LiDaQ prototype, we have re-
implemented Hartig et al.’s iterator-based algorithm
for LTBQE [29] together with some optimisations such
as a local per-query cache with an in-memory quad
store [31] and a more efficient join operator [40]. We
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then add our various extensions. The code-base is writ-
ten in Java. Our architecture—depicted in Figure 3—
features five main components:

Query Processor: uses the Java library ARQ to parse
and process input SPARQL queries and format
the output results.17

Source Selector: decides which query and solution
URIs should be dereferenced and which links
should be followed.

Source Lookup: an adapted version of the LDSpi-
der crawling framework performs the live Linked
Data lookups required for LTBQE. LDSpider re-
spects the robots.txt policy, blacklists typical
non-RDF URI patterns (e.g., .jpeg) and enforces
a half-second delay between two consequential
lookups for URIs hosted at the same domain to
avoid hammering remote servers.18

Local Repository: a custom implementation of an in-
memory quad store is used to cache the con-
tent of all query relevant data, including infer-
ences, as well as indexing triple patterns from
the query to match against the data. Triple pat-
terns are matched in a continuous fashion as new
content is pushed to the cache, feeding the iter-
ators. When reasoning is not enabled, the triple
pattern index filters non-matching triples and dis-
cards them. This repository is also used to store
static schema data, where needed.

Reasoner: the Java-based SAOR reasoner is used to
support the aforementioned rule-based reasoning
extensions [11], and can execute inferences over
the new content as it arrives in conjunction with
the cache.

Reasoner

Source Lookup

TriplePattern
Operator

CacheQuery Processor

LocalRepository

dereferenced contentrequest dereferencing 

notify

triple patterns index
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Fig. 3. LTBQE architecture diagram.

We further investigate a “reduced source-selection”
variant of LiDaQ that uses straightforward, generic op-

17http://jena.sourceforge.net/ARQ/
18http://code.google.com/p/ldspider/

timisations to minimise the number of sources con-
sidered while maximising results. Primarily, we avoid
dereferencing URIs that do not appear in join posi-
tions: these are variables which are not used elsewhere
in the query, but whose existence needs to be asserted.
We illustrate this with a simple example:

Example 10. Consider the following query issued
against the example graph of Figure 1, asking for
friends of oh:olaf that have some value defined for
foaf:based_near:

SELECT ?f ?fn ?b WHERE {
oh:olaf foaf:knows ?f .
?f foaf:name ?fn .
?f foaf:based_near ?b .

}

Assuming the rdfs:seeAlso extension is enabled,
this query will first visit ohDoc:, then bind cb:chris for
?f, and then visit cbDoc: for more information about
cb:chris. Here, "Chris Bizer" will be bound for ?fn,
and dbpedia:Berlin bound for ?b. However, derefer-
encing the latter URI would be pointless: we do not
need any information about dbpedia:Berlin to answer
the query. Here the variable ?b does not appear in other
triple patterns and further information about URIs
bound to it are not directly required by the query. Our
optimisation proposes to avoid wasting lookups up not
dereferencing URIs bound to non-join variables.

Of course, by reducing the amount of sources and
raw data that are accessed—and given that anyone in
principle say anything, anywhere—we may also re-
duce the number of answers that are returned. Taking
the previous example, for all we know, the document
dereferenced through dbpedia:Berlin may contain (un-
related) information about friends of oh:olaf, which
help to contribute other answers. However, we deem
this to be unlikely in the general case, and note that
it goes against the core LTBQE idea of using Linked
Data principles to find query-relevant sources.

Aside from this optimisation to avoid dereferencing
URIs bound to non-join variables, we posit that for
real-world Linked Data, URIs in certain positions of a
triple pattern may not be worth dereferencing to look
for matching information. For example, given the pat-
tern “?s foaf:knows ?o .”, we would not expect to find
(m)any triples matching this pattern in the document
dereferenced by foaf:knows. In the next section, we in-
vestigate precisely this matter for different triple posi-
tions, and thereafter propose a further variation on Li-

http://jena.sourceforge.net/ARQ/
http://code.google.com/p/ldspider/
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DaQ’s source selection to prune remote lookups that
are unlikely to contribute answers.

6. Empirical Study

We now begin to look at how LTBQE and its exten-
sions can be expected to perform in practice. In Sec-
tion 4.1, we mentioned that the recall of the LTBQE
approach is—in the general case—dependent on the
dereferenceability of data. Along these lines, we can
draw general conclusions about the effectiveness of
LTBQE for answering queries over the Web of Data
by looking at the nature of dereferenceability on the
Web of Data. In particular, we are interested to know
the ratio of information available in dereferenceable
documents versus the information available on the rest
of the Web of Data. This gives us a indication as to
what percentage of raw data is available to LTBQE ver-
sus, e.g., a materialised approach with a complete in-
dex over a large crawl of the Web of Data. We can also
similarly test how much additional raw information is
made available by our extensions.

In summary, we take a large crawl of the Web of
Data as a sample. We survey the ratio of all triples
mentioning a URI in our corpus against those returned
in the dereferenceable document of that URI; we do so
for different triple positions. We also look at the com-
parative amount of raw data about individual resources
considering (1) explicit, dereferenceable information;
(2) including rdfs:seeAlso links [29]; (3) including
owl:sameAs links and inferences; (4) including RDFS
inferences with respect to a static schema.

6.1. Empirical corpus

For our corpus, we take the dataset crawled for
the Billion Triple Challenge 2011 (BTC’11) in mid-
May 2011. The corpus consists of 7.4 million RD-
F/XML documents spanning 791 pay-level domains
(data providers). URIs extracted from all RDF triples
positions, but without common non-RDF/XML exten-
sions like .pdf, .jpg, .html, etc., were considered for
crawling. The resulting corpus contains 2.15 billion
quadruples (1.97 billion unique triples) mentioning
538 million RDF terms, of which 52 million (∼10%)
are literals, 382 million (∼71%) are blank nodes, and
103 million (∼19%) are URIs. We denote the cor-
pus as Γ∼. The bulk of RDF data is serialised as
N-Quads [14], which provides information regarding

which triple came from which document in a manner
directly analogous to our notion of a Linked Dataset.

Alongside the bulk of RDF data, all relevant HTTP
information, such as response codes, redirects, etc., are
made available. However, being an incomplete crawl,
not all URIs mentioned in the data were looked up.
As such, we only have knowledge of redir and deref
functions for 18.65 million URIs; all of these URIs are
HTTP and do not have non-RDF file-extensions. We
denote these URIs by U∼. Of the 18.65 million, 8.37
million (∼45%) dereferenced to RDF; we denote these
by D∼.

Again, this corpus is only a sample of the Web of
Data: we can only analyse the HTTP lookups and the
RDF data provided for the corpus. Indeed, a weak-
ness of our analysis is that the BTC’11 dataset only
considers dereferenceable RDF/XML documents and
not other syntaxes like RDFa or Turtle. Thus, with re-
spect to the Web of Data, our high-level recall mea-
sures for LTBQE specify an upper bound: more infor-
mation may be available on the Web of Data than we
know about in our sample.

6.2. Static Schema Data

For the purposes of this analysis, we extract a static
set of schema data for the RDFS reasoning. As ar-
gued in [11], schema data on the Web is often noisy,
where third-party publishers “redefine” popular terms
outside of their namespace; for example, one docu-
ment defines nine properties as the domain of rdf:type,
which would have a drastic effect on our reasoning.19

Thus, we perform authoritative reasoning, which con-
servatively discards certain third-party schema axioms
(cf. [11]). In effect, our schema data only includes
triples of the following form:

PRP-SPO1 : (s, rdfs:subPropertyOf, o) ∈ deref(s)
PRP-DOM : (s, rdfs:domain, o) ∈ deref(s)
PRP-RNG : (s, rdfs:range, o) ∈ deref(s)
CAX-SCO : (s, rdfs:subClassOf, o) ∈ deref(s)

We call these authoritative schema triples. Table 2
gives a breakdown of the counts of triples of this form
extracted from the dataset, and how many domains
(PLDs) they were sourced from: a total of 397 thou-
sand triples were extracted from data provided by 98
PLDs. We denote this dataset as Ψ∼.

19viz. http://www.eiao.net/rdf/1.0

http://www.eiao.net/rdf/1.0
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Table 2
Breakdown of authoritative schema triples extracted from the corpus

Category Triples PLDs

rdfs:subPropertyOf 10,902 67
rdfs:subClassOf 334,084 82
rdfs:domain 26,207 79
rdfs:range 26,204 77

total 397,397 98

6.3. Recall for Baseline

We first measure the average dereferenceability
of information in our sample. Let data(u,G) return
the triples mentioning a URI u in a graph G, and,
for a dereferenceable URI d, let ddata(d) denote
data(d, deref(d)): triples dereferenceable through d
mentioning d in some triple position. We define the
sample dereferencing recall with respect to a sample
graph G as:

sdr(d,G) := ddata(d)
data(d,G)

Letting G∼ := merge(Γ∼) denote the merge of our
corpus, we measure sdr(d,G∼), which gives the ra-
tio of dereferenceable triples for d mentioning d vs.
unique triples mentioning d across the corpus. For
comparability, we do not dereference d live, but use
the HTTP-level information of the crawl to emulate
deref(.) at the time of the crawl. We denote by ddata∼
the average of ddata(d) for all d ∈ D∼, and by sdr∼
the average of sdr(d,G∼) for all d ∈ D∼.

We also measure analogues of ddata∼ and sdr∼
where dmust appear in specific triple positions: for ex-
ample, if LTBQE dereferences a URI in the predicate
position of a triple pattern, we are interested to know
how often relevant triples—i.e., triples with that URI in
the predicate position—occur in the dereferenced doc-
ument, how many, and what ratio when compared with
the whole corpus.

Table 3 presents the results, where for different
triples positions we present:

|U∼| : number of URIs in that position,

|D∼| : number of which are dereferenceable,
|D∼|
|U∼|

: ratio of dereferenceable URIs

sdr∼ : as above, with std. deviation (σ)

ddata∼ : as above, with std. deviation (σ)

The row TYPE-OBJECT only considers the object po-
sition of triples with the predicate rdf:type, and the
row OBJECT only considers object positions where the
predicate is not rdf:type.

The analysis provides some interesting practical in-
sights into the LTBQE approach. Given a HTTP URI
(without a common non-RDF/XML extension), we
have a ∼45% success ratio to receive RDF/XML con-
tent regardless of the triple position; for subjects, the
percentage increases to ∼85%, etc. If such a URI
dereferences to RDF, we receive on average (at most)
∼51% of all triples in which it appears across the
whole corpus. Given a triple pattern with a URI in the
subject position, the dereferenceable ratio increases to
∼95%, such that LTBQE would work well for (pos-
sibly partly bound) query patterns with a URI in the
subject position. For objects of non-type triples, the ra-
tio drops to 44%. Further still, LTBQE would perform
very poorly for triple patterns where it must rely on a
URI in the predicate position or a class URI in an ob-
ject position: the documents dereferenced from class
and property terms rarely contain their respective ex-
tension, but instead often contain schema-level defini-
tions. In summary, LTBQE performs well when URIs
appear in the subject position of triple patterns, mod-
erately when URIs appear in the object on a non-type
triple, but poorly when URIs appear in the predicate or
object of a type triple.

One may also note the high standard-deviation val-
ues in Table 3: these indicate that dereferenceability is
often “all or nothing”, particularly for object and pred-
icate URIs. In Figure 4, for all 745 dereferenceable
predicate URIs, we plot the distribution of the number
of triples in the dereferenced document that contain
the dereferenced term in the predicate position (log/log
scale). Figure 5 shows the analogous distribution for
dereferenceable object URIs in type triples. Although
most such terms return little or no relevant informa-
tion (e.g., dereferencing the predicate in a triple pat-
tern rarely yields triples where the dereferenced term
appears as predicate), we see that a few predicates and
values for rdf:type return a great many relevant triples
in their dereferenced documents.20 This explains the
high standard deviations: for example, although most
predicates return no relevant information in their deref-
erenced document—and thus the probability of retriev-
ing relevant information by dereferencing the predi-

20Many such examples for both classes and predicates come from
the SUMO ontology: see, e.g., http://www.ontologyportal.
org/SUMO.owl#subsumingRelation

http://www.ontologyportal.org/SUMO.owl#subsumingRelation
http://www.ontologyportal.org/SUMO.owl#subsumingRelation
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Table 3
Dereferenceability results for different triple positions

Position |U∼| |D∼|
|D∼|
|U∼|

sdr∼ ddata∼

avg. σ avg. σ

ANY 1.87× 107 8.37× 106 0.449 0.51 ±0.5 17.26 ±97.15
SUBJECT 9.55× 106 8.09× 106 0.847 0.95 ±0.19 14.11 ±35.46
PREDICATE 4.77× 104 745 0.016 0.00007 ±0.008 0.14 ±56.68
OBJECT 9.73× 106 4.50× 106 0.216 0.44 ±0.46 2.95 ±60.64
TYPE-OBJECT 2.13× 105 2.11× 104 0.099 0.002 ±0.05 0.07 ±29.13

cate URI in a triple pattern is low—a few predicates
dereference to large sets of relevant information.
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Fig. 4. Relevant dereferenceable triple distribution for predicate
URIs (log/log)
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Fig. 5. Relevant dereferenceable triple distribution for type-object
URIs (log/log)

6.4. Recall for Extensions

We now look at how the three LTBQE extensions
can help to find additional data for generating query

answers. Table 4 presents the average increase in raw
information made available to LTBQE by considering
rdfs:seeAlso and owl:sameAs links, as well as knowl-
edge materialised through owl:sameAs and RDFS rea-
soning. D+

∼ indicates the subset of URIs in D∼ which
have some relation to the extension, respectively: the
URI has rdfs:seeAlso link(s), has owl:sameAs link(s),
or has non-empty RDFS inferences. Also, ddata+

∼ in-
dicates the analogous ddata∼ measure after the ex-
tension has been applied: this may involve data out-
side of the dereferenced document, such as documents
reached through rdfs:seeAlso or owl:sameAs links, or
static schema data.

6.4.1. Benefit of following rdfs:seeAlso links
We measured the percentage of dereferenceable

URIs in D∼ which have at least one rdfs:seeAlso
link in their dereferenced document to be ∼2% for
our sample (about 201 thousand URIs). Where such
links exist, following them increases the amount of
unique triples (involving the original URI) by a fac-
tor of 1.006× versus the unique triples in the derefer-
enced document alone. We conclude that, in the gen-
eral case, considering rdfs:seeAlso information for the
query processing will only marginally affect the recall
increase of LTBQE.

6.4.2. Benefit of following owl:sameAs links &
including inferences

We measured the percentage of dereferenceable
URIs in D∼ which have at least one owl:sameAs links
in their dereferenced document to be ∼16% for our
sample. Where such links exist, following them and
applying the EQ-* entailment rules over the resulting
information increases the amount of unique triples (in-
volving the original URI) by a factor of 2.5× vs. the
unique (explicit) triples in the dereferenced document
alone. The very high standard deviation of ±36.23
shown in Table 4 is explained by the plot in Figure 6
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Table 4
Additional raw data made avaiable through LTBQE extensions

Extension |D+
∼|

|D+
∼|

|D∼|

ddata+
∼

ddata∼

avg. σ

rdfs:seeAlso LINKS 2.01× 105 0.02 1.006 ±0.04
owl:sameAs LINKS & INFERENCE 1.35× 106 0.16 2.5 ±36.23
RDFS INFERENCE 6.79× 106 0.84 1.8 ±0.76

(log/log), which shows the distribution of the ratio
of increase by considering owl:sameAs for individual
URIs: we again see that although the plurality of URIs
enjoy a small increase in raw data, a few URIs enjoy
a very large increase. In more detail, Figure 7 gives a
breakdown for URIs from individual domains, show-
ing the number of URIs with an information increase
above the indicated threshold due to owl:sameAs. The
graph shows that, e.g., some URIs from nytimes.com
and freebase.com had an information increase of over
4000× (mostly due to DBpedia links); often the local
descriptions were “stubs” with few triples.
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Fig. 6. Distribution of relative information increases by materialising
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We conclude that, in the general case, owl:sameAs
links are not so commonly found for dereferenceable
URIs, but where available, following them and apply-
ing the entailment rules generates significantly more
(occasionally orders of magnitude more) data for gen-
erating answers.

6.4.3. Benefit of including RDFS reasoning
With respect to our authoritative static schema data

Ψ∼, we measured the percentage of dereferenceable
URIs in D∼ whose dereferenced documents give non-
empty entailments as ∼81%. Where such entailments
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are non-empty, they increase the amount of unique
triples (involving the original URI) by a factor of 1.8×
vs. the unique (explicit) triples in the dereferenced
document. We conclude that such reasoning often in-
creases the amount of raw data available for LTBQE
query answering, and by a significant amount.

6.5. Discussion

Without looking at specific queries, in this section
we find that, in the general case, LTBQE works best
when a subject URI is provided in a query-pattern,
works adequately when only (non-class) object URIs
are provided, but works poorly when it must rely on
property URIs bound to the predicate position or class
URIs bound to the object position. Furthermore, we
see that rdfs:seeAlso links are not so common (found
in 2% of cases) and do not significantly extend the raw
data made available to LTBQE for query-answering.
Conversely, owl:sameAs links are a bit more common
(found in 16% of cases) and can increase the available
raw data significantly (2.5×). Furthermore, RDFS rea-
soning often (81% of the time) increases the amount of
available raw data by a significant amount (1.8×).

As discussed previously, we use these results to
modify our variant of LiDaQ which tries to minimise
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wasted remote lookups: aside from skipping URIs
bound to non-join variables, this variant skips deref-
erencing predicate URIs bound in triple patterns, or
URIs bound to the objects of triples patterns where the
predicate is bound to rdf:type, since we are unlikely
to find data matching those patterns in the respectively
dereferenced document (cf. Table 3). Of course, we
still dereference these URIs for the purpose of dynam-
ically collecting a set of schemata when performing
RDFS reasoning.

7. Query Benchmarks

We wish to evaluate LiDaQ in a realistic, uncon-
trolled environment, answering SPARQL queries di-
rectly over a diverse set of Web of Data sources. To
guide this evaluation, we first survey existing Linked
Data SPARQL benchmarks and look at how other sys-
tems evaluate their approaches (§ 7.1). We conclude
that no benchmark offers a large and diverse range
of benchmark SPARQL queries, and we thus pro-
pose QWalk: a novel benchmark methodology tailored
for testing LTBQE-style query-answering approaches
over the broader Web of Data (§ 7.2). Final evaluation
setup and results are presented later in Section 8.

7.1. Existing Linked Data SPARQL Benchmarks

We now look at existing SPARQL benchmark
frameworks and how they have been used to evalu-
ate various “live” Linked Data query processing ap-
proaches in the literature. The main purpose of this
survey is to study the query types and the benchmark
environments used in order to inform our own evalu-
ation of LTBQE and its extensions. We find that vari-
ous published SPARQL benchmark frameworks focus
on Linked Data query processing and some of the pro-
vided queries could be re-used, but that existing papers
evaluate their approaches with respect to either hand
crafted queries or domain-specific queries, whereby all
are restricted to one or few domains of data.

7.1.1. Benchmark Frameworks
We now discuss existing Linked Data SPARQL

benchmarking frameworks. Since we aim to run our
evaluation over Linked Data sources in situ—and to
demonstrate the real world behaviour of the methods
discussed herein—we focus on query frameworks de-
signed to run over real-world Linked Data, where we
do not treat SPARQL benchmarks designed to run over

synthetic datasets such as LUBM [22], BSBM [10], or
SP2Bench [52, 53]. In fact, to the best of our knowl-
edge, only two relevant frameworks have been pro-
posed:

FedBench The FedBench [51] framework is designed
specifically for testing Linked Data querying scenar-
ios. Queries are formulated against three data collec-
tions [51, Table 1]:

1. a Life Science Data Collection, which includes
datasets like KEGG, ChEBI, DrugBank and
DBPedia;

2. a synthetic dataset from the SP2Bench frame-
work [52, 53]; and

3. a general Linked Open Data Collection, which
includes datasets like DBpedia, GeoNames, Ja-
mendo, LinkedMDB, The New York Times and
Semantic Web Dog Food.

Three independent query sets are then defined. The
first query set focuses on features of particular inter-
est for federated query engines, such as the number
of involved sources, (interim) query results size (e.g
join complexities), and so forth. The second query set
consists of the original SP2Bench queries. The third
query set provides 11 Linked Data specific queries21,
which consist of SPARQL Basic Graph Patterns in
the form of 6 path queries, 3 star queries and 2
mixed/hybrid queries. This third set is thus of partic-
ular interest to us.

7.1.2. Evaluation of Linked Data Query Approaches
We now look at the specifics of how various authors

have evaluated their proposed approaches for query-
ing Linked Data. We focus on the evaluation of non-
materialised engines: i.e., we focus on query propos-
als that (typically) involve accessing remote data at
runtime. In particular, we summarise which query sets
were used, what data were used, and how the bench-
mark was setup.

LTBQE1 In the work which initially proposed the ex-
plorative LTBQE model, Hartig et al. [29] used
four manually crafted queries to demonstrate the
feasibility of the approach in the real-world. The
results present query time, number of results and
number of sources involved. In addition, the au-

21http://code.google.com/p/fbench/wiki/Queries#
Linked_Data_(LD)

http://code.google.com/p/fbench/wiki/Queries#Linked_Data_(LD)
http://code.google.com/p/fbench/wiki/Queries#Linked_Data_(LD)
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Reference
Queries Measures

Live Evaluation Setup
count type published time results sources

LTBQE1 a) 4 Custom X X X X X Single run
LTBQE1 b) 12 Custom X X X X X BSBM query mixes, RAP Pubby setup
LTBQE2 200 Custom X X X X X BSBM query mixes, RAP Pubby setup
LTBQE3 115 Custom X X X X X 3 runs per query
LTBQE4 3 Custom X X X X X 6 runs per query (1st run warmup)
LT10 8 Custom X X X X X Controlled with 2 second delay proxy
SIHJoin 10 Custom X X X X X CumulusRDF Linked Data proxy
FedX 11 FedBench X X X X X Local copies of SPARQL endpoints
LH10 390 Custom X X X X X Simulated HTTP lookups
SPLENDID 14 FedBench X X X X X Local replication of SPARQL endpoints
SPARQL-DQP 7 Custom X X X X X Amazon EC2 instance
QTree 300 Auto-gen. X X X X X Simulated HTTP lookups

Table 5
Summary about number of queries, evaluation measures and setup in the literature about live Linked Data query methods.

thors used 12 BSBM queries (for synthetic data)
and a controlled setup with a proxy server to eval-
uate the query time for different fetch-scheduling
strategies.

LTBQE2 This work studies how different in-memory
data structures might influence the performance
of the original LTBQE approach [31]. The pro-
posed data structures are evaluated with differ-
ent datasets and the query performance was again
benchmarked with BSBM.

LTBQE3 Another proposed LTBQE extension is to
cache query relevant data to improve the result
completeness of the LTBQE approach [26]. The
published evaluation uses a real world use-case,
called the FOAF Letter application22, which in-
volved five query templates—with a mix of dif-
ferent shapes and SPARQL features—instantiated
for 23 people, giving a total of 115 queries23.

LTBQE4 In follow up work, Hartig [27] discusses and
evaluates different strategies for the query execu-
tion order. The impact of the query evaluation or-
der is evaluated by executing 3 manually crafted
real-world queries six times live over the Web of
Data. The three queries are a mix of star and path-
shaped Basic Graph Patterns with 6–8 elements.

22The application provides a service for users with FOAF pro-
files to keep track of their social network by periodically check-
ing updates and suggesting new connections using the LTBQE
approach. See http://linkeddata.informatik.hu-berlin.
de/foafletter/

23http://squin.sourceforge.net/experiments/
CachingLDOW2011/

LT10 Ladwig and Tran [40] investigate three different
strategies to execute SPARQL queries over the
Web of Data and systematically analyse and com-
pare them. The benchmark contains 8 queries and
was executed in a controlled environment with a
local proxy server.

SIHJoin Ladwig and Tran [40] present experiments
on real-world datasets and on synthetic data to
evaluate the benefit of their proposed symmet-
ric hash-join operator against the non-blocking
iterator proposed by Hartig et al. [29]. Their
evaluation is executed in a controlled environ-
ment (hosted using CumulusRDF [38]) and uses
10 manually created queries (similar to the Fed-
Bench Linked Data query set).

FedX Schwarte et al. [55] evaluate their proposed sys-
tem for federating SPARQL endpoints using the
(entire) FedBench SPARQL benchmark frame-
work.

LH10 Li et.al. [43] investigated using reformulation
trees to organise local summarised knowledge
about sources; they also investigate how OWL
reasoning can be used for the explorative query
execution. The evaluation uses a synthetic data
set and manually selected subsets of the Billion
Triple Challenge 2010 dataset. Queries are cre-
ated manually. The experiment was executed in a
controlled environment and HTTP lookups were
simulated.

SPLENDID Görlitz and Staab [21] evaluated their
SPARQL federation approach (based on VoID de-
scriptions) using the life science and cross do-
main query sets from FedBench. The benchmark

http://linkeddata.informatik.hu-berlin.de/foafletter/
http://linkeddata.informatik.hu-berlin.de/foafletter/
http://squin.sourceforge.net/experiments/CachingLDOW2011/
http://squin.sourceforge.net/experiments/CachingLDOW2011/
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was conducted over a local replication of the
datasets and endpoints.

SPARQL-DQP Buil Aranda et al. [3] evaluate their
federated SPARQL techniques using modified
version of the Life Science queries in the Fed-
Bench framework, where additional SPARQL
features are added. The queries are then run over
four endpoints, two of which are replicated lo-
cally.

QTree In previous works [61], we compare several
data structures and hash functions with respect to
their suitability for determining relevant sources
during query evaluation. We experimented with
queries that are automatically generated from ran-
dom walks over real-world data, corresponding to
“star-shaped" and “path-shaped" queries (similar
to QWalk presented later). We evaluated the sys-
tem in an simulated and controlled environment.

To provide a good overview—and for ease of
comparison—we summarise this survey of the evalua-
tion of Linked Data query systems in Table 5.

7.1.3. Discussion
We see that there is a lot of diversity in how dif-

ferent Linked Data query proposals have been evalu-
ated. First and foremost, we highlight that few bench-
marks have been proposed for real-world Linked Data;
perhaps the most agreed upon is FedBench. Further-
more, most benchmarks and evaluations involve ei-
ther a handful of manually crafted queries designed
to run over a small number of sources (FedBench), or
involve a larger number of (semi-)automatically gen-
erated queries but are tied to a specific domain (e.g.,
DBPSB) or schema of data (e.g., FOAF Letter). Fur-
thermore, we note that few engines run their queries
live over remote resources, but rather prefer to repli-
cate raw content or endpoints within a controlled envi-
ronment. In summary, we find that no live Linked Data
query engine has been evaluated in an uncontrolled,
real-world setting for a large set of diverse queries: the
closest such evaluation is probably FOAF Letter [26],
which was run live, but which involved a handful of
resources and was centred specifically around FOAF
profiles.

7.2. QWalk: Random Walk Query Generation

Given the shortcomings of existing benchmarks,
we propose a new benchmark framework—called
QWalk—that is tailored to link-traversal based ap-

proaches and builds a large set of queries that are an-
swerable over a diverse set of real-world sources that
use different schemata. The core idea is to take a large
crawl of the Web of Data (in this case, the BTC’11
dataset) and to conduct random walks of different
shapes and lengths through the corpus to generate Ba-
sic Graph Patterns. The walk is guided to ensure that it
crosses documents through dereferenceable links, such
that it should return results through an LTBQE-style
approach.

7.2.1. Query shapes
To inform the types of queries we generate, we take

observations from the work of Gallego et al. [19],
who analyse the SPARQL queries logs of the DBPedia
and Semantic Web Dog Food (SWDF) servers. They
found that most queries contain a single triple pattern
(66.41% in DBPedia, 97.25% in SWDF). The maxi-
mum number of patterns found was 15, but such com-
plex queries occurred only rarely. The most common
forms of joins involved subject–subject (59–61%),
subject–object (32–36%) and object–object (4–5%);
few joins involving predicate variables were found in
general. As such, most queries with multiple patterns
are star-shaped, with a few path shaped queries. Star-
shaped joins typically had a low “fan-out”, where 27%
of the DBpedia queries had a fan-out of three, and
3.7% had a fan-out of two; the bulk of the remain-
ing queries were single-pattern with a trivial fan-out of
one, but went up to a maximum of nine. The lengths
of paths in the query were mostly one (98%) or two
(1.8%); very few longer paths were found.

entity queries star queries

path queries

Fig. 8. Visualisation of example benchmark queries (entity-s, enti-
ty-o, s-path-2, o-path-3, star-2-1); dotted lines represent query vari-
ables

Along similar lines, for our benchmark we generate
queries of elemental graph shapes as depicted in Fig-
ure 8, viz., entity, star and path queries. We now de-
scribe these query types in more detail.
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Entity queries (entity-<s|o|so>) ask for all available
triples for an entity. We generate three types of
entity queries, asking for triples where a URI ap-
pears as the subject (entity-s); as the object (entity-
o); as the subject and object (entity-so). These
type of queries are very common in Linked Data
Browsers, interfaces, or for dynamically serving
dereferenceable Linked Data content. An exam-
ple for entity-so would be

SELECT DISTINCT ?p1 ?o ?s ?p2 WHERE {
<d> ?p1 ?o . ?s ?p2 <d> .

}

Star queries (star-<s3|o3|s1-o1|s2-o1|s1-o2>) have three
acyclic triple patterns which share exactly one
URI (called the centre node) and where predicate
terms are constant. We do not consider stars in-
volving predicates since (as discussed) they are
rarely used in practice [19]. We generate four dif-
ferent variations of such queries, differing in the
number of triple patterns in which the centre node
appears at the subject (s) or object (o). Thus, each
query has 4 constants and 3 variables. An exam-
ple for star-s2-o1 would be

SELECT DISTINCT ?o1 ?o2 ?s1 WHERE {
<d> foaf:knows ?o1 ; foaf:name ?o2 .
?s1 dc:creator <d> .

}

Path queries (<s|o>-path-<2|3>) consist of 2 or 3 triple
patterns which form a path such that precisely
two triple pattern share the same variable. Exactly
one triple pattern has a URI at either the subject
or object position and all predicate terms are con-
stant. As before, we do not consider paths con-
nected through predicate variables since they are
rare [19]. We generate four different sub-types:
path shaped queries of length 2 and 3 in which ei-
ther the subject or object term of one of the triple
pattern is a constant. An example for s-path-2 is
the following:

SELECT DISTINCT ?o1 ?o2 WHERE {
dblpP:HartigBF09 foaf:maker ?o1 .
?o1 foaf:name ?o2 .

}

Query generation We generate queries from the
aforementioned BTC’11 dataset. In total, we generate
100 SELECT DISTINCT queries for each of the above

11 query shapes using random walks in our corpus. To
help ensure that queries return non-empty results (in
case there are no HTTP connection errors or time outs)
we consider dereferenceable information and generate
queries as follows:

1. We randomly pick a pay-level-domain available
in the set of confirmed dereferenceable URIsD∼.

2. We then randomly select a URI from D∼ for that
pay-level-domain.

3. We generate appropriate triple patterns from the
dereferenceable document of the selected URI
based on the query shape being generated.

– If path-shaped queries are being generated,
the URI for the next triple pattern is selected
from the dereferenceable URIs connected to
the previous URI, as per a random walk.

4. One variable is randomly chosen as distinguished
(returned in the SELECT clause) and other variables
are made distinguished with a probability of 0.5.

By randomly selecting a pay-level-domain first (as
opposed to randomly selecting a URI directly), we
achieve a greater spread of URIs across different
datasets. The result of the QWalk process is a large
set of diverse queries with different elemental shapes
that—according to the sampled data—should be an-
swerable through LTBQE methods over real-world
data in a realistic scenario (accessing remote sources).

8. Query Benchmark Results & Discussion

When running queries directly over remote sources,
various challenges come to the fore, including slow
HTTP lookups, unpredictable remote server behaviour,
high fan-out of links to traverse, the need for polite ac-
cess (in terms of delays between lookups and respect-
ing robots.txt policies), and so forth. As we have seen,
most works have evaluated LTBQE-style approaches
in controlled environments—using proxies and simu-
lated remote access—or only for a small number of
queries or sources in uncontrolled environments. Con-
versely, we now wish to stress-test LTBQE—and our
proposed reasoning extensions—for a large range of
diverse queries in uncontrolled environments, and to
characterise how these methods handle the aforemen-
tioned challenges.

Based on the discussion of the previous section, we
select three complementary benchmarks to run with
LiDaQ:
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1. FedBench Linked Data Queries, which offers a
few manually crafted queries designed to run over
a number of different domains;

2. DBpedia SPARQL Benchmark (DBPSB), which
offers the potential to generate many queries de-
signed to run over one domain, and are based on
real-world query logs;

3. QWalk, which offers a large selection of queries
that can be run directly over a diverse set of
sources.

We execute all queries directly over the Linked Data
Web in an uncontrolled environment without any repli-
cation, proxies or simulation of HTTP lookups. Thus,
the measured values reflect the expected query be-
haviour in a real application scenario and allows us
to discuss the feasibility of LiDaQ—and of LTBQE
query approaches in general—within such a setting.

We first discuss the measures that we take and the
environment in which the experiments are run (§ 8.1).
We then introduce the configurations of LiDaQ that
we evaluate (§ 8.2). Then we present the results of the
FedBench run (§ 8.3), the DBPSB run (§ 8.4), and the
QWalk run (§ 8.5).

8.1. Environment and Measures Taken

All evaluation is run on one server with 4 GB of
main memory. To ensure polite behaviour, we enforce
a per-domain (specifically per-PLD) minimum delay
of 500 ms between two sequential HTTP lookups on
one domain. Furthermore, we use a (generous) query
timeout of 2 hours.

Given that we run queries live over a diverse set
of remote sources, we often encounter some “non-
deterministic” behaviour: in particular, a source may
be readily accessible during some query runs, but may
be unresponsive or not return at all in others. In other
words, different HTTP-level issues can occur at dif-
ferent times for the same source. During initial exper-
iments, we thus encountered that result size and ex-
ecution time can differ for the same query and setup
between several benchmark runs. This “inconsistent”
query behaviour is explained by the fact that we en-
countered various HTTP-level issues between different
executions for the same query and setup.

We thus define the straightforward notion of a
benchmark stable query, which we consider in our re-
sults to help with comparability across different setups.
We assume that a query has a core set of relevant docu-
ments, which are accessed in all configurations (intro-
duced in the following section). A benchmark stable

query is a query for which the response codes for each
of the core URIs is the same across all setups runs.

For each query in each evaluation framework, we
record the following measures:

result: the number of distinct results,
time: the total time taken to execute the query,
first: time elapsed until the first result was returned,
lookups: total number of HTTP GET lookups,
data: total number of raw triples retrieved, and
inferred: total number of unique triples inferred.

These measures together characterise the behaviour of
the LiDaQ engine while processing queries under var-
ious setups. However, raw counts of query results can
sometimes exhibit outliers due to products inherently
caused by joins. We illustrate this with an example
QWalk query, which caused some surprising behaviour
when RDFS reasoning was used.

Example 11. For QWalk, we encountered the follow-
ing query:

SELECT DISTINCT ?s0 ?o0 ?s1
WHERE {

ebiz: owl:imports ?o0 .
?s0 rdfs:seeAlso ebiz: .
?s1 rdfs:isDefinedBy ebiz: .

}

Without reasoning, upon dereferencing the ebiz:

URI, we found 1 binding for ?o0, 2 bindings for ?s0 and
199 bindings for ?s1, yielding a total of 1× 2× 199 =
398 results.

However, with RDFS reasoning enabled, the schema
document for RDFS (the so-called “rdfs.rdfs” docu-
ment) authoritatively defines rdfs:isDefinedBy to be a
sub-property of rdfs:seeAlso. Thus, the 199 bindings
for ?s1 are added to ?s0, yielding 201 bindings, and a
total of 1× 201× 199 = 39, 999 results, giving a two
orders of magnitude increase.

The query results for the above example involves
a lot of repetitions of terms: each term bound to ?s0

or ?s1 would appear about 200 times. Hence we add
an additional measure to help loosely characterise the
“redundancy-free content” of the results: we summate
the number of unique result terms found for each dis-
tinguished variable in the results. In the above exam-
ple, this would give 1 + 2 + 199 = 202 terms without
reasoning, and 1 + 201 + 199 = 39, 999 terms with
reasoning.
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8.2. LiDaQ Configurations Evaluated

For LiDaQ, given the various extensions, various
ways of collecting RDFS data, and the option to turn
off/on our reduction of sources, we have thirty-two
combinations of possible setups, where we choose the
following ten configurations to evaluate:

Core (CORE): we dereference all URIs appearing in
the query and during the query execution, inde-
pendent from their triple position or role in joins.
No extensions are included. This setup serves pri-
marily as reference to the basic LTBQE profile.

Reduced Core (CORE−): Our reduced configuration
uses our optimised source selection to decide
which URIs are query relevant and should be
dereferenced. We do not dereference URIs bound
to non-join variables, or (unless dynamically re-
trieving schemata) URIs bound to predicates or
values for rdf:type. We expect in theory the
smallest amount of results and also the fastest
query time. The following extensions are built
upon this reduced profile, not CORE.

With rdfs:seeAlso links (SEEALSO): this configu-
ration extends the CORE− setup by following
rdfs:seeAlso links. Based on our empirical analy-
sis, we expect that only a small number of queries
will be affected given that ∼2% of the URIs con-
tain these information in the dereferenceable doc-
ument and that they make little additional raw
data available.

With owl:sameAs links and inference (SAMEAS):
this benchmark setup extends the CORE− setup
by considering owl:sameAs links and inference.
We expect for all queries an increase in returned
results and the number of lookups. Based on our
empirical study, this should affect a moderate
number of queries given that such information is
available for ∼16% of resources, where, in such
cases, inference makes on average 2.5×more raw
data available.

With RDFS inference
(
RDFS[s|d|e]

)
: this benchmark

setup extends the CORE− setup by performing in-
ferences for the RDFS ruleset relying on retrieved
schema information. Based on static schema data,
our empirical analysis suggested that RDFS rea-
soning affects ∼84% of resources for which
it makes about 1.8× more raw data available.
However, we investigate three sub-configurations
based on the methods described in Section 5.1.3:
Static (RDFSs): uses the static schema extracted

earlier from the BTC’11 dataset;

Direct (RDFSd): collects direct schemata by dy-
namically dereferencing predicates and val-
ues for rdf:type;

Extended (RDFSe): collects extended schemata
by dynamically following recursive links
from the direct schemata.

Combined
(
COMB[s|d|e]

)
: this benchmark setup com-

bines all extensions for the previously mentioned
configurations of schema collection. With this
configuration, we expect the highest number of
results, query time and processed and inferred
statements.

For ease of reference, Table 6 gives an overview of
these test configurations, and which features are en-
abled or disabled.
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Table 6
Overview of the ten LiDaQ benchmark configurations

8.3. FedBench results

Our first experiment uses the FedBench Linked Data
Queries (§ 7.1.1) to measure the potential benefit of
our proposed extensions and optimisations. These 11
cross-domain queries (denoted LD1–11) are designed to
return a non-empty result set if executed over the Web
with an LTBQE-style approach. The queries (along
with results and discussion) can be found in Ap-
pendix A. Our first observation is that 4 out of the
11 manually crafted FedBench queries contain explicit
owl:sameAs query patterns. This fact ties back with
our initial motivation that including owl:sameAs infor-
mation is important to answer queries across diverse
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sources. In the case of FedBench, these owl:sameAs re-
lations are included explicitly; for our extension this
would not be necessary (though we leave them in
for comparability across LiDaQ configurations that in-
clude/exclude owl:sameAs inference).

Query Testing In initial tests, we only received re-
sults for 6 out of the 11 FedBench queries. A man-
ual inspection of the queries and their relevant data re-
vealed that the empty results were either caused by (i)
access forbidden by robots.txt or (ii) updates in the
DBpedia datasets (which, in itself, lends strength to the
arguments for live querying approaches).

In the first category, there was only 1 query:

Disallowed by robots.txt (LD7): This query requires
data from the geonames.org domain, especially
from the subdomain sws.geoname.org. The query
fails because the access for resources on this sub-
domain is disallowed via the robots.txt proto-
col.24

We do not wish to contravene the Robots Exclusion
Protocol and so we do not run this query in the main
evaluation.

In the second category—those caused by being out-
of-sync with DBpedia—there were 4 queries, which
we fixed manually:

Missing language tag (LD9): One query was missing
a language tag. We changed the query literal "Luiz
Felipe Scolari" by adding the English language
tag: "Luiz Felipe Scolari"@en.

Outdated predicates (LD8–10): Three queries contain
the predicate skos:subject, which was initially
proposed for SKOS and used by DBpedia. How-
ever, the SKOS Working Group later chose to
instead reuse dcterms:subject and DBpedia fol-
lowed suit. We thus changed the query predicates
from skos:subject to dcterms:subject where ap-
plicable.

Thus, we keep 10 of the 11 original queries, where 4
are adapted slightly to work against current versions of
DBpedia, and where 1 is dropped due to robots.txt is-
sues. In addition, since we count results, we add to all
queries the DISTINCT solution modifier to eliminate
duplicates. Our updated queries are online25. However,
we still find that some of the updated queries do not

24See http://sws.geonames.org/robots.txt, which states
that all agents are disallowed.

25http://code.google.com/p/lidaq/source/browse/
queries/fedbench.txt

return results: queries LD6 and LD9 return no results for
any configuration (or any run), and query LD10 only
sometimes returns results when owl:sameAs is consid-
ered; these are due to mismatches between the given
queries and remote data that we could not easily fix
without dramatically changing the original query (see
Appendix A for details).

Overview of Experiments In total, using LiDaQ, for
each configuration, we executed each FedBench query
live over the Web once a week for four weeks. In Ap-
pendix A, for each individual query, we provide de-
tailed results and discussion (selecting the best of the
four runs). We also include per-query comparison to
the existing SQUIN library for LTBQE [29], which we
generally find to be considerably faster, but which, to
the best of our knowledge, does not include politeness
policies; we thus exclude it for later larger-scale ex-
periments.26 Herein, we focus on the general impact
of our extensions on the repeatability and reliability
of the results across the four runs, averaged across all
queries.

Detailed Results Given the number of queries (10),
configurations (11) and measures (6), we rather present
detailed discussion of the FedBench results for each
individual query in Appendix A.

Summarising herein, we observe that LTBQE works
well for some simpler FedBench queries, but struggles
in an uncontrolled environment for complex queries
that require accessing a lot of sources. For exam-
ple, even in the baseline CORE− configuration, LD11
required performing 1,125 lookups, and the most
complex configuration—COMBe—attempted 17,996
lookups. Relatedly, we generally observe that LTBQE
extensions perform well for simple queries, but ex-
acerbate performance issues for complex queries. In
fact, although RDFS and owl:sameAs extensions work
well on domains like data.semanticweb.org, configura-
tions that involve following same-as or schema links
struggle for data-providers such as DBpedia, which of-
fer many such links (both internal and external). On
a more positive note, we find that CORE− often of-
fers significant time savings over CORE with minimal
effect on result sizes.

In addition, results sizes can become quite large
(e.g., LD11 returns 196,448 results in one configura-
tion): the given SPARQL queries often contain numer-
ous result variables in the SELECT clause (e.g., 5 for

26We found queries for which it sends at least eight lookups per
second to the same server.

http://sws.geonames.org/robots.txt
http://code.google.com/p/lidaq/source/browse/queries/fedbench.txt
http://code.google.com/p/lidaq/source/browse/queries/fedbench.txt
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LD11) and results require a product for variables with
compatible mappings [47]. For example, DBpedia of-
ten contains a large number of labels for resources in
different languages, where asking for the labels of re-
sult resources may multiply the raw result sizes by a
factor of ten or more; as discussed previously, such be-
haviour has a cumulative effect.

In general, we would also expect that the results
given by CORE− should be fewer or equal than for all
other configurations, which are monotonic extensions;
similarly, we would expect equal or more results in
COMBx than RDFSx, SAMEAS and SEEALSO (where
x is one of the schema configurations). This expecta-
tion held true in practice for a number of the earlier
queries (LD1–3), where for queries LD1 and LD3, the
various extensions, including reasoning, found many
more results. This monotonic increase also held true
for certain other cases (e.g., with the exception of
COMBe, LD4 shows this behaviour). However, it did
not hold true in later queries: even selecting the best
run from a span of four weeks, the unrepeatability of
results played a major role in this evaluation. We thus
now focus on characterising this issue.

Reliability Results Running complex queries live
over networks of remote sources raises the question of
reliability and repeatability. We now focus on how the
results varied across the four runs to get a better idea
of the repeatability of LTBQE/LiDaQ in a realistic set-
ting. We summarise the average number of results and
the corresponding standard deviation for each config-
uration and query across all four runs in Table 7.

LD11 in particular shows some unreliable behaviour
across the four runs, where we estimated the abso-
lute deviations to be between ∼28–140% of the mean,
depending on the LiDaQ configuration: as aforemen-
tioned, this query required between 1,103–17,996
lookups. With this exception aside, across all other
queries, the CORE, CORE− and SEEALSO configura-
tions access the fewest sources and produce reliable
results across the four runs. The results for the other
variations—which include reasoning extensions—are
less reliable in general. LD5 and LD10 show high devi-
ations in the number of results returned for SAMEAS,
LD5 shows high deviations for dynamic schema config-
urations, and LD4 shows high deviations for configura-
tions involving RDFS reasoning (though not for com-
bined configurations). In terms of absolute deviation as
a percentage of the mean, we computed that the results
for the other setups vary somewhere between∼2–11%
for most of the queries.

Conclusions In summary, when running the queries
live over remote sources, we see complex and un-
predictable behaviour across different configurations
and across time: remote sources may give different re-
sponses at different times (e.g., may give 50x errors
during high server load), and the failure of an impor-
tant source may break traversal at that point. We also
see that reasoning extensions, particular those involv-
ing dynamic schema collection, often make the query
behaviour more unreliable by trying to access more
sources.

The FedBench queries predominantly request data
from a few central sites: the first four queries (LD1–
4) are based around the data.semanticweb.org data
provider, and provide generally stable results. Other
queries also rely on the hosts www4.wiwiss.fu-berlin.de
and dbpedia.org and generally demonstrate less sta-
ble behaviour. Taking the former domain, for exam-
ple, owl:sameAs extensions can cause erratic behaviour,
potentially due to errors in how the relation is used
for the DailyMed and LinkedCT datasets.27 For DB-
pedia, the schema descriptions of class and property
terms are hosted in individual documents and often in-
terlink with related sources like Yago [58] and CYC,
leading to many documents being requested when
schemata are dynamically retrieved, leading to unsta-
ble behaviour for such configurations with respect to
these queries. Given that the queries are restricted to
a few data providers, politeness policies play a crucial
role: the amount of time-delay enforced between sub-
sequent lookups to the same host can be a major factor
for performance.

In general, from the 11 original FedBench queries,
which were designed to be run using LTBQE-style ap-
proaches, 4 queries show promising results, 3 return
no results (2 involve access disallowed by robots.txt),
and the remaining 4 queries show unpredictable be-
haviour across different runs and configurations. Some
of the more complex queries involve accessing thou-
sands and tens of thousands of sources at runtime. By
requesting even more sources, our proposed reasoning
extensions can aggravate reliability issues. This calls
into question the practicality of the LTBQE approach
(and our reasoning extensions) in uncontrolled envi-
ronments for complex queries that span multiple sites
and require many sources to answer.

27We observed and reported such problems before: see
https://groups.google.com/forum/?fromgroups#!topic/
pedantic-web/rXQPcFLMOi0 for detailed discussion.

https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
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Table 7
Average result size and standard deviation across four query runs

Setup
LD1 LD2 LD3 LD4 LD5

avg. σ avg. σ avg. σ avg. σ avg. σ

CORE 333 ±0 185 ±0 191 ±0 50 ±0 21.5 ±24.83
CORE− 333 ±0 185 ±0 190.75 ±0.5 50 ±0 24 ±22.32
SEEALSO 333 ±0 185 ±0 190.75 ±0.5 50 ±0 21.5 ±24.83
SAMEAS 527.25 ±3.95 185 ±0 908.25 ±35.53 146 ±0 67.75 ±135.5
RDFSs 380 ±0 185 ±0 246 ±0 50 ±0 17.5 ±21.24
RDFSd 380 ±0 185 ±0 246 ±0 50 ±0 20.25 ±23.41
RDFSe 380 ±0 185 ±0 246 ±0 37.5 ±25 8 ±9.38
COMBs 674.5 ±14.15 185 ±0 1,385 ±161.85 137 ±92.57 0 ±0
COMBd 662.5 ±14.71 185 ±0 1,428 ±122.36 151.25 ±100.85 3.5 ±7
COMBe 674.5 ±14.15 185 ±0 1,428 ±122.36 88.5 ±59.29 — —

Setup
LD6 LD8 LD9 LD10 LD11

avg. σ avg. σ avg. σ avg. σ avg. σ

CORE 0 ±0 9.5 ±10.97 0 ±0 0 ±0 21,801.75 ±6,255.72
CORE− 0 ±0 9.5 ±10.97 0 ±0 0 ±0 14,322 ±12,237
SEEALSO 0 ±0 19 ±0 0 ±0 0 ±0 19,096 ±9,373.88
SAMEAS 0 ±0 10,535.5 ±12,165.35 0 ±0 2,512.5 ±2,973.81 8,466 ±10,940.75
RDFSs 0 ±0 9.5 ±10.97 0 ±0 0 ±0 1,745.5 ±3,491
RDFSd 0 ±0 1 ±2 0 ±0 0 ±0 2,757.25 ±3,508.19
RDFSe 0 ±0 3 ±6 0 ±0 — — — —
COMBs 0 ±0 14,096.75 ±16,295.82 0 ±0 812.25 ±1,624.5 71,438 ±21,634.8
COMBd 0 ±0 — — 0 ±0 0 ±0 177,596.5 ±61,929.13
COMBe 0 ±0 — — — — — — 50,660 ±71,289.96

8.4. DBPSB Results

The FedBench Linked Data queries are designed
specifically for evaluation using LTBQE-style engines
such as LiDaQ. We now rather look at the DBpedia
SPARQL benchmark [44] (DBPSB; § 7.1.1): a generic
Linked Data SPARQL benchmark containing realis-
tic queries based on popular patterns mined from real-
world DBpedia access logs. Thus, DBPSB should give
us an indication as to how well LTBQE can cope
with (non-tailored) queries that are based on those fre-
quently run by users against the materialised DBpedia
SPARQL engine. As we will see, LTBQE and its ex-
tensions stuggle for this query suite.

Query Testing In total, the DBPSB query set consist
of 25 different query templates (denoted DB1–25).28

28Originally taken from http://dbpedia.aksw.org/
benchmark.dbpedia.org/Queries2011.txt. Formatted and
annotated templates can be found at http://code.google.com/
p/lidaq/source/browse/queries/dbpsb.txt

Each template has an associated template query that
can be run against a DBpedia SPARQL endpoint to in-
stantiate a set of concrete queries used for evaluation:
each template query has a subset of template variables
that are bound to create a new evaluation query (one
query per binding) in this manner, where the rest of the
variables are left as is for the evaluation query.

In a first step, we manually inspected the DBPSB
query templates and ruled out those which LTBQE
would clearly not be able to answer. We thus initially
ruled out 16 queries:

Unsupported OPTIONAL feature (8 queries): A total
of 8 query templates use the OPTIONAL keyword,
which can only be correctly evaluated over a
closed dataset since it is a non-monotonic fea-
ture [28]. Problematically, if data are not avail-
able to match the OPTIONAL clause, SPARQL spec-
ifies that UNBOUND should be returned. Returning
UNBOUND is a definitive answer that the data are
not available, and can be tested elsewhere in a
FILTER clause, allowing features such as negation-

http://dbpedia.aksw.org/benchmark.dbpedia.org/Queries2011.txt
http://dbpedia.aksw.org/benchmark.dbpedia.org/Queries2011.txt
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.txt
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.txt
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as-failure. LTBQE cannot definitively say that
data are not available (unless a bounded dataset is
considered [28]).

No suitably deref. URI (8 queries): As discussed pre-
viously, dereferencing class and predicate URIs
rarely returns their extension, and this is the case
for DBpedia; for example, looking up the class
dbo:SoccerPlayer does not return all instances
of soccer-player, and looking up the predicate
dbo:thumbnail does not return all relations be-
tween things and their thumbnails. A total of
8 query template instances would only involve
URIs in such positions. (We do not include a fur-
ther 4 OPTIONAL queries that also do not contain a
suitably dereferenceable URI.)

This is perhaps an interesting observation in itself:
only 9 of the 25 DBPSB query templates (36%) mined
from real-world query logs could potentially be an-
swered by LTBQE. If we were to relax the restriction
on OPTIONAL and run it in a “best-effort” manner—or
with a closed dataset semantics—LTBQE could run
potentially run 13 of the 25 DBPSB queries (52%).

Overview of Experiments For the evaluation, we
wanted to generate 25 sample queries for each of the
remaining 9 DBPSB templates. For this, we ran the
template queries provided for the benchmark against
the public DBpedia SPARQL endpoint29 and gener-
ated up to 1,000 results. From the template results, we
randomly selected 25 to generate the query instances.
Of the 9 templates, we encountered problems instanti-
ating another 3 due to problems with DBPSB and the
DBpedia endpoint itself:

Could not generate 25 instances (4 queries): We did
not get 25 instances for 4 of the templates us-
ing the public SPARQL endpoint. Of these, 2
template queries repeatedly timed out and thus
could not be instantiated. The other 2 query tem-
plates returned insufficient results to generate
enough concrete queries: both queries generated
only two instances due to the use of the predicate
dbpprop:redirect, which returns only two triples
from the public endpoint.

One of the queries that could not be instantiated in-
volved UNION patterns such that it could be run and still
generate results without the template query variable
being instantiated, so we include this in the evaluation

29http://dbpedia.org/sparql/

(DB17). As such, we are left with only 6 DBPSB tem-
plates that are usable for evaluating our methods.30 We
had problems with another template query: the query
plan for DB24 was ordered in such a way that the only
dereferenceable URI was in a class position. Hence we
are only left with 5 runnable templates.

We benchmarked 6 of the 10 LiDaQ setups: based
on experiences with unstable DBpedia queries in Fed-
Bench and some initial runs for DBPSB, we dropped
configurations involving the dynamic collection of
schema data as they increased the demand of sources
from DBpedia and exacerbate unstable behaviour (cf.
Table 7). We thus focus on evaluating CORE, CORE−,
SEEALSO, SAMEAS, RDFSs and COMBs. Queries are
run live and directly over dereferenceable DBpedia
data in situ; some queries may also traverse links from
DBpedia and find additional answers remotely.

Table 8 shows high-level statistics about the results
retrieved for the query instances generated for each
template. We show the number of queries which re-
turned some results, divided by those considered to be
benchmark stable (see § 8.1) and those which were not;
and we also show the number of queries for each tem-
plate which did not return results. The templates that
generated queries with empty results involved UNION
patterns with shared template queries, which caused
problems that we discuss later, particularly for DB4.

Table 8
Statistics about stability per DBPSB query template

Template Total
Non-Empty

Empty
stable unstable

DB1 25 23 2 0
DB4 25 0 12 13
DB5 25 0 13 12
DB13 25 24 0 1
DB17 25 24 1 0

Detailed Results The results of the DBPSB exper-
iments are given in Table 9, with average measures
given across all query instances. For each query tem-
plate class, we now discuss the results. Herein, vari-
ables marked like “%%var%%” are template variables,
which are instantiated to create concrete instances of
queries.

30All template instances are available online: http://code.
google.com/p/lidaq/source/browse/queries/dbpsb.swj.
25.tar.gz

http://dbpedia.org/sparql/
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
http://code.google.com/p/lidaq/source/browse/queries/dbpsb.swj.25.tar.gz
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DB1: RETURN THE TYPE(S) OF A CERTAIN ENTITY

SELECT DISTINCT ?var1
WHERE {

%%var%% rdf:type ?var1 .
}

This simple query consists of only one triple pattern
with a URI in the subject and predicate position (DB-
pedia does not contain blank nodes in the template
variable position). LiDaQ results for instances of this
template are listed in Table 9. We see that each query
returns on average about 3 results per query without
reasoning. We see that our reduced source selection
optimisation works well (CORE− and the extensions
based on it), reducing the average number of HTTP
GET requests from 8 to 2 (a single source lookup
including redirect) and thus requiring only ∼20% of
the time taken for CORE (the additional lookups are
for the predicate rdf:type and for the bound class
URIs). Furthermore, we see that reasoning also in-
creases the number of results at the cost of additional
query time: SAMEAS sees only a minor increase in re-
sults, but RDFSs and COMBs more than double the
results by inferring additional types through sub-class,
domain and range semantics. The extensions support-
ing owl:sameAs require looking up (on average) approx-
imately one additional source.

DB4: LIST THE NAMES OF ENTITIES WHICH ARE
CONNECTED (IN EITHER DIRECTION) TO THE QUERY
ENTITY.

SELECT ?var5 ?var6 ?var9 ?var8 ?var4
WHERE {

{ %%var%% ?var5 ?var6 .
?var6 foaf:name ?var8 .

}
UNION
{ ?var9 ?var5 %%var%% ;

foaf:name ?var4 .
}

}

Some of the generated queries failed to return results
since they bind literals to the template variable due to
the second mention of %%var%% in the object position.
In such cases, these literals cannot be dereferenced and
LTBQE cannot find results.31 Table 9 shows the aver-
age results for all queries. Though SAMEAS generates
some additional results, it also instigates some unsta-

31SPARQL does allow literals in the subject position, though not
allowed by RDF.

ble behaviour (cf. Table 8), where we see a large num-
ber of triples being retrieved and inferred, and where
we see that the number of lookups triples. We can also
see the benefit of CORE− in reducing the number of
lookups vs. CORE while not affecting results.

DB5: LIST THE NAME AND COMMENTS OF A GIVEN

SERIES WITH A GIVEN TYPE; OR LIST THE NAME

AND COMMENTS OF A SERIES WITH A GIVEN TYPE

THAT REDIRECTS TO A GIVEN URL

SELECT DISTINCT ?var3 ?var4 ?var5
WHERE {

{ ?var3 dbpp:series %%var1%% ;
foaf:name ?var4 ;
rdfs:comment ?var5 ;
rdf:type %%var0%% .

} UNION {
?var3 dbpp:series ?var8 .
?var8 dbpp:redirect %%var1%% .
?var3 foaf:name ?var4 ;

rdfs:comment ?var5 ;
rdf:type %%var0%% .

}
}

From Table 8, we encountered some similar behaviour
as for the previous query: some bindings for the tem-
plate variable %%var1%% were again literals, leading to
query instances for which no results could be found
through LTBQE. From the detailed results in Table 9,
although SAMEAS and COMBs found additional re-
sults, they did so at the cost of causing unstable be-
haviour, increasing the number of HTTP lookups by a
factor of ∼ 10×. Again we see the benefit of CORE−

in reducing the number of lookups vs. CORE while not
affecting results.

DB13: LIST ENGLISH COMMENTS, DEPICTIONS AND

HOMEPAGES FOR AN ENTITY.

SELECT *
WHERE {

{ %%var%% rdfs:comment ?var0 .
FILTER (lang(?var0) = "en")

}
UNION
{ %%var%% foaf:depiction ?var1 }
UNION
{ %%var%% foaf:homepage ?var2 }

}

Much like DB1, this star-shaped query is quite straight-
forward for the LTBQE approach as the results in Ta-
ble 9 illustrate. Again the reduced source selection
(CORE) shows benefits, returning all results, but re-
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ducing the amount of HTTP lookups: only one source
needs to be retrieved (requiring two lookups including
the redirect), and results take 2.67 seconds to process
in this setup.

In this case, RDFS reasoning alone has no effect on
the results, but increases the time by a factor of 3.4×.
Support for owl:sameAs statements increases the result
size by a factor of 6×, but at the cost of a 9.5× increase
in time as an average of 5.5 additional sources are
fetched. When owl:sameAs and RDFS support are com-
bined in COMBs, a few additional answers are found
over SAMEAS alone.

DB17: LIST THE FRENCH LABELS FOR ENTITIES

WITH THE SUBJECT EITHER GERMAN STATE CAP-
ITALS, PREFECTURES IN FRANCE OR THE QUERY

DEFINED SUBJECT.

SELECT DISTINCT ?var2 ?var3
WHERE{

{ ?var2 dcterms:subject %%var%%. }
UNION
{ ?var2 dcterms:subject

dbpcat:Prefectures_in_France . }
UNION
{ ?var2 dcterms:subject

dbpcat:German_state_capitals . }
?var2 rdfs:label ?var3.
FILTER (lang(?var3)="fr")

}

We updated this query to use dcterms:subject in-
stead of skos:subject.32 However, the updated query
template times out; hence we run the query without
the first union clause containing the template variable.
The results in Table 9 show that this query is more
expensive to execute than star-shape queries with spe-
cific subject URIs. In particular, there are 99 prefec-
tures listed for France and 15 German capital states,
as well as the members of the category given by the
template variable to dereference. Given the large num-
ber of documents accessed, we found that extensions
following owl:sameAs links took too long to run for our
experiments; hence these results are omitted.

Conclusion First, we notice that many of the DBPSB
queries are unsuitable for LTBQE, and that we ended
up only being able to run a small fraction of the orig-
inal queries. Second, we generally found that CORE−

offers good performance with respect to CORE, with

32Although there are puzzlingly some skos:subject predicates
in DBpedia, they are not used to relate entities to categories:
dcterms:subject is now used in this case.

minimal effect on results. Third, we found that RDFSs
only had a significant effect for the first query, asking
for the types of a given entity. Fourth, we found that
following owl:sameAs links on DBpedia invoked high
overhead and unstable behaviour for 3 of the 5 queries,
but also found various additional answers (though pri-
marily aliases of result URIs). Ultimately, we conclude
that LTBQE and its extensions (particularly those in-
volving reasoning) struggle to cope with the complex-
ity of DBPSB queries, which are designed to put ma-
terialised engines through their paces.

8.5. QWalk results

Having looked at the FedBench evaluation contain-
ing a few manually-crafted queries answerable by LT-
BQE over a small number of real-world sources, and
the DBPSB queries based on real-world query logs
answerable (mostly) over DBpedia, we now look at
the QWalk benchmark (§ 7.2), which automatically
builds a large set of queries answerable over a wide
range of real-world sources. For this, using random
walk techniques over the BTC’11 corpus, we created
100 queries for each of the 11 elemental shapes of
the QWalk benchmark, giving a total of 1,100 initial
queries. As before, we then ran these live over remote
sources in an uncontrolled setting using various con-
figurations of LiDaQ.

Query testing We first wished to filter out queries
that did not return any answers or that did not show
benchmark stable behaviour.

To begin, for the entity query classes, we look at
how many queries return empty results, how many
return stable non-empty results suitable for compari-
son, and how many return unstable non-empty results
(see § 8.1). Our notion of stability is measured across
all ten configurations of LiDaQ, including the dy-
namic schema import extensions. We also looked at the
breakdown of stable/unstable/empty results turning off
the dynamic schema import (i.e., turning off RDFSd,
RDFSe, COMBd, COMBe). The results are shown in
Table 10. Though the stability of entity-o and entity-
so queries are not significantly affected, the number
of stable queries for entity-s queries more than halves.
Furthermore, as we will see later, the dynamic import
of schemata often requires over 10× the runtime of
CORE, and over 5× the runtime of static schema equiv-
alents. Due to problems with instability and long run-
times, and given the number of queries in the bench-
mark, we do not run the dynamic schema configura-
tions for QWalk queries.
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Table 9
Results for DBSPB queries DB1, DB4, DB5, DB13 and DB17

Setup
Term Results Time (s)

First (s) HTTP Data Inferred
avg. σ avg. σ avg. σ

D
B

1

CORE 3.09 ±4.66 3.09 ±4.66 7.2 ±9.4 2.4 8 3,034.74 —
CORE− 3.09 ±4.66 3.09 ±4.66 1.5 ±0.7 1 2 6.3 —
SEEALSO 3.09 ±4.66 3.09 ±4.66 1.6 ±1 1.1 2 6.3 —
SAMEAS 3.26 ±5.06 3.26 ±5.06 5.6 ±8.4 1.5 3.13 203.87 143.83
RDFSs 6.57 ±5.85 6.57 ±5.85 10.8 ±21.9 5.6 2 100.39 53.35
COMBs 6.87 ±6.54 6.87 ±6.54 11.8 ±27.3 2.1 3.13 297.26 237.39

D
B

4

CORE 51 ±73.56 24.75 ±36.96 71.2 ±103.5 71 147.5 5,427.75 —
CORE− 51 ±73.56 24.75 ±36.96 71 ±103.1 70.7 139 2,739.5 —
SEEALSO 51 ±73.56 24.75 ±36.96 71.6 ±104.5 71.3 140.25 2,777.75 —
SAMEAS 164.75 ±209.84 174.5 ±226.3 246.8 ±327.7 246.4 801.5 104,864.25 94,473.25
RDFSs 51.75 ±73.72 46.25 ±72.74 108.9 ±103.3 73.3 141 8,940 5,663.5
COMBs 165.5 ±210.04 323.5 ±444.02 291.8 ±332.8 247.1 807.25 130,207.25 119,221.75

D
B

5

CORE 12.1 ±13.74 7.7 ±10.1 9.5 ±4.3 5 21.7 689.4 —
CORE− 12.1 ±13.74 7.7 ±10.1 7.4 ±4.2 3.8 13.7 187.4 —
SEEALSO 12.1 ±13.74 7.7 ±10.1 7.5 ±4.2 3.7 13.9 188.3 —
SAMEAS 39.6 ±41.8 993 ±2,410.14 196.9 ±381.3 24.6 133.4 104,446.5 113,258.6
RDFSs 12.1 ±13.74 7.7 ±10.1 45.4 ±4.3 6.4 13.7 1,352.8 822.4
COMBs 39.6 ±41.8 993 ±2,410.14 200 ±238.3 16 119.1 99,241.5 97,387.9

D
B

13

CORE 3 ±0 2.67 ±0.48 4 ±2.5 1.9 8.08 261.42 —
CORE− 3 ±0 2.67 ±0.48 2 ±2 1.6 2 13.46 —
SEEALSO 3 ±0 2.67 ±0.48 2.5 ±2.3 1.6 2 13.46 —
SAMEAS 3 ±0 15.96 ±13.35 18.6 ±3.6 2.1 7.5 1,487.12 1,140
RDFSs 3 ±0 2.67 ±0.48 6.7 ±21.2 1.9 2 540.17 252.21
COMBs 3 ±0 17.21 ±13.49 23.4 ±25.8 2.2 7.5 1,889.21 1,540.88

D
B

17

CORE 228 ±0 114 ±0 124.5 ±0.5 121.7 237.92 4,679.75 —
CORE− 228 ±0 114 ±0 122.9 ±3.5 5.4 234 4,420.33 —
SEEALSO 228 ±0 114 ±0 143.3 ±3 5.1 237.33 4,421 —
RDFSs 228 ±0 114 ±0 161.6 ±4.3 5.1 234 125,408.25 68,798.75

Table 10
Stable entity queries with and without dynamic schema extensions

Template Total
Stable

wo/dyn. w/dyn.

entity-s 100 60 27
entity-o 100 57 53
entity-so 100 59 54

Thus, considering only CORE−, CORE, SEEALSO,
SAMEAS, RDFSs and COMBs configurations, and for
each query shape, Table 11 provides a breakdown of
the total number of queries that return some results
and exhibit stable or unstable behaviour, as well as
the number of queries with no results. Typewritten

numbers correspond to categories for HTTP server re-
sponse codes encountered for queries with no results;
the column “mix” indicates that there are at least two
URIs with different response codes and the column
“data” indicates that the missing results are not re-
lated to URI errors and we assume that the remote data
changed. We select only non-empty and stable queries
for our comparison.

Detailed Results We now look at the average mea-
sures for results across all (non-empty stable) queries
per query class: we begin with entity queries, then
progress to star queries and eventually to path queries.
Detailed results for each of our measures can be found
for reference in Tables 23–25 of Appendix B. Herein,
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Table 11
Summary of stable/unstable/empty queries for QWalk benchmark

Class
Non-Empty Empty

s. uns. all 4XX 5XX 6XX mix data

entity-o 57 7 36 18 2 11 0 5
entity-s 60 5 35 18 1 11 0 5
entity-so 59 9 32 17 2 8 1 4
o-path-2 62 4 34 16 5 8 1 4
o-path-3 35 25 40 19 3 18 0 0
s-path-2 66 2 32 17 2 11 0 2
s-path-3 51 7 42 18 1 20 0 3
star-0-3 67 6 27 14 0 10 0 3
star-1-2 62 2 36 21 2 12 0 1
star-2-1 70 5 25 11 3 9 1 1
star-3-0 66 15 19 12 0 4 0 3

we plot the total time and result sizes in bar plots,
where we measure the ratio of the analogous figure
for CORE− (which always returns the fewest results
and should be the fastest). Again, absolute measures
can be found in Tables 23–25. In general, we found
a lot of variance and outliers in our results; hence we
summarise results with bar plots which show the 50th,
75th, 90th and 100th percentiles of the result-sizes and
times across the query classes, where the percentiles
characterise how the majority of queries behaved, and
what outliers occurred.

entity-*: GET GENERIC INFORMATION ABOUT A GIVEN

RESOURCE

Entity queries have the most simple query shape and
are used in a wide range of applications to gather all
available information about a certain entity, e.g., for
the user interfaces of entity search engines. They are
also often (but not always) used as a simple mecha-
nism to support SPARQL DESCRIBE queries. Figure 9
presents the increase in time over CORE− for all
other configurations across the three classes of entity
queries, broken down by percentiles, with the x-axis
presented in log-scale, where the 100 line indicates no
change from CORE−. Figure 10 analogously presents
the increase in query results returned versus CORE−.

We can see from the 50th percentile in Figure 9 that
the CORE configuration—which dereferences predi-
cates, values for rdf:type and URIs bound to non-
join variables—often requires significantly more time
to process queries than CORE− across all three entity
query classes, with the most severe case (on the 100th
percentile) taking almost eight times longer for entity-s.
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Conversely, Figure 10 shows that CORE almost never
returns additional results beyond CORE−.

Similarly from both figures, we see that SEEALSO

rarely affects performance, but very rarely finds addi-
tional answers (only for the 100th percentile are result
increases visible). From the flat 75th percentiles in Fig-
ure 9, we can see that in the majority of cases, other ex-
tensions did not affect performance significantly; how-
ever, the 90th and 100th percentiles show that rea-
soning can occasionally increase runtimes by a factor
of over ten. However, reasoning can also increase re-
sult sizes by a large factor, where modest increases are
visible already on the 50th percentile for RDFSs and
COMBs in the entity-s and entity-so queries: all RDFS
rules offer additional data for entity-s* queries, whereas
only sub-property reasoning offers additional results
for entity-o in the general case. Furthermore, the 75th–
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100th percentiles show occasional but very large in-
creases for results in the SAMEAS configuration also.

star-*: RETRIEVE VALUES FOR SPECIFIC PREDICATES
ABOUT A GIVEN RESOURCE

Star-shaped queries are used to display select at-
tributes of a resource useful in a certain context. The
results for star-shaped queries follow the same format
as before, where Figure 11 shows the average increase
in query-time for each configuration over CORE−, and
Figure 12 shows the increase in result size.
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Some similar conclusions can again be drawn as for
entity queries. Again, the query time can often be re-
duced without a significant effect on query results by
opting for CORE− over CORE; in this case, since query
predicates are set, the savings are primarily for not
dereferencing URIs bound to non-join variables and

values for rdf:type. The notable outlier for the query
class star-1-2 in CORE (on the 100th percentile) is due
to one query which took around 1 hour to terminate be-
cause of the download and processing of a very large
document from the ecowlim.tfri.gov.tw provider (this
source contributed no results and was not accessed by
configurations built on top of CORE).

Again, we see that SEEALSO had minimal effect on
results returned, but did increase the time significantly
for some of the query classes. We also again see that
RDFS and owl:sameAs reasoning has an occasional but
significant effect on results size: however, we highlight
that the baseline gave, on average, very few results for
star-3-0 and star-0-3 (cf. Table 24), where a small abso-
lute increase could account for a very large relative in-
crease, as per the outliers on the 100th percentile. Also,
the large RDFS-related results outlier for the class star-
1-2 is attributable to the query mentioned in Exam-
ple 11.

*-path-*: RETRIEVE TERMS THAT ARE TWO OR THREE

HOPS AWAY FROM A CENTRAL RESOURCE THROUGH

A PATH OF GIVEN PREDICATES

Path-shaped queries allow for exploring recursive
relations in the graph, or to discover particular in-
formation about neighbouring nodes. When compared
with entity and star queries, we would expect path
queries to generally be more expensive for LTBQE to
process since they explicitly require traversing a num-
ber of sources.

For the six LiDaQ extensions, we again show the av-
erage increase of query time in Figure 13 and the av-
erage relative recall improvement in Figure 14. Again,
we see the savings in time for selecting CORE− over
CORE, particularly for the o-path-* classes of queries.
In general, across all extensions, the performance hits
for the o-path-* queries are not met with gains in results;
in fact, the o-path-3 queries saw no significant gains for
any extension, even for the 100th percentile. With re-
spect to the QWalk results, we see the first meaning-
ful gain for SEEALSO in the s-path-3 class, but only
for a single outlier query. In this case, SAMEAS offers
only minimal increases in some outlier cases. How-
ever, the RDFSs extension does find additional results
for s-path-* queries, which are notable already on the
75th percentile; this extension performs particularly
well for s-path-3 where large gains in results do not cost
comparable increases in runtimes. The COMBs config-
uration again offers the most results, but—with the ex-
ception of CORE—at the cost of the highest runtimes.
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Conclusion Across the hundreds or queries run for
the 11 query classes, we consistently find that the
CORE− configuration saves significantly on query run-
times while not significantly reducing result sizes ver-
sus CORE. With the exception of one query, we find
that SEEALSO finds barely any additional results, but
can sometimes cause a significant increase in runtime.
Reasoning extensions also increase runtimes, but regu-
larly contribute additional answers: SAMEAS offers in-
frequent but very high increases in result sizes, where
by comparison, RDFSs offers more frequent but more
modest increases in results. These observations on re-
sult increases for the three extensions correspond well
with the results of our analysis for the BTC’11 data in
Section 6. Throughout, with the frequent exception of
CORE, the combined approach was indeed the slowest,
but always offered the most results.

To help summarise the potential benefit of each con-
figuration, Table 12 presents the average throughput
(results per second) achieved across all queries per
query class.33 We see that CORE has uniformly the
worst throughput of results across all query classes.
We also see that CORE− generally performs slightly
above average, but performs best for entity-o. With the
sole exception of the s-path-3 class, SEEALSO per-
forms slightly worse than CORE−. In terms of the rea-
soning extensions, of the 11 query classes, the high-
est throughput for 9 are split between the SAMEAS

(4), RDFSs (4) and COMBs (1) configurations, where,
for each configuration, the throughput of COMBs fre-
quently sits between SAMEAS and RDFSs. However,
aside from CORE, these latter configurations also often
perform the worst: they add significant overhead to the
query execution, but may often find significantly many
additional results: they offer high-risk but high-gain.

Table 12

Results per second for all query classes with configurations shaded
from best (lightest) to worst (darkest) throughput

CORE CORE− SEEALSO SAMEAS RDFSs COMBs

entity-s 1 1.68 1.67 2.15 1.29 1.53
entity-o 3.97 6.48 6.16 5.7 5.37 4.38
entity-so 2.02 2.82 2.66 3.71 3.73 4.82

star-3-0 0.11 0.16 0.15 0.15 0.24 0.2
star-2-1 0.58 1.12 1 1.04 2.14 1.75
star-1-2 0.17 1.6 1.35 1.6 70.97 58.85
star-0-3 0.18 0.35 0.33 0.94 0.24 0.68

s-path-2 0.44 0.72 0.68 0.7 0.83 0.78
s-path-3 1.76 2.45 2.56 2.46 2.43 2.1
o-path-2 1.38 8.39 7.76 10.55 6.36 6.89
o-path-3 0.95 5.7 5.84 6.08 5.04 4.68

9. Conclusion

In theory, proposed link-traversal query approaches
for Linked Data have the benefit of up-to-date re-
sults and decentralised execution. However, in prac-
tice, a thorough evaluation of such methods in realis-
tic uncontrolled environments—for a diverse Web of
Data—had not yet been conducted. Herein, we have
focused on evaluating LTBQE approaches in this man-
ner, and similarly investigate the possibility of com-

33Given that there is a lot of variance in the raw figures, we ac-
knowledge that average figures are a coarse way to present the re-
sults, but they do help to summarise overall trends.
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bining lightweight reasoning methods with LTBQE to
help squeeze additional answers from query relevant
sources, and to help integrate data from diverse data-
providers.

We have characterised what percentage of data is
missed by only considering dereferenceable informa-
tion, we have looked at what percentage of raw data
is made available to LTBQE through various exten-
sions, and we have tested LTBQE and various exten-
sions in uncontrolled environments for three compli-
mentary query benchmarks. Our results show that LT-
BQE works well for simple queries with a derefer-
enceable subject, but, in uncontrolled environments,
struggles for more complex queries that involve ac-
cessing many remote sources at runtime. Furthermore,
we showed that runtimes in uncontrolled environments
are often a factor of politeness policies, since queries
often touch upon documents from the same domain.

In terms of the extensions, we have shown that the
selection of sources can be successfully reduced by
ignoring predicate URIs, object URIs for type-triples,
and URIs bound to non-join positions. We have also
shown that the rdfs:seeAlso extension offers little in
terms of results, but occasionally introduces signifi-
cant runtime costs. We also showed that owl:sameAs ex-
tensions can occasionally increase the number of re-
sults found by a great deal, but also comes at signif-
icant costs and introduces unstable behaviour when
run live over domains such as DBpedia. Similarly, we
showed that RDFS reasoning extensions increase re-
sults more frequently than owl:sameAs extensions (e.g.,
in lower percentiles of the QWalk experiments), but
exhibits more moderate increases than the latter exten-
sions (e.g., in the 100th percentiles of QWalk experi-
ments). Through the FedBench experiments, we also
showed that the dynamic import of RDFS data at run-
time works well for simple queries on certain domains
(e.g., data.semanticweb.org), but can introduce insta-
bility for domains such as DBpedia, where schemata
are spread across multiple documents and link to other
domains with similar decentralised schema.

Future Directions The combination of reasoning and
LTBQE has shown the potential to find additional an-
swers, and at a higher rate than without reasoning,
but with the potential to make query-answering un-
stable. At the moment we focus on very lightweight
reasoning, supporting an important subset of the se-
mantics inherent in published Linked Data. Extend-
ing the inference rules to support a broader selection
of OWL features—based on the observations of use

by Glimm et al. [20]—would obviously help to find
more answers. However, even for our lightweight rea-
soning, we already encounter practical problems. In
particular, we showed that following owl:sameAs links
caused problems for some queries that in baseline se-
tups already involve many sources from the DBpe-
dia domain, which offers a high density of owl:sameAs
links from its local data. Furthermore, we noted that
the dynamic import of RDFS data increased the com-
plexity of remote access at runtime (esp. for DBpe-
dia) and thus caused instability and inflated response
times for more complex queries. Thus, we proposed
to use static schema data where we assume that such
data are infrequently updated. A better alternative—
one that we did not investigate—is the use of lazy
schema caching in combination with active refresh
policies. We believe caching schema data would work
well since a few (meta-)vocabularies (such as RDF,
RDFS, OWL, FOAF, DC, DCTERMS, etc.) are used
extremely frequently—something similar to a power-
law driven by preferential attachment—and are gener-
ally quite static. Again, caching has obvious benefits
for LTBQE in general (not just for schema), but herein
we rather focus on query-at-a-time evaluation.

In general, due to various fundamental (e.g., no
support for OPTIONAL, etc.) and practical issues (re-
liance on dereferenceability, assumptions that query-
patterns connect relevant sources through derefer-
enceable URIs, slow access to remote sources, vary-
ing stablity of remote hosts) LTBQE cannot be con-
sidered a complete solution for running complex
SPARQL queries over Linked Data: SPARQL is sim-
ply too complex a query language to be supported
in its entirety and in a practical fashion by LTBQE.
As such, one may consider a different language for
navigational queries, along the lines of proposals
by Fionda et al. [18]. In general, a query language
that would allow for declaratively specifying naviga-
tional aspects of query execution—e.g., stick to the
data.semanticweb.org domain, follow foaf:knows links,
do not follow foaf:homepage links, etc.—would be in-
teresting, and would allow users to better guide the
query-engine than using a simple SPARQL query.

Taking an alternative view, although not a solution
for SPARQL, LTBQE is an interesting technique for
SPARQL and is complementary to other techniques
for querying Linked Data, such as materialised or fed-
erated approaches. LTBQE offers the potential to get
fresh answers when dynamic information is involved,
or to get sensitive data when user-specific access-
control is in place for some Linked Data source; this is
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not possible through centralised approaches. Further-
more, it does not rely on SPARQL interfaces like fed-
erated approaches; also, there are currently no mech-
anisms to discover endpoints in the same manner that
LTBQE discovers sources. As such, the greatest poten-
tial for LTBQE is in combination with other querying
techniques, for example to dynamically freshen-up re-
sults returned by a centralised SPARQL endpoint that
replicates remote content. We have already begun to
investigate this use of LTBQE—as a wrapper for the
public LOD Cache and Sindice SPARQL endpoints–
such that query patterns involving dynamic data are
delegated to LTBQE rather than to replicated indexes,
which are likely to be stale [62]. In such scenarios,
LTBQE is required to deal with simple sub-queries,
which we have shown to be feasible in this paper.

As the Web of Data continues to expand and di-
versify, and as it becomes more dynamic, new query-
ing techniques will be required to keep up with its de-
velopments. Though various Web search engines have
shown the power and potential of centralisation, even
the preeminent Google machinery struggles to give up-
to-date answers over dynamic sources. Linked Data
presents new opportunities in this regard: URI names
appearing in queries also correspond to addresses from
which up-to-date data can be found. Although cen-
tralised approaches will always be relevant—a point
of view which this paper partly confirms—exploring
and combining complementary Linked Data querying
techniques is an important area of research if we are to
meet future challenges. In this paper, we have studied
the realistic strengths and weaknesses of the LTBQE
approach and various extensions. Next steps are to fur-
ther explore how it can be combined with centralised
query engines in an effective manner to freshen up an-
swers over dynamic data, or to find answers from data-
sources outside of the coverage of cached data.

Links Our source code and stable experimental queries
are available at http://code.google.com/p/lidaq/
wiki/Lidaq.
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Appendix

A. FedBench Queries

Herein, we present the results for the individual Fed-
Bench queries. We run the queries four times for each
of the ten LiDaQ experiments, and for comparability
across different configurations, we present the best run
in terms of results returned, and if tied, by time; we
thus select the run which provided the most stable be-
haviour and returned the most results. The variation
between the four runs has already been analysed in
Section 8.3. We also show results for the SQUIN li-
brary: we highlight that we only run the SQUIN im-
plementation once since (to the best of our knowl-
edge) it does not implement politeness policies, and
thus the LiDaQ configurations may have an advantage
in comparison—in any case, we show that SQUIN is
generally faster. Note that we do not have measure-
ments for the triples processed by SQUIN.

To avoid repetition, we discuss results incremen-
tally; we may only briefly remark again on observa-
tions that have already been made for earlier queries.

LD1: LIST AUTHOR(S) WITH THEIR PAPER(S) FOR
THE POSTER/DEMO TRACK OF ISWC 2008.

SELECT DISTINCT * WHERE {
?paper swc:isPartOf swIswc08pd: .
?paper swrc:author ?p .
?p rdfs:label ?n .

}

The results for this query come mostly from one
site: the data.semanticweb.org “Dog Food” server. The
query engine first finds the list of URIs for all 85 de-
mo/poster papers published at ISWC 2008 on the first
document, dereferences these 85 URIs and builds a list
of 288 unique authors, then finally dereferences these
to find a list of 333 unique names (some authors have
multiple versions of names, particularly for abbrevi-
ations). As such, we see that the overall time taken
for baseline LiDaQ methods is roughly a function of
the politeness policy (two lookups per second) and the
number of HTTP lookups required: the query times of

Table 13
Benchmark results for query LD1

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 582 333 342.9 4.9 633 23,968 —
CORE− 582 333 343.5 3.7 628 23,013 —
SEEALSO 582 333 361.5 3.6 704 25,229 —
SAMEAS 668 529 391.4 3.9 761 26,269 8,109
RDFSs 615 380 478.8 3.8 628 23,013 11,501
RDFSd 615 380 350.3 5.2 666 23,013 13,984
RDFSe 615 380 356.1 6.6 865 23,013 18,587
COMBs 715 692 571.9 4.4 842 29,212 26,804
COMBd 713 680 461 8.4 1,002 28,485 27,745
COMBe 715 692 512.6 15.8 1,269 29,212 35,418

SQUIN 582 333 86.8 28 703 — —

over 5 minutes are attributable to the high number of
sources that must be accessed. Conversely, although
SQUIN performs more lookups than, e.g., CORE− and
CORE, and generates the same results, it is much faster,
but only by performing at least eight HTTP lookups
per second to data.semanticweb.org which is four times
more than the bounds of our politeness policy.

In this case, we see that CORE− saves few lookups
and little time when compared with CORE, and that
SEEALSO increases the number of sources but not the
number of results. We see that RDFS reasoning finds
some additional results: foaf:name and skos:prefLabel
are found to be sub-properties of rdfs:label and pro-
vide additional name variations, including with lan-
guage tags. Some of the authors have owl:sameAs rela-
tions to external sources, which, with SAMEAS, pro-
vide additional URIs for authors and name variations
using a sub-property of label. The most results are thus
given by the COMB approaches, which are also the
slowest overall.34

LD2: LIST AUTHOR(S) WITH THEIR PAPER(S) IN PRO-
CEEDINGS RELATED TO ESWC 2010.

SELECT DISTINCT * WHERE {
?proceedings swc:relatedToEvent swEswc10: .
?paper swc:isPartOf ?proceedings .
?paper swrc:author ?p .

}

Although LD2 is very similar to LD1—requiring data
mostly from the same Dog-Food provider—the mea-
sures in Table 14 tell a different story. The results
are the same for all configurations: none of the exten-
sions find any additional results in this case, though
they do add an additional 10 seconds to the results. In

34The additional answers available for RDFS and same-as rea-
soning can be seen from, e.g., http://data.semanticweb.org/
person/mathieu-daquin/rdf.
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Table 14
Benchmark results for query LD2

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 236 185 260.3 3.9 478 20,356 —
CORE− 236 185 69.8 3.5 128 3,662 —
SEEALSO 236 185 70 3.5 128 3,662 —
SAMEAS 236 185 70.3 3.6 128 3,662 —
RDFSs 236 185 202.5 4 128 3,662 2,139
RDFSd 236 185 73.6 5.7 148 3,662 8,193
RDFSe 236 185 77.7 7 363 3,662 12,312
COMBs 236 185 219 4.8 128 3,662 2,139
COMBd 236 185 76.9 12.8 148 3,662 8,124
COMBe 236 185 79.7 22.9 363 3,662 12,162

SQUIN 236 185 24 4.4 171 — —

fact, given that SAMEAS and RDFSs retrieve the same
number of sources as CORE−, this result gives us an
insight into the local overhead of reasoning, which we
see has little effect on query times.

The most striking observation is the source-selection
savings for CORE− vs. CORE, where CORE does not
dereference the 173 authors bound to ?p (requiring
173×2 = 346 lookups including 303 redirects) since ?p

bindings are not part of a join, translating into a major
time saving. We also note that SQUIN performs fewer
lookups than we would expect if it were to dereference
authors, but still dereferences more URIs than CORE−

and its analogues. As such, it would seem that SQUIN

also implements some reduced source-selection opti-
misations.

LD3: LIST THE AUTHOR(S) WITH THEIR SAME-AS

RELATION(S), AND WITH THEIR PAPER(S) FOR THE

POSTER/DEMO TRACK OF ISWC 2008.

SELECT DISTINCT * WHERE {
?paper swc:isPartOf swIswc08pd: .
?paper swrc:author ?p .
?p owl:sameAs ?x ; rdfs:label ?n .

}

Table 15
Benchmark results for query LD3

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 247 191 388.1 4 760 27,538 —
CORE− 247 191 342.8 8.1 628 23,013 —
SEEALSO 247 191 360 8.2 704 25,229 —
SAMEAS 394 951 389.5 4.2 763 26,248 8,014
RDFSs 263 246 474.7 5 628 23,013 11,501
RDFSd 263 246 349.5 4.9 666 23,013 13,991
RDFSe 263 246 355.8 4.8 865 23,013 18,775
COMBs 422 1,469 569.3 10.4 839 28,485 25,797
COMBd 425 1,583 461.8 18.8 1,008 29,212 28,814
COMBe 425 1,583 511.6 19.1 1,269 29,212 35,547

SQUIN 247 191 87.3 32.2 728 — —

This query adds a triple pattern to query LD1, re-
stricting the list of authors to (explicitly) look for those
with an owl:sameAs relation. This reduces the number
of authors involved to 288 in LD1 to 54 in LD3. We can
see in Table 15 that for configurations without reason-
ing, LD3 returns∼57% of the number of results of LD1:
the decrease in authors is partially balanced by the ad-
dition of another variable in the results. CORE− of-
fers a moderate performance improvement over CORE
while returning the same results. RDFS reasoning in-
creases result sizes for similar reasons as before, and
at little cost. SAMEAS shows a marked increase in re-
sults size: the additional ?x variable is replaced by all
equivalent URIs for each author, leading to an addi-
tional product of result terms.

LD4: LIST THE AUTHOR(S) WITH PAPER(S) IN THE
PROCEEDINGS OF ESWC 2010 WHO ALSO HAD
ROLE(S) AT THE CONFERENCE

SELECT DISTINCT * WHERE {
?role swc:isRoleAt swEswc10: .
?role swc:heldBy ?p .
?paper swrc:author ?p .
?paper swc:isPartOf ?proceedings .
?proceedings swc:relatedToEvent swEswc10: .

}

Table 16
Benchmark results for query LD4

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 60 50 986.9 33.5 1,805 74,635 —
CORE− 60 50 984.5 50.9 1,801 73,767 —
SEEALSO 60 50 1,019.4 51.9 1,982 81,864 —
SAMEAS 105 146 1,167.4 56.5 2,462 102,286 104,431
RDFSs 60 50 1,140.2 17.5 1,801 73,767 45,352
RDFSd 60 50 1,003 66 1,843 73,767 45,943
RDFSe 60 50 1,023.2 11.5 2,173 73,767 58,374
COMBs 162 203 4,658.4 68.9 2,834 115,707 297,620
COMBd 162 203 2,249.4 172.4 3,383 115,663 557,880
COMBe 80 126 7,211.6 52.9 9,225 109,858 1,702,602

SQUIN 60 50 244.3 236.7 1,981 — —

Again, this query is an extension of LD2 and re-
stricts the list of authors to those who, as well as hav-
ing a paper at ESWC 2010, also had a role at the
conference. Looking at the results in Table 16, even
for CORE−, the query processor performed over 1,800
lookups and our source selection approach does not
affect the number of lookups (in this case, ?p falls
into a join position and 251 people had a role at
ISWC). The fastest time was around 16 minutes for
CORE− (again, approximately 1,800

2 seconds). RDFS
reasoning alone produces no additional results, but
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also does not overly influence runtime. Conversely,
SAMEAS produces additional results, where author
pages are this time dereferenced and owl:sameAs re-
lations found, adding aliases for bindings in ?p. The
combined approaches became unstable, adding addi-
tional HTTP load to what is already a demanding
query. In particular, COMBs and COMBe actually time-
out after roughly two hours; for example, the COMBe
approach retrieved almost ten thousand sources before
timing out, where the owl:sameAs links from authors
on data.semanticweb.org form a bridge to DBpedia,
whose schema data has a high fan-out. From previous
queries, we have seen that the schema data directly ref-
erenced from data.semanticweb.org is relatively easy
to retrieve using dynamic import mechanisms; how-
ever, the schemata for other sites requires many more
sources to retrieve, particularly in the RDFSe/COMBe
configurations.

LD5: LIST THE NAME(S) OF THE ALBUM(S) BY
MICHAEL JACKSON

SELECT DISTINCT * WHERE {
?a dbowl:artist dbpedia:Michael_Jackson .
?a rdf:type dbowl:Album .
?a foaf:name ?n .

}

Table 17
Benchmark results for query LD5

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 85 43 63.3 6 121 9,017 —
CORE− 85 43 66.8 9 116 8,285 —
SEEALSO 85 43 65.2 7.2 116 8,285 —
SAMEAS 313 271 212.7 14 593 15,179 119,907
RDFSs 85 43 218.3 23.5 116 8,284 7,115
RDFSd 83 42 417.7 9.4 698 8,203 163,163
RDFSe 36 18 4,886.6 12.9 9,729 4,087 302,609
COMBs 0 0 7,341.5 — 780 17,027 745,534
COMBd 15 14 7,200.6 353.7 1,452 14,450 958,611
COMBe — — — — — — —

SQUIN 85 43 16.2 3.9 115 — —

This query shifts the focus to the dbpedia.org data
provider. First dbpedia:Michael_Jackson is derefer-
enced to retrieve URIs for Michael Jackson’s albums,
which are subsequently dereferenced to confirm that
they are albums and to retrieve their name. Primarily,
the results show that following owl:sameAs links from
the DBpedia domain introduces high overhead: there
are a total of 425 URI aliases for Michael Jackson
and his albums on the DBpedia, including owl:sameAs
links to freebase.com, sw.cyc.com, linkedmdb.org and
zitgist.com. Although SAMEAS runs through (taking

3.28× longer than CORE−), when same-as and RDFS
reasoning are combined, LiDaQ becomes unstable: all
COMB approaches timed out, where COMBe threw an
OutOfMemoryException in all four runs before the time-
out was reached due to massive amounts of infer-
ences. Furthermore, the RDFSe configuration with-
out owl:sameAs reasoning showed that the dynamic im-
port of extended schema does not work well for DBpe-
dia, again touching upon nearly ten thousand sources
and generating fewer results than CORE− (which it ex-
tends). In general, the high fan-out of owl:sameAs and
schema-level links on DBpedia—and on sites linked
by DBpedia such as sw.cyc.com—combined with a
query that already accesses over one hundred DBpe-
dia pages in the baseline setup, prove too much for
RDFSe and COMB approaches.

LD6: LIST THE MOVIE DIRECTOR(S) FROM ITALY,
THEIR FILM(S) AND THE OFFICIAL NAME(S) OF LO-
CATION(S) FOR THE FILM(S)

SELECT DISTINCT * WHERE {
?director dbowl:nationality dbpedia:Italy .
?film dbowl:director ?director.
?x owl:sameAs ?film .
?x foaf:based_near ?y .
?y geo:officialName ?n .

}

Table 18
Benchmark results for query LD6

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 9.6 — 12 17,864 —
CORE− 0 0 6.8 — 2 10,001 —
SEEALSO 0 0 3.6 — 2 10,001 —
SAMEAS 0 0 49.5 — 7 10,067 20,090
RDFSs 0 0 145.2 — 2 10,001 4,580
RDFSd 0 0 27.3 — 49 10,001 1,329
COMBs 0 0 215.3 — 7 10,067 24,922
COMBd 0 0 59 — 64 10,067 71,560
COMBe 0 0 7,223.5 — 945 10,067 427,421

SQUIN 0 0 5.9 — 1 — —

This query intends to span the DBpedia (first three
patterns), LinkedMDB (fourth pattern) and GeoN-
ames (fifth pattern) data providers. However, as we
can see in Table 18, no setup returned any results.
At the time of running the experiments, the derefer-
enced document for dbpedia:Italy contained 10,001
triples due to a manual cut-off set for the exporter 35,
where many triples (including inlinks) were omitted

35Last accessed on 2012/02/28.
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and where the dereferenced document included no
dbowl:nationality triples. At the time of writing, the
dereferenced document contains 44,421 triples, in-
cluding 842 dbowl:nationality inlinks. 36 In any case,
as we discuss for the next query, the GeoNames ex-
porter hosting data for the final triple pattern bans ac-
cess from all agents through its robots.txt. Aside from
such issues, we would expect this query to offer a ma-
jor challenge to LTBQE, and to again introduce unsta-
ble behaviour for COMB configurations.

LD7: LIST THE NAME(S) OF THE PARENT FEA-
TURE(S) OF GERMANY

SELECT DISTINCT * WHERE {
?x geo:parentFeature

<http://sws.geonames.org/2921044/> .
?x geo:name ?n .

}

LiDaQ will not run this query since the robots.txt37

forbids software agents to access information on the
sws.geonames.org domain. SQUIN does access the
sws.geonames.org domain, but even aside from the
robots.txt issue, the first query pattern is not matched
by any data in the document dereferenced by the
given GeoNames URI for Germany: dereferenced doc-
uments on the GeoNames domain only contain triples
where the URI in question appears in the subject po-
sition, not “inlinks”. If not for these two issues, we
would expect this query to be straightforward for Li-
DaQ/SQUIN to run.

LD8: LIST THE DRUG(S) IN THE MICRONUTRIENT
CATEGORY, THEIR CAS REGISTRY NUMBER(S),
ALIAS(ES), NAME(S) AND SUBJECT(S)

SELECT DISTINCT * WHERE {
?drug drugbank:drugCategory

drugbank:micronutrient .
?drug drugbank:casRegistryNumber ?id .
?drug owl:sameAs ?s .
?s foaf:name ?o .
?s dcterms:subject ?sub .

}

From the results in Table 19, we see the improve-
ments of CORE vs. CORE−. Most prominently how-
ever, the results for this query show highly unstable
behaviour for all reasoning extensions except RDFSs.
In particular, the consideration of owl:sameAs links

36Last accessed on 2012/08/09.
37http://sws.geonames.org/robots.txt

Table 19
Benchmark results for query LD8

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 39 19 78.9 17.6 351 20,655 —
CORE− 39 19 61.9 25.5 257 7,245 —
SEEALSO 39 19 96.2 21.4 334 7,309 —
SAMEAS 294 21,071 1,374.4 67.1 856 12,839 515,297
RDFSs 39 19 198.5 15.9 257 7,245 4,979
RDFSd 8 4 181.4 132.6 231 774 43,814
RDFSe 24 12 7,514.8 155.5 7,175 5,491 143,236
COMBs 347 29,139 7,354.9 35.5 1,217 15,209 407,741
COMBd 0 0 7,212.1 — 1,289 11,416 73,304
COMBe — — — — — — —

SQUIN 22 10 120.9 10.5 482 — —

snowballs and introduces massive problems, which
we believe to be due to data quality issues with this
relation within Linked Drug Data, and which we
had previously observed in other work [36, § 4.4].38

This of course highlights the problem whereby—even
with counter-measures such as authoritative analysis
of schema data—reasoning exacerbates data quality
issues for remote data providers. When owl:sameAs

and dynamic RDFS import and reasoning is com-
bined for COMBd and COMBe, we encountered further
OutOfMemoryExceptions.

LD9: LIST THE FOOTBALL TEAM(S) THAT WON A

FIFA WORLD CUP AND THAT WERE MANAGED BY

“LUIZ FELIPE SCOLARI”.

SELECT DISTINCT * WHERE {
?x dcterms:subject

dbpcat:FIFA_World_Cup-winning_countries .
?p dbpowl:managerClub ?x .
?p foaf:name "Luiz Felipe Scolari"@en .

Table 20
Benchmark results for query LD9

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 147.3 — 266 29,326 —
CORE− 0 0 147.4 — 260 27,821 —
SEEALSO 0 0 136.4 — 260 27,821 —
SAMEAS 0 0 182.6 — 337 7,915 92,485
RDFSs 0 0 299.2 — 202 22,791 19,642
RDFSd 0 0 904.8 — 1,512 19,133 227,663
RDFSe 0 0 1,607.5 — 3,488 4,928 33,810
COMBs 0 0 7,342.9 — 984 28,211 558,187
COMBd 0 0 7,202 — 1,437 16,109 1,432,297
COMBe — — — — — — —

SQUIN 0 0 25.6 — 247 — —

38We refer the reader to https://groups.google.com/
forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
for detailed discussion.

http://sws.geonames.org/robots.txt
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
https://groups.google.com/forum/?fromgroups#!topic/pedantic-web/rXQPcFLMOi0
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As we can see from the results in Table 20, none
of the setups returned any content. At the time of
the experiments, the document for the Brazilian na-
tional football team (the answer to ?p) contained parser
errors, which have since been fixed.39 We again see
that following owl:sameAs and schema level links from
the DBpedia causes huge overheads, with COMBs and
COMBd hitting timeouts, and COMBe again throwing
an OutOfMemoryException after inferring too much data.

LD10: LIST THE CHANCELLOR(S) OF GERMANY,
THEIR ALIAS(ES) AND LATEST ARTICLE(S)

SELECT DISTINCT * WHERE {
?n dcterms:subject

dbpcat:Chancellors_of_Germany .
?n owl:sameAs ?p2 .
?p2 nytimes:latest_use ?u .

}

Table 21
Benchmark results for query LD10

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 0 0 55.5 — 165 15,008 —
CORE− 0 0 52.7 — 160 13,692 —
SEEALSO 0 0 52.6 — 160 13,692 —
SAMEAS 200 5,825 7,200.6 310.4 937 18,120 811,104
RDFSs 0 0 195 — 160 13,692 17,008
RDFSd 0 0 321 — 855 4,011 79,345
COMBs 0 0 7,351 — 897 18,404 387,428
COMBd — — — — — — —
COMBe — — — — — — —

SQUIN 0 0 50.1 — 158 — —

This query aims to combine data from the dbpedia.org

domains and the data.nytimes.com domain. We al-
ready explained that we changed the query predi-
cate skos:subject to dcterms:subject in order to re-
flect changes in the DBpedia data model. However, we
found that although the content returned for the entities
that are in the DBpedia category “Chancellors of Ger-
many” contains several owl:sameAs relations to aliases
in the data.nytimes.com domain, these are found in the
inverse order of the query pattern. This fact is reflected
in the results shown in Table 21, where we only find
results if owl:sameAs inferencing is enabled; in fact,
both configurations which returned results timed out
doing so, and again, both configurations involving the
dynamic import of schema data threw exceptions.

39The document URL in question—http://dbpedia.org/
data/Brazil_national_football_team.xml—was tested
with the W3C RDF/XML validator.

LD11: LIST THE NAME(S) OF THE PLAYER(S) ON
THE EINTRACHT FRANKFURT TEAM, THEIR BIRTH-
DAY(S) AND THE NAME(S) OF THEIR BIRTHPLACE(S)

SELECT DISTINCT * WHERE {
?x dbpowl:team dbpedia:Eintracht_Frankfurt .
?x rdfs:label ?y .
?x dbpowl:birthDate ?d .
?x dbpowl:birthPlace ?p .
?p rdfs:label ?l .

}

Table 22
Benchmark results for query LD11

Setup Terms Results Time (s) First (s) HTTP Data Inferred

CORE 4,240 25,445 607.3 15.1 1,125 354,880 —
CORE− 3,936 23,621 595.8 7.6 1,073 336,615 —
SEEALSO 4,194 25,068 599.2 12.7 1,113 353,961 —
SAMEAS 40 572 7,210.2 80.9 3,741 94,263 2,327,965
RDFSs 1,496 6,982 8,297.4 25.6 450 128,281 103,769
RDFSd 1,281 7,319 2,392.5 27.7 3,896 123,839 271,772
RDFSe — — — — — — —
COMBs 259 77,484 7,345.9 104.5 3,077 97,925 575,314
COMBd 275196,448 7,201.6 51 5,974 92,285 1,577,530
COMBe 240157,198 7,207.9 92.2 17,996 21,574 1,930,660

SQUIN 2,673 15,900 158.9 31.1 1,116 — —

Table 22 shows that this query involves the largest
amount of results and source lookups of all the Fed-
Bench queries.40 The combination of over 300 players,
each of which typically has labels in several languages
and has two or three birth-places, each of which in turn
has labels in several languages, leads to large results
sets, even without reasoning. The number of HTTP
lookups also reflects the breadth of this query, primar-
ily due to lookups on players and places. The reason-
ing extensions again exhibit unstable behaviour, either
eventually timing-out or throwing an exception.

B. QWalk Results

With respect to the detailed average measures for the
QWalk experiments, Table 23 presents the results for
entity-* queries, Table 24 gives results for star-* queries,
and Table 25 gives results for *-path-* queries. For space
reasons, we only present standard deviations for terms,
results and time.

40We remark that the public centralised SPARQL endpoint for
DBpedia often times-out with a 509 response code for this query.

http://dbpedia.org/data/Brazil_national_football_team.xml
http://dbpedia.org/data/Brazil_national_football_team.xml
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Table 23
Detailed QWalk results for entity-* queries

Setup
Term Results Time (s)

First (s) HTTP Data Inferred
avg. σ avg. σ avg. σ

en
tit

y-
s

CORE 19.35 ±37.75 16.78 ±37.94 16.79 ±8.19 6.6 17.78 8,676.43 —
CORE− 19.33 ±37.72 16.77 ±37.91 9.99 ±4.81 6.6 2.92 5,772.5 —
SEEALSO 19.33 ±37.72 16.77 ±37.91 10.04 ±5.05 6.42 3.15 5,778.68 —
SAMEAS 25.28 ±63.42 22.73 ±63.76 10.57 ±5.47 6.93 3.27 5,579.42 67.82
RDFSs 24.13 ±37.95 21.77 ±38.01 16.93 ±35.6 6.57 4.55 22,591.2 16,328.55
COMBs 30.07 ±63.66 27.73 ±63.91 18.08 ±38.58 9.5 5.07 22,424.57 16,423.52

en
tit

y-
o

CORE 54.16 ±382.48 53.53 ±382.42 13.49 ±8.5 6.19 7.18 3,517.61 —
CORE− 54.18 ±382.47 53.51 ±382.42 8.25 ±5.72 6.17 2.61 1,284.07 —
SEEALSO 54.19 ±382.47 53.53 ±382.42 8.69 ±5.65 6.16 2.77 1,832.04 —
SAMEAS 55.04 ±382.37 54.35 ±382.32 9.53 ±8.07 6.08 3.37 1,984.7 171.67
RDFSs 54.28 ±382.46 54.04 ±382.38 10.06 ±13.42 6.12 2.61 4,557.19 2,789.54
COMBs 55.14 ±382.35 54.88 ±382.27 12.52 ±17.02 6.37 3.46 5,043.68 3,171.05

en
tit

y-
so

CORE 16.32 ±15 35.34 ±51.01 17.49 ±8.08 6.65 19.86 3,853.07 —
CORE− 16.14 ±15.04 34.66 ±49.83 12.28 ±6.41 6.79 6.46 1,296.02 —
SEEALSO 16.17 ±15.02 34.68 ±49.82 13.01 ±7.22 6.65 7.49 2,551.37 —
SAMEAS 18.19 ±17.4 56.14 ±93.8 15.15 ±11.48 6.68 8.53 1,776.64 393.93
RDFSs 19.71 ±17.52 52.86 ±73.08 14.19 ±14.12 6.65 8.64 4,600.24 2,833.88
COMBs 21.78 ±19.66 81.22 ±122.66 16.84 ±17.08 6.7 11.32 6,317.88 4,121
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Table 24
Detailed QWalk results for star-* queries

Setup
Term Results Time (s)

First (s) HTTP Data Inferred
avg. σ avg. σ avg. σ

st
ar

-0
-3

CORE 3.49 ±4.46 2.64 ±4.4 14.9 ±16.5 7.43 13.76 2,099.61 —
CORE− 3.49 ±4.46 2.64 ±4.4 7.47 ±2.57 6.95 1.9 595.42 —
SEEALSO 3.49 ±4.46 2.64 ±4.4 7.94 ±4.64 7.43 1.91 595.42 —
SAMEAS 4.03 ±6.4 8.76 ±49.72 9.31 ±6.82 7.44 2.31 3,098.49 54.58
RDFSs 3.49 ±4.46 2.64 ±4.4 10.88 ±25.86 7.24 1.9 10,328.1 6,816.55
COMBs 4.03 ±6.4 8.76 ±49.72 12.83 ±31.08 7.78 2.33 9,920.43 6,876.52

st
ar

-1
-2

CORE 9.05 ±31.78 11.35 ±53.6 65.84 ±391.73 7.25 13.26 1,709.11 —
CORE− 9.05 ±31.78 11.35 ±53.6 7.08 ±2.18 6.72 1.82 48.74 —
SEEALSO 9.08 ±31.79 11.68 ±53.8 8.68 ±10.44 6.65 2.21 62.81 —
SAMEAS 9.53 ±31.83 13.02 ±54.21 8.15 ±3.94 6.71 2.4 323.32 52.97
RDFSs 12.56 ±53.7 644 ±5,028.56 9.07 ±12.49 6.88 1.82 856.34 556.48
COMBs 13.06 ±53.7 645.95 ±5,028.32 10.98 ±17.91 6.68 2.74 1,354.61 1,017.95

st
ar

-2
-1

CORE 5.53 ±12.82 7.44 ±30.09 12.77 ±16.11 6.41 11.79 515.37 —
CORE− 5.51 ±12.82 7.43 ±30.09 6.63 ±2.13 6.25 1.73 104.11 —
SEEALSO 5.51 ±12.82 7.43 ±30.09 7.46 ±3.37 6.23 1.93 104.5 —
SAMEAS 5.66 ±12.8 7.57 ±30.07 7.25 ±2.69 6.57 1.79 372.14 14.16
RDFSs 6.1 ±13.5 17.04 ±87.46 7.98 ±10.98 6.31 1.73 814.74 409
COMBs 6.24 ±13.47 17.19 ±87.44 9.84 ±13.66 6.99 1.99 797.06 435.4

st
ar

-3
-0

CORE 2.2 ±0.79 1.15 ±0.56 10.18 ±5.65 7.1 6.79 1,242.77 —
CORE− 2.2 ±0.79 1.15 ±0.56 7.16 ±3.26 6.69 1.53 949.88 —
SEEALSO 2.2 ±0.79 1.15 ±0.56 7.76 ±3.99 6.75 1.76 964.27 —
SAMEAS 2.29 ±1.15 1.24 ±1.01 8.33 ±5.6 6.93 1.83 2,138.38 68.39
RDFSs 3.67 ±2.57 2.7 ±2.61 11.46 ±26.25 7.51 1.53 8,817.83 6,742.48
COMBs 3.77 ±2.66 2.8 ±2.7 13.8 ±36.07 9.58 1.95 9,411.11 7,203.71
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Table 25
Detailed QWalk results for *-path-* queries

Setup
Term Results Time (s)

First (s) HTTP Data Inferred
avg. σ avg. σ avg. σ

s-
pa

th
-2

CORE 6.89 ±38.25 6.35 ±38.27 14.42 ±34.39 7.05 14.02 575.45 —
CORE− 6.89 ±38.25 6.35 ±38.27 8.86 ±4.98 6.38 2.8 236.39 —
SEEALSO 6.89 ±38.25 6.35 ±38.27 9.38 ±5.35 6.37 3.08 236.45 —
SAMEAS 7.08 ±38.24 6.74 ±38.32 9.62 ±5.74 6.25 3.52 757.2 71.17
RDFSs 7.79 ±38.17 7.62 ±38.28 9.14 ±5.25 6.49 2.86 2,016.91 1,325.12
COMBs 8 ±38.17 8.03 ±38.32 10.25 ±5.95 6.43 3.98 2,214.55 1,502.45

s-
pa

th
-3

CORE 48.14 ±237.92 28.55 ±122.05 16.21 ±22.62 6.61 16.53 2,605.86 —
CORE− 48.1 ±237.89 28.43 ±121.89 11.6 ±6.73 6.89 4.59 1,302.96 —
SEEALSO 49.35 ±237.82 29.06 ±121.83 11.37 ±8.02 6.51 5.94 1,305.53 —
SAMEAS 48.14 ±237.89 28.47 ±121.88 11.59 ±5.82 6.74 4.71 4,612.86 4.04
RDFSs 48.69 ±237.78 29.02 ±121.76 11.94 ±6.84 7.1 4.61 13,502.16 8,601.94
COMBs 51.59 ±238.09 30.49 ±121.85 14.54 ±17.97 6.88 7.76 13,329.9 8,657.35

o-
pa

th
-2

CORE 96.02 ±379.55 94.26 ±376.01 68.52 ±262.1 7.34 107.06 2,942.29 —
CORE− 96.02 ±379.55 94.26 ±376.01 11.23 ±7.84 7.16 4.18 1,260.85 —
SEEALSO 96.02 ±379.55 94.26 ±376.01 12.15 ±7.95 6.87 4.52 1,261.71 —
SAMEAS 140.79 ±566.69 139.19 ±564.44 13.19 ±9.95 7.24 6.21 7,333.55 1,146.18
RDFSs 96.08 ±379.59 96.03 ±377.18 15.09 ±23.65 7.14 4.18 14,604.69 10,073.15
COMBs 140.87 ±566.71 140.98 ±565.07 20.47 ±36.77 7.32 6.69 18,734.92 12,521.85

o-
pa

th
-3

CORE 83.49 ±268.83 86.06 ±288.12 90.78 ±268.35 7.41 157.46 7,293.86 —
CORE− 83.51 ±268.87 86.09 ±288.15 15.1 ±8.86 7.9 7.43 1,105.51 —
SEEALSO 83.51 ±268.87 86.09 ±288.15 14.75 ±8.35 7.51 7.49 1,105.66 —
SAMEAS 83.51 ±268.87 86.09 ±288.15 14.16 ±8.98 7.09 7.43 3,854.49 —
RDFSs 83.51 ±268.87 86.09 ±288.15 17.1 ±15.34 7.14 7.43 9,336.74 5,481.91
COMBs 83.51 ±268.87 86.09 ±288.15 18.38 ±18.07 8.01 7.51 9,332.71 5,477.31
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C. Prefixes (Table 26)

Table 26
Mappings for all prefixes used

Prefix URI

cb: http://www.bizer.de#
cbDoc: http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf
dblpA: http://dblp.l3s.de/d2r/resource/authors/

dblpADoc: http://dblp.l3s.de/d2r/data/authors/
dblpP: http://dblp.l3s.de/d2r/resource/publications/conf/semweb/

dblpPDoc: http://dblp.l3s.de/d2r/data/publications/conf/semweb/
dbpcat: http://dbpedia.org/resource/Category:

dbpedia: http://dbpedia.org/resource/
dbpprop: http://dbpedia.org/property/
dbpowl: http://dbpedia.org/ontology/

dcterms: http://purl.org/dc/terms/
drugbank: http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/

ebiz: http://www.ebusiness-unibw.org/ontologies/consumerelectronics/v1
foaf: http://xmlns.com/foaf/0.1/
geo: http://www.geonames.org/ontology#

nytimes: http://data.nytimes.com/elements/
oh: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf#

ohDoc: http://www.informatik.hu-berlin.de/~hartig/foaf.rdf
owl: http://www.w3.org/2002/07/owl#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#
skos: http://www.w3.org/2004/02/skos/core#
swc: http://data.semanticweb.org/ns/swc/ontology#

swrc: http://swrc.ontoware.org/ontology#
swIswc08pd: http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings

swEswc10: http://data.semanticweb.org/conference/eswc/2010

http://www.bizer.de#
http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf
http://dblp.l3s.de/d2r/resource/authors/
http://dblp.l3s.de/d2r/data/authors/
http://dblp.l3s.de/d2r/resource/publications/conf/semweb/
http://dblp.l3s.de/d2r/data/publications/conf/semweb/
http://dbpedia.org/resource/Category:
http://dbpedia.org/resource/
http://dbpedia.org/property/
http://dbpedia.org/ontology/
http://purl.org/dc/terms/
http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/
http://www.ebusiness-unibw.org/ontologies/consumerelectronics/v1
http://xmlns.com/foaf/0.1/
http://www.geonames.org/ontology#
http://data.nytimes.com/elements/
http://www.informatik.hu-berlin.de/~hartig/foaf.rdf#
http://www.informatik.hu-berlin.de/~hartig/foaf.rdf
http://www.w3.org/2002/07/owl#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2004/02/skos/core#
http://data.semanticweb.org/ns/swc/ontology#
http://swrc.ontoware.org/ontology#
http://data.semanticweb.org/conference/iswc/2008/poster_demo_proceedings
http://data.semanticweb.org/conference/eswc/2010

