
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A Neuro-Symbolic System over Knowledge
Graphs for Link Prediction
Ariam Rivas a,b,c,*, Diego Collarana f,g, Maria Torrente d,e and Maria-Esther Vidal a,b,c

a Leibniz University of Hannover, Germany
E-mail: ariam.rivas@tib.eu
b TIB Leibniz Information Centre for Science and Technology, Germany
E-mail: maria.vidal@tib.eu
c L3S Research Centre, Germany
d Department of Medical Oncology, Puerta de Hierro-Majadahonda University Hospital, 28222 Madrid, Spain
E-mail: mtorrente80@gmail.com
e Faculty of Health Sciences, Francisco de Vitoria University, 28223 Madrid, Spain
f Fraunhofer Institute for Intelligent Analysis and Information Systems, Dresden, Germany
E-mail: diego.collarana.vargas@iais.fraunhofer.de
g Universidad Privada Boliviana, Cochabamba, Bolivia

Abstract. Neuro-Symbolic Artificial Intelligence (AI) focuses on integrating symbolic and sub-symbolic systems to enhance the
performance and explainability of predictive models. Symbolic and sub-symbolic approaches differ fundamentally in how they
represent data and make use of data features to reach conclusions. Neuro-symbolic systems have recently received significant
attention in the scientific community. However, despite efforts in neural-symbolic integration, symbolic processing can still be
better exploited, mainly when these hybrid approaches are defined on top of knowledge graphs. This work is built on the statement
that knowledge graphs can naturally represent the convergence between data and their contextual meaning (i.e., knowledge).
We propose a hybrid system that resorts to symbolic reasoning, expressed as a deductive database, to augment the contextual
meaning of entities in a knowledge graph, thus, improving the performance of link prediction implemented using knowledge
graph embedding (KGE) models. An entity context is defined as the ego network of the entity in a knowledge graph. Given a link
prediction task, the proposed approach deduces new RDF triples in the ego networks of the entities corresponding to the heads
and tails of the prediction task on the knowledge graph (KG). Since knowledge graphs may be incomplete and sparse, the facts
deduced by the symbolic system not only reduce sparsity but also make explicit meaningful relations among the entities that
compose an entity ego network. As a proof of concept, our approach is applied over a KG for lung cancer to predict treatment
effectiveness. The empirical results put the deduction power of deductive databases into perspective. They indicate that making
explicit deduced relationships in the ego networks empowers all the studied KGE models to generate more accurate links.

Keywords: Neuro-Symbolic Artificial Intelligence, Deductive Systems, Knowledge Graph Embeddings, Drug-Drug Interactions

1. Introduction

Neuro-Symbolic Artificial Intelligence is a research field that combines symbolic and sub-symbolic AI mod-
els [1–3]. The symbolic models refer to AI approaches based on handling explicit symbols to conduct reasoning and
support explainability. On the other hand, AI sub-symbolic systems are based on statistical and probabilistic learn-

*Corresponding author. E-mail: ariam.rivas@tib.eu.

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:ariam.rivas@tib.eu
mailto:maria.vidal@tib.eu
mailto:mtorrente80@gmail.com
mailto:diego.collarana.vargas@iais.fraunhofer.de
mailto:ariam.rivas@tib.eu


2 A. Rivas et al. / A Neuro-Symbolic System over Knowledge Graphs for Link Prediction

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ing from data mining and neural network models. Symbolic and sub-symbolic systems differ in how they represent
and manage data to perform reasoning and prediction. As a result, they aim at solving complementary tasks whose
integration has the potential to empower prediction with reasoning supported by symbolic formal frameworks [1, 4].
Neuro-symbolic integration aims to bridge the gap between symbolic and sub-symbolic systems; it resorts to trans-
lation algorithms to align symbolic to sub-symbolic representations and improve performance [1, 2, 5]. However, in-
tegrating neuro-symbolic into real-world applications is a challenging task. Even in controlled environments, neuro-
symbolic integration may not be completed performed [6]. For instance, Fernlund et al. [7] describe systems that use
machine learning to learn relations from expert observations. While these systems are successful in learning, they
lack the expressive power of symbolic systems. Another example of neuro-symbolic systems combining connection-
ist inductive learning and logic programming to solve the problems in the molecular biology and power plant fault
diagnosis [8]. Furthermore, Karpathy et al. [9] combine convolutional neural networks with bidirectional recurrent
neural networks over sentences to recognize and label image regions. Despite these advances in neuro-symbolic AI
integration, symbolic processing is not fully exploited, in particular, if reasoning methods are implemented on top
of knowledge graphs [5].
Problem Statement and Proposed Solution: We tackle the problem of link prediction over knowledge graphs
and propose an approach combining symbolic reasoning and sub-symbolic prediction. Our approach integrates a
domain-agnostic symbolic system with knowledge graph embedding models. It resorts to symbolic reasoning to
deduce relationships between entities that compose the ego network of the entities in a knowledge graph, where the
ego network of an entityv is the set of edges connected tov in the knowledge graph. Thus, contextual knowledge,
represented by ego networks, is enhanced, and the sparsity of knowledge graphs is reduced. Since the behavior of
knowledge graph embedding models can be affected in sparse graphs [10], training these models with these en-
hanced ego networks increases the chances of predicting accurate links between entities associated with these net-
works. We apply our hybrid approach in the context of lung cancer. The symbolic system implements a deductive
database to infer drug-drug interactions in lung cancer treatments. Complementary, the sub-symbolic system resorts
to knowledge graph embedding models to predict the effectiveness of a lung cancer treatment. These models trans-
form RDF triples representing treatments, their drugs, and interactions among these drugs into a low-dimensional
continuous vector space that preserves the knowledge graph structure. The integration of both systems enables the
prediction of a treatment's response, taking into account the potential effect that drug-drug interactions have on the
effectiveness of the treatment.
Results: We assess the performance of the proposed neuro-symbolic system on a knowledge graph built from clini-
cal records of lung cancer patients; it comprises treatments prescribed to these patients, the responses of these treat-
ments, and the drugs that have been administrated. Additionally, this knowledge graph integrates information about
the drug-drug interactions between the oncological and non-oncological drugs composing a lung cancer treatment.
These drug-drug interactions have been extracted from DrugBank1 following the named entity recognition, and
linking techniques proposed by Sakor et al. [11]. The prediction task is de�ned in terms of predicting links between
treatments (i.e., heads) and instances of a class representing the different types of lung cancer responses (i.e., tails).
The link prediction task is implemented using eleven state-of-the-art KGE models. The experiments are executed
following different con�gurations and baselines, with the goal of assessing the accuracy of our proposed neuro-
symbolic system. Results of a 5-fold cross-validation process demonstrate that our integrated system improves the
prediction accuracy of studied state-of-the-art KGE models. Moreover, the outcomes of this experimental study put
the power of deductive databases into perspective, showing how they can empower the accuracy of link prediction
tasks. More importantly, these results provide evidence of the paramount role of deductive reasoning and knowledge
graph embedding models in predicting treatment response.
Contributions: This paper resorts to our previous work [12], where we propose a deductive system over knowledge
graphs to formalize the process of drug-drug interactions. Built on these results, we present a hybrid approach com-
bining symbolic reasoning expressed by deductive systems with the sub-symbolic expressiveness of KGE models
to enhance prediction accuracy. In a nutshell, our novel contributions are:

1https://go.drugbank.com
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(a) Knowledge GraphKG (b) Ego network of entityT1 (c) Knowledge GraphKG applyingDS

Fig. 1. Example Knowledge Graph.Figure 1a shows a KG with three classes, �ve green entities belonging to classDrug, two gray entities
belonging to classTreatment, and two red entities belonging to classResponse. Figure 1b illustrates the ego network for the entityT1, where
the entitiesD1; D2; D3; D4, andlow_effectare the neighbors ofT1. Figure 1c shows theKG resulting fromDS (deductive system). The red
arrows represent the new deduced links in the ego networkego(:).

1. A domain-agnostic approach able to empower the predictive performance of sub-symbolic systems with a de-
ductive database system. The deductive system reduces data sparsity issues by inferring implicit relationships
in a KG. Consequently, the sub-symbolic system, implemented by KGE models, better represents statements
described in the KG into a low-dimensional continuous vector space.

2. An extensive evaluation of our neuro-symbolic system with state-of-the-art KGE models demonstrates the
bene�t of integrating deductive reasoning and sub-symbolic systems. The evaluation is performed on the prob-
lem of predicting the effectiveness of lung cancer treatments composed of multiple drugs, i.e., polypharmacy
treatments.

The rest of the paper is structured as follows: Section 2 presents the preliminaries and a motivating example. Sec-
tion 3 shows the proposed approach and illustrates its main features with a running example. Section 4 applies our
hybrid method in the context of predicting the effectiveness of polypharmacy lung cancer treatments. Results of the
empirical evaluation of our method are reported in Section 5. Section 6 analyses the state-of-the-art. Finally, we
close with the conclusion and future work in Section 7.

2. Preliminaries and Motivation

Knowledge Graphs(KGs) are data structures converging data and knowledge as factual statements of a graph data
model [13, 14]. Formally, a knowledge graph is a 10-tupleKG = ( V; E; L;C; I ; D;R;N ;ego; � ), where:

– V is a set of nodes corresponding to concepts (e.g., classes and entities).
– E � V � L � V is a set of edges representing relationships, i.e., triples(s; p;o), between concepts.
– L is a set of properties.
– C is a set of classesC � V.
– I : V ! C is a function that maps each entity inV to a classC.
– D : L ! C maps a property to the class that corresponds to the domain of the property.
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– R : L ! C maps each property to a class that corresponds to the range of the property.
– N : V ! 2V, where2V represents the power set of nodesV. N (v) de�nes the neighbors of the entityv, i.e.,

N (v) = f vi j(v; r; vi) 2 E _ (vi ; r; v) 2 Eg.
– ego : V ! 2V� L� V, the functionego(:) represents ego networks in the knowledge graph.ego(v) as-

signs to each concept inV the set of labeled edges, wherev is in the subject or object position.ego(v) =
f (u1; r; u2)j(u1; r; u2) 2 E ^ (u1 = v _ u2 = v)g. Theego(v) de�nes the ego network of the entityv.

– � : 2V ! 2V� L� V. The function� (:) returns a set of triples between the pairs of elements in the input.IfF is a
set of entities inV, � (F) = f (v1; r; v2)j(v1; r; v2) 2 E ^ v1 2 F ^ v2 2 Fg. The function� (:) returns the edges
between pairs of entities in the input setF.

Figure 1a depicts a knowledge graphKG, where the set of classes are represented byC =
f Drug;Treatment;Responseg. The class for each entity is represented by the functionI(:), e.g., the entityT1
belongs to the classTreatmentandI(T1) = Treatment. For the propertyhas_response2 L, the domain is de�ned
by the functionD(has_response) = Treatment, while the range isR(has_response) = Response. Figure 1b
illustrates the ego network of the entityT1, where the neighbors of the entityT1 are de�ned byN (T1) =
f D1; D2; D3; D4; low_effectg. Furthermore, the set of edges between pairs of entities in the set of neighbors of entity
T1 is de�ned by � (N (T1)) = f (D1; interacts_with; D2); (D2; interacts_with; D4); (D3; interacts_with; D2)g,
where we can observe the three triples in Figure 1a. Note that althoughlow_effectis in the ego network of the entity
T1, this entity is not related to any other entity in this ego network.

An ideal knowledge graph. An ideal knowledge graph is a knowledge graphKG0 = ( V; E0; L;C; I ; D;R;N ;ego; � )
that contains all the true existing relations between entities inV. The Closed World Assumption (CWA) is assumed
onKG0, i.e., what is unknown to be true inKG0 it is false.
An actual knowledge graph. An actual knowledge graphKG = ( V; E; L;C; I ; D;R;N ;ego; � ) is a knowledge
graph that follows the assumption Open World Assumption (OWA), i.e., what is not known to be true is just
unknown and may be true.
A complete knowledge graph. A complete knowledge graphKGcomp = ( V; Ecomp; L;C; I ; D;RN ;ego; � ) is a
knowledge graph, which includes a relation for each possible combination of entities inV. Note that all relationships
in KGcomp are not necessarily declared as true (w.r.t. domain knowledge).
A knowledge graphKG may only contain a portion of the edges represented inKG0, i.e., E � E0. KG represents
those relations that are known but it is not necessarily complete. On the other hand, sinceKGcomp is a complete
knowledge graph,E � E0 � Ecomp. The set of missing edges inKG is de�ned as�( E0; E) = E0 � E, i.e., it is
the set of relations existing in the ideal knowledge graphKG0 that are not represented inKG. Figure 2 illustrates
three knowledge graphs. Figure 2a is an ideal knowledge graph that states that only three relationships are true. The
actual knowledge graph, presented in Figure 2b, is incomplete and only includes two relationships;(C; p2; B) is
unknown and is not part of the current knowledge graph. Figure 2c illustrates a complete knowledge graph, with a
relation for each combination of entities inV and properties inL. All the possible relationships are included in this
graph.
An abstract target prediction over a knowledge graphKG is de�ned in terms of a tuple� =
hKG; r; prediction; DS; KGEi :

– KG is a knowledge graphKG = ( V; E; L;C; I ; D;R;ego;N ; � ).
– r represents a prediction property,r 2 L.
– predictionindicates the head or the tail of triples to predict. A tail prediction of tripleshh; r; ti is the process of

�nding t for the incomplete triplehh; r; ?i , head predictions can be de�ned analogously.
– DS is a deductive database system overKG.
– KGE is a knowledge graph embedding model overKG.

The deductive systemDS derives new facts from inference rules and facts stored in a database [15]; it is ex-
pressed as a set of extensional and intensional rules in Datalog. A Datalog rule corresponds to a Horn clause [16],
L1; :::;Ln ) L0, where eachLi is a literal of the formpi(t1; :::;tki). Pi is a predicate symbol andt j are terms. A
term is either a constant or a variable. The right-hand side of a Datalog clause is the head, and the left-hand side
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(a) Ideal Knowledge GraphKG0 (b) Actual Knowledge GraphKG (c) Complete Knowledge Graph
KGcomp

Fig. 2.Example of actual, ideal, and complete knowledge graph.

is its body. Clauses with an empty body represent facts. A Datalog programP must satisfy the following safety
conditions; each fact ofP is ground, and each variable that occurs in the head of a rule ofP must also occur in the
body of the same rule. A rule is safe if all its variables are bounded, where any variable appearing as an argument
in a body predicate is bounded. Datalog considers two sets of clauses: a set of ground facts called the Extensional
Database (EDB) and a Datalog programP called the Intensional Database (IDB). The predicates in the EDB and
IDB are divided into two disjoint sets, EDB predicates, which occur in the EDB, and the IDB predicates, which
occur in IDB. The head predicate of each clause inP is an IDB predicate, and the EDB predicate can occur in the
body of the rule. IfC1 andC2 are the domain and range ofr respectively, then EDB comprises ground facts of the
form: p(s; o) where the triple(s; p; o) 2 ego(v) [ � (N (v)) , andI(v) 2 f C1;C2g. The EDB in ourDS contains
ground facts from the ego networks and their neighbors. Given a prediction property,r = has_responsewe know
the domainD(has_response) = Treatmentand rangeR(has_response) = Response. Figure 1a shows entities
of typeTreatmentand entities of typeResponsefor the domain and range of the propertyhas_response, respec-
tively. The EDB comprises all the ground facts de�ned by the ego networks:ego(T1); ego(T2); ego(low_effect), and
ego(effective), and their neighbors� (N (T1)); � (N (T2)); � (N (Tlow_effect)) , and� (N (effective)) , where entities
T1 andT2 belong to classTreatment, andlow_effectandeffectivebelong to the classResponse.

An example of EDB is the set of factsf interacts_with(D1; D2); interacts_with(D2; D4)g, where the property
interacts_with 2 L and the entitiesf D1; D2; D4g � V. The predicateinteracts_with represents interactions be-
tween two drugs. LetP(1) be a Datalog program (IDB) containing the following clauses:

rule1 interactsWith(A; X) ) inferredInteraction(A; X):

rule2 inferredInteraction(B; X); interactsWith(A; B) ) inferredInteraction(A; X):

The predicateinferredInteraction(A; X) is an IDB predicate, andinteractsWith(A; X) is an EDB predicate. Rule
rule2 states that exist aninferred_interactionbetween drugA andX, if there is another drugB which interacts with
A with the predicateinteracts_with, and there is aninferred_interactionfrom B to X. The evaluation results of
rule2 is f inferred_interaction(D1; D4)g, shown in Figure 1c with a red arrow.

KGE model learns vector representation (i.e., KG embeddings) in a low dimensional continuous vector space
for entitiesv 2 V and relationse 2 E in a KG. KGE model exploits theKG structure to predict new relations
in E. The KGE model resorts to a scoring function� to estimate the plausibility of the vector representation of
a triple, where higher� values yield higher plausibility [17]. Link prediction is performed by identifying which
vector representation of an entity provides the best values of the scoring function� . These entities are added to the
incomplete triples as heads or tails. Ifprediction= tail, then the link prediction task is the process of �ndingt as
the best scoring tail for the incomplete triplehh; r; ?i :

argmax
t2 V

� (h; r; t):
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(a)Oncological Treatment (b) Predicting Response of Oncological Treatment

Fig. 3.Motivating Example. Figure 3a shows two polypharmacy oncological treatments,T1 andT2, represented in RDF. The drugsDB00193,
DB00642, andDB00958are part ofT1, and the drug-drug interactions are represented by the propertyInteractsWith. The therapeutic response
of T1 is annotated aslow_effectby the propertyhas_response, while the therapeutic response ofT2 is unknown. Figure 3b depicts the ideal
RDF graph, where a symbolic system generates a new DDI betweenDB00193andDB00958. Ideally, a sub-symbolic system detects that both
treatments are similar and predicts the effectiveness ofT2 as low effective.

If prediction = head, it can be de�ned analogously. The state of the art of KGE methods may be negatively
impacted by the data sparsity issue, i.e., ground facts that can be used as positive samples to guide KGE training
represent only a minor portion. The proposed deductive database system for abstract target prediction alleviates the
data sparsity issue by enhancing links in the ego networkego(v), which are managed as new ground facts.

Suppose the abstract target prediction is de�ned for the current knowledge graphKG presented in Figure1a where
the prediction property isr = has_response, and the prediction corresponds to the tail, i.e.,prediction= tail. The
link prediction task predicts incomplete tripleshh; r; ?i , where the headh represents entities of classTreatment, i.e.,
entitiesh in V such thatI (h) = Treatment, and the relation isr = has_response.

2.1. Motivating Example

We motivate our work in healthcare, speci�cally for predicting polypharmacy treatment response. Polypharmacy
is the concurrent use of multiple drugs in treatments, and it is a standard procedure to treat severe diseases, e.g., lung
cancer. Polypharmacy is a topic of concern due to the increasing number of unknown drug-drug interactions (DDIs)
that may affect the response to medical treatment. Pharmacokinetics is a type of DDIs, i.e.,the course of a drug in
the body. Pharmacokinetics DDIs alter a drug's absorption, distribution, metabolism, or excretion. For example, an
increase in absorption will increase the object drug's bioavailability and vice versa. If a DDI affects the object's drug
distribution, the drug transport by plasma proteins is altered. Moreover, a drug's therapeutic ef�cacy and toxicity
are affected when a pharmacokinetics DDI alters the object's drug metabolism. Lastly, if the excretion of an object
drug is reduced, the drug's elimination half-life will be increased. Notice that the pharmacokinetic interactions can
be encoded in a symbolic system.

Figure 3a shows two polypharmacy oncological treatments encoded in RDF. We extract the known DDIs between
the drugs of these treatments from DrugBank. However, polypharmacy therapies produce unforeseen DDIs due
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to drug interactions in the treatment. Since DDIs affect the effectiveness of a treatment, there is a great interest
in uncovering these DDIs. Figure 3b depicts an ideal RDF graph where all the existing relations are explicitly
represented. Dotted red arrows represent DDI between the drugsDB00193 andDB00958 that are generated as
the result of DDIs among drugs in the treatment. A Datalog program represents the rules that state when these
DDIs are produced between the drugs administrated in a treatment. The extensional database corresponds to facts
representing explicit relationships; in our case, these facts are extracted from DrugBank. The intensional database
corresponds to intensional rules that de�ne all the combinations of DDIs that may produce new DDIs; they allow
for deducing implicit DDIs in a treatment. The DDI betweenDB00193 andDB00958 increases the information of
treatmentsT1 andT2, enabling both treatments to share more relationships. Then, a sub-symbolic system, e.g., a
knowledge graph embedding model, can explore these enhanced relationships and make a more accurate prediction
of the treatment response by employing the deduced DDIs. For example, the geometric modelTransHplacesT1 and
T2 nearby in the embedding space after deducing DDIs and predicts the therapeutic response ofT2. As a result, this
neuro-symbolic system enhances treatment information by identifying drug combinations whose interactions may
affect treatment effectiveness. We propose an approach that resorts to symbolic reasoning implemented by a Datalog
database and stage-of-the-art KGE models; it deduces DDIs within a treatment. Then, the KGE model embeds all
the knowledge in the graph and predicts treatment responses. Although we depict the method in the context of
treatment effectiveness, this approach is domain-agnostic and could be applied to any other link prediction task.

3. Proposed Symbolic and Sub-symbolic System

3.1. Problem Statement

Given an actual knowledge graphKG = ( V; E; L;C; I ; D;R;ego;N ; � ) and its corresponding ideal knowledge
graphKG0 = ( V; E0; L;C; I ; D;R;ego;N ; � ). Given an abstract target prediction over an actual knowledge graph
KG, � = hKG; r; prediction; DS; KGEi , we tackle theproblem of predicting relationships overKG.

Given a relation,e 2 �( Ecomp; E) (i.e., the set of missing edges inKG), the problem of predicting relationships
consists of determining whethere 2 E0, i.e., if a relationecorresponds to an existing relation in the ideal knowledge
graphKG0. We are interested in �nding the maximal set of relationships or edgesEa that belongs to the idealKG0,
i.e., �nd a setEa that corresponds to a solution of the following optimization problem:

argmax
Ea� Ecomp

jEa \ E0j:

3.2. Proposed Solution

Our proposed solution resorts to a symbolic system implemented by a deductive database to enhance the predic-
tive precision of the link prediction task solved by knowledge graph embedding models. The approach assumes that
a link prediction problem is de�ned in terms of an abstract target prediction� = hKG; r; prediction; DS; KGEi over
a knowledge graphKG = ( V; E; L;C; I ; D;R;ego;N ; � ).
A Symbolic System: Deductive systemDS corresponds to the deductive databases where the EDB comprises
ground facts of the form:p(s; o), where the triplehs; p;oi 2 ego(v) [ � (N (v)) , I (v) 2 f C1;C2g, C1 = D(r),
andC2 = R(r). The variablesC1 andC2 represent the domain and range of the propertyr, respectively. The IDB
contains rules that allow deducing new relationships in the ego networkego(v). The computational method executed
to empower the ego networksego(v) is built on the results of deductive databases to compute the minimal model of
the deductive database[16]. The minimal model corresponds to the instantiations of IDB predicates. This minimal
model is de�ned in terms of the �xed-point assignment� ego( :)

MIN FIX , that deduces relationships between entitiesvi and
v j in the neighborsN (:). The minimal model forDS can be computed in polynomial time in the overall size of
the ego networkego(v) and the neighbors� (N (v)) for all the entitiesv whereI(v) 2 f C1;C2g, C1 = D(r), and
C2 = R(r).
A Sub-symbolic System: A model to learn Knowledge Graph Embeddings solves the abstract target prediction�
overKG for the relationr and thepredictionhead or tail. The sub-symbolic system predicts incomplete triples of
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Fig. 4.Approach. The input is a knowledge graph (KG), an abstract target prediction� , and a deductive system, and returns a KGE model. The
symbolic system is implemented by a deductive systemDS(EDB; IDB) that deduces new relationships in the ego networkego(v) and between
their neighbors� (N (v)) . Then, the sub-symbolic system implemented by aKGE model employs theKG with the deduced new relationships to
predict incomplete triples.KGE solves the abstract target prediction� for the relationr and thepredictionhead or tail.

the wayhh; r; ?i if prediction= tail andh?; r; ti if prediction= head.
The Integration of Symbolic and Sub-symbolic Systems: The ego networkego(v) and the edges between their
neighbors� (N (v)) are extended with explicit relationships among entities in the neighborsN (v) by the deductive
systemDS. As a result, the symbolic system implemented byDS alleviates the data sparsity issues inKG that may
negatively affect the learning of theKGE in the abstract target prediction� .

3.3. The Symbolic and Sub-symbolic System Architecture

Figure 4 depicts the architecture that implements the proposed approach. The architecture receives a knowledge
graphKG = ( V; E; L;C; I ; D;R;ego;N ; � ) and an abstract target prediction� = hKG; r; prediction; DS; KGEi ,
whereKG is the knowledge graph,r is a property,predictionrepresents the head or tail of triples to predict,DS
is the deductive system, andKGE is the knowledge graph embedding. The architecture returns a learned model of
embeddings. These embeddings are used to solve the target prediction task de�ned by� .

The architecture is composed of two main steps. First, the relationships implicitly de�ned by the deductive system
are deduced by means of a Datalog program. Second, onceKG is augmented with new deduced relationships,
KGE learns a latent representation of entities and properties ofKG in a low-dimensional space. The architecture is
agnostic of the method to learn the embeddings. Moreover, our approach is domain-agnostic. For example, it can be
applied in the context of Industry 4.0 to discover relations between standards and thus solve interoperability issues
between standardization frameworks [18, 19].

3.4. Abstract Target Prediction Task. Running Example

Albeit illustrated in the context of treatment response, the proposed method is domain-agnostic. It only requires
the de�nition of the deductive system to enhance the relationships in the ego network of the entitiesv whereI(v) 2
f C1;C2g, C1 = D(r), andC2 = R(r). The variablesC1 andC2 represent the domain and range of the property
r, respectively. Figure 5 illustrates the proposed steps to enhance the predictive performance by knowledge graph
embedding models. TheKG shown in Figure 5(A) is the same as in Figure 1a. Assuming we receive as input
the abstract target prediction� = hKG; r; prediction; DS; KGEi , where theKG is represented in Figure 5(A), the
property isr = has_response, the prediction= tail, DS is the deductive system, andKGE is the KGE algorithm.
The EDB of theDS comprises all the ground facts of the form:p(s; o), where the triple(s; p; o) 2 ego(v)[ � (N (v)) ,
I (v) 2 f C1;C2g, C1 = D(has_response), andC2 = R(has_response). Then, the domain and range of the property
r = has_responseareTreatmentandResponse, respectively. In addition, the entity type forv in ego network
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