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Abstract. The current decade is witnessing a remarkable evolution in terms of big data virtualization. Data is queried on-the-fly
against the original data sources without any prior data materialization. Ontology-Based Big Data Access solutions by design use
a fixed model, e.g., TABULAR, as the only Virtual Data Model - a uniform schema that is built on-the-fly to load, transform, and
join relevant data. While other data models such as GRAPH or DOCUMENT are more flexible and, thus, can be more suitable
for some common types of queries such as join or nested queries. Those queries are, in many cases, hard to predict because they
depend on many criteria such as query plan, data model, data size, operations e.g., join, filter. To address the problem of selecting
the optimal virtual data model for various queries on large datasets, we develop OPTIMA. OPTIMA is a framework that (1)
builds on the principle of ontology-based data access to enable the querying, aggregating, and joining of large heterogeneous data
in a distributed manner using a unique query language SPARQL and (2) calls the deep learning method to predict the optimal
virtual data model using the features extracted from SPARQL queries. OPTIMA currently leverages state-of-the-art Big Data
technologies, Spark, and implements two virtual data models, GRAPH and TABULAR, and supports out-of-the-box five data
sources Neo4j, MongoDB, MySQL, Cassandra, and CSV. Extensive experiments show that OPTIMA returns the optimal virtual
model with an accuracy of 0.831, thus reducing the query execution time by over 40% in favor of tabular model selection and
over 30% for the graph model selection.
OPTIMA is available on GitHub https://github.com/chahrazedbb/OPTIMA

Keywords: Data Virtualization, Big Data, Ontology Based Data Access, Deep Learning

1. Introduction

Data virtualization approaches tackle data integration challenges by creating a virtual data model under which
the heterogeneous formats are homogenized on-the-fly without data materialization [1]. Ontology-Based Data Ac-
cess (OBDA) [2] approaches [3] maintain data virtualization with practical knowledge representation models and
ontology-based mappings. However, existing solutions dedicated to big data [4][5][6] use by design a fixed model,
e.g., TABULAR as the only virtual data model1 to load and transform the requested data into a uniform model to be
joined.

*Corresponding author. E-mail: cb.bachirbelmehdi@esi-sba.dz.
1We denote GRAPH and TABULAR to distinguish between Virtual model and data source models.
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Fig. 1. OPTIMA Framework

Nevertheless, the TABULAR virtual model can have performance downsides for queries involving many join
operations on large data [7]. In contrast, other data models, such as GRAPH, perform better for such queries. On the
other hand, the TABULAR model performs better for queries that involve selection, or projection [8]. Therefore,
there is a need to support different virtual models and select the optimal one based on query behavior, thus saving
operational execution time. However, predicting the optimal virtual model is challenging since the selection depends
on many criteria, such as query plan, data model, size, and operations.

This challenge raises the following research questions: based on a given query, RQ1: does the data model affect
query execution time? RQ2: which virtual data model is optimal, i.e., the model that has the lowest cost, precisely,
the lowest query execution time? and how to select it?"

To address this research problem, we introduce our operational tool OPTIMA, which was briefly presented and
published in our earlier work [9]. OPTIMA is an extensible framework that uses two Virtual models, GRAPH and
TABULAR, and supports out-of-the-box five data sources, Property Graph, Relational, Tabular, Document-based,
and Wide-Columnar, to query large heterogeneous data in an efficient way. To select the optimal virtual data model
GRAPH or TABULAR, we used one hot vector encoding to transform different SPARQL features into hidden
representations. Next, we embed these representations into a tree-structured model, which we use to classify the
virtual model GRAPH or TABULAR that has the lowest query execution time. Experiments show that OPTIMA
reduces the query execution time of over 40% for the TABULAR model selection and over 30% for the GRAPH
model selection. We describe each component of our system OPTIMA as illustrated in Figure 1, Label 1; followed
by conducted experiment and related work.

2. OPTIMA: Optimal Virtual Model for Querying Large Heterogeneous Data

2.1. Virtual Data Model Prediction

Built on top of OBDA components, this distinctive component implemented in OPTIMA aims to select the opti-
mal virtual data model GRAPH or TABULAR based on the query behavior see Figure 2. The component receives
the SPARQL query as input and predicts the optimal virtual data model with the lowest execution time. The deep
learning model starts by breaking down the SPARQL query plan into nodes. Each node includes a set of query fea-
tures that significantly affect the query execution time (e.g., filter). The different features are then encoded using a
one-hot vector. Next, we propose a tree-structured model that takes the encoded features of SPARQL query as input
to learn each sub-plan representation effectively and outputs the optimal virtual data model, GRAPH or TABULAR,
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that has the lowest query execution time. Our model consists of an embedding layer to condense the features’ vectors
and an estimation layer to estimate the optimal virtual data model. In addition, the model includes an intermediate
representation layer to capture the correlation between the joined star-shaped queries. Once the optimal model is
predicted, the rest of the OBDA components and operations (e.g., join) follow the optimal virtual model predicted
GRAPH or TABULAR.

Fig. 2. Architecture of Predictive Model for Optimal Virtual Data Model

2.2. Query Decomposition and Relevant Entity Detection

This component decomposes the SPARQL query into star-shaped queries. More precisely, the query’s Basic
Graph Pattern (BGP) is divided into a set of sub-BGPs, where each sub-BGP contains all the triple patterns sharing
the same subject variable. Those sub-BGPs sharing the same subject are called a star-shaped query. Next, this
component analyzes each star-shaped query and visits the mappings file to obtain the data source’s path and the
attributes mapped to each element of the star-shaped query, i.e., relevant entities. This information is then passed to
the data wrapper to load relevant entities.

2.3. Data Wrapper

Once the sources and relevant entities are identified using mappings, the data wrapper converts relevant entities
(e.g., tables) from their original models to data that comply with the optimal virtual data model predicted, which
is actually the data structure of the computation unit of the query engine. This conversion occurs at query-time,
which allows for the parallel execution of expensive operations, e.g., join. Query engines implement wrappers called
connectors to convert data entities from the source to the virtual data model, performing transformation of data
source, e.g., relational model to virtual model, e.g., GRAPH (see Figure 3a).

Each star-shaped query corresponds to one relevant entity, and thus one single virtual data model is created.
According to the mapping, this occurs when the relevant entity is retrieved only from one data source. Otherwise, if
the relevant entity is retrieved from multiple data sources, then the virtual model for one relevant entity is the union
of the temporary virtual models created for each source (see Figure 3b). Below we describe the data sources’ model
transformation by wrappers into GRAPH and TABULAR.

– For the virtual data model of type GRAPH, one relevant entity of a star-shaped query from relational and tabular
models is a table with specific columns, which is transformed into one virtual model GRAPH. Figure 3a, Label
1 illustrates the transformation process from relational into GRAPH, following the process described in [10]. For
each table row, a vertex is created with the same label as the table’s name (e.g., table’ Person’ corresponds to
all vertices with the label "Person") in addition to the root vertex. Edges are created between vertices and the
root vertex, whereas the properties of each vertex are the columns of the table (e.g., column ’name’ corresponds
to property ’name’), and the values of the properties are the table’s cell information. The process is applied to
a property graph that has the same data structure as the GRAPH. Thus, the transformation process is a direct
mapping; the node corresponds to a vertex, the node’s properties correspond to the properties of the vertex, and
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(a) Figure 3a: Transformation to Virtual Models (b) Figure 3b: Union of Temporary Virtual Models

(a) Figure 4a: Join of Temporary Virtual Models

(b) Figure 4b: Join Algorithms of Virtual Models

the relationships between nodes correspond to edges between vertices. Following a similar process described in
[11], the document-based and wide-columnar models (e.g., JSON or XML files) are transformed into the virtual
GRAPH’s vertices by iteratively going through each element of the object. Those vertices share the same label as
the root name (object). Edges are created between vertices and the root vertex. The vertex’s properties and their
values are mapped to keys and key-values of that element, respectively.

– As for the virtual data model of type TABULAR, the selected object as a relevant entity of documented-based and
wide-columnar is parsed to create a virtual TABULAR. As described in [12], the Virtual TABULAR consists of a
table with a name similar to the root object’s name (e.g., a table ’Person’ from object name ’Person’). A new row
is inserted by iterating through the object’s elements into the corresponding table. The corresponding key-values
are saved under the column representing the cell information (see Figure 3a, Label 2). As for the property graph,
a Virtual TABULAR is created for each distinct graph that matches the pattern queried, following the approach
proposed in [11]. The Virtual TABULAR consists of a table with the same name as the label shared by vertices.
A default column’ ID’ is created to store each vertex id with the same label. A new row is inserted for each vertex
into the corresponding table; For each distinct property of the vertex, an additional column is created with the
same datatype as the extracted property. The cell information consists of the values extracted from the vertex’s
properties. Finally, the relational and tabular data structure is the same to some extent as the data structure of the
Virtual TABULAR Model. Therefore, the transformation process is a direct mapping between both models.
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Fig. 5. Process of Joining Heterogeneous Data Sources

(a) Figure 6a: GRAPH Parallel [13]

(b) Figure 6b: TABULAR Parallel

2.4. Distributed Query Processor

Distributed Query Processor is the environment where queries are executed. OPTIMA calls for Graphx and
Apache Spark to use two different virtual data models, GRAPH and TABULAR. We consider two types of data
models, GRAPH and TABULAR, which allow for (1) graph-parallel computation (Figure 6a) and (2) data-parallel
computation (Figure 6b), which affect the query performance. We should point out that we did not employ any query
optimization function to choose the most efficient query execution plan; instead, we focused on the join operation.
If deep learning predicts that the optimal virtual model is of type GRAPH, then for each relevant entity, one virtual
GRAPH model is generated by wrappers. The wrappers use API to access the data source and perform the transfor-
mation. OPTIMA joins those GRAPHs into a Final Virtual GRAPH (see Figure Figure 4a) using "multi-join algo-
rithm" (see Figure Figure 4b, Label 1)or TABULARs into a Final Virtual TABULAR using "incremental join algo-
rithm" (see Figure Figure 4b, Label 2). This joining is through connections between star-shaped queries; see Figure
1 Label 2 and Figure 5. However, GRAPH and TABULAR have different structures. For example, the interaction
with GRAPH is possible by means of Graph Pattern Matching operations (Cypher-like), while the interaction with
TABULAR is possible by SQL-like functions. SPARQL and star-shaped query operations (e.g., limit) are translated
into Virtual Data model operations (e.g., "take" in the case of Graphx).

3. Experimental Setup

We conducted an experimental study to evaluate OPTIMA performance compared to the state-of-the-art SPARK-
based Sequerall, which uses dataframes (i.e., TABULAR) as a virtual data model. We used five tables to enable up to
4-chain joins. These tables are loaded in five different data sources Cassandra, MongoDB, CSV, Neo4j, and MySQL.
Table 1 shows the described information about data. We generated 5150 queries with 0-4 joins,0-45 selection, 0-16
filter, limit, and OrderBy. We take 4120 queries for training the model and 1030 queries for validation. We run the
evaluation on Ubuntu 64-bit with an Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, allocating 8GB of RAM.

We conducted an empirical study to evaluate OPTIMA performance and address our research problem with the
following questions: RQ1: What is the query performance using OPTIMA? RQ2: Is the time of prediction plus the
time of query execution using an optimal virtual model equal to the fixed one? RQ3: What is the query performance
when using TABULAR versus GRAPH? RQ4: What is the accuracy of OPTIMA and machine learning? RQ5:
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Product ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Offer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Review ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Person ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Producer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PROJECT ✓16 ✓5 ✓29 ✓45 ✓24 ✓45 ✓38 ✓38 ✓24 ✓34 ✓4 ✓6 ✓32 ✓34 ✓4 ✓5 ✓9 ✓45 ✓45 ✓5

FILTER ✓16 ✓12 ✓1 ✓5 ✓1 ✓1 ✓1 ✓1 ✓4 ✓2 ✓3

ORDERBY ✓1 ✓1 ✓1 ✓1 ✓1 ✓1 ✓1 ✓1 ✓1

LIMIT ✓300 ✓2 ✓20 ✓4 ✓20 ✓20 ✓80 ✓10 ✓13 ✓19 ✓1000 ✓1000

Table 1
Tables and Operations involved in Queries.

What is the query performance of OPTIMA compared to the state-of-the-art, e.g., Squerall [6]? RQ6: What is the
impact of involving more data sources in a join query? RQ7: What is the resource consumption (CPU, memory) of
OPTIMA while running various queries? RQ8: What is the time taken by each transformation process?

3.1. Method

We consider two studies:

– In the first study, we compare OPTIMA’s results with SPARK-based Squerall’s results. Our comprehensive liter-
ature review did not reveal any single work except Squerall that is available and that support most data sources.
Squerall uses two big data engines, Presto and SPARK: Presto-based, where the virtual model of Presto engine
(which cannot be controlled by users) is used for query processing, and SPARK-based, where DataFrames are
created as a virtual data model. To make the results comparable, we choose SPARK-based Squerall and extend it
to support Neo4j. We assess the accuracy of OPTIMA in terms of (1) results (accuracy), (2) time, and (3) CPU and
memory usage compared to SPARK-based Squerall. We should note that comparing the overall execution time
of OPTIMA against an original system, e.g., relational for a given query, is impossible because we are querying
various heterogeneous formats and models.

– In the second study, we inspect OPTIMA’s main components: machine learning, data wrappers, and query exe-
cution. We observed the behavior of query execution for GRAPH and TABULAR in terms of time. For the data
wrapper, we investigate the time taken for the transformation process from data sources to GRAPH or TABU-
LAR. As for the machine learning component, we compare our model with the LSTM model in terms of accuracy
and time. The LSTM model takes the encoded vectors of SPARQL features as input without any correlation and
outputs the data model.

3.2. Experiment 1

In this experiment, we load BSBM* as described above to obtain the results from OPTIMA and SPARK-based
Squerall. Then, we run 5150 SPARQL queries and compare the results. This comparison allows us to confirm the
correctness of the results returned by OPTIMA. Table 3a shows the results of OPTIMA and SPARK-based Squerall
of a complex SPARQL query Q21. The results are the same for both systems, which confirms that OPTIMA is able
to support and join large data coming from different datasets.

Table 2 illustrates the execution time returned by both systems. As can be observed, OPTIMA excels Squerall for
queries that involve multiple joins. The time difference ranges from 0 to 80000 milliseconds (ms). This difference
is due to the predicted virtual data model, e.g., Q19, Q20, in which deep learning predicted that the Virtual model of
type GRAPH is optimal. We also observe a small difference in the execution time (ranging from 0 to 30 ms) in favor
of Squerall compared to OPTIMA for queries that involve multiple projections, e.g., Q7, Q10. This is explained
by the fact that the optimal virtual model is identical to Squerall’s, and both Squerall and OPTIMA used the same
APIs to call data (wrapper). However, the data model prediction time added to OPTIMA makes it slightly slower
than Squerall. Furthermore, the average execution time of Squerall is greater than 4000 ms compared to the average
execution time of OPTIMA 2400 ms, as shown in table 3b. These results illustrate the benefits of OPTIMA over
existing systems; thus, RQ1 and RQ5 are answered.
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System Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

OPTIMA 1291 1254 730 10299 10199 1553 7104 8442 10094 4694 2575 233 4673 4487 2397 2881 1698 4607 2804 5648

Squerall 4098 2519 3091 10283 10191 7984 7089 8427 10088 4684 2561 1400 4644 4469 3885 2875 3314 8742 9059 7407

Time Difference 2807 1265 2361 16 8 6431 15 15 6 10 14 1167 29 18 1488 6 1616 4135 6255 1759

Table 2
Time in ms per Query of OPTIMA & Squerall

To check if deep learning is reducing the overall execution time of OPTIMA by selecting the optimal virtual data
model. We first illustrate the time taken by OPTIMA’s components: machine learning algorithm, query execution
over GRAPH model, and query execution over TABULAR against SPARK-based Squerall. We run OPTIMA and
Squerall over 1030 queries. Results are shown in table 5a. The average execution time of the machine learning
component is very short, 12 ms, while the average time for GRAPH is 1320 ms and TABULAR is 2862 ms. Results
show that GRAPH is faster than TABULAR for most queries, even with prediction time. In summary, only 14% of
the queries were initially faster for OPTIMA (using GRAPH as a virtual model) compared to Squerall and became
in the later favor. This is explained by the fact that for those queries, there is a slight difference in execution time
using GRAPH compared to Squerall. This answers RQ2.

Finally, we record the Resource Consumption (i.e., Memory and CPU) taken by OPTIMA and SPARK-based
Squerall. The results reported in Table 3c show that the CPU is not fully used by OPTIMA and SPARK-based
Squerall (around 0.21% was used). This means that the complexity of queries does not impact CPU consumption.
As for the total memory reserved, OPTIMA consumed about 1GB over 8GB per node, while SPARK-based Squerall
used at most 1GB. The same CPU and memory could be explained by the fact that both are using the same query
engine - SPARK and the distribution of CPU between the nodes for loading and transformation. This answers RQ7.

Query OPTIMA Sqyerall

SELECT DISTINCT ?productLabel ?producerLabel
WHERE { product rdfs:label ?productLabel .
?producer rdfs:label ?producerLabel . [’Bar Mix Lemon’,’Coke Classic 355 Ml’] [’Bar Mix Lemon’,’Coke Classic 355 Ml’]
?product rdf:type bsbm:Product .
?product bsbm:producer ?producer .}

(a) table 3a: Query Result Returned by OPTIMA & Squerall

System Time (ms)

OPTIMA 2400

Squerall 4200

(b) table 3b: Avg Time

Metrics OPTIMA Squerall
CPU average (%) 0.21 0.20

Max memory (GB) 1.0 0.97

(c) table 3c: Resource Consumption

3.3. Experiment 2

In this study, we evaluate the main components of OPTIMA.

3.3.1. Machine Learning Component
We evaluated our model with an LSTM model to assess our encoding techniques and prediction model. We use

5150 queries, 80% are used for training, and 20% are used for validation. We train both models on the same dataset
and compute the accuracy and Cross-entropy loss function. Next, we evaluate the models’ efficiency in terms of the
models’ training time and prediction time. Table 5b shows that our tree-structured based method outperforms the
LSTM model with an average accuracy of 0.831 for our model against 0.708 for the LSTM model. The cross-entropy
loss is equal to 0.00018 for our model compared to 1.92027 for LSTM. This is because the LSTM model relies
on the independent assumption among different operations and attributes, while tree-structured-based methods can
capture the correlations between operations and attributes/entities. Our model achieves the best performance, as it
captures more correlations. This answers RQ4.

3.3.2. Query Execution
As shown in Table 4, the analysis of experimental results indicates that GRAPH is faster than TABULAR in

most cases, except for queries like Q8 and Q10. It has comparable to slightly lower performance in Q16. This
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20

Prediction Time 3 3 4 6 4 5 5 6 2 4 5 1 5 5 4 3 2 4 4 4

GRAPH 1143 1161 1239 1243 306 3181 7168 12237 4977 16681 1211 3567 482 1285 766 2883 6639 1366 3370 1723

TABULAR 4098 2519 3091 10283 10191 7984 7089 8427 10088 4684 2561 1400 4644 4469 3885 2875 3314 8742 9059 7407

Table 4
Time in ms per Query of Prediction, GRAPH & TABULAR

Condition Avg. time (ms)
Machine Learning 12

Only GRAPH 1320

Only TABULAR 2862

(a) Table 5a: Time of Deep Learning, GRAPH &
TABULAR

Cost Loss Accuracy

LSTM 1.92027 0.708

Our Model 0.00018 0.831

(b) Table 5b: Loss & Accuracy of Deep Learning
Models

confirms that the optimal model is very important to reduce the execution time of queries. The total execution time
ranges from 50 to 90000 ms, with 90% of all cases being about or below 3000 ms. OPTIMA virtual data model
of type GRAPH is faster in queries that involve joins (ranging from 50 to 40000 ms), while the TABULAR model
outperforms the GRAPH model in queries involving more projections (ranging from 200 to 90000 ms).

This is explained by the fact that the GRAPH is designed to store connections between data. Therefore, queries
do not scan the entire graph to find the nodes that meet the search criteria. It looks only at nodes that are directly
connected to other nodes, while SQL-like methods used by the TABULAR model require expensive join operations
because they traverse all data to find the data that meets the search criteria. On the other hand, the TABULAR model
is faster when handling projections because the data structure is already known, and data can be easily accessed
by column names. Conversely, the GRAPH model does not have a predefined structure for the data, and each node
attribute has to be examined individually during the projection query.

The number of joins has a decisive impact on query performance; it should be taken into consideration with
other factors, e.g., size of involved data, presence of filters, and selected variables. For example, Q2 joins only two
data sources, Product and Review (1254 ms) but has comparable performance with Q1 (1291 ms), which joins four
entities (Product, Offer, Review, and Producer). This may be due to the presence of filtering in Q1 (16 filters), which
significantly reduces intermediate results to join. Q3 involves four data sources, yet it is among the fastest queries.
This is because it involves the small entities Person and Producer, which is another reason to reduce intermediate
results to join. With five data sources to join, Q4 is among the most expensive queries (10299 ms). This can be
attributed to the fact that the filter on Product is selective (?language = "en"), which results in large intermediate
results to join, in contrast to Q6 (?price < 8000). Although the four-source join Q7 and Q8 involve the small entity
Producer, they are the most expensive queries that execute over the GRAPH model; this can be attributed to many
projections (38 attributes). Thus, we answer RQ3 and suggest that operations can affect query execution time.

Model Neo4j JDBC CSV Cassandra MongoDB Loading
GRAPH 138 954 196 7695 188 4.327

TABULAR 3275 199 255 5319 330 7.141
Table 6

Time (ms) of Data transformation to GRAPH & TABULAR

3.3.3. Data wrapper Time
To answer RQ8, we evaluate, in this study, the time needed to load the data from data sources to the virtual data

model of type GRAPH or TABULAR (see Table 6). Since the transformation process is different, we expect different
wrapper behavior. In the table, we illustrate the time needed by each wrapper with the following observations:

– Neo4j connector loads 50000 nodes from Neo4j within 138 ms into GRAPH, compared to 3275 ms in TABULAR.
This is explained by the fact that the graph property used by Neo4j has the same structure as the GRAPH model.
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– CSV connector loads 50000 rows within 196 ms from CSV files into GRAPH, compared to 255 ms in TABULAR,
even though CSV files save data into tables. This can be explained by the fact that the GRAPH virtual model is
a schema-less model that loads data directly without the need to preserve data structure, while TABULAR takes
time to build the data schema.

– JDBC connector loads 50000 rows from MySQL database within 954 ms into GRAPH, compared to 199 ms in
TABULAR. This can be explained by the fact that MySQL uses a relational model with the same data structure
as the Virtual TABULAR model.

– MongoDB connector loads 50000 rows from MongoDB within 188 ms into GRAPH, compared to 330 ms in
TABULAR. This can be explained by the fact that MongoDB is document-based, i.e., schema-less, the same as
the GRAPH Virtual model, unlike the TABULAR model, which needs to build a data schema.

– Cassandra connector loads 50000 rows within 7695 ms into GRAPH, compared to 5319 ms in TABULAR. This
can be explained by the fact that Cassandra uses a columnar data model, which is closer to the TABULAR model,
even though it is a NoSQL database.

4. Related Work

Our literature review reveals two categories addressing data virtualization. These two categories are namely
"ontology-based data access" and "non-ontology-based data access" [6]. Non-ontology-based data access ap-
proaches mostly use SQL-like as query language and implement a virtual relational model [14, 15], defining views
of relevant data from sources having a relational model. Those views are generated based on mapping assertions that
associate the general relational schema with the data source schemata. The shortcomings of these approaches is that
the schema modifications and extensions are very rigid due to mappings and may depend on complex constraints.
Furthermore, these approaches use Self-Contained Query [16] where users cannot control the structure of the virtual
data model. OBDA [17] approaches use SPARQL as a unified access language and detect relevant data from sources
to be joined through ontologies and standardized mappings. This provides flexibility in modifying and extending
the ontology and mappings with semantic differences found across the data schemata.

We identified commercial systems such as Stardog (www.stardog.com), and Oracle Spatial and Graph (www.
oracle.com/technetwork/database/options/spatialandgraph, Mastro [18], Ultrawrap [19] and open-source systems
such Ontop [3], Morph [20], which implemented OBDA by querying relational data sources using virtual knowledge
graph. These solutions, however, are not designed to query large-scale data sources, e.g., NoSQL stores or HDFS.

Our study’s scope focuses on works that query large-scale data sources using OBDA. Optique [4] is an OBDA
platform that accesses both static and streaming data. It implements a relational model (implicitly a TABULAR) as
a virtual model while querying data sources such as SQL databases and other sources, e.g., CSV, and XML. There
was no clear description of how Optique accesses NoSQL stores and distributed file systems (e.g., HDFS). Ontario
[5] focuses on query rewriting, planning, and federation, with a strong stress on RDF data as input. Query plans are
built and optimized based on a set of heuristics. The virtual model used by Ontario is the GRAPH model (explicitly
an RDF). Squerall [6], a recent and close work to OPTIMA, leverages Big Data engines SAPRK and Presto to query
on-the-fly of heterogeneous large data sources. The virtual data model imposed by Presto is TABULAR and does
not offer users to control it; while SPARK can offer control over the virtual data model, Squerall uses DataFrame
as a virtual model, which is TABULAR. However, the decision behind the virtual data model implemented by all
these systems is based on use and flexibility and not on solid evidence to improve query processing. No work exists
that (1) implements the different optimal virtual models and (2) selects the optimal one based on query behavior.
For machine learning, some works [21–23] addressed the cost estimation of SPARQL queries to optimize query
execution plan, e.g., performance prediction, however, all these approaches are designed for a single query on one
single data source.

5. Conclusion

We implemented OPTIMA - an ontology-based big data access system that reduces query time execution by pre-
dicting the optimal virtual data model, GRAPH or TABULAR, based on query behavior. The effective deep learning

www.stardog.com
www.oracle.com/technetwork/database/options/spatialandgraph
www.oracle.com/technetwork/database/options/spatialandgraph
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model built on top of OPTIMA’s architecture extracts significant features such as the query plan and operations and
predicts the optimal virtual data model that has the lowest query execution time. The experiment showed a reduction
in query execution time of over 40% for the TABULAR model and over 30% for the GRAPH model selection.
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