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Abstract. Neuro-Symbolic Artificial Intelligence (AI) focuses on integrating symbolic and sub-symbolic systems to enhance the
performance and explainability of predictive models. Symbolic and sub-symbolic approaches differ fundamentally in how they
represent data and make use of data features to reach conclusions. Neuro-symbolic systems have recently received significant
attention in the scientific community. However, despite efforts in neural-symbolic integration, symbolic processing can still be
better exploited, mainly when these hybrid approaches are defined on top of knowledge graphs. This work is built on the statement
that knowledge graphs can naturally represent the convergence between data and their contextual meaning (i.e., knowledge).
We propose a hybrid system that resorts to symbolic reasoning, expressed as a deductive database, to augment the contextual
meaning of entities in a knowledge graph, thus, improving the performance of link prediction implemented using knowledge
graph embedding (KGE) models. An entity context is defined as the ego network of the entity in a knowledge graph. Given a link
prediction task, the proposed approach deduces new RDF triples in the ego networks of the entities corresponding to the heads
and tails of the prediction task on the knowledge graph (KG). Since knowledge graphs may be incomplete and sparse, the facts
deduced by the symbolic system not only reduce sparsity but also make explicit meaningful relations among the entities that
compose an entity ego network. As a proof of concept, our approach is applied over a KG for lung cancer to predict treatment
effectiveness. The empirical results put the deduction power of deductive databases into perspective. They indicate that making
explicit deduced relationships in the ego networks empowers all the studied KGE models to generate more accurate links.

Keywords: Neuro-Symbolic Artificial Intelligence, Deductive Systems, Knowledge Graph Embeddings, Drug-Drug Interactions

1. Introduction

Neuro-Symbolic Artificial Intelligence is a research field that combines symbolic and sub-symbolic Al mod-
els [1-3]. The symbolic models refer to Al approaches based on handling explicit symbols to conduct reasoning and
support explainability. On the other hand, Al sub-symbolic systems are based on statistical and probabilistic learn-
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ing from data mining and neural network models. Symbolic and sub-symbolic systems differ in how they represent
and manage data to perform reasoning and prediction. As a result, they aim at solving complementary tasks whose
integration has the potential to empower prediction with reasoning supported by symbolic formal frameworks [1,#].
Neuro-symbolic integration aims to bridge the gap between symbolic and sub-symbolic systems; it resorts to trans-
lation algorithms to align symbolic to sub-symbolic representations and improve performance [1, 2, 5]. However, in-
tegrating neuro-symbolic into real-world applications is a challenging task. Even in controlled environments, neufo-
symbolic integration may not be completed performed [6]. For instance, Fernlund et al. [7] describe systems that'use
machine learning to learn relations from expert observations. While these systems are successful in learning, &¢hey
lack the expressive power of symbolic systems. Another example of neuro-symbolic systems combining connectfon-
ist inductive learning and logic programming to solve the problems in the molecular biology and power plant fadfit
diagnosis [8]. Furthermore, Karpathy et al. [9] combine convolutional neural networks with bidirectional recurretit
neural networks over sentences to recognize and label image regions. Despite these advances in neuro-symbodifc Al
integration, symbolic processing is not fully exploited, in particular, if reasoning methods are implemented on tjc?p
of knowledge graphs [5].

Problem Statement and Proposed SolutionWe tackle the problem of link prediction over knowledge graphs
and propose an approach combining symbolic reasoning and sub-symbolic prediction. Our approach mtegra es a
domain-agnostic symbolic system with knowledge graph embedding models. It resorts to symbolic reasoning to
deduce relationships between entities that compose the ego network of the entities in a knowledge graph, wher%the
ego network of an entity is the set of edges connectedvtn the knowledge graph. Thus, contextual knowledge,
represented by ego networks, is enhanced, and the sparsity of knowledge graphs is reduced. Since the behavzipr of
knowledge graph embedding models can be affected in sparse graphs [10], training these models with thesg,en-
hanced ego networks increases the chances of predicting accurate links between entities associated with thesg net-
works. We apply our hybrid approach in the context of lung cancer. The symbolic system implements a deductjye
database to infer drug-drug interactions in lung cancer treatments. Complementary, the sub-symbolic system regorts
to knowledge graph embedding models to predict the effectiveness of a lung cancer treatment. These models tsgns-
form RDF triples representing treatments, their drugs, and interactions among these drugs into a low-dimensignal
continuous vector space that preserves the knowledge graph structure. The integration of both systems enablgg the
prediction of a treatment's response, taking into account the potential effect that drug-drug interactions have on,the
effectiveness of the treatment. 30
Results We assess the performance of the proposed neuro-symbolic system on a knowledge graph built from clini-
cal records of lung cancer patients; it comprises treatments prescribed to these patients, the responses of theseireat-
ments, and the drugs that have been administrated. Additionally, this knowledge graph integrates information about
the drug-drug interactions between the oncological and non-oncological drugs composing a lung cancer treatment.
These drug-drug interactions have been extracted from DrudBatikwing the named entity recognition, and 35
linking techniques proposed by Sakor et al. [11]. The prediction task is de ned in terms of predicting links betweeh
treatments (i.e., heads) and instances of a class representing the different types of lung cancer responses (i.e. 3tails).
The link prediction task is implemented using eleven state-of-the-art KGE models. The experiments are execaged
following different con gurations and baselines, with the goal of assessing the accuracy of our proposed neli®-
symbolic system. Results of a 5-fold cross-validation process demonstrate that our integrated system improve4°the
prediction accuracy of studied state-of-the-art KGE models. Moreover, the outcomes of this experimental study4ut
the power of deductive databases into perspective, showing how they can empower the accuracy of link predicton
tasks. More importantly, these results provide evidence of the paramount role of deductive reasoning and knowléage
graph embedding models in predicting treatment response.

Contributions: This paper resorts to our previous work [12], where we propose a deductive system over knowledje
graphs to formalize the process of drug-drug interactions. Built on these results, we present a hybrid approach é8m-
bining symbolic reasoning expressed by deductive systems with the sub-symbolic expressiveness of KGE moddels
to enhance prediction accuracy. In a nutshell, our novel contributions are:
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(a) Knowledge GrapKG (b) Ego network of entityT 1 (c) Knowledge GraptKG applyingDS
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Fig. 1. Example Knowledge Graph.Figure 1a shows a KG with three classes, ve green entities belonging to Blasg two gray entities

belonging to clas3 reatmentand two red entities belonging to claBesponseFigure 1b illustrates the ego network for the enfity, where

22

the entitiesD1; D2; D3; D4, andlow_effectare the neighbors of 1. Figure 1c shows th&G resulting fromDS (deductive system). The red 23

arrows represent the new deduced links in the ego neteguk). 24
25
1. A domain-agnostic approach able to empower the predictive performance of sub-symbolic systems with axde-

ductive database system. The deductive system reduces data sparsity issues by inferring implicit relationships
in a KG. Consequently, the sub-symbolic system, implemented by KGE models, better represents statemgnts
described in the KG into a low-dimensional continuous vector space. 29

. An extensive evaluation of our neuro-symbolic system with state-of-the-art KGE models demonstrates the

bene t of integrating deductive reasoning and sub-symbolic systems. The evaluation is performed on the prab-
lem of predicting the effectiveness of lung cancer treatments composed of multiple drugs, i.e., polypharmagy
treatments. 33

The rest of the paper is structured as follows: Section 2 presents the preliminaries and a motivating example. §ec—
tion 3 shows the proposed approach and illustrates its main features with a running example. Section 4 applles our
hybrid method in the context of predicting the effectiveness of polypharmacy lung cancer treatments. Results of3 ﬁ1e

empirical evaluation of our method are reported in Section 5. Section 6 analyses the state-of-the-art. F|nally We

close with the conclusion and future work in Section 7.

39
40
41

2. Preliminaries and Motivation

42

Knowledge Graphs(KGs) are data structures converging data and knowledge as factual statements of a graph éata

model [13, 14]. Formally, a knowledge graph is a 10-tup@= (V. E;L;C;I;D;R;N ;ega ), where:

45

V is a set of nodes corresponding to concepts (e.g., classes and entities). 46
E V L Visasetofedgesrepresenting relationships, i.e., tr{{ggs o), between concepts. 47
L is a set of properties. 48
Cisasetofclasses V. 49
I : V! Cisafunction that maps each entityVhto a clas<C. 50

D:L! Cmaps a property to the class that corresponds to the domain of the property. 51
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— R:L! C maps each property to a class that corresponds to the range of the property.

— N : V! 2V where2' represents the power set of nodésN (v) de nes the neighbors of the entity i.e.,
N (v) = fvij(v;r;vi) 2 E_ (vi;r;v) 2 Eg.

—ego: V! 2V LV the functionegd:) represents ego networks in the knowledge gragqv) as-
signs to each concept ¥ the set of labeled edges, wherds in the subject or object positioegdV) =
f(ug;r;u)j(ur;r;ug) 2 E”™ (up = v_ Uz = V)g. Theegqv) de nes the ego network of the entity

:2V1 2Y LV The function (:) returns a set of triples between the pairs of elements in the injuisif
set of entities iV, (F) = f(vy;r;v2)j(ve;r;v2) 2 ENvp 2 F~ v, 2 Fg. The function (:) returns the edges
between pairs of entities in the input $et

© 0O N O U~ W N P

=
o

Figure la depicts a knowledge grapkKG, where the set of classes are represented Qy =
f Drug; TreatmentResponsg The class for each entity is represented by the funcition e.g., the entityT 1
belongs to the clasreatmentandl (T1) = TreatmentFor the propertyhas response L, the domain is de ned
by the functionD(has responsg = Treatment while the range iRR(has responsg = ResponseFigure 1b
illustrates the ego network of the entifyl, where the neighbors of the entifyl are de ned byN (T1) = 15
f D1; D2; D3; D4; low_effecy. Furthermore, the set of edges between pairs of entities in the set of neighbors of entity
T1lis dened by (N (T1)) = f(D1;interacts with; D2);(D2;interacts with; D4); (D3;interacts with; D2)g, 17
where we can observe the three triples in Figure 1a. Note that althowgkffects in the ego network of the entity ¢
T1, this entity is not related to any other entity in this ego network. 19

2
An ideal knowledge graph An ideal knowledge graph is a knowledge grag®°= (V.E%L;C;1;D;R;N ;egq ) 22
that contains all the true existing relations between entitias ifihe Closed World Assumption (CWA) is assumed ,
onKG?, i.e., what is unknown to be true KGCit is false. 3
An actual knowledge graph An actual knowledge grapkG = (V.E;L;C;I;D;R;N ;ega ) is a knowledge 24
graph that follows the assumption Open World Assumption (OWA), i.e., what is not known to be true is jusj
unknown and may be true. 2%
A complete knowledge graph A complete knowledge grapKGeomp = (V;Ecomp L;C;I;D;RN ;egg ) is a 27
knowledge graph, which includes a relation for each possible combination of entitieblite that all relationships 54
in KG¢omp are not necessarily declared as true (w.r.t. domain knowledge). 29
A knowledge graptKG may only contain a portion of the edges representadGf, i.e., E  E® KG represents g
those relations that are known but it is not necessarily complete. On the other handKGiggg is a complete 3
knowledge graphE ~ E°  Ecomp The set of missing edges KG is dened as ( E%E) = E° E,ie. itis 2
the set of relations existing in the ideal knowledge gr&@? that are not represented iG. Figure 2 illustrates 33
three knowledge graphs. Figure 2a is an ideal knowledge graph that states that only three relationships are trues,The
actual knowledge graph, presented in Figure 2b, is incomplete and only includes two relatiofGii2sB) is 35
unknown and is not part of the current knowledge graph. Figure 2c illustrates a complete knowledge graph, witlg a
relation for each combination of entitiesVhand properties ih.. All the possible relationships are included in this 37

graph. 38
An abstract target prediction over a knowledge graptKG is dened in terms of a tuple = 39
hKG r; prediction DS; KGEi: 40

— KGis a knowledge grapKG = (VLE; L;C;I;D;R;egaN; ) “

42
43
44
45
46
47
The deductive syster®S derives new facts from inference rules and facts stored in a database [15]; it is exs
pressed as a set of extensional and intensional rules in Datalog. A Datalog rule corresponds to a Horn clause 446],
Li;:5Ln ) Lo, where each; is a literal of the formp;(ty; :::;tki). P is a predicate symbol arig are terms. A 50
term is either a constant or a variable. The right-hand side of a Datalog clause is the head, and the left-hand=side

r represents a prediction propenty? L.

predictionindicates the head or the tail of triples to predict. A tail prediction of tripkes; ti is the process of
nding t for the incomplete tripldh; r; ?i, head predictions can be de ned analogously.

— DS is a deductive database system o&.

KGE is a knowledge graph embedding model oK&.
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(a) Ideal Knowledge GrapKG° (b) Actual Knowledge GrapKG (c) Complete Knowledge Graph
KGcomp

Fig. 2.Example of actual, ideal, and complete knowledge graph

is its body. Clauses with an empty body represent facts. A Datalog programast satisfy the following safety
conditions; each fact d? is ground, and each variable that occurs in the head of a rifenafist also occur in the

body of the same rule. A rule is safe if all its variables are bounded, where any variable appearing as an argument
in a body predicate is bounded. Datalog considers two sets of clauses: a set of ground facts called the Extensjgnal

© 0O N O U~ W N P
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15
16
17

Database (EDB) and a Datalog progréhtalled the Intensional Database (IDB). The predicates in the EDB andho
IDB are divided into two disjoint sets, EDB predicates, which occur in the EDB, and the IDB predicates, which
occur in IDB. The head predicate of each claus®@is an IDB predicate, and the EDB predicate can occur in the 22
body of the rule. IfC; andC, are the domain and range ofespectively, then EDB comprises ground facts of the 23

form: p(s;0) where the triplg(s; p;0) 2 egdv) [ (N (v)), andl(v) 2 f Cy;C,g. The EDB in ourDS contains
ground facts from the ego networks and their neighbors. Given a prediction prapertyas responsave know
the domainD(has responsg = Treatmentand rangeR(has responsg = ResponseFigure 1a shows entities
of type T reatmentand entities of typé&kesponséor the domain and range of the propehiasis responserespec-
tively. The EDB comprises all the ground facts de ned by the ego netwed®&T 1); egq T2); egdlow_effec}, and
egdeffectivd, and their neighbors(N (T1)); (N (T2)); (N (Tlow_effec)), and (N (effective), where entities
T1andT2 belong to clas3 reatmentandlow_effectandeffectivebelong to the clasResponse

An example of EDB is the set of facfsnteracts with(D1; D2);interacts with(D2; D4)g, where the property
interacts with 2 L and the entitieg D1; D2; D4g V. The predicaténteracts with represents interactions be-
tween two drugs. LeP(1) be a Datalog program (IDB) containing the following clauses:

rulel interactsWiti{A; X) ) inferredinteractiofA; X):
rule2 inferredinteractioriB; X); interactsWitl{A; B) ) inferredinteractiorfA; X):

The predicaténferredinteractiofA; X) is an IDB predicate, anthteractsWitl{A; X) is an EDB predicate. Rule
rule2 states that exist ainferred_interactiorbetween drugh andX, if there is another dru@ which interacts with
A with the predicaténteracts with, and there is ainferred_interactionfrom B to X. The evaluation results of
rule? is f inferred_interactioiD1; D4)g, shown in Figure 1c with a red arrow.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1
42

KGE model learns vector representation (i.e., KG embeddings) in a low dimensional continuous vector spage

for entitiesv 2 V and relationse 2 E in a KG. KGE model exploits theKG structure to predict new relations

44

in E. The KGE model resorts to a scoring functionto estimate the plausibility of the vector representation of 4s
a triple, where higher values yield higher plausibility [17]. Link prediction is performed by identifying which 46
vector representation of an entity provides the best values of the scoring funciibtiese entities are added to the 47

incomplete triples as heads or tails.pifediction=tail, then the link prediction task is the process of ndings
the best scoring tail for the incomplete trigte r; 2i :

argmax (h;r;t):
t2v

48
49
50
51
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(a) Oncological Treatment (b) Predicting Response of Oncological Treatment

N
N

Fig. 3.Motivating Example. Figure 3a shows two polypharmacy oncological treatméritsnd T2, represented in RDF. The druB$00193 23
DB00642 andDB00958are part ofT1, and the drug-drug interactions are represented by the projp¢eractsWith The therapeutic response 24
of T1is annotated abw_effectby the propertyhas_responsevhile the therapeutic response B2 is unknown. Figure 3b depicts the ideal 25
RDF graph, where a symbolic system generates a new DDI betidB80193andDB00958 Ideally, a sub-symbolic system detects that both 26
treatments are similar and predicts the effectivened®afs low effective. -

If prediction = head it can be de ned analogously. The state of the art of KGE methods may be negativelgg
impacted by the data sparsity issue, i.e., ground facts that can be used as positive samples to guide KGE traiging
represent only a minor portion. The proposed deductive database system for abstract target prediction alleviateg the
data sparsity issue by enhancing links in the ego netwgdkv), which are managed as new ground facts. 3
Suppose the abstract target prediction is de ned for the current knowledgelg@ptesented in Figurela where .,
the prediction property is = has responseand the prediction corresponds to the tail, igediction= tail. The 34

link prediction task predicts incomplete triplds r; 7, where the heal represents entities of clagseatmenti.e., 35
entitiesh in V such that (h) = Treatmentand the relation is = has response 36

37
2.1. Motivating Example 38

39

We motivate our work in healthcare, speci cally for predicting polypharmacy treatment response. Polypharmagy
is the concurrent use of multiple drugs in treatments, and it is a standard procedure to treat severe diseases, e.g41lung
cancer. Polypharmacy is a topic of concern due to the increasing number of unknown drug-drug interactions (D4s)
that may affect the response to medical treatment. Pharmacokinetics is a type of DOl iceurse of a drug in -~ 43
the body Pharmacokinetics DDIs alter a drug's absorption, distribution, metabolism, or excretion. For example, an
increase in absorption will increase the object drug's bioavailability and vice versa. If a DDI affects the object's drug
distribution, the drug transport by plasma proteins is altered. Moreover, a drug's therapeutic ef cacy and toxicity
are affected when a pharmacokinetics DDI alters the object's drug metabolism. Lastly, if the excretion of an object
drug is reduced, the drug's elimination half-life will be increased. Notice that the pharmacokinetic interactions can
be encoded in a symbolic system. 49

Figure 3a shows two polypharmacy oncological treatments encoded in RDF. We extract the known DDIs betwesen
the drugs of these treatments from DrugBank. However, polypharmacy therapies produce unforeseen DDlssaue
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to drug interactions in the treatment. Since DDIs affect the effectiveness of a treatment, there is a great interest
in uncovering these DDIs. Figure 3b depicts an ideal RDF graph where all the existing relations are explicitly
represented. Dotted red arrows represent DDI between the 8068193 and DB00958 that are generated as 3

the result of DDIs among drugs in the treatment. A Datalog program represents the rules that state when these
DDIs are produced between the drugs administrated in a treatment. The extensional database corresponds t facts
representing explicit relationships; in our case, these facts are extracted from DrugBank. The intensional database
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corresponds to intensional rules that de ne all the combinations of DDIs that may produce new DDIs; they allow
for deducing implicit DDIs in a treatment. The DDI betwd@B00193 andDB00958 increases the information of s
treatmentsTl and T2, enabling both treatments to share more relationships. Then, a sub-symbolic system, e.go, a

knowledge graph embedding model, can explore these enhanced relationships and make a more accurate prediction

of the treatment response by employing the deduced DDIs. For example, the geometridransidplacesT1 and 11

T2 nearby in the embedding space after deducing DDIs and predicts the therapeutic resp@ngedaf result, this 12
neuro-symbolic system enhances treatment information by identifying drug combinations whose interactions rmay
affect treatment effectiveness. We propose an approach that resorts to symbolic reasoning implemented by a Datalog
database and stage-of-the-art KGE models; it deduces DDIs within a treatment. Then, the KGE model embeds all
the knowledge in the graph and predicts treatment responses. Although we depict the method in the contexs of

treatment effectiveness, this approach is domain-agnostic and could be applied to any other link prediction task.7

18

19

3. Proposed Symbolic and Sub-symbolic System 20

21

3.1. Problem Statement 22

23

Given an actual knowledge graptG = (V.E;L;C;1;D;R,egaN; ) and its corresponding ideal knowledge 24

graphKG® = (V:E%L;C;1;D;R,egaN ; ). Given an abstract target prediction over an actual knowledge graphs

KG, = hKGr; prediction DS; KGEi, we tackle thgproblem of predicting relationships ov&G. 26

Given arelationg 2 ( Ecomp E) (i.€., the set of missing edgesk®G), the problem of predicting relationships 27

consists of determining whethe®2 EC, i.e., if a relatiore corresponds to an existing relation in the ideal knowledge 2s

graphKGP. We are interested in nding the maximal set of relationships or e@gebat belongs to the ide&G°, 29
i.e., nd a setE, that corresponds to a solution of the following optimization problem: 30
argmaxjE,\ EY: 31

Ea Ecomp 32

33

3.2. Proposed Solution 34

35
Our proposed solution resorts to a symbolic system implemented by a deductive database to enhance the prgdic-

tive precision of the link prediction task solved by knowledge graph embedding models. The approach assumessthat

a link prediction problem is de ned in terms of an abstract target predictierhKG r; prediction DS; KGEi over 38

a knowledge grapKG = ( V; E;L;C;1;D;R;egaN ; ). 39

A Symbolic System Deductive systenDS corresponds to the deductive databases where the EDB comprises

ground facts of the formp(s,;0), where the triplehs, p;oi 2 egdv) [ (N (V)), I(v) 2 fCy;Co0, C1 = D(r), 41

andC; = R(r). The variablesC; andC, represent the domain and range of the propertgspectively. The IDB 4

contains rules that allow deducing new relationships in the ego netgutk). The computational method executed 43

to empower the ego networkegdV) is built on the results of deductive databases to compute the minimal model ofs

the deductive database[16]. The minimal model corresponds to the instantiations of IDB predicates. This minimal

model is de ned in terms of the xed-point assignme ?;(F)IX that deduces relationships between entijeznd 46
vj in the neighborsN (). The minimal model foDS can be computed in polynomial time in the overall size of 47
the ego networlegdv) and the neighbors(N (v)) for all the entitiesv wherel(v) 2 f C;;C,g, C; = D(r), and 48
C, = R(r). 49
A Sub-symbolic System A model to learn Knowledge Graph Embeddings solves the abstract target predictionso
overKG for the relationr and thepredictionhead or tail. The sub-symbolic system predicts incomplete triples ofs1
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14

Fig. 4. Approach. The input is a knowledge grapKG), an abstract target predictionand a deductive system, and returns a KGE model. The 16
symbolic system is implemented by a deductive sysBES(E DB; IDB) that deduces new relationships in the ego netvem®v) and between 17
their neighbors (N (v)) . Then, the sub-symbolic system implemented bB§GE model employs th&G with the deduced new relationships to
predict incomplete tripleKGE solves the abstract target predictiofor the relatiorr and thepredictionhead or tail.

the wayhh;r; 2i if prediction=tail andh?;r;ti if prediction= head 20
The Integration of Symbolic and Sub-symbolic SystemsThe ego networlegdv) and the edges between their 2!
neighbors (N (v)) are extended with explicit relationships among entities in the neighb¢v by the deductive 22
systemDS. As a result, the symbolic system implementedify alleviates the data sparsity issueKi@ that may 23
negatively affect the learning of tH€GE in the abstract target prediction 24

25
3.3. The Symbolic and Sub-symbolic System Architecture 26

27

Figure 4 depicts the architecture that implements the proposed approach. The architecture receives a knowkfdge

graphKG = (VLE;L;C;I;D;R,egaN; ) and an abstract target prediction= hKG r; prediction DS; KGEi, 29
whereKG is the knowledge graphn,is a property,predictionrepresents the head or tail of triples to prediz§ 30
is the deductive system, atd5E is the knowledge graph embedding. The architecture returns a learned model &%
embeddings. These embeddings are used to solve the target prediction task de ned by 32

The architecture is composed of two main steps. First, the relationships implicitly de ned by the deductive syst&m
are deduced by means of a Datalog program. Second, ¥6ces augmented with new deduced relationships, 34
KGE learns a latent representation of entities and properti&=oh a low-dimensional space. The architecture is 35
agnostic of the method to learn the embeddings. Moreover, our approach is domain-agnostic. For example, it c& be
applied in the context of Industry 4.0 to discover relations between standards and thus solve interoperability isStes

between standardization frameworks [18, 19]. 38
39
3.4. Abstract Target Prediction Task. Running Example 40
41

Albeit illustrated in the context of treatment response, the proposed method is domain-agnostic. It only requites
the de nition of the deductive system to enhance the relationships in the ego network of the entitiese| (v) 2 43

fCy;Cog, Cy = D(r), andC, = R(r). The variablesC; andC, represent the domain and range of the property 44
r, respectively. Figure 5 illustrates the proposed steps to enhance the predictive performance by knowledge graph
embedding models. ThEG shown in Figure BA) is the same as in Figure 1a. Assuming we receive as input4e
the abstract target prediction= hKG r; prediction DS; KGEi, where theKG is represented in FigurgA), the 47
property isr = has responsethe prediction= tail, DS is the deductive system, akdGE is the KGE algorithm. 48
The EDB of theDS comprises all the ground facts of the forp{s; 0), where the tripl€s; p;0) 2 egdVv)[ (N (Vv)), 49
I(v) 2 fCyq;Co0,Cy = D(has responsg andC, = R(has responsg Then, the domain and range of the property 5o
r = has responseare Treatmentand Responserespectively. In addition, the entity type forin ego network 51
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