
ABECTO: Assessing Accuracy and
Completeness of RDF Knowledge Graphs
Jan Martin Keil
Heinz Nixdorf Chair for Distributed Information Systems,
Institute for Computer Science, Friedrich Schiller University Jena, Germany
E-mail: jan-martin.keil@uni-jena.de; ORCID: https://orcid.org/0000-0002-7733-0193

Abstract. Accuracy and completeness of RDF knowledge graphs are crucial quality criteria for their fitness for use. However,
assessing accuracy and completeness of knowledge graphs requires a basis for comparison. Unfortunately, in general, a gold
standard to compare with does not exist. As an alternative, we propose the comparison with other, overlapping RDF knowledge
graphs of arbitrary quality. We present ABECTO, a command line tool that implements a pipeline based framework for the
comparison of multiple RDF knowledge graphs. For these knowledge graphs, it provides quality annotations like value deviations
and quality measurements like completeness. This enables knowledge graph curators to monitor the quality and potential users
to select an appropriated knowledge graph for their purpose. With two example applications of ABECTO we demonstrate the
usefulness of ABECTO for the improvement of knowledge graphs.

Keywords: Data Quality, Knowledge Graph Evaluation, Knowledge Graph Quality, Ontology Evaluation, Ontology Quality

1. Motivation

Accuracy and completeness of knowledge graphs are important criteria in the selection or evaluation of a knowl-
edge graph for an application. With knowledge graph we denote in this paper any kind of RDF dataset, typically but
not necessarily with a focus on actual instances (A-Box) instead of schema definitions (T-Box), and including RDF
datasets that are typically denoted as ontology. Assessing accuracy and completeness of knowledge graphs requires
data to compare with. Constraints on property values can only detect outliers, but can not detect wrong values that
are in a plausible range. The literature regularly recommends to use a gold standard for the evaluation [1]. However,
a gold standard does in general not exist. An alternative is the comparison with other, overlapping knowledge graphs
of arbitrary quality [2].

In an earlier comparison of unit ontologies [3] we experienced the need for automation of the comparison of
knowledge graphs. However, the automation scripts for that specific comparison were not generally applicable.
Therefore, we outlined a comparison framework [2] and developed the ABox Evaluation and Comparison Tool for
Ontologies (ABECTO) [4], a generic comparison tool for knowledge graphs.

ABECTO provides a pipeline based framework for the comparison of multiple knowledge graphs. It enables their
curators to monitor the quality or users to select an appropriated knowledge graph to use. In this paper, we introduce
the tool and two example applications. The paper is structured as follows: In Section 2 we give an overview about
related work, followed by a collection of requirements for the tool in Section 3. ABECTO is introduced in Section 4
and in Section 5 we name limitations of the tool. The intended workflow with ABECTO is introduced in Section 6.
In Section 7 we present two example applications and then close with our conclusion in Section 8.

mailto:jan-martin.keil@uni-jena.de
https://orcid.org/0000-0002-7733-0193


2. Related Work

The term comparison is ambiguously used in the context of semantic web technologies [2]. We will use the term
to describe the comparison of entire knowledge graphs regarding certain aspects to evaluate or select knowledge
graphs.

Wang and Strong define the quality dimension accuracy as “the extent to which data are correct, reliable, and
certified free of error” [5]. In context of knowledge graphs, this can be divide into (a) syntactic validity of RDF
documents and of literals, which is the compliance to syntactic rules, and (b) semantic validity of triples, which
determines whether the value is true [1]. In this paper, we focus on semantic validity.

The quality dimension completeness is defined by Wang and Strong as “the extent to which data are of sufficient
breadth, depth, and scope for the task at hand” [5]. For knowledge graphs, this can be divided into (a) schema
completeness, which assesses missing classes and properties, (b) column completeness, which assesses missing
property values, and (c) population completeness, which assesses missing resources. In this paper, we focus on
column completeness and population completeness.

The quality dimensions accuracy and completeness have in common that their assessments requires a basis for
comparison [1]. This basis for comparison is typically called a gold standard. However, the general lack of a gold
standard for the assessment of accuracy and completeness of knowledge graphs was constantly considered as a
problem since early work [6] on ontology evaluation until more recent work [1]. Nevertheless, only a few tools have
recently been developed to make use of the comparison of knowledge graphs with each other to address this issue.
All of these tools are dedicated to specific knowledge graphs:

The library authority data initiatives International Standard Name Identifier (ISNI)1 and Virtual International
Authority File (VIAF)2 regularly run processes for integration and consolidation of the data of their providers and
among each other [7]. Manual result review processes then reveal errors in the source data that get communicated
to the providers to enable error correction.

Bianchini et al. compared data from Wikidata3 and VIAF regarding the contained data about persons [8]. Among
others, they measured the reciprocal coverage to assess the suitability for entity identification purposes. Further,
they provide several exemplary cases in which the interlinking reveals errors in both datasets. They conclude, that
“VIAF and Wikidata can be constantly improved through reciprocal comparison, which allows discovery of errors
in both”.

The machine learning based tool soweego4 enables the supervised linking of Wikidata items to items from some
other catalogs. The linked items can get compared to propose changes for Wikidata.

The web service Wikidata Mismatch Finder5 provides a platform for reporting deviations between Wikidata and
other data sources. The goal is to provide a convenient way to report and collaboratively handle possible errors in
Wikidata and interlinked data sources.

3. Requirements

During an earlier comparison of unit ontologies [3] we experienced a couple of challenges that led to some
requirements for a generic comparison tool which we considered during the development of ABECTO:

R1. Handling of Schema Heterogeneity: Different knowledge graphs might use heterogeneous modeling ap-
proaches for the same aspect of a domain. For example, (a) properties might correspond to chains of properties,
(b) IRIs might correspond to blank nodes, (c) OWL data properties might correspond to OWL annotation properties,
or (d) corresponding resources might have different types like RDFS class, OWL individual, SKOS concepts, or

1https://isni.org
2https://viaf.org
3https://www.wikidata.org
4https://github.com/Wikidata/soweego
5https://www.wikidata.org/wiki/Wikidata:Mismatch_Finder

https://isni.org
https://viaf.org
https://www.wikidata.org
https://github.com/Wikidata/soweego
https://www.wikidata.org/wiki/Wikidata:Mismatch_Finder


Wikidata instance. Therefore, it is necessary to enable a comparison beyond a simple one-to-one mapping between
resources and properties and without restriction to specific RDF vocabularies.

R2. Result Provenance: The comparison of knowledge graphs might require the transformation of data from
heterogeneous schemata. To be able to trace revealed issues back to the root cause, it is necessary to enable a
provenance tracking of all (intermediate) results.

R3. No Repeated Review of Deviations: The re-evaluation of a knowledge graph will reveal the same devia-
tions, if issues found in one knowledge graph did not get fixed, which might be out of control of the user. As the
manual review of deviations is time consuming, it is necessary to enable the exclusion of known deviations from the
results, to increase the visibility of new results.

R4. Integration into Ontology Quality Models: An comprehensive quality assessment of a knowledge graph
would likely consider several quality measurements from different tools. Therefore, it is necessary to enable the
integration of comparison results into ontology quality models, to make them interoperable with other tools for
aggregation.

In an early version of ABECTO [4] we used ––in difference to the current version–– a HTTP based client-
server-architecture for pipeline configuration as well as result access. Trials with this early version revealed that
this is cumbersome to use, especially in automated quality assurance processes. That led to the following additional
requirement:

R5. Integration into Quality Assurance Environments: As known from the field of software engineering,
automation is key factor for successful quality assurance. Therefore, it is necessary to enable the easy integration of
a comparison tool into standard quality assurance environments.

4. Tool Description

ABECTO is a tool for the comparison and evaluation of two or more knowledge graphs to assess their accuracy
and completeness. It is a Java command line tool based on the RDF framework Apache Jena6. The source code is
publicly available on GitHub7 and Zenodo [9] under the permissive open source software license Apache 2.08. In
addition, ABECTO is available as a Docker image on GitHub. Parameters may enable exit codes unequal to zero in
case of detected issues in a specific knowledge graph to signal a failure to the calling environment. This enables the
use in Continuous Integration (CI) environments complying to R5.

Figure 1 gives a simplified overview of important components in ABECTO. A plan of interdependent steps
describes the comparison of several knowledge graphs. This plan is configured in the default graph of an RDF
multi graph document using the ABECTO vocabulary, which will be introduced in Section 4.1. A step describes
the execution of one processor with the named RDF graphs returned by its direct and indirect predecessors as input.
Each step generates up to (a) one primary data graph containing original or transformed data from one associated
knowledge graph, (b) per knowledge graph one associated metadata graph for quality annotations and quality
measurements, and (c) one general metadata graph for mapping data. Further, predefined metadata graphs might
be added as input of a step to manually provide annotations or mappings. Execution metadata, like the provenance
of the result graphs, will be stored in the default graph to comply to R2. For example, this enables to retrace the step
that generated the mapping of two resources. A processor has one of four types: source processor, transformation
processor, mapping processor, or comparison (and evaluation) processor. Each type is designated to one phase in
the comparison framework depicted in Figure 2. However, the strict compliance of the plan to these phases is not
enforced by ABECTO. Available processors are introduced in Section 4.2. An aspect describes the resources to
compare.

6https://jena.apache.org/
7https://github.com/fusion-jena/abecto
8https://opensource.org/licenses/Apache-2.0

https://jena.apache.org/
https://github.com/fusion-jena/abecto
https://opensource.org/licenses/Apache-2.0


Processor

associated toAspect

Plan executespart of

input of

preceded by

Step

output of

Graph is a

Meta Data
Graph

Primary Data
Graph

Fig. 1. Diagram of important components in ABECTO.

ReportSource MappingTransformation

Evaluation

Comparison

Fig. 2. Schematic of the comparison framework implemented in ABECTO.

One SPARQL query per knowledge graph and aspect specifies the resources to compare, represented by a key
variable, and their related values, represented by further variables, that could get used by the processors. This
enables the comparison of data with different modeling approaches, complying to R1. Figure 3 shows an example of
the SPARQL queries specifying an aspect for two knowledge graphs with the key variable person and the related
values name and birthdate.

PREFIX exo:<http://example.org/>
SELECT ?person ?name ?birthdate
WHERE {

?person exo:name ?name .
OPTIONAL {

?person exo:birthday ?birthdate .
}

}

PREFIX exc:<http://example.com/>
SELECT ?person ?name ?birthdate
WHERE {

?person exc:givenname ?firstname ;
exc:surname ?surname ;
exc:birthdate ?birthdate .

BIND(CONCAT(?firstname, ?surname) AS ?name)
}

Fig. 3. Two SPARQL queries specifying an aspect with the key variable person for two knowledge graphs with different schema.

The results can get stored in an RDF multi graph document and can get exported into several reports. Available
reports are introduced in Section 4.3.

4.1. The ABECTO Vocabulary

The ABECTO Vocabulary9 enables the description of the plan with aspects and steps, the execution results, and
the results provenance. We use the following prefix to abbreviate the namespace in the vocabulary IRIs:

av: <http://w3id.org/abecto/vocabulary#>
To enable easy integration with other systems and thereby comply to R4, the ABECTO Vocabulary reuses several

vocabularies:

– dcat: <http://www.w3.org/ns/dcat#>, a vocabulary for data set descriptions

9http://w3id.org/abecto/vocabulary

http://w3id.org/abecto/vocabulary


– dqv: <http://www.w3.org/ns/dqv#>, a vocabulary for data quality
– ldqd: <http://www.w3.org/2016/05/ldqd#>, a vocabulary for quality dimensions
– oa: <http://www.w3.org/ns/oa#>, a vocabulary for annotations
– om: <http://www.ontology-of-units-of-measure.org/resource/om-2/>,

a vocabulary for units of measurement
– p-plan: <http://purl.org/net/p-plan#>, a vocabulary for workflows
– prov: <http://www.w3.org/ns/prov#>, a vocabulary for provenance data
– rdfg: <http://www.w3.org/2004/03/trix/rdfg-1/>, a vocabulary for RDF graphs
– sdmx-attribute: <http://purl.org/linked-data/sdmx/2009/attribute#>,

a vocabulary for statistical data and metadata

An overview of the vocabulary of plan description and results provenance is shown in Figure 4. It enables the
description of the concepts introduced above, i.e. plan, step, primary data graph, meta data graph, processor, aspect,
and variable.

p-plan:isStepOfPlan

av:associatedDataset

av:hasParameter

av:predefinedMetaDataGraph

av:Stepav:Plan

dcat:Dataset

av:processorClass

av:key

av:valueav:Parameter

xsd:stringp-plan:isPrecededBy

rdfs:subclassOf

av:MetaDataGraph rdfs:subclassOf

dqv:computedOn

av:PrimaryDataGraph

prov:startedAtTime

prov:endedAtTime

rdfg:Graph

xsd:dateTime

xsd:dateTime

av:ofAspect

av:keyVariableName

av:Aspect

av:definingQuery

av:hasVariablePath

av:AspectPatternav:associatedDataset

xsd:string

xsd:string

p-plan:Step

rdfs:subclassOf

rdfs:Resource
(including rdfs:Literal)

p-plan:correspondsToStep

prov:wasGeneratedBy

prov:used

av:StepExecution

prov:Entity

rdfs:subclassOf rdfs:subclassOf

av:associatedDataset

prov:wasGeneratedBy

prov:used

p-plan:Activity

rdfs:subclassOf

dqv:QualityMetadata

rdfs:subclassOf

rdfs:Resource 
(java:<qualified 
class name>)

p-plan:Plan

rdfs:subclassOf

av:variableName
av:propertyPath

av:VariablePath

xsd:string

xsd:string

Fig. 4. The ABECTO vocabulary for the description of the plan and the result provenance.

Further resources are provided for the use inside the metadata graphs. The properties av:relevantResource,
and av:correspondsToResource, av:correspondsNotToResource are available for the represen-
tation of the belonging of a resource to an aspect and for mapping results. The classes av:Deviation,
av:ValueOmission, av:ResourceOmission, av:WrongValue, and av:Issue are used to anno-
tate the compared knowledge graphs or contained resources. They are used together with the properties
av:affectedAspect, av:affectedVariableName, av:affectedValue, av:comparedToValue,
av:comparedToResource, and av:comparedToDataset, as shown in Figure 5 on the example of
av:Deviation. The class av:QualityMeasurement together with the properties dqv:computedOn,



av:affectedAspect, av:affectedVariableName, av:comparedToDataset, dqv:value, and
sdmx-attribute:unitMeasure is used to represent measurements on knowledge graphs, as shown in Fig-
ure 6.

av:affectedAspect

av:affectedVariableName av:Deviation rdfs:Resourceav:comparedToResource

av:comparedToValue

rdfs:Literal

xsd:string

av:Aspect dcat:Dataset

av:comparedToDataset

dqv:QualityAnnotation oa:hasTarget

oa:hasBody

rdfs:Resource

rdfs:Literal

av:affectedValue

av:QualityAnnotationBody

rdfs:subclassOf

Fig. 5. The vocabulary for the annotation of deviating values of resources.

dqv:isMeasurementOf

sdmx-attribute:unitMeasure

dqv:value

av:QualityMeasurement

dqv:Metric

dcat:Dataset

dqv:computedOnom:Unit

rdfs:Literal

av:affectedAspect

av:affectedVariableName xsd:string

av:Aspect

dcat:Dataset

av:comparedToDataset

dqv:QualityMeasurement

rdfs:subclassOf

Fig. 6. The vocabulary for the representation of measurements.

4.2. Processors

ABECTO has a couple of build-in processors. In the pipeline description, processors get denoted by an IRI of the
unofficial scheme java and a path equal to the canonical name of the processors class. This way to represent Java
classes is used also in Apache Jena. We use the following prefix to abbreviate the namespace in the processor IRIs:

abecto: <java:de.uni_jena.cs.fusion.abecto.processor.>

4.2.1. Source Processors
Source Processors load RDF data from different sources and store them in the internal triple store for further

processing.
The File Source Processor (abecto:FileSourceProcessor) loads RDF data from one or multiple locale

files of one of the following formats: RDF/XML, TriG, N-Quads, Turtle, N-Triples, JSON-LD, SHACL Compact
Syntax, TriX, and RDF Thrift. The format is automatically detected. The processor has the following parameter:

path One or multiple paths of RDF files that will be loaded. A path may either be absolute, or relative to the
configuration file.

The SPARQL Source Processor (abecto:SparqlSourceProcessor) loads RDF data from a SPARQL
endpoint. This makes ABECTO independent from the availability of knowledge graphs RDF dumps and may avoid
the handling of large dump files, if only a small share of the data is needed. The resources of interest get defined
by a SPARQL query, a list, or both. The processor partitions these resources into chunks and loads all statements
containing these resource as subject or object. Depending on the given parameters, the other non-predicate resources



of loaded statements will also get loaded until a certain distance. Further parameters enable fine-grained control of
statements to load and for the handling of errors like endpoint time outs. The processor has the following parameters:

service URL of the SPARQL endpoint to use.
list List of the relevant resources.
query SELECT query to retrieve a list of the relevant resources. All variables will be taken into account. None

IRI values will be ignored. ORDER BY, LIMIT and OFFSET might become overwritten.
chunkSize Maximum number of resources to retrieve in one request. Default: 500
chunkSizeDecreaseFactor Factor to reduce the chunkSize after failed request to the source SPARQL end-

point. Default: 0.5
chunkSizeIncreaseFactor Factor to increase the chunkSize after successful request to the source SPARQL

endpoint until the initial value got restored. Default: 1.5
maxDistance Maximum distance of loaded associated resources. Associated resources share a statement as an

object with a retrieved resource as a subject, in case of any property, and vice versa, in case of followed inverse
properties (see followInverse). Default: 0

followInverse Properties to track in inverse direction to compile a list of associated resources to load. That means
that the subject of a statement whose property is in this list and whose object is a loaded resource will become
an associated resource.

followUnlimited Properties that represent a hierarchy. Resources associated to a loaded resource by a followUn-
limited property will be loaded unlimited, but will not cause retrieval of further resources not connected by a
followUnlimited property or a followInverseUnlimited property. Default: rdfs:subClassOf, rdf:first, rdf:rest

followInverseUnlimited Properties that represent a hierarchy. Resources associated to a loaded resource by the
inverse of a followInverseUnlimited property will be loaded unlimited, but will not cause retrieval of further
resources not connected by a followUnlimited property or a followInverseUnlimited property.

ignoreInverse Properties to ignore in inverse direction. Statements with one of these properties will neither get
loaded nor will their subjects become an associated resource.

maxRetries Total maximum number of retries of failed request to the source SPARQL endpoint. Default: 128

The URL Source Processor (abecto:UrlSourceProcessor) loads RDF data from one or multiple remote
files of one of the following formats: RDF/XML, TriG, N-Quads, Turtle, N-Triples, JSON-LD, SHACL Compact
Syntax, TriX, and RDF Thrift. The format is automatically detected. The processor has the following parameter:

url One or multiple URLs of RDF files that will be loaded.

4.2.2. Transformation Processors
Transformation processors derive additional primary data from the existing primary data. For example, this en-

ables the derivation of implicit statements or the adjustment of value formating for the mapping or comparison.
The Forward Rule Reasoning Processor (abecto:ForwardRuleReasoningProcessor) applies for-

ward rules to derive additional primary data. The processor has the following parameter:

rules The rules to apply on the primary data using the Apache Jena rule syntax10.

The SPARQL Construct Processor (abecto:SparqlConstructProcessor) applies a SPARQL con-
struct query on the primary data of a knowledge graph to derive additional primary data. The query execution will
be repeated until a configured limit of execution or no new statements have been produced. The processor has the
following parameters:

query The SPARQL construct query to apply on the primary data.
maxIterations Maximum number of executions of the query. Default: 1

10https://jena.apache.org/documentation/inference/#RULEsyntax

https://jena.apache.org/documentation/inference/#RULEsyntax


4.2.3. Mapping Processors
Mapping Processors provide correspondences and correspondence exclusions between resources in the knowl-

edge graphs. The pipeline of a comparison plan may contain multiple complementary mapping processors. In case
of contradicting results of mapping processors, the processor executed first takes precedence and contradicting cor-
respondences or correspondence exclusions will not be added. That way, it is also possible to provide manual adjust-
ments to the mapping by providing correspondences or correspondence exclusions in a predefined metadata graph
in the configuration. A rule reasoner is used to derive implicit correspondences and correspondence exclusions.
The reasoning applies immediately on new correspondences to consider them during the further mapping processor
execution. Additionally, the inferences get persisted after a mapping processor execution succeeded.

The Equivalent Value Mapping Processor (abecto:EquivalentValueMappingProcessor) provides
correspondences between resources of one aspect in different knowledge graphs, if they have equivalent values for
all given variables. This is similar to the inferences of a OWL reasoner on inverse functional properties. Values are
treated as equivalent if they are equivalent literals or if they are resources that are already known to correspond. If
multiple values exist for one variable, only one pair of values must be equivalent. Unbound variables are treated as
not equivalent. The processor has the following parameters:

aspect The aspects for which the correspondences get generated.
variables One or multiple variables that will be compared to determine the correspondence of resources.

The Functional Mapping Processor (abecto:FunctionalMappingProcessor) provides correspon-
dences based on links from resources of another aspect. If corresponding resources from different knowledge graphs
link with a given variable two resources, these resources will considered to correspond. This is similar to the infer-
ences of a OWL reasoner on functional properties. The processor has the following parameters:

referringAspect The aspect of the resources linking the resources to map.
referringVariable The variable linking the resources to map.
referredAspect The aspect of the resources to map.

The Jaro-Winkler Mapping Processor (abecto:JaroWinklerMappingProcessor) provides corre-
spondences based on the Jaro-Winkler Similarity [10] of string values using our implementation for efficient
bounded Jaro-Winkler similarity based search [11]. Two resources are considered to correspond if for one variable
in both directions the other variable value is the most similar value from the other knowledge graph and if the
similarity score exceeds a threshold. The processor has the following parameters:

aspect The aspects for which the correspondences are generated.
variables One or multiple variables used to search corresponding resources.
threshold The similarity threshold the variable values of two resources must comply.
caseSensitive Determines, if case is taken into account during the search for corresponding resources.

The Use Present Mapping Processor (abecto:UsePresentMappingProcessor) provides correspon-
dences based on existing links between resources in variable values. The processor has the following parameters:

aspect The aspects for which the correspondences get generated.
variable The variable that links a resource to a corresponding resource.

4.2.4. Comparison Processors
Comparison processors compare the primary data of the knowledge graphs using the correspondences provided by

the mapping processors. They provide annotations on specific values, resources, and knowledge graphs or determine
measurements on the knowledge graphs.

The Completeness Processor (abecto:CompletenessProcessor) is a comparison processor, that pro-
vides on the one hand av:Issue annotations for resource duplicates and av:ResourceOmission annotations.
On the other hand, it provides per knowledge graph x measurements of (a) the duplicate-free count nx of resources
of an aspect, (b) the absolute coverage mx,y of resources of an aspect in another knowledge graph y, (c) the relative
coverage mx,y

ny
of resources of an aspect in another knowledge graph y, and (d) the estimated completeness Ĉx = nx

N̂
of resources of an aspect determined by a mark and recapture method as proposed by Razniewski et.al. [12]. We



use the mark and recapture method defined by Thomas [13], which permits multiple samples of different sample
sizes: With T samples of sizes n1, . . . , nT , and the sum of pairwise overlaps M =

∑T−1
x=1

∑T
y=x+1 mx,y, the estimated

population size is N̂ =
(∑T−1

x=1

∑T
y=x+1 nxny

)
1
M . The processor has the following parameter:

aspects One or multiple aspects for which measurements and annotations will be generated.

The Literal Value Comparison Processor (abecto:LiteralValueComparisonProcessor) is a com-
parison processor, that provides av:Deviation, av:ValuesOmission, and av:Issue annotations on lit-
eral values for one variable of corresponding resources. Given a pair of corresponding resources from the same or
different knowledge graphs, the processor will compare their values of one variable using the following procedure:

1. Skip non-literal values and add an av:Issue annotation for each of them to mark the invalid value.
2. Skip values to ignore due to their language tag.
3. Skip values already annotated with a av:WrongValue annotation, complying to R3.
4. Skip equivalent values from both resources.
5. If no value remained for only one resource, add a av:ValuesOmission for this resource and each remain-

ing value of the other resource.
6. If at least one value remained for each resource, add a av:Deviation annotate for each pair of the remain-

ing values.

Values are considered equivalent, if they are semantically equivalent with the following exceptions: (a) Numerical
values are additionally considered equivalent even if a binary floating point literal and a literal with a type (derived
from) xsd:decimal get compared and both values have the same value in the value space, but not necessar-
ily if they have equal lexical representations [14]. (b) Depending on the parameters, temporal values of the types
xsd:date and xsd:dateTime might get considered equivalent, if they have equivalent date parts. (c) Depend-
ing on the parameters, string values of the type xsd:string or rdf:langString might get considered equiv-
alent, even if they have equal lexical representations but different language tags. The processor has the following
parameters:

aspect The aspects for which annotations will be generated.
variables One or multiple variables that will be compared to determine the annotations.
languageFilterPatterns Zero, one or multiple language patterns to filter compared literals. If not empty, only

string literals will be loaded, that match at least on of these patterns. String literals without language tag will
match with "", all string literals with language tag match with "*". Default: empty

allowTimeSkip If true, two literals of the types xsd:date and xsd:dateTime with equal year, month and
day part will match.

allowLangTagSkip If true, literals of the type xsd:string or rdf:langString with equal lexical value
but different language tag will match.

The Resource Value Comparison Processor (abecto:ResourceValueComparisonProcessor) is a
comparison processor, that provides av:Deviation, av:ValuesOmission, and av:Issue annotations on
non-literal values for one variable of corresponding resources. Given a pair of corresponding resources from the
same or different knowledge graphs, the processor will compare their values of one variable using the following
procedure:

1. Skip literal values and add an av:Issue annotation for each of them to mark the invalid value.
2. Skip values already annotated with a av:WrongValue annotation, complying to R3.
3. Skip equivalent values from both resources.
4. If no value remained for only one resource, add a av:ValuesOmission for this resource and each remain-

ing value of the other resource.
5. If at least one value remained for each resource, add a av:Deviation annotate for each pair of the remain-

ing values.

Values are considered equivalent, if the IRIs are equal or the resources are considered to correspond. The processor
has the following parameters:

aspect The aspects for which annotations will be generated.
variables One or multiple variables that will be compared to determine the annotations.



4.3. Reports

Reports are defined by one SPARQL query on the result multi graph and one Apache FreeMarker11 template.
ABECTO provides the following built-in reports:

The Deviations Report deviations contrast the variable value of one resource with the deviating value of a
corresponding resource in CSV format. In addition, it provides the aspect and the knowledge graphs of the resources,
the step that mapped the resources, and an annotation snippet to mark the second value as wrong. Each entry is
intended to be handled by one of the following options: (a) fixing the value in the own knowledge graph, (b) fixing
the value in the other knowledge graph, (c) manually fixing the mapping, or (d) annotating the other knowledge
graphs value as wrong in the comparison configuration using the provided snippet.

The Mapping Review Report mappingReview provides an overview of all mappings as well as all missing
resources in CSV format. It provides the aspect, the two affected knowledge graphs, the resource IRIs and labels (if
applicable) the processor that provide the mapping or resource omission. The aim of this report is to enable manual
revision and adjustment of the mapping.

The Measurements Markdown Report measurementsMarkdown provides a tabular display of measure-
ments on the knowledge graphs in Markdown12 format.

The Resource Omission Report resourceOmissions lists all missed resources per knowledge graph in
CSV format. In addition, it provides the labels of the missing resource and the knowledge graph that contained the
missing resources.

The Wikidata Mismatch Finder Report wdMismatchFinder provides encountered deviations in the Mis-
match Finder CSV import file format13, provided that they can be displayed in the format.

5. Limitations

In the current version of ABECTO, all input and output data are managed in the main memory. Therefore, the
scalability of the tool with regards to the knowledge graph size is limited. This might get improved by enabling the
optional use of Apache Jenas disk storage component TDB214.

6. Workflow

For the monitoring of a knowledge graphs quality, ABECTO is intended to be used in a cyclic workflow, that
is shown in Figure 7. It can be aligned to different iterating development processes. The workflow consists of four
steps:

The Plan Execution provides all necessary data for the further process. Ideally, it is triggered automatically. For
example, the plan could be executed after each commit into a version control repository to provide reports based on
each version of an RDF file and automatically warn on revealed deviations. After this step, all reports are available
for analysis.

During the Result Analysis a knowledge graph maintainer checks based on the reports whether it is necessary
to correct or extend the knowledge graph or the ABECTO plan. An detected deviation makes at least one of the
following actions necessary:

– change or addition of a value in the own knowledge graph to correct the own knowledge graph,
– annotation of a value in another knowledge graph as wrong value to avoid the future appearance of the

deviation in the reports,

11https://freemarker.apache.org/
12https://daringfireball.net/projects/markdown/
13https://github.com/wmde/wikidata-mismatch-finder/blob/main/docs/UserGuide.md#creating-a-mismatches-import-file
14https://jena.apache.org/documentation/tdb2/

https://freemarker.apache.org/
https://daringfireball.net/projects/markdown/
https://github.com/wmde/wikidata-mismatch-finder/blob/main/docs/UserGuide.md#creating-a-mismatches-import-file
https://jena.apache.org/documentation/tdb2/


AB
EC
TO

Pl
an

Ex
ec
ut
io
n

Kn
ow
le
dg
e

Gr
ap
h

Re
fin
em

en
t

ABECTO

Result

Analysis

ABECTO
Plan

Refinem
ent

Fig. 7. Illustration of the workflow to use ABECTO in knowledge graph development.

– change or addition of a value in another knowledge graph to avoid the future appearance of the deviation in
the reports,

– manually adjustment of the mapping to avoid the future appearance of deviations between not corresponding
resources,

– correction of values relevant for the mapping to correct the own knowledge graph and to avoid the future
appearance of deviations between not corresponding resources.

In the Knowledge Graph Refinement phase and the Plan Refinements phase, necessary changes on the knowl-
edge graph and the ABECTO plan will be performed.

7. Adaption

To demonstrate the usefulness of ABECTO, we present two comparison projects that use ABECTO.

7.1. Comparison of Units of Measurement Data from Four Knowledge Graphs

In the first comparison project, we compared units of measurement related data from four knowledge graphs15.
It covers the aspects units of measurement and quantity kinds including conversion factors and dimension vectors.
The data origin from OM 216, QUDT 217, SWEET 318, loaded via RDF files, and Wikidata, loaded via SPARQL
endpoint. We used the UCUM19 code as well as matches stated in the knowledge graphs to map the units. The
quantity kinds were mapped using Jaro-Winkler Similarity of the labels. The mappings were supplemented by
several manual adjustments. We compared the units regarding their symbol, associated quantity kind, and conversion
values and the quantity kinds regarding their symbol and dimension vector. Further, we computed completeness
measures for both aspects. The measurement results for resource count and completeness are shown in Table 1. For
a correct interpretation please note, that in contrast to the other knowledge graphs, Wikidata also features a large
amount of historical units of measurement.

The comparison revealed more then 600 deviations between the knowledge graphs, which point to potential er-
rors in the knowledge graphs, including more then 300 deviations related to conversion factors and offsets. The
maintainers of OM, QUDT and SWEET were notified about the comparison results and for a portion of the devi-
ations, we have proposed changes to the knowledge graphs. In Wikidata, we directly corrected a couple of errors

15https://github.com/fusion-jena/abecto-unit-ontology-comparison
16https://github.com/HajoRijgersberg/OM
17https://qudt.org
18https://github.com/ESIPFed/sweet
19https://ucum.org

https://github.com/fusion-jena/abecto-unit-ontology-comparison
https://github.com/HajoRijgersberg/OM
https://qudt.org
https://github.com/ESIPFed/sweet
https://ucum.org


Table 1
The number of unit and quantity kind resources and the estimated completeness per knowledge graph.

Knowledge Graph Units Count Units Completeness Quantity Kinds Count Quantity Kinds

OM 1429 14% 108 6%

QUDT 1709 16% 328 17%

SWEET 136 1% - -
Wikidata 5807 55% 1769 92%

revealed by the deviations. That way, the comparison already caused and will hopefully also cause in future several
improvements20 of the knowledge graphs.

7.2. Comparison of Space Flight Data in Wikidata and DBpedia

In the second comparison project, we compared the data about space flight related resources21. It covers the
aspects astronauts and spacecrafts and space missions. The data origin from Wikidata and DBpedia and are loaded
in both cases from the respective SPARQL endpoint. We used the URLs of the related Wikipedia articles to map
the resources of all aspects. The mapped astronauts were compared regarding their birth data, death date labels,
and time in space. For spacecrafts we compared the COSPAR ID (an identifier for artificial objects in space), crew
members, labels, landing date, launch date, and the “Satellite Catalog Number” (another identifier for artificial
objects in space). Space missions were compared regarding their duration, inclination, labels, landing date, landing
site, launch date, launch site, launch vehicle, mass, member, next mission, number of orbits, previous mission, and
vehicle. Further, we also computed completeness measures for both aspects, but only to get the number of resources
per aspect, shown in Table 2. As every Wikipedia article is associated with one Wikidata resource (but not vice
versa) and every DBpedia resource is based on at least one Wikipedia article, the completeness measure is not
reliably.

Table 2
The number of astronaut, spacecraft and space mission resources per knowledge graph.

Knowledge Graph Astronauts Count Spacecraft Count Space Missions Count

DBpedia 739 4708 3405
Wikidata 795 7457 145

The comparison revealed more then 800 deviations between Wikidata and DBpedia resources regarding their
birth date, COSPAR IDs, crew members, death date, duration, label, landing date, launch date, Satellite Catalog
Number and time in space properties. As values in DBpedia origin from Wikipedia, this also points to errors in the
English Wikipedia. As far as they were already representable in the according format, the results were provided to
the Wikidata Mismatch Finder22.

8. Conclusion

We presented ABECTO, the first generic tool for the comparison of knowledge graphs for the assessment of
their accuracy and completeness. It provides a pipeline based framework for the comparison of multiple knowledge
graphs. ABECTO does not depend on the existence of a gold standard. Thereby we overcome an more then 20
years old problem in the field of ontology engineering. Design decisions were led by requirements learned in earlier

20OM: https://github.com/HajoRijgersberg/OM/issues?q=abecto, QUDT: https://github.com/qudt/qudt-public-repo/issues?q=abecto,
SWEET: https://github.com/ESIPFed/sweet/issues?q=abecto, Wikidata: https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_
Edits#Based_on_the_Comparison_of_Unit_Ontologies

21https://github.com/fusion-jena/abecto-space-travel-comparison
22https://mismatch-finder.toolforge.org/store/imports, uploaded on August 18th 2022

https://github.com/HajoRijgersberg/OM/issues?q=abecto
https://github.com/qudt/qudt-public-repo/issues?q=abecto
https://github.com/ESIPFed/sweet/issues?q=abecto
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies
https://github.com/fusion-jena/abecto-space-travel-comparison
https://mismatch-finder.toolforge.org/store/imports


knowledge graph comparison projects. This enables the use of ABECTO for the comparison of a wide range of
knowledge graphs, the interoperability with other tools, and the integration into automated processes.

In the two comparison projects, we demonstrated the usefulness of ABECTO for the improvement of real world
knowledge graphs. We hope, that ABECTO will be adapted by knowledge graph curators to keep track on the
accuracy and completeness of facts in their work. The capability to use ABECTO in continuous integration processes
allows them to regularly and automatically compare their knowledge graph with other knowledge graphs. That way,
it provides novel opportunities to strengthen the reliability of a knowledge graph. Further, ABECTO empowers
users of knowledge graphs to easily compare available knowledge graphs. They will not longer have to blindly trust
the represented facts or to perform a tedious manual review of axioms. The framework will highlight questionable
facts. That way, users will be able to take a more educated decision on the selection of ontologies.

Acknowledgements

Many thanks to Alsayed Algergawy and Franziska Zander and the author’s supervisor Birgitta König-Ries for
very helpful comments on earlier drafts of this manuscript.

References

[1] M. Färber, F. Bartscherer, C. Menne and A. Rettinger, Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO, Semantic
Web 9(1) (2018), 77–129. doi:10.3233/SW-170275.

[2] J.M. Keil, Ontology ABox Comparison, in: The Semantic Web: ESWC 2018 Satellite Events, A. Gangemi, A.L. Gentile, A.G. Nuzzolese,
S. Rudolph, M. Maleshkova, H. Paulheim, J.Z. Pan and M. Alam, eds, Lecture Notes in Computer Science, Vol. 11155, Springer, 2018,
pp. 240–250. ISBN 978-3-319-98191-8. doi:10.1007/978-3-319-98192-5_43.

[3] J.M. Keil and S. Schindler, Comparison and evaluation of ontologies for units of measurement, Semantic Web 10(1) (2019), 33–51. doi:10.
3233/SW-180310.

[4] J.M. Keil, ABECTO: An ABox Evaluation and Comparison Tool for Ontologies, in: The Semantic Web: ESWC 2020 Satellite Events,
A. Harth, V. Presutti, R. Troncy, M. Acosta, A. Polleres, J.D. Fernández, J.X. Parreira, O. Hartig, K. Hose and M. Cochez, eds, Lecture
Notes in Computer Science, Vol. 12124, Springer, 2020. ISBN 978-3-030-62326-5. doi:10.1007/978-3-030-62327-2_24.

[5] R.Y. Wang and D.M. Strong, Beyond Accuracy: What Data Quality Means to Data Consumers, J. Manag. Inf. Syst. 12(4) (1996), 5–33.
doi:10.1080/07421222.1996.11518099.

[6] P.R.S. Visser and T.J.M. Bench-Capon, A Comparison of Four Ontologies for the Design of Legal Knowledge Systems, Artif. Intell. Law
6(1) (1998), 27–57. doi:10.1023/A:1008251913710.

[7] A. Angjeli, A.M. Ewan and V. Boulet, ISNI and VIAF – Transforming ways of trustfully consolidating identities, 2014. http://library.ifla.
org/id/eprint/985/.

[8] C. Bianchini, S. Bargioni and C.C. Pellizzari di San Girolamo, Beyond VIAF, Information Technology and Libraries 40(2) (2021). doi:10.
6017/ital.v40i2.12959.

[9] J.M. Keil, ABox Evaluation and Comparison Tool for Ontologies (ABECTO) v1.0.1, Zenodo, 2022. doi:10.5281/zenodo.7009167.
[10] W.E. Winkler, String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage, in: Proceedings

of the Section on Survey Research, American Statistical Association, 1990, pp. 354–359. http://eric.ed.gov/?id=ED325505.
[11] J.M. Keil, Efficient Bounded Jaro-Winkler Similarity Based Search, in: BTW 2019, T. Grust, F. Naumann, A. Böhm, W. Lehner, T. Härder,

E. Rahm, A. Heuer, M. Klettke and H. Meyer, eds, Gesellschaft für Informatik, Bonn, 2019, pp. 205–214. doi:10.18420/btw2019-13.
[12] S. Razniewski, F.M. Suchanek and W. Nutt, But What Do We Actually Know?, in: Proceedings of the 5th Workshop on Automated Knowl-

edge Base Construction, AKBC@NAACL-HLT 2016, J. Pujara, T. Rocktäschel, D. Chen and S. Singh, eds, The Association for Computer
Linguistics, 2016, pp. 40–44. ISBN 978-1-941643-53-2. doi:10.18653/v1/W16-1308.

[13] P. Thomas, Generalising multiple capture-recapture to non-uniform sample sizes, in: Proceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, S. Myaeng, D.W. Oard,
F. Sebastiani, T. Chua and M. Leong, eds, ACM, 2008, pp. 839–840. ISBN 978-1-60558-164-4. doi:10.1145/1390334.1390531.

[14] J.M. Keil and M. Gänßinger, The Problem with XSD Binary Floating Point Datatypes in RDF, in: The Semantic Web: ESWC 2022, P. Groth,
M. Vidal, F.M. Suchanek, P.A. Szekely, P. Kapanipathi, C. Pesquita, H. Skaf-Molli and M. Tamper, eds, Lecture Notes in Computer Science,
Vol. 13261, Springer, 2022, pp. 165–182. doi:10.1007/978-3-031-06981-9_10.

https://doi.org/10.3233/SW-170275
https://doi.org/10.1007/978-3-319-98192-5_43
https://doi.org/10.3233/SW-180310
https://doi.org/10.3233/SW-180310
https://doi.org/10.1007/978-3-030-62327-2_24
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1023/A:1008251913710
http://library.ifla.org/id/eprint/985/
http://library.ifla.org/id/eprint/985/
https://doi.org/10.6017/ital.v40i2.12959
https://doi.org/10.6017/ital.v40i2.12959
https://doi.org/10.5281/zenodo.7009167
http://eric.ed.gov/?id=ED325505
https://doi.org/10.18420/btw2019-13
https://doi.org/10.18653/v1/W16-1308
https://doi.org/10.1145/1390334.1390531
https://doi.org/10.1007/978-3-031-06981-9_10

	Motivation
	Related Work
	Requirements
	Tool Description
	The ABECTO Vocabulary
	Processors
	Source Processors
	Transformation Processors
	Mapping Processors
	Comparison Processors

	Reports

	Limitations
	Workflow
	Adaption
	Comparison of Units of Measurement Data from Four Knowledge Graphs
	Comparison of Space Flight Data in Wikidata and DBpedia

	Conclusion
	Acknowledgements
	References

