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Abstract. Knowledge graph embeddings represent a group of machine

learning techniques which project entities and relations of a knowledge
graph to continuous vector spaces. RDF2vec is a scalable embedding

approach rooted in the combination of random walks with a language

model. It has been successfully used in various applications. Recently,
multiple variants to the RDF2vec approach have been proposed, intro-

ducing variations both on the walk generation and on the language mod-
eling side. The combination of those different approaches has lead to an

increasing family of RDF2vec variants.

In this paper, we evaluate a total of twelve RDF2vec variants on a
comprehensive set of benchmark models, and compare them to seven ex-

isting knowledge graph embedding methods from the family of link pre-

diction approaches. Besides the established GEval benchmark introduc-
ing various downstream machine learning tasks on the DBpedia knowl-

edge graph, we also use the new DLCC (Description Logic Class Con-

structors) benchmark consisting of two gold standards, one based on
DBpedia, and one based on synthetically generated graphs. The latter

allows for analyzing which ontological patterns in a knowledge graph

can actually be learned by different embedding.
With this evaluation, we observe that certain tailored RDF2vec vari-

ants can lead to improved performance on different downstream tasks,
given the nature of the underlying problem, and that they, in particular,

have a different behavior in modeling similarity and relatedness.

Keywords.RDF2vec, knowledge graph embedding, representation learning,
embedding evaluation

1. Introduction

RDF2vec [1] is an approach for embedding entities of a knowledge graph in a
continuous vector space. It extracts sequences of entities from knowledge graphs
which are then fed into a word2vec encoder [2,3]. Such embeddings have been
shown to be useful in downstream tasks which require numeric representations of
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entities and rely on a distance metric between entities that captures entity sim-
ilarity and/or relatedness [4]. Examples of RDF2vec applications include knowl-
edge graph matching [5,6,7], general machine learning involving named enti-
ties [8], entity type prediction [9,10], relation prediction [4], named entity clas-
sification [11,12], or information retrieval [13,14]. Since its inception, multiple
extensions have been proposed for RDF2vec. In this paper, two recent exten-
sions are further scrutinized: RDF2vec walk variations (named e-RDF2vec and p-
RDF2vec) and order-aware RDF2vec (named RDF2vecoa). These extensions have
been evaluated on their own on task-based datasets before [15,16]. Preliminary
evaluations revealed that the flavor that is chosen influences the weight which is
put on different (semantic) features – for example, e-RDF2vec spaces are consid-
ered to be more focused on relatedness while there is indication that p-RDF2vec
spaces cover fine-grained similarity better. This paper presents the first compre-
hensive evaluation of all combinations of classic, e-RDF2vec, and p-RDF2vec, in
their order aware and non-order aware variants.

Moreover, not all of the evaluations in previous papers have been fully con-
clusive. This poses the question: “What is actually learned?” It is not easy to an-
swer this question since task-based evaluation are subjective in nature and blend
different semantic requirements.

This paper strives to achieve a deeper understanding of what knowledge graph
embedding methods, such as RDF2vec, are actually capable of representing. To
that end, we perform an in-depth comparison of the different variants, as well as
a comparison of RDF2vec based approaches to non RDF2vec based ones.

While we also perform task-based evaluations with multiple variants of
RDF2vec, the evaluation goes beyond single task-based discussions and tries to
tackle the question more fundamentally. We define multiple description logic (DL)
constructors together with hypotheses and create two benchmarks: One bench-
mark is based on DBpedia and one benchmark is synthetic in nature. These two
benchmarks – and particularly the comparison of results between them – allow us
to evaluate our hypotheses and to determine which DL constructors are learned
by which approach. Furthermore, we analyze whether the DL constructor is actu-
ally learned or whether the approach is merely exploiting cross signals which can
be found in the knowledge graphs. In our evaluation, we include not only 12 dif-
ferent RDF2vec configurations but also seven different state of the art embedding
models.

This paper makes two main contributions: (1) An in-depth evaluation of mul-
tiple RDF2vec configurations including their combinations is performed. (2) In
addition, an in-depth evaluation of existing state of the art models on completely
novel tasks is run to expose their strengths and weaknesses. To our knowledge,
this is the first attempt to understand what knowledge graph embedding methods
can actually represent, both with respect to RDF2vec variants as well as to other
embedding methods, and, at the same time, the most comprehensive evaluation
for knowledge graph embeddings in general and RDF2vec variants in particular.

While some results of this paper have already been published [15,16,17], the
following contributions are novel:

1. We discuss theoretical hypotheses about the representational power of dif-
ferent RDF2vec based variants and test them with system benchmarks.



2. We provide a full comparison of twelve RDF2vec variants and seven addi-
tional baseline models.

The rest of this article is structured as follows: The following section intro-
duces related work in the field of knowledge graph embeddings and embedding
evaluation gold standards. We then discuss RDF2vec extensions in section 3. Sub-
sequently, we introduce a frequently used gold standard for evaluating knowl-
edge graph embeddings through machine learning applications (Section 4). In sec-
tion 5, we introduce a broad set of description logic constructors whereby we are
interested in how far each constructor can be learned by an embedding approach.
Together with the constructors, we hypothesize which RDF2vec variant may be
able to cover which constructor and why. After constructors and hypotheses are
introduced, a set of test cases is required to evaluate the embeddings and to
validate our assumptions. Therefore, section 6 introduces a framework which we
developed to derive two gold standards, named DLCC (Description Logic Class
Constructors). In section 7 we present the obtained results, discuss them, and
check the previously posed hypotheses. Lastly, this paper is concluded in section 8
by a summary together with an outlook on future work.

All relevant artifacts (embedding models, gold standards, developed frame-
works) are publicly available (see the corresponding sections).

2. Related Work

Knowledge Graph Embeddings A knowledge graph G is a labeled directed graph
G = (V, E), where E ⊆ V×R×V for a set of relations R. Vertices are subsequently
also referred to as entities and edges as predicates. Such a graph is also referred
to as directed heterogeneous graph [18,19]. A knowledge graph embedding (KGE)
is a projection Π for all vertices v ∈ V and optionally r ∈ R into a multi-
dimensional space of dimension ∆. Hence Π = {ei ∈ R∆} where i ∈ {1, 2, ..., |V|}
or i ∈ {1, 2, ..., |V|+ |R|}.2

Numerous approaches for knowledge graph embeddings were presented in the
past and multiple surveys on knowledge graph embeddings were published [4,18,
19,22,23]. Cai et al. [18] distinguish five different techniques for KGE: (1) matrix
factorization, (2) deep learning, (3) edge reconstruction, (4) graph kernel, and (5)
generative model.3

A well-known matrix factorization approach is RESCAL [24]. The approach
models a graph as a three-way tensor and subsequently applies tensor decom-
position. DistMult [20] is a scalability improvement over RESCAL at the cost
that relationships are assumed to be symmetric. ComplEx [20] extends DistMult
by using complex vector spaces rather than real ones.4 In this paper, we use all
models of the above as benchmark models.

2In this paper, the focus lies on deterministic point vector embedding approaches. The nota-
tion assumes a real vector space, this is not the case for ComplEx [20] and RotatE [21].

3Within these categories, even finer categories are presented. In this paper, we will only discuss

the main classes and point to subclasses if relevant. For a complete overview of the classification
system, we refer the reader to the original publication [18].

4Hence, for ComplEx: Π = {ei ∈ C∆} where i = 1, 2, ...|V|+ |R|



RDF2vec [8] (and all its variants [16,15]) fall into the category of random
walk-based deep learning: Multiple walks are performed within a graph, typi-
cally for each node, and the set of walks is then interpreted as sentences by the
word2vec language embedding algorithm [2,3]. Conceptually, RDF2vec is similar
to node2vec [25] and DeepWalk [26], with the difference that the latter approaches
were presented in the context of homogeneous graphs, i.e., graphs with merely
one edge type.

TransE [27] is a well-known edge-reconstruction approach which minimizes
the margin-based ranking loss. Given a triple in the form (head, relation, tail),
TransE trains embeddings h, r, t, such that h+l ≈ t. As an extension, TransR [28]
learns two embedding spaces, one for entities and one for relations, so that it better
captures compositional rules and non-one-to-one cardinalities of relationships.
RotatE [21] regards relations as rotations of vertices in complex space.5 All edge-
reconstruction approaches discussed above are used as benchmark models in this
paper.

Since graph kernels are designed for embedding a whole graph, this category
is not relevant for the article at hand. An example of generative models would be
the Latent Dirichlet Allocation applied on graphs. Embedding approaches from
this category, however, are not commonly used for knowledge graph embedding
applications and are not further discussed in this article.

Knowledge Graph Embedding Evaluation In the area of link prediction (or
knowledge base completion), the two well-known evaluation datasets FB15k and
WN18 [27] are both based on real datasets: FB15k is based on the Freebase
dataset, and WN18 is based on WordNet [29]. They were presented in the context
of link prediction: Given a triple in the form (head, relation, tail), two predic-
tion tasks (head, relation, ?) and (?, relation, tail) are created. The evaluation is
performed by calculating the mean rank/HITS@10 for a list of proposals. Since it
has been remarked that those datasets contain too many simple inferences due to
inverse relations, the more challenging variants FB15k-237 [30] and WN18RR [31]
have been proposed. More recently, evaluation sets based on larger knowledge
graphs, such as YAGO3-10 [31] and DBpedia50k/DBpedia500k [32] have been
introduced.

Bloem et al. [33] introduce kgbench, a node classification benchmark for knowl-
edge graphs, which, like DLCC, comes with datasets in different sizes and pre-
defined train/test splits. Unlike DLCC, kgbench is based on real-world datasets.
Therefore, it is suitable to evaluate and compare the quality of different embed-
ding approaches on real-world tasks but does not provide any insights into what
these embedding approaches are capable of representing.

Alshagari et al. [34] present a framework for ontological concepts covering
three aspects: (i) categorization, (ii) hierarchy, and (iii) logic validation. The
framework can be used for language models and for knowledge graph embeddings.
The work presented in this paper differs in that it goes beyond explicit DBpedia
types. The evaluation of this paper is, therefore, of analytical rather than descrip-
tive nature. Moreover, the task sets of DLCC are significantly larger and more
comprehensive.

5Hence, for RotatE: Π = {ei ∈ C∆} where i = 1, 2, ...|V|+ |R|



Ristoski et al. [35] provide a collection of benchmarking datasets for machine
learning including classification, clustering, and regression tasks. Later, the GEval
framework [36,37] was introduced to provide a standardized evaluation protocol
for this dataset. The evaluation datasets are based on DBpedia. Internally, the
embeddings are processed by different downstream classification, regression, or
clustering algorithms. The evaluation framework presented in this paper is similar
to GEval in that it also evaluates multiple classifiers given a concept vector input.

Melo and Paulheim [38] provide a method for synthesizing benchmark
datasets for link and entity type prediction, which are used in conjunction with
a fixed ontology. Their goal is to mimic the characteristic of existing knowledge
graphs in terms of distributions and patterns.

3. RDF2vec and its Variants

Over time, RDF2vec was extended multiple times. Generally, three kinds of ex-
tensions can be distinguished: (1) Changes in the walk generation algorithm, (2)
changes in the embedding algorithm, and (3) other changes. The extensions are
presented in the following paragraphs. Out of those extensions, we picked the
most promising and interesting candidates and present them in more detail in the
subsequent subsections 3.1 and 3.2.

Walk Generation Extensions One of the first extensions to the random walk
generation algorithm was biased graph walks [39]. In this extension, multiple
edge weighting mechanisms are proposed and evaluated to influence the walk
generation. Using the predicate frequency strategy, for instance, increases the
likelihood that the random walks will include predicates that are very common.
While improvements in some test cases with some configurations are observable
compared to the classic strategy, the overall results are inconclusive in that there
is not a single best configuration for all tasks and that it is hard to determine
which configuration should be used in which situation. It is also important to note
that biasing walks increases the overall runtime of the RDF2vec approach since
a large number of weights has to be calculated and considered during the walk
configuration. While those experiments use graph-internal metrics for weighting
edges, later experiments indicate that graph-external metrics for edge importance
(in that case: derived from user clickstreams in Wikipedia) can be advantegeous
for the resulting embeddings [40]. Other variants of walk generation include the
incorporation of community hops or walklets [13], but the evidence here is mixed
as well.

Most recently, entity walks and property walks were presented [15]. Those
change the walk generation algorithm in terms of what graph elements are in-
cluded. They are described in more depth in subsection 3.1. The approaches are
neutral in terms of additional embedding runtime, entity walks are even signifi-
cantly faster since the vocabulary is smaller during training.

Embedding Algorithm Extensions The classic RDF2vec configuration is based
on word2vec. RDF2vecoa [16] uses an order-aware variant [41] of the original
word2vec algorithm. That approach has shown to be consistently better than the
classic RDF2vec configuration in various publications [4,16].



Other Extensions RDF2vec always generates embedding vectors for an entire
knowledge graph. This process can be very expensive for large knowledge graphs
and may be even unfeasible for very large knowledge graphs. At the same time,
most tasks do not require an embedding for every concept in a knowledge graph.
In many cases, the set of required embeddings can be determined ex ante – e.g.
entities of type city when the task is to regress the score for the quality of living.
In such instances, RDF2vec Light [42] can be used. The approach applies the
walk generation algorithm only to the predefined entities and thereby reduces the
required time for walk generation and training significantly. Experiments showed
that the performance is comparable to the more expensive classic variant – par-
ticularly in instances where the set of entities is homogeneous and their degree is
not too large.

3.1. Walk Generation Methods

In this paper, three different walk algorithms are evaluated: Classic walks, en-
tity walks (e-walks), and predicate walks (p-walks). These configurations have
been picked since they have previously been shown to be able to separate the
paradigmatic relations of similarity and relatedness [15].6

Classic Walks The originally presented RDF2vec variant generates multiple ran-
dom walks for each node in the graph. A random walk of length n (where n is an
even number) is of the form

w = (w−n
2
, w−n

2 +1, ..., w0, ..., wn
2 −1, wn

2
) (1)

where wi ∈ V if i is even, and wi ∈ R if i is odd. For better readability, we stylize
wi ∈ V as ei and wi ∈ R as pi:

w = (e−n
2
, p−n

2 +1, ..., e0, ..., pn
2 −1, en

2
) (2)

Entity Walks (e-RDF2vec) An entity walk contains only entities without any
other properties. Such an approach is also known as e-RDF2vec. It has the form:

we = (e−n
2
, e−n

2 +2, ..., e0, ..., en
2 −2, en

2
) (3)

For an entity walk, all elements are entities, i.e., wni ∈ V.

Predicate Walks (p-RDF2vec) A predicate walk contains only one entity together
with object properties. Such an approach is also known as p-RDF2vec. It has the
form:

wp = (p−n
2 +1, p−n

2 +3, ..., e0, ..., pn
2 −3, pn

2 −1) (4)

6Similarity describes in how far two concepts are similar to each other “by virtue of their

similarity” [43]. Similarity and relatedness are often not clearly separated from each other (for
instance in [44]). Nevertheless, there are significant differences. Dissimilar entities can even be

semantically related by antonomy relationships [43]. Hill et al. distinguish the two relations by
giving examples: While the concepts coffee and cup are certainly related, they are not similar;
however, a mug and a cup can – in language as in the real world – almost be used interchangeably

and are, therefore, similar [45].



Figure 1. Different walk types visualized, showing walks starting from node C.

For a predicate walk, all elements but e0 are properties, i.e., e0 ∈ V, pi ∈ R for
all i.

All three walk strategies are visualized in Figure 1.

3.2. Embedding Models of this Publication

In this paper, the two original configurations (SG and CBOW) are evaluated.
In addition, the order-aware variants are evaluated which are in the following
denoted with the suffix “OA”. This yields four language model configurations: (1)
SG, (2) CBOW, (3) SGoa, and (4) CBOWoa.

3.3. RDF2vec Configurations of this Publication

The walk generation processes and the embedding models are independent com-
ponents of RDF2vec which can be freely combined. In this paper, we evaluate the
following walk generation algorithms:

1. classic walks
2. entity walks
3. predicate walks

We combine these with the following language models:

1. classic word2vec (CBOW and SG)
2. order-aware word2vec (CBOWoa and SGoa)

This leads to the following combinations:

1. RDF2vec (original: classic word2vec with classic walks)
2. RDF2vecoa (order aware word2vec with classic walks)
3. p−RDF2vec (predicate walks with word2vec)
4. p−RDF2vecoa (predicate walks with order-aware word2vec)
5. e−RDF2vec (entity walks with classic word2vec)
6. e−RDF2vecoa (entity walks with order-aware word2vec)

Since all of the above combinations are available in SG and CBOW, this paper
evaluates 12 variants of RDF2vec in total.



4. Machine Learning Gold Standard

For a comprehensive understanding of the configurations presented in subsec-
tion 3.3, an evaluation is performed using the machine learning task set for knowl-
edge graph embeddings published by Ristoski et al. [35]. It is comprised of six
tasks using 20 datasets in total:

• Five classification tasks, evaluated by accuracy. Those tasks use the same
ground truth as the regression tasks (see below), where the numeric pre-
diction target is discretized into high/medium/ low (for the Cities, AAUP,
and Forbes dataset) or high/low (for the Albums and Movies datasets). All
five tasks are single-label classification tasks.

• Five regression tasks, evaluated by root mean squared error (RMSE). Those
datasets are constructed by acquiring an external target variable for in-
stances in knowledge graphs which is not contained in the knowledge graph
per se. Specifically, the ground truth variables for the datasets are: a qual-
ity of living indicator for the Cities dataset, obtained from Mercer; aver-
age salary of university professors per university, obtained from the AAUP;
profitability of companies, obtained from Forbes; average ratings of albums
and movies, obtained from Facebook.

• Four clustering tasks (with ground truth clusters), evaluated by accuracy.
The clusters are obtained by retrieving entities of different ontology classes
from the knowledge graph. The clustering problems range from distinguish-
ing coarser clusters (e.g., cities vs. countries) to finer ones (e.g., basketball
teams vs. football teams).

• A document similarity task (where the similarity is assessed by computing
the similarity between entities identified in the documents), evaluated by
the harmonic mean of Pearson and Spearman correlation coefficients. The
dataset is based on the LP50 dataset [46]. It consists of 50 documents, each
of which has been annotated with DBpedia entities using DBpedia spot-
light [47]. The task is to predict the similarity of each pair of documents.

• An entity relatedness task (where semantic similarity is used as a proxy for
semantic relatedness), evaluated by Kendall’s Tau. The dataset is based
on the KORE dataset [48]. The dataset consists of 20 seed entities from
the YAGO knowledge graph, and 20 related entities each. Those 20 related
entities per seed entity have been ranked by humans to capture the strength
of relatedness. The task is to rank the entities per seed by relatedness.

• Four semantic analogy tasks (e.g., Athens is to Greece as Oslo is to
X ), which are based on the original datasets on which word2vec was
evaluated [3]. The datasets were created by manual annotation. In our
evaluation, we aim at predicting the fourth element (D) in an analogy
A : B = C : D by considering the closest n vectors to B − A + C. If the
element is contained the top n predictions, we consider the answer to be
correct, i.e., the evaluation metric is top-n accuracy. In the default setting
of the evaluation framework used, n is set to 2.

Table 1 shows a summary of the characteristics of the datasets used in the
evaluation. It can be observed that they cover a wide range of tasks, topics, sizes,



Task Dataset # entities Target variable

Classification Cities 212 3 classes (67/106/39)

AAUP 960 3 classes (236/527/197)

Forbes 1,585 3 classes (738/781/66)

Albums 1,600 2 classes (800/800)

Movies 2,000 2 classes (1,000/1,000)

Regression Cities 212 numeric [23, 106]

AAUP 960 numeric [277, 1009]

Forbes 1,585 numeric [0.0, 416.6]

Albums 1,600 numeric [15, 97]

Movies 2,000 numeric [1, 100]

Clustering Cities and Countries (2k) 4,344 2 clusters (2,000/2,344)

Cities and Countries 11,182 2 clusters (8,838/2,344)

Cities, Countries, Albums,

Movies, AAUP, Forbes
6,357 5 clusters (2,000/960/1,600/212/1,585)

Teams 4,206 2 clusters (4,185/21)

Document

Similarity

Pairs of 50 documents

with entities
1,225 numeric similarity score [1.0,5.0]

Entity

Relatedness
20x20 entity pairs 400 ranking of entities

Semantic

Analogies
(All) capitals and countries 4,523 entity prediction

Capitals and countries 505 entity prediction

Cities and States 2,467 entity prediction

Countries and Currencies 866 entity prediction

Table 1. Overview of the Evaluation Datasets

and other characteristics (e.g., balance). In this paper, the evaluation protocol as
proposed in [35,37] is followed: All entities are linked to a knowledge graph. Dif-
ferent feature extraction methods – in this case pure knowledge graph embedding
approaches – can then be compared using a fixed set of learning methods. The
evaluation is performed using the GEval framework7.

5. DL Constructors and Hypotheses

In section 4, an existing gold standard was introduced. That gold standard is task-
oriented, i.e., it gives an indication of which embedding configuration is suitable
for a specific task – however, the gold standard is not suitable to perform a deeper
analysis such as what is or can be learned. We therefore introduce a new gold
standard in section 6. Our aim is to provide a benchmark for analyzing which
kinds of constructs in a knowledge graph can be recognized by different embedding
methods. To that end, in this section, we define class labels using different DL
constructors and argue which variants of RDF2vec are capable of learning them.

Ingoing and Outgoing Relations All entities that have a particular outgoing
or ingoing relation (e.g., everything that has a location or everything that is a
location of something).

7https://github.com/mariaangelapellegrino/Evaluation-Framework

https://github.com/mariaangelapellegrino/Evaluation-Framework


∃r.⊤ (5)

∃r−1.⊤ (6)

∃r.⊤ ⊔ ∃r−1.⊤ (7)

where r is bound to a particular relation.8

Hypothesis 1a (5) and (6) can be learned by RDF2vecoa and p − RDF2vecoa.
Non-oa variants cannot properly learn them because they cannot distinguish the
two. e-RDF2vec variants cannot properly learn them because they cannot distin-
guish particular properties.

Hypothesis 1b (7) can be learned by RDF2vec, RDF2vecoa, p−RDF2vec, and
p−RDF2vecoa.

Use case An exemplary use case would be entity classification. If a relation has
a particular domain or range, an embedding vector capturing that information
could be used to infer the corresponding class.

Relations to Particular Individuals All entities that have a relation (in any
direction) to a particular individual (e.g., everything that is related to Mannheim).

∃R. {e} ⊔ ∃R−1. {e} (8)

where R is not bound to a particular relation. Those relations can also span two
(or more9) hops:

∃R1.(∃R2. {e}) ⊔ ∃R−1
1 .(∃R−1

2 {e}) (9)

Hypothesis 2a (8) can be learned by RDF2vec, RDF2vecoa, e−RDF2vec, and
e − RDF2vecoa. Sub-hypothesis: It is possible that the non-oa variants learn it
a bit better. However, the non-oa variants will not be able to tell closely related
entities (one hop away) from less related ones (more than two hops away).10

Hypothesis 2b (9) can be learned by RDF2vec, RDF2vecoa, e−RDF2vec, and
e − RDF2vecoa, as long as the walk length allows for capturing those relations.
Sub-hypothesis: It is possible that the non-oa variants learn it a bit better.

Use case An exemplary use case would be capturing entity relatedness. Two
entities sharing many connections to a third entity are typically related. This
can also be useful in query expansion for information retrieval. The distinction
between closely and vaguely related entities (sharing an entity one or two hops
away) may be crucial if queries should not be expanded too much.

Particular Relations to Particular Individuals All entities that have a
particular relation to a particular individual (e.g., movies directed by Steven Spiel-
berg).

∃r. {e} (10)

8We use r to denote a particular relation, whereas R denotes any relation.
9For reasons of scalability, we restrict the provided gold standard to two hops.
10Depending on the entity at hand, the second set might grow very large. For example, in

DBpedia, half of the entities are reachable from New York City within two hops.



Hypothesis 3 (10) can only be learned properly by RDF2vecoa. Non-oa variants
cannot distinguish between the two.11

Use case An exemplary use case would be capturing entity similarity. For ex-
ample, two movies which have the same director and some overlapping cast can
be considered similar. This can be used, e.g., in recommender systems or other
predictive modeling tasks.

Qualified Restrictions All entities that have a particular relation to an indi-
vidual of a given type (e.g., all people married to soccer players).

∃r.T (11)

∃r−1.T (12)

If types are included in the graph, then rdf:type becomes yet another restriction,
and we can reformulate (11) to

∃r.(∃rdf:type.T ) (13)

Therefore, it behaves equally to a chained variant of (10), and, given a long enough
walk length, should have similar constraints. However, if the related entity has
strong domain and range signals, it may be learned just by observing the ingoing
and outgoing relations of that entity. In that case, p−RDF2vecoa could also be
capable of learning that class to a certain extent.

Hypothesis 4a (11) can only be learned properly byRDF2vecoa, and, to a certain
extent, by p−RDF2vecoa.

The second case (12) is trickier. Here, the relation to the entity at hand and the
type information of the related entity can only appear in two different walks, but
never together (at least if the inverse relation is not explicitly contained in the
graph). Hence, we assume:

Hypothesis 4b (12) cannot be learned by any RDF2vec variant.

Use case Qualified restrictions are often useful for fine-grained entity classifi-
cation and thereby capture some aspects of entity similarity. For example, for
distinguishing a basketball and a baseball team, it is not sufficient that both
have a coach and players, but that those are of the class BasketballPlayer or
BaseballPlayer. If the similarity aspects become rather fine-grained, they may
also be used in predictive modeling tasks.

Cardinality Restrictions of Relations All entities that have at least or at
most n relations of a particular kind (e.g., people who have at least two citizen-
ships). Here we depict only the at least variant because the corresponding decision
problem is between the two variants.12

≥ 2r.⊤ (14)

11For example: distinguishing people influenced by Leibniz vs. people who influenced Leibniz.
12The fact that most knowledge graphs follow the open-world assumption is ignored here.



≥ 2r−1.⊤ (15)

Since RDF2vec is based on single walks, it cannot directly learn cardinalities.
However, if a relation appears with a higher cardinality, it is occurring in the walks
including the corresponding instance more often, making it a stronger signal for
the word2vec algorithm.

Hypothesis 5 (14) and (15) can be learned to a certain extent by RDF2vecoa
and p−RDF2vecoa. Non-oa variants cannot distinguish the two cases.13

Use case Cardinalities often capture entity similarity aspects not expressed in
other restrictions. For example, when comparing two authors in a knowledge graph
of publications, both will have published papers (which makes them indistinguish-
able when only looking at qualified restrictions), but there is still a difference if
one has published two and the other has published two hundred papers.

Qualified Cardinality Restrictions Qualified cardinality restrictions com-
bine qualified restrictions with cardinalities (for example, all people who have
published at least three bestsellers).

≥ 2r.T (16)

≥ 2r−1.T (17)

Since this is a combination of qualified restrictions and cardinality restrictions, we
hypothesize that it can be captured by RDF2vec variants that can handle both
of them:

Hypothesis 6a (16) can be learned to a certain extent by RDF2vecoa.

Hypothesis 6b (17) cannot be learned by any variant of RDF2vec.

Use case Just like qualified restrictions and cardinality restrictions, these re-
strictions capture finer-grained aspects of entity similarity and are thus useable
both for fine-grained entity classification and for predictive modeling tasks.

5.1. Overview of Hypotheses

Table 2 summarizes our hypotheses together with the test cases that were devel-
oped (see subsection 6). For CBOW vs. SG, we have no particular hypothesis.

6. DLCC Gold Standard

For the twelve test cases in Table 2, we create positive examples (i.e., those
which fall into the respective class) and those which do not (under closed-world
semantics). For example, for tc01, we would generate a set of positive instances
for which ∃r.⊤ holds and a set of negative instances for which ∄r.⊤ holds. We
then evaluate how well these two classes can be separated, given the embedding

13For example: distinguishing someone who has been influenced by more than two people vs.

someone who has influenced more than two people.
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Figure 2. Overview of the DLCC Approach

vectors of the positive and negative instances. For that, we split the examples
into a training and testing partition, we train binary classifiers on the training
subset of the examples and evaluate their performance on the test subset.

The approach is visualized in Figure 2: A gold standard generator generates a
set of positive and negative URIs, as well as a fixed train/test split. The approach
presented allows for generating custom gold standards – however, a pre-calculated
gold standard is also provided. This pre-calculated gold standard can be used
to guarantee reproducibility. Officially published gold standards are versioned
to allow for future improvements. In this paper, we use version v1 of the gold
standard.

A user provides embeddings in a simple textual format and provides them
together with the training data as input to the evaluator. The evaluator trains
multiple classifiers and evaluates them on the selected gold standard using the
provided vectors as classification input. The program then calculates multiple
statistics in the form of CSV files that can be further analyzed in a spreadsheet
program or through data analysis frameworks such as pandas14. These analyses
help the user to understand how well the provided vectors are performing on a
particular DL constructor.

There are two benchmarks: A DBpedia benchmark (see subsection 6.3) and a
synthetic benchmark (see subsection 6.4). The benchmarks are publicly available
and significant efforts were made to comply with the FAIR [49] principles.15 Before
discussing the two benchmarks in detail, we will quickly introduce the two software
components, namely the gold standard generator (see subsection 6.1) and the
evaluation component (see subsection 6.2).

14https://pandas.pydata.org/
15Dataset DOI: 10.5281/zenodo.6509715; uploaded and indexed via zenodo; published with

a permissive license; re-usable; metadata is provided.

https://pandas.pydata.org/


6.1. Gold Standard Generator

The gold standard generator is publicly available16. It is implemented as a Java

maven project. The generator can generate either a DBpedia benchmark (see

subsection 6.3) or a synthetic one (see subsection 6.4). Any DBpedia version can

be used, the user merely needs to provide a SPARQL endpoint. A comprehensive

set of unit tests ensures a high code quality. The generator automatically generates

a fixed train-test split for the evaluation framework or any other downstream

application. The split is configurable; for the pre-generated gold standards, an

80-20 split is used. The resulting gold standard is balanced – i.e. the number

of positives equals the number of negatives – and the train and test partitions

are stratified. Hence, any classifier which achieves an accuracy significantly above

50% is capable of learning the test case’s problem type from the vectors to some

extent.

It is important to note that the generator only needs to be run by users who

want to build their own gold standards. For analyzing the capabilities of a partic-

ular knowledge graph embedding approach, it is sufficient to merely download17

the official gold standard files online. We recommend using the pre-calculated

gold standards to ensure comparability across publications.

6.2. Evaluation Framework

The evaluator is publicly available18 together with usage examples. It is imple-

mented in Python and can be easily used in a Jupyter notebook. A comprehensive

set of unit tests ensures a high code quality.

The standard user can directly download the gold standard and use the eval-

uation framework. To test class separability, the evaluation framework currently

runs six machine learning classifiers19 (1) decision trees, (2) näıve Bayes, (3)

KNN, (4) SVM, (5) random forest, and (6) a multilayer perceptron network. The

framework uses the default configurations of the sklearn library20.

After training and evaluation, the framework persists multiple CSV files per

test case as well as higher-level aggregate CSV files. Examples of such CSV files

are a file listing the accuracy per classifier and per test case or a file listing the

accuracy of the best classifier per test case. In the case of DBpedia test cases

where multiple domains are available per test case, the results can be analyzed

on the level of each domain separately, or in an aggregated manner on the level

of the test case.

16https://github.com/janothan/DL-TC-Generator
17DOI: 10.5281/zenodo.6509715; GitHub link for the latest version. https://github.com/j

anothan/DL-TC-Generator/tree/master/results
18https://github.com/janothan/dl-evaluation-framework
19The evaluation framework is not restricted to the set of classifiers listed here. New classifiers

can be easily added if desired.
20https://scikit-learn.org/stable/index.html

https://github.com/janothan/DL-TC-Generator
https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/dl-evaluation-framework
https://scikit-learn.org/stable/index.html


6.3. DBpedia Benchmark

We use the DBpedia knowledge graph to create test cases.21 We created SPARQL
queries for each test case (see Table 2) to generate positives, negatives, and hard
negatives. The latter are created by variations such as softening the constraints
in the class constructor or switching subject and object in the constraint. For
example, for qualified relations, a positive example would be a person playing in a
team which is a basketball team. A simple negative example would be any person
not playing in a basketball team, whereas a hard negative example would be any
person playing in a team which is not a basketball team.

Query examples for every test case in the people domain are provided in
Tables 3, 4 and 5. The framework uses slightly more involved queries to vary the
size of the result set and to better randomize results.

In total, we used six different domains: people (P), books (B), cities (C),
music albums (A), movies (M), and species (S). This setup yields more than 200
hand-written SPARQL queries which are used to obtain positives, negatives, and
hard negatives; they are available online22 and can be easily extended e.g. to add
an additional domain. For each test case, we created differently sized (50, 500,
5000) balanced test sets.23

6.4. Synthetic Benchmark

The previous benchmark is realistic and well suited to compare approaches on
differently typed DL constructors.

However, the following aspects have to be considered: (1) DBpedia is a large
knowledge graph, not every embedding approach can be used to learn an em-
bedding for it (or not every researcher has the computational means to do so,
respectively). (2) Depending on the DL constructor and the domain, not enough
examples can be found on DBpedia. (3) It cannot be precluded that patterns cor-
relate, therefore, the fact that an embedding approach can learn a particular class
can only be an indicator that it might learn the underlying constructor pattern,
but the results are not conclusive, since the performance may also hint at the
approach learning a cooccurring pattern. Correlating properties, type biases for
entities, etc. may lead to surprising results in some domains.

Therefore, we complement the DBpedia-based gold standard with a synthetic
benchmark. The idea is to generate a graph that contains the DL constructors
(positive and negative) of interest. The graph can be constructed to resemble
the DBpedia graph statistically but can be significantly smaller (and contain a
sufficient number of positives and negatives), and, by construction, side effects
and correlations which exist in DBpedia can be mitigated to a large extent.

The configurable parameters are numClasses, numProperties, numInstances,
branchingFactor, maxTriplesPerNode, and numNodesInterest (all parameters

21We used DBpedia version 2021-09. The generator can be configured to use any DBpedia

SPARQL endpoint if desired.
22https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/que

ries
23The desired size classes can be configured in the framework.

https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries
https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries
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Figure 3. Illustration of the instance generation, using the class constructor ∃r.T . First, the
pattern is instantiated for the positive example p1 with the edge (p1, r, e5). Then, random edges

are inserted (dashed lines). The edge (e1, r, p1) is removed, because it would turn e1 into an
additional positive example.

are integers). The overall process is depicted in Algorithm 1: First, a class tree
with numClasses classes is constructed in a way that each class has at most
branchingFactor children. Then, numProperties properties are generated. Each
property is assigned to a range and domain from the class tree whereby the first
property has the root node as domain and range type so that every node can
be involved in at least one triple statement. A skew can be introduced so that
domain and range refer with a higher probability to a more general class than to
a specific one. Lastly, we generate instances and assign them to a class as type
which is depicted in Algorithm 1.

Once the ontology is created, numNodesInterest positives and negatives are
generated (adhering to domain/range restrictions). Each class constructor is first
initialized explicitly for the positive examples. Then, for each entity e in the graph
(i.e., positive and negative examples), rand(n) ∈ [1,maxTriplesPerNode] ran-
dom triples are generated which have e as a subject and adhere to the domain and
range definitions, whereby it is checked that no additional positives are created
and no negatives are turned into positives accidentally (see Figure 3).

For version v1 of the gold standard, numClasses=760, numProperties=1,355,
numInstances=10,000, branchingFactor=5, maxTriplesPerNode=11, and num-

NodesInterest=1,000 were chosen. The parameters were chosen to form graphs
which are smaller than DBpedia but resemble the DBpedia graph statistically.
Therefore, the statistical properties of the DBpedia ontology calculated by Heist
et al. [50] were used.

7. Evaluation

7.1. Training Details

RDF2vec We trained 12 RDF2vec embeddings using the configurations listed in
subsection 3.3. For the DBpedia benchmarks, we use version 2021-09. We gener-
ated 500 walks per entity, with a depth of 4, a window size of 5, 5 epochs, and
a dimension of 200. We used the same parameters for the synthetic gold stan-
dard with the exception of dimension = 100 and walks = 100 to account for the
smaller gold standard size. The embeddings were trained using the jRDF2vec24

24https://github.com/dwslab/jRDF2Vec

https://github.com/dwslab/jRDF2Vec


Algorithm 1 Ontology Creation

procedure generateClassTree(numClasses, branchingFactor)
clsURIs← generateURIs(numClasses)
root← randomDraw(clsURIs)
i← 0
workList← newList( )
result← newTree( )
currentURI ← root
for clsURI in clsURIs do

if clsURI = root then
continue

end if
if i = branchingFactor then

currentURI ← workList.removeF irst()
i← 0

end if
result.addLeaf(currentURI, clsURI)
i← i+ 1
workList.add(clsURI)

end for
return result

end procedure

procedure generateProperties(numProperties, classTree)
properties← generateURIs(numProperties)
for property in properties do

property.addDomain( drawDomainRange(classTree, 0.25) )
property.addRange( drawDomainRange(classTree, 0.25) )

end for
return properties

end procedure

procedure drawDomainRange(classTree, p)
result← classTree.randomClass()
while Random.nextDouble > p ∧ ¬(classTree.getChildren(result) == ∅)

do
result← randomDraw(classTree.getChildren(result))

end while
end procedure

procedure generateInstances(numInstances, classTree)
instances← generateURIs(numInstances)
for instance in instances do

instance.type(classTree.randomClass())
end for
return instances

end procedure
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framework [42]. The embedding files are publicly available25 via KGvec2go [51]
and can also be used for other downstream tasks.

Benchmark Models We trained DBpedia embeddings using seven benchmark
models:

• TransE [27] with L1 norm
• TransE [27] with L2 norm
• TransR [28]
• ComplEx [20]
• DistMult [20]
• RESCAL [24]
• RotatE [21]

The above-mentioned benchmark models were trained using the DGL-KE
framework26 [52], using the respective default parameters, with 200 dimensions
for DBpedia and 100 for the synthetic datasets, as for RDF2vec. The models are
publicly available and can also be used for other downstream tasks.27

7.2. Results on the ML Gold Standard

The results for the ML gold standard introduced in section 4 are provided in
Tables 6 (classification and clustering), 7 (regression and semantic analogies),
and 8 (entity relatedness and document similarity).

Classification On the classification task, it can be observed that the order-aware
RDF2vec variants lead – with few exceptions – to generally better or the same
results. It is further observable that the SG configuration outperforms the CBOW
configuration. Within the RDF2vec family, the classic and the e-walks variant
achieve the best results. Concerning the benchmark models, the overall best re-
sults are achieved using TransE with L2; RDF2vec SG configurations are close to
the best scores.

Clustering Concerning the benchmark models, the overall best results are
achieved using TransE with L2. Concerning the RDF2vec configurations, the re-
sults are rather inconclusive.

Regression Again, on the regression tasks, improvements can be observed for the
order-aware variants which outperform non-order-aware variants. Again, TransE
with L2 regularization achieves the best results in most cases with RDF2vec SGoa

being the runner-up.

Semantic Analogies On the semantic analogies task, the classic RDF2vec variant
with SG configuration performs best in three out of four cases. Improvements by
the order-aware variants cannot be observed on this task. RESCAL and RotatE
perform comparatively badly on this task.

25http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/
26https://github.com/awslabs/dgl-ke
27http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-

rdf2vec/

http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/
https://github.com/awslabs/dgl-ke
http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/
http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/


Entity Relatedness and Document Similarity On the entity relatedness task, the
e-RDF2vec variants perform comparatively well with e-RDF2vec SG being the
best model. This is intuitive since the e-RDF2vec variant can be expected to
pick up the notion of entity relatedness best. On the document similarity task,
it can be observed that the p-RDF2vec variant outperforms the other RDF2vec
configurations. Again, this finding is intuitive since the configuration is expected
to pick up fine-grained entity similarity best – for example, for distinguishing
politics from sports texts, it is not sufficient to know that both mention persons,
but it is required to distinguish athletes from politicians.

7.3. Results on DLCC

As outlined in subsection 6.1, the DLCC benchmarks are balanced. That means
that a performance significantly above 50% indicates that the model learns the
constructor to some extent. It is important to highlight that Tables 9 and 10 state
the best results out of six classifiers (see subsection 6.2). In order to determine
whether the stated result for an embedding configuration for a particular test case
is significant, we performed an approximated one-sided binomial significance test
with α = 0.05. Since multiple classifiers were trained for each test case, we applied
the conservative Bonferroni correction [53] of α to account for the multiple testing
problem.

DBpedia Benchmark The results on the DLCC DBpedia benchmark (class size
5,000) are reported in Table 9. For each model, six classifiers were trained resulting
in more than 2,000 classification results. At first sight, it is quickly observable
that all models can learn all tasks comparatively well; all results are statistically
significant. It is, furthermore, visible that the hard test cases are indeed harder.

On the DBpedia gold standard, it can be seen that s-RDF2vec is rather
suitable for similarity-based constructors (tc1, tc2, tc3, tc6) while e-RDF2vec is
doing better on relatedness-oriented constructors (tc04, tc05).

Moreover, we can observe that it seems easier to predict patterns involving
outgoing edges than those involving ingoing edges (cf. tc02 vs. tc01, tc08 vs. tc07,
tc10 vs. tc09, tc12 vs. tc11). Even though the tasks are very related, this can be
explained by the learning process which often emphasizes outgoing directions: In
RDF2vec, random walks are performed in forward direction; similarly, TransE is
directed in its training process. On the DBpedia benchmark, it is observable that
the TransE-L2 configuration performs, overall, best scoring first place in 9 out of
20 instances.

Figure 4 depicts the complexity per domain of the DBpedia gold standard in
a box-and-whisker plot. The complexity was determined by using the accuracy
of the best classifier of each embedding model without hard test cases (since not
every domain has an equal amount of hard test cases). We observe that all domain
test cases are similarly hard to solve whereby the albums, people, and species
domain are a bit simpler to solve than the books and cities domain.

Synthetic Benchmark The results on the synthetic benchmark (class size 1,000)
are reported in Table 10. Again, for each model, six classifiers were trained
whereby only the best performing classifiers’ results are discussed. RDF2vec con-
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Table 8. ML Results for Entity Relatedness and Document Similarity

Approach

Entity Relatedness
(Kendall Tau)

Document Similarity
(Harmonic Mean)

RDF2vec SG 0.747 0.237

RDF2vec SGoa 0.716 0.23

RDF2vec CBOW 0.611 0.283

RDF2vec CBOWoa 0.547 0.209

p-RDF2vec SG 0.432 0.193

p-RDF2vec SGoa 0.768 0.382

p-RDF2vec CBOW 0.568 0.296

p-RDF2vec CBOWoa 0.737 0.256

e-RDF2vec SG 0.832 0.275

e-RDF2vec SGoa 0.8 0.25

e-RDF2vec CBOW 0.726 0.17

e-RDF2vec CBOWoa 0.779 0.111

TransE-L1 0.632 0.388

TransE-L2 0.537 0.398

TransR 0.589 0.484

RotatE 0.432 0.467

RESCAL 0.558 0.358

DistMult 0.432 0.406

ComplEx 0.589 0.387

figurations are performing very well on this gold standard being the best per-
forming embedding model in 10 out of 12 cases. In terms of the best RDF2vec
configuration, the classic CBOW variant achieves the best results in five cases.

The intuition that s-RDF2vec is doing better on similarity-based constructors
while e-RDF2vec is doing better on relatedness-oriented constructors can again
be observed: This time e-RDF2vec is not able to learn tc02 and tc03 which is
intuitive since the approach does not learn the notion of predicate types. On tc04
and tc05, on the other hand, the e-RDF2vec approach performs very well (much
better than s-RDF2vec).

The best benchmark model is RESCAL. RotatE produces more often insignif-
icant results than significant results – the model outperforms pure guessing in
only a third of the cases.

The overall most complicating test case is tc07. Similarly, more than half
of the models are not significantly able to learn tc08. This is remarkable since
the constructors can be almost perfectly predicted on the corresponding DBpedia
gold standards. Hence, we can reason that handling qualified restrictions is a very
intricate task. The second hardest group of tasks is those involving cardinalities
(tc10-tc12).

DBpedia Benchmark vs. Synthetic Benchmark The comparison of the DBpedia
and the synthetic benchmark is particularly intriguing. We can see that the syn-
thetic benchmark is much harder to solve since the results are drastically lower in
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Figure 4. Domain Complexity of the DBpedia Gold Standard (Size Class 5000)

most cases. While there are no insignificant results on the DBpedia gold standard,
there are many for the synthetic one – particularly when it comes to the bench-
mark models. Any class constructors that are easily learnable on the DBpedia
gold standard are hard on the synthetic one. Moreover, the previously reported
superiority of RDF2vecoa over standard RDF2vec [4,16] cannot be observed on
the synthetic data.

dbr:LeBron_James

dbr:Small_Forward

dbr:Los_Angeles_Lakers

dbr:Cleveland_Cavaliers

dbr:LeBron_James_
CareerStation_4

dbr:LeBron_James_
CareerStation_3

dbo:team

dbo:teamdbo:careerStation

dbo:teamdbo:position
dbo:BasketballTeam

rdf:type

rdf:type

Figure 5. Excerpt of DBpedia

Figure 5 shows an excerpt of DBpedia, which we will use to illustrate these
deviations. The instance dbr:LeBron James is a positive example for task tc07 in
Table 4. At the same time, 95.6% of all entities in DBpedia fulfilling the positive
query for positive examples also fall in the class ∃dbo:position.⊤ (which is a tc01
problem), but only 13.6% of all entities fulfilling the query for trivial negatives.
Hence, on a balanced dataset, this class can be learned with an accuracy of 0.91 by
any approach than can learn classes of type tc01. As a comparison to the synthetic
dataset shows, the results on the DBpedia test set for tc07 actually overestimate
the capability of many embedding approaches to learn classes constructed with a
tc07 class constructor. Such correlations are quite frequent in DBpedia but vastly
absent in the synthetic dataset.

The example can also explain the advantage of RDF2vecoa on DBpedia.
Unlike standard RDF2vec, this approach would distinguish the appearance of
dbo:team as a direct edge of dbr:LeBron James as well as an indirect edge con-
nected to dbr:LeBron James CareerStation N , where the former denotes the
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Figure 6. Best DLCC Classifiers on DBpedia and Synthetic. It is important to note that the

total number of test cases varies between the two gold standards – therefore, two separate plots
were drawn.

current team, whereas the latter also denote all previous teams. Those subtle se-
mantic differences of different usages of the same property in different contexts
also do not exist in the synthetic gold standard. Hence, the order-aware variant
of RDF2vec does not have an advantage here. The comparison between DBpedia
and synthetic test cases reveals that most models are not actually learning the
description logic constructor but instead are picking up cross-correlations very
well.

Figure 6 shows the aggregated number of the best classifiers for each embed-
ding on each test case. It is visible that on DBpedia, MLPs work best followed
by random forests and SVMs. On the synthetic gold standard, SVMs work best
most of the time followed by näıve Bayes and MLPs. The differences can partly
be explained by the different size classes of the training sets (MLPs and random
forests typically work better on more data).

7.4. Discussion of the Hypotheses

In this section, the hypotheses stated in section 5 are verified and discussed. We
treat the hypotheses as non-exclusive. That is, we accept the hypotheses if there
is significance that the stated configurations can indeed learn the description logic
constructor; in cases where we hypothesize that the constructor can be learned by
neither configuration, we reject the hypothesis if a single approach can learn the
constructor. However, we do not want to mislead the reader: We underestimated
which other configurations are also capable of learning constructors. We, therefore,
encourage the reader to not just check which hypotheses are accepted but to also
follow the reasoning. Hence, we use the hypotheses as structured discussion points
for a deeper analysis.

Hypothesis 1 The hypothesis can be accepted. It has to be acknowledged
though that – with the exception of e-RDF2vec – all RDF2vec configurations
perform rather well.

Hypothesis 1a/1a’ In fact, out of all RDF2vec configurations, RDF2vecoa and
p-RDF2vecoa are performing best on tc01 and tc02 for DBpedia. On the synthetic
gold standard, this can similarly be observed albeit the improvement of OA does



not account for all RDF2vec variants. The previously discussed directionality bias
in the training likely leads to better results on tc01 compared to tc02.

Hypothesis 1b Particularly on tc03 (synthetic), it is visible that e-RDF2vec can-
not really learn the constructor: None of the configurations performs significantly
better than random guessing. As expected, once the directionality restriction is
lifted, the results generally improve.

Hypothesis 2 The hypothesis can be accepted. Again, however, it has to be
noted that even the p-RDF2vec configuration performs well on tc04 and tc05.
While performing worse than the other configurations, p-RDF2vec is still able to
a small extent to learn the constructor as witnessed by the results on the synthetic
gold standard. The sub-hypotheses, stating that non-order-aware variants per-
form better than order-aware variants, can be rejected. On DBpedia, significant
increases can be observed when using the order-aware variant. Although there are
multiple cases of non-oa variants slightly outperforming order-aware variants on
the synthetic gold standard, there is, overall, also not enough evidence to accept
this hypothesis.

Hypothesis 3 The hypothesis can be accepted. Particularly on the hard tc06
test case, the classic RDF2vec configuration with the order-aware training com-
ponent performs best. It has to be admitted though, that on the synthetic gold
standard the e-RDF2vec variant performs very well. A reason for this may be
the fact that domain/range restrictions can also be found in the synthetic gold
standard which allows to reason on a likely predicate given an object entity.

Hypothesis 4 The hypothesis can only be partially accepted.

Hypothesis 4a The RDF2vecoa configuration is indeed the best performing con-
figuration on tc07 for both gold standards. A look at the synthetic gold standard
reveals that p-RDF2vec cannot learn this constructor.

Hypothesis 4b While we assumed that this constructor cannot be learned by any
configuration, there is indication that at least to a small extent, classic and p-
RDF2vec can learn to recognize the constructor. In both cases, the p-RDF2vecoa
configuration achieves the overall best result. The improvement of the order aware
component can be explained since only this component can detect the inverse
usage of the relationship.

Hypothesis 5 The hypothesis can be accepted. On DBpedia, p-RDF2vec and
classic RDF2vec can learn cardinality restrictions. On the synthetic gold standard,
this is only true for RDF2vec classic and CBOW p-RDF2vec configurations. From
the rather low score (in the 60ies in terms of accuracy), it can be seen that learning
cardinality is rather hard.

Hypothesis 6 This hypothesis can only partially be accepted since multiple
configurations are capable of learning tc12. What can be concluded when compar-
ing hypothesis 6 to hypothesis 5 is that the addition of the type restriction makes
the test cases harder to solve: This can be seen when comparing the scores for tc09
versus tc11 and tc10 versus tc12. e-RDF2vec can surprisingly learn the construc-
tors on DBpedia (even well) – but a look at the synthetic gold standard reveals



that it can neither learn tc11 nor tc12 when correlations are mostly removed. This
finding is intuitive since e-RDF2vec is unaware of the actual predicates within a
graph (it is merely aware of their existence).

8. Conclusion

In this paper, we presented an extensive evaluation of 12 RDF2vec variants and
benchmark models using default benchmarks and DLCC, a newly introduced
benchmark for description logic constructors.

The resource is used to analyze embedding approaches in terms of which kinds
of classes they are able to represent. DLCC comes with an evaluation framework to
easily evaluate embeddings using a reproducible protocol. All DLCC components,
i.e. the gold standard, the generation framework, and the evaluation framework,
are publicly available. Significant efforts were made to comply with the FAIR [49]
principles.28

We have shown that many patterns using DL class constructors on DBpedia
are actually learned by recognizing patterns with other constructors correlating
with the pattern to be learned, thus yielding misleading results. This effect is less
prominent in the synthetic gold standard. We showed that certain DL construc-
tors, particularly qualified restrictions and cardinality constraints, are particularly
hard to learn.

In the future, we plan to extend the systematic evaluation by adding more
gold standard datasets. The synthetic dataset generator also allows for more in-
teresting experiments: We can systematically analyze the scalability of existing
approaches, or study how variations in the synthetic gold standard (e.g., larger
and smaller ontologies) influence the outcome.
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and the Arts Baden-Württemberg and the University of Mannheim.

References

[1] P. Ristoski and H. Paulheim, RDF2Vec: RDF Graph Embeddings for Data Mining, in:

The Semantic Web - ISWC 2016 - 15th International Semantic Web Conference, Kobe,

Japan, October 17-21, 2016, Proceedings, Part I, P. Groth, E. Simperl, A.J.G. Gray,
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