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Abstract. The explosion of the web and the abundance of linked data demand effective and efficient methods for storage,
management, and querying. Apache Spark is one of the most widely used engines for big data processing, with more and more
systems adopting it for efficient query answering. Existing approaches exploiting Spark for querying RDF data, adopt partitioning
techniques for reducing the data that need to be accessed in order to improve efficiency. However, simplistic data partitioning
fails, on one hand, to minimize data access and on the other hand to group data usually queried together. This is translated into
limited improvement in terms of efficiency in query answering. In this paper, we present DIAERESIS, a novel platform that
accepts as input an RDF dataset and effectively partitions it, minimizing data access and improving query answering efficiency.
To achieve this, DIAERESIS first identifies the top-k most important schema nodes, i.e., the most important classes, as centroids
and distributes the other schema nodes to the centroid they mostly depend on. Then, it allocates the corresponding instance nodes
to the schema nodes they are instantiated under. Our algorithm enables fine-tuning of data distribution, significantly reducing
data access for query answering. We experimentally evaluate our approach using both synthetic and real workloads, strictly
dominating existing state-of-the-art, showing that we improve query answering in several cases by orders of magnitude.

Keywords: RDF, data partitioning, Spark, query answering

1. Introduction

The prevalence of Linked Open Data, and the explosion of available information on the Web, have led to an
enormous amount of widely available RDF datasets [7]. To store, manage and query these ever increasing RDF
data, many distributed big data processing engines have been developed, like Hadoop, HBase and Impala [15], [23],
[21], [26]. Apache Spark is a big-data management engine, with an ever increasing interest in using it for efficient
query answering over RDF data [2]. The platform uses in-memory data structures that can be used to store RDF
data, offering increased efficiency, and enabling effective, distributed query answering.

The problem. The data layout plays an important role for efficient query answering in a distributed environment.
The obvious way of using Spark for RDF query answering is to store all triples as a single large file in HDFS, and
then to allow the default Spark partitioner to perform data redistribution. As Spark is focusing on a balanced data
distribution, by default, it partitions triples based on a hashing of the whole triple. However, using this approach,
query answering usually needs to access a large volume of data for retrieving the required information, as usually
triples are scattered across all computational nodes. This results in poor query answering performance.
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The elusive solution: simplified horizontal and vertical partitioning. As this problem has already been recog-
nized by the research community, many approaches have responded, by offering solutions that partition data, trying
to minimize data access when answering SPARQL queries [2]. To achieve this, most of the Spark-based RDF query
answering approaches exploit simplistic horizontal and/or vertical partitioning of triples (e.g. hashing triples based
on their subject, creating a partition for every predicate, precomputing and storing one join step). The idea behind
all those approaches is that they try to minimize data access and to collocate data that are usually queried together.
However, although the aforementioned partitioning techniques are successful in optimizing fragments or certain
categories of SPARQL queries, they fail to have a wider impact on all query categories, resulting in poor overall
performance improvement for query answering.

Our solution. To address these problems, we introduce DIAERESIS, showing how to effectively partition data,
balancing data distribution among partitions and reducing the size of the data accessed for query answering and thus,
drastically improve query answering efficiency. The core idea is to identify important schema nodes as centroids,
then to distribute the other nodes to the centroid that they mostly depend on, and, finally, assign the instance nodes
to the corresponding schema nodes. Finally, a vertical sub-partinioning step further minimizes the accessed data
during query answering.

More specifically our contributions are the following:
– We introduce DIAERESIS, a novel platform that accepts as input an RDF dataset, and effectively partitions

data, by significantly reducing data access during query answering.
– We view an RDF dataset as two distinct and interconnected graphs, i.e. the schema and the instance graph.

Since query formulation is usually based on the schema, we primarily generate partitions based on schema.
To do so, we first select the top-k most important schema nodes as centroids and assign the rest of the schema
nodes to the centroid they mostly depend on. Then, individuals are instantiated under the corresponding
schema nodes producing the final dataset partitions.

– To identify the most important nodes, we use the notion of betweenness as it has been shown to effectively
identify the most frequently queried nodes [22], adapting it to consider the individual characteristics of the
RDF dataset as well. Then, to assign the rest of the schema nodes to a centroid, we define the notion of
dependence. Using dependence, we assign each schema node to the partition with the maximum dependence
between that node and the corresponding partition’s centroid. In addition, the algorithm tries to balance the
distribution of data in the available partitions. This method in essence tries to put together the nodes that are
usually queried together, while maintaining a balanced data distribution.

– Based on the aforementioned partitioning method, we implement a vertical sub-partitioning scheme further
splitting instances in the partition into vertical partitions - one for each predicate, further reducing data access
for query answering. An indexing scheme on top ensures quick identification of the location of the queried
data.

– Then, we provide a query execution module, that accepts a SPARQL query and exploits the generated indexes
along with data statistics for query formulation and optimization.

– Finally, we perform an extensive evaluation using both synthetic and real workloads, showing that our method
strictly outperforms existing approaches in terms of efficiency for query answering and size of data loaded
for answering these queries. In several cases, we improve query answering by orders of magnitude when
compared to competing methods.

The remaining of this paper is structured as follows: In Section 2, we elaborate on preliminaries, and in Section 3,
we present related work. We define the metrics used for partitioning in Section 4. In Section 5 we describe our
methodology for partitioning and query answering. Section 6 presents our experimental evaluation, and finally
Section 7 concludes the paper.

2. Preliminaries

2.1. RDF & RDF Schema

In this work, we focus on datasets expressed in RDF, as RDF is among the widely-used standards for publishing
and representing data on the Web. Those datasets are based on triples of the form of (s p o), which record that
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sub ject s is related to ob ject o via predicate p. Formally, representation of RDF data is based on three disjoint and
infinite sets of resources, namely: URIs (U), literals (L) and blank nodes (B). A key concept for RDF is that of URIs
or Unique Resource Identifiers; these can be used in either of the s, p and o positions to uniquely refer to some
entity, relationship, or concept. Literals (constants) are also allowed in the o position. Blank nodes in RDF allow
representing a form of incomplete information for unknown constants or URIs. As such, a triple is a tuple (s p o)
from (U ∪ B)× U × (U ∪ L ∪ B).

In order to impose typing on resources, we consider three disjoint sets of resources: classes (C ⊆ U ∪ B), proper-
ties (P ⊆ U), and individuals (I ⊆ U∪B). The set C includes all classes and the set P includes all properties, except
rdf:type which connects individuals with the classes they are instantiated under. The set I includes all individuals.
Additionally, RDF datasets have attached semantics through RDFS. RDFS is the accompanying W3C proposal of
a schema language for RDF. It is used to describe classes and relationships between classes (such as inheritance).
Further, it allows specifying properties, and relationships that may hold between pairs of properties, or between a
class and a property. RDFS statements are also represented by triples.

A collection of triples can be represented as a labeled directed graph, in which nodes represent subjects or objects
and labeled directed edges represent predicates. In this work, we separate between the schema and the instances of
an RDF Dataset, represented in separate graphs (GS and GI , respectively). The schema graph contains all triples of
the RDF Schema, which consists of all classes and the properties the classes are associated with (via the properties
domain/range specification); multiple domains/ranges per property are allowed, by having the property URI be a
label on the edge, via a labeling function λ, rather than the edge itself. The instance graph contains all individuals,
and the instantiations of schema properties; the labeling function λ applies here as well for the same reasons. In
addition, to state that a resource r is of a type τ, a triple of the form "r rdf:type τ" is used. Since this triple is about
the resource r (not about the class τ), it is viewed as a data triple. Formally:

Definition 1. (RDF Dataset) An RDF Dataset is a tuple V =< GS ,GI , λ, τc >, where:
– GS is a labeled directed graph GS = (VS , ES ) such that VS , ES are the nodes and edges of GS , respectively,

and VS ⊆ C ∪ L.
– GI is a labeled directed graph GI = (VI , EI) such that VI , EI are the nodes and edges of GI , respectively, and

VI ⊆ I ∪ L.
– A labeling function λ : ES ∪ EI 7→ 2P determines the property URI that each edge corresponds to (properties

with multiple domains/ranges may appear in more than one edge).
– A function τc : I 7→ 2C associating each individual with the classes that it is instantiated under.

Next, we denote as p(ν1, ν2), an edge e in GS (where ν1, ν2 ∈ VS ), or in GI (where ν1, ν2 ∈ VI), from node ν1 to
node ν2 such that λ(e) = p. For brevity, we will call schema node a node ν ∈ VS , class node a node ν ∈ C∩VS and
instance node a node u ∈ I ∩VI . Finally, a path from ν1 ∈ VS to ν2 ∈ VS , i.e. path(ν1, ν2), is the finite sequence of
edges, which connect a sequence of nodes, starting from the node ν1 and ending in the node ν2. In our approach, we
consider all instance triples of the RDF dataset to be fully described by the schema graph. Similarly to other works
in the area [6], if a dataset is not fully described by the schema graph, we use a schema discovery tool to infer it.
Specifically, in our case, we use Hint [16], our state of the art schema discovery tool, exploiting LSH and clustering
techniques for efficiently and effectively discovering the corresponding schema graph.

2.2. Querying

For querying RDF datasets, W3C has proposed SPARQL [1]. Essentially, SPARQL is a graph-matching language.
SPARQL queries contain a set of triple patterns, also called basic graph patterns (BGPs). Triple patterns are like
RDF triples, however, each of the subject, predicate and object may be a variable, a URI, or a literal. Instantiations
to the variables are then found by matching the patterns in the query, to triples in the dataset. Thus, SPARQL queries
are pattern matching queries on triples, that compose an RDF data graph. A typical syntax of a BGP query is:

S ELECT ?v1...?vm WHERE{t1...tn}

where t1, ..., tn is a set of triple patterns, and ?v1...?vm are variables used in t1, ..., tn that define the output of the query.
Join operations are encoded in those queries by sharing the same variable in more than one triple pattern. According
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to the position of the variables in the triple patterns queries can be categorized into different types. Common types
of BGP queries are star queries and path queries. Star queries are the ones characterized by subject-subject joins
between the triple patterns - as the join variable is on the subject position. On the other hand, path queries are
formulated using triple patterns with subject-object (or object-subject) joins. For example, the join variable can be
on the object position in one triple pattern, and on the subject position in the other. As complex, we characterize
queries that combine the aforementioned query-types.

2.3. Apache Spark

Apache Spark [30] is an in-memory distributed computing platform designed for large-scale data processing.
Spark proposes two higher-level data access models, GraphX and Spark SQL, for processing structured and semi-
structured data. Spark SQL [3] is Spark’s interface that enables querying on data using SQL. It also provides a naive
query optimizer for improving query execution. Applying Spark SQL on RDF requires a suitable storage format for
triples and a translation procedure from SPARQL to SQL. The storage format for RDF triples is straightforward and
usually refers to a three-column table (s p o) stored in the HDFS, using HIVE or parquet format. Spark GraphX [29]
is a library enabling graph processing by using the property graph as its graph data model, i.e. a directed multigraph
with user defined objects attached to each vertex and edge. A directed multigraph is a directed graph with potentially
multiple parallel edges sharing the same source and destination vertex.

3. Related Work

In this work, we focus on approaches trying to improve Spark’s default implementation for querying RDF
datasets. For more information on the topic the interested reader is referred to relevant surveys [2, 6].

Using default Spark partitioning. Many of the works available for Spark, adopt default Spark partitioning (or
slight variations) focusing on the query optimization step. P-Spar(k)ql [9] tries to optimize and parallelize the query
plan using GraphX, whereas Bahrami et al. [4] use GraphFrames for pruning the query-specific search space. S2X
[25] is another approach that uses GraphX, where the basic idea is that every vertex in the graph stores the variables
of a query where it is a possible candidate for and query evaluation proceeds by matching all triple patterns of a BGP
independently, and then exchange messages between adjacent vertices to validate the match candidates. Although
DIAERESIS also implements query optimization based on data statistics, our main contribution lies in the intelligent
data partitioning scheme implemented.

Implementing partitioning schemes. HAQWA [8] was the first approach that tried to process RDF data on top of
Apache Spark. Data allocation is performed based on a two-step procedure. In the first step, hash-based partitioning
is executed on the triple subjects. This fragmentation ensures that star-shaped queries can be computed locally, but
no guarantees are provided for other query types. In the second step, data are allocated according to the analysis of
frequent queries executed over the dataset. At query time, the system decomposes a query pattern into a set of local
sub-queries that can be locally evaluated.

In SPARQLGX [10], RDF datasets are vertically partitioned. As such, a triple (s p o) is stored in a file named
p whose content keeps only s and o entries. By following this approach, the memory footprint is reduced and the
response time is minimized when queries have bound predicates. As an optimization in query execution, triple
patterns are reordered based on data statistics.

S2RDF [27] presents an extended version of the classic vertical partitioning technique, called ExtVP. Each ExtVP
table is a set of sub-tables corresponding to a vertical partition (VP) table. The sub-tables are generated by using
right outer joins between VP tables. More specifically, the partitioner pre-computes semi-join reductions for subject-
subject (SS), object-subject (OS) and subject-object (SO). For query processing, S2RDF uses Jena ARQ to transform
a SPARQL query to an algebra tree and then it traverses this tree to produce a Spark SQL query. As an optimization,
an algorithm is used that reorders sub-query execution, based on the table size and the number of bound variables.

Another work that is focusing on query processing is [20] that analyzes two distributed join algorithms, partitioned
join and broadcast join offering a hybrid strategy. More specifically, the authors exploit a data partitioning scheme
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Table 1
Characteristics of the Spark-based RDF systems.

System Query Processing Partitioning

S2X [25] Graph Iterations Default

Bahrami et al. [4] Pruning Query Space Default

P-Spar(k)ql [9] Parallel Query Plan Default

HAQWA [8] RDD API Hash / Query Aware

SPARQLGX [10] RDD API Vertical

S2RDF [27] Spark SQL Extended Vertical

Naacke et. al [20] Hybrid Hash-sbj

WORQ [18] Dataset API Workload Join Keys

S3QLRDF [12, 13] Spark SQL Subset Property Table & Vertical

DIAERESIS Spark SQL Dependency Aware + Vertical

that hashes triples, based on their subject, to avoid useless data transfer and use compression to reduce the data
access cost for self-join operations.

More recently, WORQ [18] presents a workload-driven partitioning of RDF triples. The approach tries to mini-
mize the network shuffling overhead based on the query workload. It is based on bloom joins using bloom filters, to
determine if an entry in one partition can be joined with an entry in a different one. Further, the bloom filters used for
the join attributes, are able to filter the rows in the involved partitions. Then, the intermediate results are materialized
as a reduction for that specific join pattern. The reductions can be computed in an online fashion and can be further
cached in order to boost query performance. However, this technique focuses on known query workloads that share
the same query patterns. As such, it partitions the data triples by the join attributes of each subquery received so far.

Finally, Hassan & Bansal [12] propose a relational partitioning scheme called subset property table that partitions
property tables into subsets of tables to minimize query input and join operations. In addition, they combine subset
property tables with vertical partitions to further reduce access to data. For query processing, an optimization step
is performed based on the number of bound values in the triple queries and the statistics of the input dataset.

Comparison with DIAERESIS. The general goal of all approaches mentioned before is to improve query per-
formance by exploiting in-memory data parallelization. To this purpose, most of the works end-up using simplistic
vertical or horizontal partitioning schemes. However, simplistic partitioning schemes do not succeed to reduce sig-
nificantly the data access on a query and to exploit the fact that usually many nodes are queried together. This has
been recognized by latest works in the area, such as S2RDF [27], WORQ[18] and S3QLRDF [12, 13]. WORQ is
based on known workloads in order to keep together nodes that are frequently accessed together, whereas DIAERE-
SIS is workload agnostic and works independently of the available workload. S2RDF keeps join reductions up to
a data size threshold, which is simple but not effective enough and can easily lead to a large storage overhead. On
the other hand, S3QLRDF approach is optimized for star queries, in essence, pre-computing large fragments of star
queries. However, the result tables are sparse containing many NULL values which can on one hand significantly
increase data size and on the other hand introduce delays in query evaluation (in many complex queries as shown in
[12] S3QLRDF falls behind S2RDF).

To the best of our knowledge, DIAERESIS is the only Spark-based system able to effectively collocate data that
are frequently accessed together, minimizing data access, keeping a balanced distribution, while boosting query
answering performance, without requiring the knowledge of the query workload. An overview of all aforementioned
approaches is shown in Table 1, showing the query processing technology and the partitioning method adopted. In
addition, we added DIAERESIS in the last line of the table, to be able to directly compare other approaches with it.

4. Identifying Centroids & Dependence

The data layout plays an important role for efficient query evaluation in a distributed environment. Instead of
using a layout-blind methods such as keeping all the intermediate join reductions, simplistic semi-joins or relying
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Fig. 1. Dependence aware partitioning example for LUBM subset.

on known workloads, we focus on the structure of the available graph. Since query formulation is usually based on
the schema, our idea for generating partitions is based on the schema graph, then assigning the individuals in the
partition that they are instantiated under. More precisely, our partitioning approach follows the K-Medoids method
[17], selects the most important schema nodes as centroids, and assigns the rest of the schema nodes to the centroid
they mostly depend on in order to construct the partitions. To identify the most important schema nodes, we exploit
the betweeness centrality in combination with the number of instances allocated to a specific schema node. Then,
we define dependence, which is used for assigning the remaining schema nodes (and the corresponding instances)
to the appropriate centroid in order to formulate the partitions.

Example 4.1. As a running example, Figure 1 presents a fragment from the LUBM ontology and shows the three
partitions that are formulated (k = 3). The first step is to select the three most important schema nodes (the ones in
boldface) and then to assign to each centroid, the schema nodes that depend on it. In the sequel we present in detail
the methods for identifying the most important schema nodes and for calculating dependence.

4.1. Using the Importance Measure for Identifying Centroids

Many measures have been produced for identifying the important nodes in a knowledge graph and various notions
of importance exist. When trying to group nodes from RDF/S datasets, that are frequently queried together, the
Betweenness Centrality (BC) measure has already shown an excellent behaviour [22]. Following the same idea, we
initially identify the k most central schema nodes in an RDF/S graph, combining Betweenness Centrality with the
number of their instances calculating the Importance Measure (IM) for each schema node.

In detail, the Betweenness Centrality of a schema node is equal to the number of the shortest paths from all
schema nodes to all others that pass through that schema node. Formally:

Definition 2. (Betweenness Centrality) Let GS = (VS , ES ) be an RDF/S schema graph with VS nodes and ES

edges. The Betweenness of a node ν ∈ VS is defined as:

BC(ν) =
∑

s 6=ν 6=t

σst(ν)

σst
(1)

where σst is the total number of shortest paths from node s to node t and σst(ν) is the number of those paths that
pass through ν.
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So, calculating the betweenness for all nodes in a graph requires the computation of the shortest paths between all
pairs of nodes. The complexity of the Brandes algorithm [5] for calculating it, is O(VS · ES ) for an RDF/S schema
graph GS = (VS , ES ).

As data distribution should also play a key role for estimating the importance of a schema node, we combine the
value of BC, with the number of instances of the corresponding schema node. To do so, we normalize first the BC
value of each node on a scale of 0 to 1. In addition, we normalize the number of instances (InstV) for each node. As
such, the importance (IM) of each schema node is defined as the sum of the normalized values of BC and InstV .

IM(ν) = normal(BC(ν)) + normal(InstV(ν)) (2)

For calculating the number of instances of all nodes, apparently we should visit all instances ones, as such the
complexity of this part is O(VI).

4.2. Assigning Nodes to Centroids using Dependence

Having a way to identify the most important schema nodes as centroids in partitions, in an RDF dataset, we are
next interested in identifying to which partition, the remaining schema nodes should be assigned. Our first idea
to this direction comes from the classical information theory, where infrequent words are more informative than
frequent ones. The idea is also widely used in the field of instance matching [28]. The basic hypothesis here is that
the greater the influence of a property on identifying a corresponding instance, the fewer times the range of the
property is repeated. According to this idea, we define Cardinality Closeness (CC) as follows:

Definition 3. (Cardinality Closeness of two adjacent schema nodes) Let νk, νs be two adjacent schema nodes, and
ui, u j ∈ GI such that τc(ui) = νk and τc(u j) = νs. The cardinality closeness of p(νk, νs), namely the CC(p(νk, νs)),
is defined as:

CC(p(νk, νs)) =

{
1+|ν|
|ν| when |u j| = 0

1+|ν|
|ν| +

Distinct(u j)
|u j| when |u j| 6= 0

(3)

where |ν| is the number of nodes in the schema graph and Distinct(u j) is the number of distinct u j, u j ∈ p(ui, u j).

The constant 1+|ν|
|ν| is added in order to have a minimum value for CC in case of no available instances. Having

defined the cardinality closeness of two adjacent schema nodes, we proceed further to identify the dependence. As
such, we calculate the dependence between two schema nodes, combining their cardinality closeness, the IM of the
schema nodes and the number of edges between them. Formally:

Definition 4. (Dependence between two schema nodes ) The dependence between two schema nodes νs and νe, i.e.
Dependence(νs, νe), is defined as:

Dependence(νs, νe) =
1

|path(νs, νe)|2
∗

(
IM(νs)−

e∑
i=s+1

IM(νi)

CC(p(νi−1, νi))

)
(4)

Intuitively, as we move away from a node, the dependence becomes smaller by calculating the differences of
IM across the path with the minimum distance in the graph. We further penalize dependence, by dividing using
the distance of the two nodes. The highest the dependence of a path, the more appropriate is the first node to char-
acterize the final node of the path, i.e., the final node of the path highly depends on the first one. Note also, that
Dependence(νs, νe) is different than Dependence(νe, νs). For example, Dependence(Publication, Book) > Depen-
dence(Book, Publication). This is reasonable, as the dependence of a more important node toward a less important
one is higher than the other way around, although they share the same cardinality closeness.
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Fig. 2. DIAERESIS overview.

5. DIAERESIS Partitioning and Query Answering

Figure 2 presents an overview of the DIAERESIS architecture, along with its internal components. Starting from
the left side of the figure, the input RDF dataset is fed to the DIAERESIS Partitioner in order to partition it. For
each one of the generated first-level partitions, vertical partitions are created and stored in the HDFS. Along with
the partitions and vertical partitions, the necessary indexes are produced as well. Based on the available partitioning
scheme, the DIAERESIS Query Processor receives and executes input SPARQL queries exploiting the available
indexes. In the sequel, we will analyze in detail the building blocks of the system.

5.1. The DIAERESIS Partitioner

This component undertakes the task of partitioning the input RDF dataset, initially into first-level partitions, then
into vertical partitions and finally to construct the corresponding indexes to be used at query answering. Specifi-
cally, the Partitioner uses the Dependency Aware Partitioning (DAP) algorithm in order to construct the first-level
partitions focusing on the structure of the data graph and the dependence between the nodes. In the sequel, based on
this first-level partitioning schema, the vertical partitions and the corresponding indexes are created.

5.1.1. Dependency Aware Partitioning Algorithm
The Dependency Aware Partitioning (DAP) algorithm, given an RDF dataset V and a number of partitions k, splits

the input dataset into k partitions. Specifically, it uses the Importance Measure (IM) for identifying centroids and the
Dependence for assigning nodes to centroids in order to set the layout of the data. Depending on the characteristics
of the individual dataset (e.g. it might be the case that most of the instances fall under just a few schema nodes), data
might be accumulated into one partition, leading to data access overhead at query answering, as large fragments of
data should be examined. Such as, DAP tries to achieve a balanced data distribution for reducing data access and
maintaining a low replication factor.

The algorithm is shown in Algorithm 1 and starts by calculating the importance of all schema nodes (lines 1-3)
based on the importance measure (IM) defined in Section 4.1, combining the betweenness centrality and the number
of instances for the various schema nodes. Then, the k most important schema nodes are selected, to be used as
centroids in the formulated partitions (line 4). The selected nodes are assigned to the corresponding partitions (lines
5-7). Next, the algorithm examines the remaining schema nodes in order to determine to which partition they should
be placed based on their dependency with the partitions’ central nodes.

Initially, for each schema node, the dependence between the selected node and all centroids is calculated by
the selectPartionBalanced procedure (line 9). However, in order to achieve a more balanced data distribution, the
selectPartionBalanced procedure calculates a space bound for all partitions based on the number of triples in the
dataset and the number of partitions k. Until this bound is reached each partition is filled with the most dependent
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Algorithm 1 DAP(V , k)
Input: An RDF dataset V =< GS ,GI , λ, τc >, the number of partitions k
Output: A set of partitions V1, ..., Vk.

1: for each schema node νi ∈ GS do
2: IMνi = caclulateImportance(GS , νi)
3: end for
4: topk = selectTopKNodes(IM, k)
5: for each schema node νi ∈ topk do
6: Vi = Vi ∪ νi

7: end for
8: for each schema node νi ∈ GS , νi /∈ topk do
9: j = selectPartitionBalanced(νi, topk,GS )

10: V j = VJ∪ schemaNodesInPathWithMaxDependence(νi, ν j)
11: end for
12: for each schema node νi ∈ V j, 1 6 j 6 k do
13: V j = V j ∪ getNeighborsAndProperties(νi)
14: V j = V j ∪ instances(νi)
15: end for
16: return V1, ..., Vk

schema nodes. Afterwards, as this space bound is reached for a partition, the procedure selects the next partition
with enough space that maximizes the dependence to allocate the selected schema node. Note that for calculating
the space available, the schema nodes along with the number of instances available for that nodes are assessed.

However, we are not only interested in placing the selected schema node to the identified partition, but we also
assign to that partition, all schema nodes contained in the path which connects the schema node with the selected
centroid (line 10).

Then, we add the direct neighbors of all schema nodes in each partition along with the properties that connect
them (line 13). Finally, instances are added to the schema nodes they are instantiated under (line 14). The algorithm
terminates by returning the generated list of first-level partitions (line 16).

Note that the aforementioned algorithm introduces replication (lines 12-15) as besides allocating a schema node
to a specific partition it also includes its direct neighbors that might initially belong to a different partition. This step
minimizes access to different partitions for joins on the specific node.

Complexity. To identify the complexity of the algorithm, we should first identify the complexity of the various
components involved. Assume |VS | is the number of nodes, |ES | is the number of edges of the schema graph and
|VI | is the number of instances. For identifying the cardinality closeness of the edges, we should visit all instances
and edges once, hence the complexity of this step is O(|VI |+ |ES |). Then, for calculating the betweenness centrality
for all schema nodes, we use a Spark implementation [14] with complexity O(VS ). Next, we have to sort all nodes
according to their IM and select the topk ones with cost O(|VS |log|VS |). To calculate the dependence of each
node, we should visit each node once per selected node (O(k|VS |)), whereas to identify the path maximizing the
dependence, we use the weighted Dijkstra algorithm with cost O(|VS |2). Finally, we should check once all instances
for identifying the partitions to be assigned with cost O(|VI |). Overall, the time complexity of the algorithm is
polynomial O(|VI |+ |ES |+ |VS |) + O(|VS |log|VS |) + O(k|VS |) + O(|VS |2) + O(|VI |) 6 O(|VS |2 + |ES |+ |VI |).

5.1.2. Vertical Partitioning
Besides first-level partitioning, the DIAERESIS Partitioner also implements vertical sub-partitioning to further

reduce the size of the data touched. Thus, it splits the triples of each partition produced by the DAP algorithm, into
multiple vertical partitions, one per predicate. Each vertical partition contains the subjects and the objects for a single
predicate, enabling at query time a more fine-grained selection of data that are usually queried together. The vertical
partitions are stored as parquet files in HDFS (see Figure 2). A direct effect of this choice is that when looking for a
specific predicate, we do not need to access the entire data of the first-level partition storing this predicate, but only
the specific vertical partition with the related predicate. As we shall see in the sequel, this technique minimizes data
access, leading to faster query execution times.
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Fig. 3. Instance, Class and VP indexes for our running example.

5.1.3. Indexing
Next, in order to speed-up the query evaluation process, we generate appropriate indexes, so that the necessary

sub-partitions are directly located during query execution. Specifically, as our partitioning approach is based on the
schema of the dataset and data is partitioned based on the schema nodes, initially, we index for each schema node
the first-level partitions (Class Index) it is primarily assigned and also the vertical partitions (VP Index) it belongs
to. For each instance, we index also the classes schema nodes under which it is instantiated (Instance Index). The
VP index is used in case of a query with unbound predicates, in order to identify which vertical partitions should be
loaded, avoiding to search all of them in a first-level partition.

Example 5.1. Figure 3 presents example indexes for our running example. Assuming that we have five instances
in our dataset, the Instance Index, shown in the figure (left), indexes for each instance the schema node to which it
belongs. Further, the Class Index records for each schema node the first-level partitions it belongs, as besides the
one that is primarily assigned, it might also be allocated to other partitions as well. Finally, the VP Index contains
the vertical partitions that the schema nodes are stored into (for each first-level partition). For example, the schema
node Organization (along with its instances) is located in Partition-2 and specifically its instances are located in
the vertical partitions affiliatedOf, orgPublication and rdfs:subClassOf.

5.2. Query Processor

In this section, we focus on the query processor module, implemented on top of Spark. An input SPARQL query
is parsed and then translated into an SQL query. To achieve this, first, the Query Processor detects the first-level and
vertical partitions that should be accessed for each triple pattern in the query, creating a Query Index. This procedure
is called partition discovery. Then, this Query Index is used by the Query Translation procedure, to construct the
final SQL query. Our approach translates the SPARQL query into SQL in order to benefit from the Spark SQL
interface and its native optimizer which is enhanced to offer better results.

5.2.1. Partition Discovery
In the partition discovery module, we create an index of the partitions that should be accessed for anwsering

the input query, called Query Index. Specifically, we detect the fist-level partitions and the corresponding vertical
partitions that include information to be used for processing each triple pattern of the query, exploiting the available
indexes.

The corresponding algorithm, shown in Algorithm 2, takes as input a query, the indexes (presented in Section
5.1.3) and statistics on the size of the fist-level partitions estimated during the partitioning procedure and returns an
index of the partitions (first-level and vertical partitions) that should be used for each triple pattern.

The algorithm starts by initializing the variables queryIndex.Partitions, queryIndex.VP used for storing the first-
level and the vertical partitions and the variablesTypes which keeps track of the types (rdf:type) of the variables in
the various triple patterns (line 1).Then it extracts from the input query all triple patterns in a list (line 2).

For each triple pattern the following variables are initialized (line 4): nodeClasses stores the schema nodes
identified for the specific triple pattern since they lead to the first-level partitions, partitions stores the list of the
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Algorithm 2 PartitionDiscovery(query, classIndex, instanceIndex, VPIndex, stats)
Input: The input query, the classIndex, the instanceIndex, the VPIndex, Statistics stats about each partition
Output: queryIndex

1: queryIndex.Partitions = queryIndex.VP = variablesTypes = ∅
2: triplePatterns = extractTriplePatterns(query)
3: for each tpi : p(vi.1, vi.2) ∈ triplePatterns do
4: nodeClasses = partitions = f Partartition = ∅
5: nodeURIs = f indURI(vi.1, vi.2) //Extracts available URIs

6: vars = f indVariable(vi.1, vi.2) //Extracts available variables

7: if p == rdf:type & vi.2 ∈ nodeURIs then
8: nodeClasses = {vi.2}
9: if vi.1 ∈ vars then

10: variablesTypes = variablesTypes ∪ {vi.1 → nodeClasses}
11: end if
12: else
13: nodeClasses = getS chemaNodes(nodeURIs, variablesTypes, instanceIndex)
14: end if
15: for each class ∈ nodeClasses do
16: partitions = partitions ∪ classIndex[class]
17: end for
18: f inalPart = smallestPartition(partitions, stats)
19: queryIndex.Partitions = queryIndex.Partitions ∪ {tpi → f Partartition}
20: if isVariable(p) then
21: queryIndex.VP = queryIndex.VP ∪ {tpi → VPIndex[nodeClasses]} //Unbound Predicate

22: else
23: queryIndex.VP = queryIndex.VP ∪ {tpi → p}
24: end if
25: end for
26: return queryIndex

first-level partitions that could be associated to a triple patter and f inalPart is the first-level partition finally selected
for that triple pattern.

While parsing each triple pattern, the node URIs (nodeURIs) and the variables (var) are extracted from the subject
or object positions of the triple (lines 5-6). If the predicate of the current triple pattern is rdf:type and its object is
an URI, then the nodeClasses of this triple pattern is that URI (line 8) since the object is a schema node. Moreover,
if the subject of this triple pattern is a variable, we should remember that this variable refers to specific schema
nodes and as such the association between the variable and the schema nodes is added to the variablesTypes (line
10). This is happening as every triple pattern that shares this variable should be mapped to the same partition, as
it refers to the same schema node. Overall, for each triple pattern we identify a list of schema nodes based on the
available URIs and the variables in it. We exploit variablesTypes for keeping track the variables with known types
already. When the URIs (uri) do not correspond to schema nodes, the Instance Index is used to obtain the schema
nodes that the instances are instantiated under (line 13). Then, by using the Class Index, we obtain the corresponding
partitions (partitions) that can be used for that triple pattern (lines 15-17). Based on statistics stored during the
partitioning procedure, the smallest partition is selected for the specific triple pattern (line 18) and is added in the
queryIndex.Partitions structure (line 19).

A step further, the triple pattern is located in the vertical partition identified by the predicate of the triple pattern
(lines 20-24). Specifically, in the case that the predicate of the triple pattern is a variable (we have an unbound
predicate), the VP Index is used to obtain the set of vertical partitions based on the schema nodes (nodeClasses) that
we have already identified for that triple pattern (line 21). Otherwise, the predicate is added in the queryIndex.VP
since it specifies the vertical partition in which the triple pattern is located.(line 23). Finally, Query Index is returned
(line 26) consisting of the structures queryIndex.Partitions and queryIndex.VP that include information about the
fist-level and vertical partitions that each triple pattern can be located at.
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Fig. 4. Constructing Query Index.

Example 5.2. The creation of Query Index for a query is a three-step process depicted in Figure 4. On the left side
of the Figure, we can see the four triple patterns of the query. The first step is to map every triple pattern to its
corresponding schema nodes. If a triple pattern contains an instance then the Instance Index is used to identify the
corresponding schema nodes. Next by using the Class Index (Figure 3), we find for each schema node the partitions
where it is located in (Partitions IDs in Figure 4). Finally we select the smallest partition in terms of size, for each
schema node based on statistics collected for the various partitions. For example, for the second triple pattern
(FORTH orgPublication ?y) we only keep the partition 2 since it is smaller than partition 3. For each one of the
selected partitions, we finally identify the vertical partitions that should be accessed, based on the predicates of
the corresponding triple patterns. In case of an unbound predicate, such as in the third triple pattern of the query
(FORTH ?p ?x) in Figure 4, the VP Index is used to identify the vertical partitions in which this triple pattern could
be located based on its first-level partition (Partition ID:2). The result Query Index for our running example is
depicted on the right of Figure 4.

5.2.2. Query Translation & Optimization
In order to produce the final SQL query, each triple pattern is translated into one SQL sub-query. Afterwards,

all sub-queries are joined using their common variables. For each sub-query, the combination of the the first-level
partition with the vertical partition(s) based on the Query Index is practically used as the table name in the "FROM"
clause of the SQL query. Finally, in order to optimize query execution we have implemented a query optimization
procedure, exploiting statistics recorded during the partitioning phase, to push joins on the smallest tables - in terms
of rows - to be executed first, further boosting the performance of our engine.

Fig. 5. Query Translation.

Example 5.3. In Figure 5, an example is shown of the query processor module in action. The input of the trans-
lation procedure is the Query Index of Figure 4. Each triple pattern is translated into an SQL query, based on the
corresponding information for the first-level and vertical partitions (SQL Sub-Queries in Figure 5) that should be
accessed. The name of the table of each SQL query is the concatenation of the first-level and the vertical partitions.
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In case of an unbound predicate, such as the third triple pattern, the sub-query asks for more than one table based
on the vertical partitions that exist in the Query Index for the specific triple pattern. Finally, sub-queries are re-
ordered by the DIAERESIS optimizer that pushes joins on the smallest tables to be executed first - in our example
the p3_type is first joined with p2_orgPublication.

6. Evaluation

In this section, we present the evaluation of our system. We evaluate our approach in comparison to three query
processing systems based on Spark, i.e., SPARQLGX [10], S2RDF [27], and WORQ [18], using two real-world
RDF datasets and four versions of a synthetic dataset, scaling up to 1 billion triples.

6.1. System Setup

LUBM. The Lehigh University Benchmark (LUBM) [11] is a widely used synthetic benchmark for evaluating
semantic web repositories. For our tests, we utilized the LUBM synthetic data generator to create four datasets of
100, 1300, 2300 and 10240 universities (LUBM100, LUBM1300, LUBM2300, LUBM10240) occupying 2.28GB,
30.1GB, 46.4GB, 223.2GB, and consisting of 13.4M triples, 173.5M triples, 266.8M triples, and 1.35B triples
respectively. LUBM includes 14 classes and 18 predicates. We used the 13 queries provided by the benchmark for
our evaluation, each one ranging between one to six triple patterns. We classify them into three categories, namely,
star, path, and complex queries.

SWDF. The Semantic Web Dog Food (SWDF) [19] is a real-world dataset containing Semantic Web conference
metadata about people, papers, and talks. It contains 126 classes, 185 predicates, and 304,583 triples. The dataset
occupies 50MB of storage. To evaluate our approach, we use a set of 278 BGP queries generated by the FEASI-
BLE benchmark generator [24] based on real query logs. In the benchmark workload, all queries include unbound
predicates. Although our system is able to process them, no other system was able to execute them. As such, be-
sides the workload with the unbound predicates (noted as SWDB(u)), we also replaced the unbound predicates with
predicates from the dataset (noted as SWDF(b)) to be able to compare our system with the other systems, using the
aforementioned workload.

DBpedia. Version 3.8 of DBpedia, contains 361 classes, 42,403 predicates and 182,781,038 triples. The dataset
occupies 29.1GB of storage. To identify the quality of our approach, we use a set of 112 BGP queries generated
again by the FEASIBLE benchmark generator based on real query logs.

All information about the datasets is summarized in Table 2. Further, all workloads along with the code of the
system are available in our GitHub repository1.

Table 2
Dataset Statistics

Dataset #Triples Size (.nt) #Classes #Predicates
LUBM 100 13,405,381 2.28 GB 14 18

LUBM 1300 173,546,369 30.1 GB 14 18

LUBM 2300 266,814,882 46.4 GB 14 18

LUBM 10240 1,340,300,979 223.2 GB 14 18

SWDF 304,583 49.2 MB 126 185

DBpedia 182,781,038 29.1 GB 361 42,403

1https://github.com/isl/DIAERESIS

https://github.com/isl/DIAERESIS
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6.1.1. Setup.
Our experiments were conducted using a cluster of 4 physical machines that were running Apache Spark (3.0.0)

using Spark Standalone mode. Each machine has 400GB of storage, and 38 cores, running Ubuntu 20.04.2 LTS,
connected via Gigabit Ethernet. In each machine, 10GB of memory were assigned to the memory driver, and 15GB
were assigned to the Spark worker for querying. For DIAERESIS, we configured Spark with 12 cores per worker
(to achieve a total of 48 cores), whereas we left the default configuration for other systems.

6.1.2. Competitors
Next, we compare our approach with three state-of-the-art query processing systems based on Spark, i.e., the

SPARQLGX [10], S2RDF [27], and WORQ[18]. All systems implement a different partitioning method than
Spark’s default. In their respective papers, these systems have shown to greatly outperform SHARD, PigSPARQL,
Sempala and Virtuoso Open Source Edition v7 [27]. We also made a consistent effort to get S3QLRDF [12, 13] in
order to include it in our experiments, however access to the system was not provided.

SPARQLGX implements a vertical partitioning scheme, creating a partition in HDFS for every predicate in the
dataset. S2RDF, on the other hand, uses Extended Vertical Partitioning, which aims at table size reduction,when
joining triple patterns as semijoins are already precomputed. Finally, WORQ [18] reduces sets of intermediate results
that are common for certain join patterns, in an online fashion, using Bloom filters, to boost query performance.

DIAERESIS, S2RDF, and WORQ exploit the caching functionality of Spark SQL. As such, we do not include
caching times in our reported query runtimes as it is an one-time operation not required for subsequent queries
accessing the same table. SPARQLGX, on the other hand, loads the necessary data for each query from scratch so the
reported times include both load time and query execution times. Further we experimentally determined the optimal
number of partitions k that minimizes storage replication and also minimizes query answering time. As such LUBM
100, LUBM 1300, LUBM 2300 and SWDF were split into 4 main partitions, LUBM 10240 into 10 partitions and
DBPedia into 8 partitions. Finally, note that a time-out of one week was selected for all the experiments, meaning
that after one week without finishing the execution, each individual experiment was stopped.

6.1.3. Preprocessing
In the preprocessing phase, the main dimensions for evaluation are the time needed to partition the given dataset

and the storage overhead that every system introduces in terms of Replication Factor (RF). Specifically, RF is the
number of copies of the input dataset each system outputs in terms of raw compressed parquet file sizes. Table 3
presents the results for the various datasets and systems.

Preprocessing time. Focusing, initially, on the time needed for each system to partition the dataset, we can ob-
serve that SPARQLGX has almost in all cases the fastest preprocessing time. This is due to the fact that it imple-
ments the most naive preprocessing procedure, as it aggregates data by predicates and then creates a compressed
folder for every one of these predicates. However, exactly due to this simplistic policy, large fragments of data are
required for query answering as we will show in the sequel. S2RDF partitions 13.4M triples (LUMB 100) faster than
304K (SWDF) ones. This happens as LUBM, being a synthetic dataset, has only 18 predicates, compared to SWDF
that has 185. Regarding preprocessing time for the other LUBM datasets, S2RDF shows an almost linear increase.
In the case of DBpedia, that has 42,403 predicates and is relatively big, both S2RDF and WORQ fail to preprocess
it. More precisely, S2RDF was returning an error failing to process the complex structure of DBpedia, whereas the
WORQ preprocessing stage was running for more than a week without returning results. Besides DBpedia, WORQ
has relatively good preprocessing time for the remaining datasets showing also an almost linear increase in pre-
processing time as the data grow. DIAERESIS requires more preprocessing time to finish, since it employs a more
sophisticated algorithm. However, it is not stalled by complex datasets, such as WORQ and S2RDF. Nevertheless
preprocessing is a task that is only executed once and offline for all systems before starting to answer queries.

Replication. By further examining the results shown in Table 3, SPARQLGX has no replication overhead since,
as already explained, it is implementing a naive vertical partitioning schema. In fact, as information is omitted from
the generated vertical partitions (i.e. the predicates), the result dataset is even smaller than the input. S2RDF, on the
other hand, precomputes both the VP tables and every other possible semi-join combination of the dataset (up to
a limit). This results in storage overhead. Regarding WORQ, again the result preprocessed data is smaller than the
initial dataset since, it uses dictionary compression.
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Looking at Table 3, for the LUBM datasets, the replication factor of SPARQLGX is around 0.35, for WORQ
ranges between 0.21 and 0.29, for S2RDF is around 1.05, whereas for our approach it ranges between 1.05 and 1.36.

For the SWDF dataset, we see that SPARQLGX and WORQ have a replication factor around 0.4, S2RDF has
a replication factor of 3.31 due to the big amount of predicates contained in the dataset, whereas our approach
has 0.86, achieving a better replication factor than S2RDF in this dataset, however falling behind the simplistic
partitioning methods of SPARQLGX. That is, placing dependent nodes together, sacrifices storage overhead, for
drastically improving query performance.

Overall, SPARQLGX wins in terms of storage overhead and preprocessing time in most of the cases due to its
simplistic partitioning policy, however with a drastic overhead in query execution as we shall see in the sequel. On
the other hand, S2RDF and WORQ fail to finish partitioning on a complex real dataset. Nevertheless, we argue that
preprocessing is something that can be implemented offline without affecting overall system performance and that
a small space overhead is acceptable for improving query performance.

Table 3
Preprocessing Dimensions.

System Preprocessing Time Output Storage Replication Factor
LUBM 100 (13.4M triples)

SPARQLGX 0.73 min 101.52 MB 0.33

S2RDF 8.21 min 332.3 MB 1.10

WORQ 2.16 min 73.19 MB 0.24

DIAERESIS 8.12 min 336.07 MB 1.12

LUBM 1300 (173.5M triples)

SPARQLGX 4.91 min 1.48 GB 0.35

S2RDF 25.76 min 4.39 GB 1.05

WORQ 21.71 min 0.86 GB 0.21

DIAERESIS 124.31 min 4.74 GB 1.14

LUBM 2300 (266.8M triples)

SPARQLGX 7.55 min 2.30 GB 0.35

S2RDF 36.63 min 6.84 GB 1.06

WORQ 33.96 min 1.32 GB 0.21

DIAERESIS 130.07 min 6.89 GB 1.06

LUBM 10240 (1.35 billion triples)

SPARQLGX 64.6 min 12.42 GB 0.38

S2RDF 175.61 min 33.99 GB 1.04

WORQ 275.49 min 9.54 GB 0.29

DIAERESIS 187.44 min 44.32 GB 1.36

SWDF (304K triples)

SPARQLGX 0.45 min 5.38 MB 0.40

S2RDF 15 min 44.58 MB 3.31

WORQ 2.3 min 6.05 MB 0.45

DIAERESIS 2.5 min 11.59 MB 0.86

DBpedia (182M triples)

SPARQLGX 3.7 min 3.7 GB 0.41

S2RDF Timeout - -

WORQ Timeout - -

DIAERESIS 273.56 min 16.7 GB 1.71
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6.2. Query Execution

Next, we focus on evaluating the query execution performance for the various systems. The times reported are
the average of 10 executions of each set of queries.

6.2.1. LUBM
In this experiment, we show how the performance of the systems changes as we increase the dataset size using

the four LUBM datasets - ranging from 13 million to 1.35 billion triples.

Fig. 6. Query execution for LUBM datasets and systems.

Figure 6 compares the average query execution time of different systems for the LUBM datasets. We can observe
that in all cases, our system strictly dominates the other systems. More importantly, as the size of the dataset in-
creases, the difference of the performance between DIAERESIS and the other systems increases as well. Specif-
ically, our system is one order of magnitude faster than all competitors for LUBM100 and LUBM10240. For
LUBM1300, DIAERESIS is two times faster that the most efficient competitor, whereas for LUBM2300, DIAERE-
SIS is 40% faster than the most efficient competitor. DIAERESIS continues to perform better than the other systems
in terms of average query execution time across all versions, enjoying the smallest increase of execution times,
compared to the other systems, as the dataset grows. For the largest dataset, i.e., LUBM10240, our system outper-
forms the other systems, being almost three times faster than the most efficient competitor. This demonstrates the
superiority of DIAERESIS in big datasets. We conclude that as expected, the size of the dataset, affects the query
execution performance. Generally, SPARQLGX has the worst performance since it employs a really naive partition-
ing scheme, followed by S2RDF and WORQ - only in LUBM1024, WORQ is better than S2RDF. In contrast, the
increase of the dataset size has the smallest impact for DIAERESIS, which dominates competitors.

Query Categories. Next, we study separately the three types of queries available, i.e., star, path and complex
queries. Their execution times are presented in Figure 7. Regarding star queries, we notice that for all LUBM
datasets, DIAERESIS has the best performance followed by S2RDF, WORQ and in the end SPARQLGX with major
difference. S2RDF performs better than WORQ due to the materialized join reduction tables since it uses in the
most of the queries less data to answer them than WORQ, as we will see in the sequel. Since our system places
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Fig. 7. Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d) LUBM 10240

together dependent fragments of data that are usually queried together, it is able to reduce data access for query
answering, performing significantly better than competitors.

For path queries (Figure 7), the competitors perform quite well except from SPARQLGX that performs remark-
ably worse. More precisely, S2RDF performs slightly better than WORQ except from the LUBM100, the smallest
LUBM dataset, where the difference is negligible (50 milliseconds). Still, DIAERESIS delivers a better performance
than the others systems in this category for all LUBM datasets.

The biggest difference between DIAERESIS and the competitors is observed in complex queries for all LUBM
datasets (Figure 7). Our system is able to lead to significant better performance, despite the fact that this category
contains the most time-demanding queries, with the bigger number of query triple patterns, and so joins. The dif-
ference in the execution times between our system and the rest becomes larger as the size of the dataset increases.
S2RDF has the second better performance followed by WORQ and SPARQLGX in LUBM100, LUBM1300 and
LUBM2300, except from LUBM10240 that S2RDF comes third since WORQ is quite faster and SPAQGLGX is the
last one. S2RDF performs better than WORQ due to the materialized join reduction tables, since S2RDF uses less
data to answer the queries than WORQ in all cases However, as the data grow, i.e., in LUBM10240, the complex
queries with many joins, perform better in WORQ than S2RDF due to the increased benefit of the bloom filters.

The value of our system is that it reduces substantially the accessed data in most of the cases as it is able to retain
in the same partition dependent schema nodes that are queried together along with their corresponding instances.
This will be subsequently presented in the section related to the data access reduction.

Individual Queries. Examining closely the individual queries and their execution times (Figure 8), for the star
queries, DIAERESIS dominates other systems in all star queries for all LUBM datases. On the other hand, S2RDF
wins WORQ in all LUBM datesets, except LUBM100 that it performs worse in five queries out of the total six star
queries - except Q4 which is the only one in this category that has three joins while the others have one join.

Regarding path queries, DIAERESIS outperforms the competitors on all individual path queries. For Q6, WORQ
performs better than S2RDF in all LUBM datasets. However, for Q14, S2RDF wins WORQ in LUBM1300,
LUBM230 and slightly in LUBM10240, while WORQ is significantly faster than S2RDF in LUBM100.

Finally, complex queries put a heavy load on all systems since they consist of many joins (3-5 joins). DIAERE-
SIS continues to demonstrate its superior performance and scalability since it is faster than competitors to all indi-
vidual queries for all LUBM datasets. Competitors on the other hand do not show stability in their results. S2RDF
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Fig. 8. Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d) LUBM 10240

comes second followed by WORQ and then SPARQLGX, in terms of execution time for most of the queries of
this category, except LUBM10240. Specifically, for the biggest LUBM dataset, WORQ wins S2RDF in all complex
queries apart from one.

Query execution time reduction. Next, to better understand the performance gain of DIAERESIS compared to

Fig. 9. Reduction Time for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d) LUBM 10240
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the other systems, we present the percentage reduction of average execution time of DIAERESIS when compared
to all competitors. The results are presented in Figure 9 and show that DIAERESIS dominates all competitors, in
all queries, for all dataset sizes. Specifically, DIAERESIS performs better than S2RDF for all LUBM datasets. For
example, on average, for LUBM100 the reduction is 32.38%, and for LUBM10240 the reduction is 44.28%. We
notice that the percentage of reduction is high enough especially in the largest dataset. For WORQ, the highest
reduction in execution time is noticed in star queries, on average 88.14%, and with a range from 0.22% to 97%,
where the minimum and maximum is noticed in LUBM10240. For SPARQGLGX, the percentage of reduction starts
from 25%, with an average percentage on all query categories over 70%, and in the most cases is around 90%,
reaching the 99.31% in LUBM10240.

Data Access Reduction. Moving to explain the large performance improvement of our system, we present next
the reduction on the size of the data accessed for query answering for all systems when compared to DIAERESIS for
each individual query for LUBM10240 (refer to Figure 10). We only present LUBM10240 as the graphs for the
other versions are similar. As shown, our system consistently outperforms all competitors, and in many cases to
a great extent. DIAERESIS accesses 99% less data than WORQ for answering Q4, whereas for many queries the
reduction is over 90%. For S2RDF on the other hand, the reduction in most of the cases is more than 60%. In
only one case (Q12), our system loads 8.12% more data than S2RF, as the reduction tables used by S2RDF are
smaller than the subpartitions loaded by DIAERESIS. However, even at that case, DIAERESIS performs better in
terms of query execution time due to the most effective query optimization procedures we adopt, as shown already
in Figure 8. Note that although in five cases the data access reduction of S2RDF, WORQ and SPARQLGX when
compared to DIAERESIS seems to be the same (Q1, Q3, Q10, Q6, Q14) as shown in Figure 10, S2RDF performs
better that WORQ and SPARQLGX due to the query optimization it performs. Regrading SPARQLGX, in the most
of the cases, the percentage of the reduction is over 80%, and in many cases over 90%.

Overall we can conclude that DIAERESIS boosts query performance, while effectively reducing the data accessed
for query answering.

6.2.2. Real-World Datasets
Apart from the synthetic LUBM benchmark datasets, we evaluate our system against the competitors over two

real-world datasets, i.e., SWDF (unbound and bound) and DBpedia (Figure 11).

Fig. 10. Reduction of Data Access for LUBM10240
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Fig. 11. Query execution for Real-World Datasets and systems

As already mentioned, no other system is able to execute queries with unbound predicates (i.e., SWDF(u)) in
Figure 11), whereas for the SWDF workload with bound predicates (277 queries) (i.e., SWDF(b) in Figure 11) our
system is one order of magnitude faster than competitors. WORQ was not able to execute star queries (147 queries)
in this dataset, since the triples of star queries for this specific dataset should be joined through constants instead
of variables as usual. Regarding DBpedia (Figure 11), both S2RDF and WORQ failed to finish the partitioning
procedure due to the large number of predicates contained in the dataset and the way that the algorithms of the
systems use this part.

Query Categories. Examining each query category in Figure 12, we can verify again that DIAERESIS strictly

Fig. 12. Query execution for (a) SWDF(p), (b) DBpedia
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dominates other systems in all query categories as well. More specifically, DIAERESIS is one order of magnitude
faster in star and complex queries than the fastest competitor able to process these datasets. The SWDF workload
did not contain complex queries, whereas for the DBpedia dataset for complex queries, DIAERESIS is again one
order of magnitude faster than SPARQLGX.

Overall, the evaluation clearly demonstrates the superior performance of DIAERESIS in real datasets as well,
when compared to the other state-of-the-art partitioning systems, for all query types. DIAERESIS does not favour
any specific query type, achieves consistent performance, dominating all competitors in all datasets.

6.2.3. Overall comparison
Summing up, DIAERESIS strictly outperforms state-of-the-art systems in terms of query execution, for both

synthetic and real-world datasets. SPARQLGX aggregates data by predicates and then creates a compressed folder
for every one of those predicates, failing to effectively reduce data access. High volumes of data need to be touched
at query time, with significant overhead in query answering. S2RDF implements a more advanced query processor,
by pre-computing joins and performing query optimization using table statistics. WORQ, on the other hand, focuses
on caching join patterns which can effectively reduce query execution time. However, in both systems, the data
required to answer the various queries are not effectively collocated leading to missed optimization opportunities.
Our approach, as we have experimentally shown, achieves significantly better performance by effectively placing
dependent data together, reducing data access, which is a major advantage of our system. Finally, certain flaws have
been identified for other systems: no other system actually supports queries with unbounded predicates, S2RDF and
WORQ fail to preprocess DBpedia, and WORQ fails to execute the star queries in the SWDF workload.

7. Conclusions

In this paper, we focus on effective data partitioning for RDF datasets, expoiting schema information and the
notion of importance and dependence, enabling efficient query answering, strictly dominating existing partitioning
schemes of other Spark-based solutions. We experimentally show that DIAERESIS strictly outperforms, in terms
of query execution, state of the art systems, for both synthetic and real-world workloads, and in several cases by
orders of magnitude. This is achieved due to the significant reduction of data access required for query answering.
Our results are completely in line with findings from other papers in the area [27]. As future work, an interesting
direction would be to apply our techniques to schema-less datasets and to explore how to update partitioning as the
RDF/S KB evolves.
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