
Semantic Web 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ontology-Based GraphQL Server Generation
for Data Access and Data Integration
Huanyu Li a,b,*, Olaf Hartig a, Rickard Armiento b,c and Patrick Lambrix a,b,d

a Department of Computer Science, Linköping University, Sweden
E-mails: huanyu.li@liu.se, olaf.hartig@liu.se, patrick.lambrix@liu.se
b The Swedish e-Science Research Centre, Linköping University, Sweden
E-mails: huanyu.li@liu.se, rickard.armiento@liu.se, patrick.lambrix@liu.se
c Department of Physics, Chemistry and Biology, Linköping University, Sweden
E-mail: rickard.armiento@liu.se
d Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Sweden
E-mail: patrick.lambrix@liu.se

Abstract. In a GraphQL Web API, a so-called GraphQL schema defines the types of data objects that can be queried, and so-
called resolver functions are responsible for fetching the relevant data from underlying data sources. Thus, we can expect to
use GraphQL not only for data access but also for data integration, if the GraphQL schema reflects the semantics of data from
multiple data sources and the resolver functions can obtain data from these data sources and structure the data according to the
schema. However, there does not exist a semantics-aware approach to employ GraphQL for data integration. Furthermore, there
are no formal methods for defining a GraphQL API based on an ontology. In this paper, we introduce a framework for using
GraphQL in which a global domain ontology informs the generation of a GraphQL server that answers requests by querying
heterogeneous data sources. The core of this framework consists of an algorithm to generate a GraphQL schema based on an
ontology and a generic resolver function based on semantic mappings. We provide a prototype, OBG-gen, of this framework, and
we evaluate our approach over a real-world data integration scenario in the materials design domain and two synthetic benchmark
scenarios (Linköping GraphQL Benchmark and GTFS-Madrid-Bench). The experimental results of our evaluation indicate that:
(i) our approach is feasible to generate GraphQL servers for data access and integration over heterogeneous data sources, thus
avoiding a manual construction of GraphQL servers, and (ii) our data access and integration approach is general and applicable
to different domains where data is shared or queried via different ways.

Keywords: Data Integration, Ontology, GraphQL

1. Introduction

GraphQL is a conceptual framework to build APIs for Web and mobile applications [1]. It was publicly re-
leased by Facebook in 2015 and, since then, the GraphQL ecosystem1 has grown tremendously in terms of li-
braries2 supporting different programming languages (such as Python, Java and JavaScript), tools (such as Apollo
and GraphiQL), and adopters (such as Airbnb, IBM and Twitter). The framework introduces the notion of a schema.
Such a schema of a GraphQL API contains type definitions which specify what data objects can be retrieved from

*Corresponding author. E-mail: huanyu.li@liu.se.
1https://landscape.graphql.org
2https://graphql.org/code/

1570-0844/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:huanyu.li@liu.se
mailto:olaf.hartig@liu.se
mailto:patrick.lambrix@liu.se
mailto:huanyu.li@liu.se
mailto:rickard.armiento@liu.se
mailto:patrick.lambrix@liu.se
mailto:rickard.armiento@liu.se
mailto:patrick.lambrix@liu.se
mailto:huanyu.li@liu.se
https://landscape.graphql.org
https://graphql.org/code/

2 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the API. The framework also contains a form of query language for expressing such data retrieval requests. List-
ing 1 depicts a GraphQL schema example. Based on this schema, Figure 3 shows a GraphQL query example and
corresponding query result. A third component of GraphQL are resolver functions, which are typically used for
executing GraphQL queries in a GraphQL server. That is, such resolvers specify—in terms of program code—how
data related to the various elements of a GraphQL schema has to be fetched from underlying data sources.

GraphQL could be used to integrate data from different data sources by building a GraphQL server over these
sources, in which the GraphQL schema provides a view over data from multiple sources, and the resolver func-
tions contain implementations for accessing multiple sources. However, a semantics-aware approach to employing
GraphQL for data integration does not exist. The approaches in [2] and [3] introduce how to use GraphQL for data
federation. However, they are not semantics-aware. The semantics of data are not explicit in a machine-processable
form which means the developer needs to write program code (i.e., resolver functions) to populate the various ele-
ments of a GraphQL schema. Furthermore, there are no formal methods for defining a GraphQL schema. The devel-
opers have to define a GraphQL schema manually. The aim of this paper is to provide a semantics-aware approach
to employ GraphQL for data integration, with formal methods to generate the GraphQL server.

Research problem: This paper focuses on the following question: How can ontologies be leveraged to generate
GraphQL APIs for semantics-aware data access and data integration?

Contributions: To address the research question, we propose a framework for GraphQL-based data access and
integration in which an ontology drives the generation of a GraphQL server.3 More specifically, given an ontology
as an integrated view of data from multiple data sources, the first contribution is that we propose and implement a
method for generating a GraphQL schema based on this ontology such that the schema becomes a view of the data
to be integrated. Then, the second contribution is that we present a generic approach to create a GraphQL server that
is capable to get data from the corresponding data sources by relying on semantic mappings that use the ontology.

The remainder of the paper is organized as follows. We provide the relevant background regarding ontologies,
description logics, data integration and GraphQL in Section 2. We outline the GraphQL-based framework in Sec-
tion 3 and elaborate on the implementation of this framework in Sections 4 and 5. Section 6 introduces related work.
Section 7 presents an evaluation based on a real-world data integration scenario in the materials design domain
and evaluations based on two synthetic benchmark scenarios, the Linköping GraphQL Benchmark (LinGBM) and
GTFS-Madrid-Bench. Finally in Section 8, we present concluding remarks and directions for future work.

2. Background

This section provides background information on ontologies, description logics, data integration and GraphQL.

2.1. Ontologies and Description Logics

The term ontology originates in philosophy, in which it is the science of what is, of the kinds and structures
of objects, properties, and relationships in every area of reality [4, 5]. Ontologies can be viewed, intuitively, as
defining the terms, relations, and rules that combine these terms and relations in a domain of interest [6]. Through
ontologies, people and organizations are able to communicate by establishing a common terminology. They provide
the basis for interoperability between systems and are applicable as an index to a repository of information as
well as a query model and a navigation model for data sources. Moreover, they are often used as a foundation
for integrating data sources, thereby alleviating the heterogeneity issue. The benefits of using ontologies are their
improved reusability, share-ability and portability across platforms, as well as their increased maintainability and
reliability. On the whole, ontologies allow a field to be better understood and allow information in that field to be
handled much more effectively and efficiently (e.g., knowledge representation for bioinformatics discussed in [7]).

From a knowledge representation point of view, ontologies usually contain four components: (i) concepts that
represent sets or classes of entities in a domain, (ii) instances that represent the actual entities, (iii) relations, and
(iv) axioms that represent facts that are always true in the topic area of the ontology. Relations represent relation-

3All the material related to the prototype implementation (OBG-gen) is available online at https://github.com/LiUSemWeb/OBG-gen.

https://github.com/LiUSemWeb/OBG-gen

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

University

Author

Professor

Department

xsd:string
departments

UniversityID

xsd:stringAuthorID

rdfs:subClassOf xsd:string
AuthorID

xsd:string
DepartmentID

doctoralDegreeFrom

xsd:string
head

Figure 1. Example of an ontology.

ships among concepts. Axioms represent domain restrictions, cardinality restrictions, or disjointness restrictions.
Depending on the components and information related to the components they contain, ontologies can be classified.
Figure 1 represents an example ontology for the university domain. The open-headed arrows represent axioms that
represent is-a relationships that is, if A is a B, then all entities belonging to concept A also belong to concept B.
We say that A is a sub-concept of B. In this example Professor is a sub-concept of Author. Therefore, all
Professor entities are Author entities. The closed-headed arrows represent general relations among concepts
other than is-a relations. For instance, the Professor concept has a connection to the University concept rep-
resented by the doctoralDegreeFrom relation. Additionally, a relation can exist between a concept and a data
type reference. For instance, University has a connection to the data type reference xsd:string represented
by the UniversityID relation. This means that each entity of the University concept can be associated with
a string type value by having a UniversityID connection.

To formally define the above concepts and relationships, we need representation languages. Description logics
(DL) are a family of knowledge representation languages. There are three basic building blocks of such a language,
namely: (i) atomic concepts (unary predicates) such as University and Department, (ii) atomic roles (bi-
nary predicates) such as departments, and (iii) individuals (constants) [8]. Complex concepts and roles can be
built by using atomic concepts and logical constructors (e.g., conjunction (⊓), disjunction (⊔), universal restric-
tion (∀) and existential restriction (∃)). Axioms can be defined using general concept inclusions (⊑). For instance,
the general concept inclusion (GCI) University ⊑ ∀departments.Department represents the fact that
University is a sub-concept of the concept ∀departments.Department that represents all entities that may
have departments relations to entities and if so, these latter entities must belong to the Department concept;
an assertion University(Linköping University) means that the instance Linköping University belongs to the
University concept. A DL TBox is a finite set of GCIs and a DL ABox is a finite set of assertions.

2.2. Data Integration

Data integration deals with combining data that resides at multiple different sources [9–11]. Ideally, a data inte-
gration system should enable unified access to a number of data sources [9, 11]. Formally, according to [9], a data
integration system can be formalized as a triple ⟨G,S,M⟩, where,

– G is the global schema, expressed in a language LG over an alphabet AG ;
– S is the source schema, expressed in a language LS over an alphabet AS ;
– M is the mapping between G and S, constituted by a set of assertions that define mappings from queries

over the source schema S to queries over the global schema G (similarly for mappings from queries over G to
queries over S). Such a mapping specifies correspondences between concepts in the global schema and those
in the source schema.

Ontology-based data integration (OBDI) is a form of data integration in which an ontology plays the role of a
global schema that captures domain knowledge [12]. Usually, in an information system with only one single data
source, the formal treatment of OBDI is identical to that of ontology-based data access (OBDA) [12, 13]. In this
paper, we generally refer to both OBDI and OBDA as OBDA. OBDA, as a semantic technology, aims to facilitate
access to different underlying data sources [14]. Traditionally, these underlying data sources are considered to be

4 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

relational databases. Ontologies play the role of global views over multiple data sources. There are different ways to
implement an OBDA system. Generally, these systems can be categorized into two types, namely, data warehouse-
based approaches and virtual approaches. These two categories of methods both make use of semantic mappings in
order to overcome the differences between ontologies and local schemas, but in different ways [15, 16]. In a data
warehouse-based approach, data from multiple sources are usually loaded or stored in a centralized storage, which is
the warehouse [11, 17], based on semantic mappings. We refer to the data in such warehouses as materialized data.
Depending on the aims or functionalities of a system, the materialized data could be stored in local databases or
transformed into RDF graphs. Therefore, queries are evaluated against the materialized data. In a virtual approach,
data is retained at the original sources and mediators are used to translate queries defined in terms of a global or
mediated schema into queries defined in terms of each data source’s local schema, based on semantic mappings.
Therefore, queries are evaluated and executed against each data source. SPARQL queries are widely supported by
data integration systems that use ontologies as global schemas.

A number of semantic mapping definition languages have been proposed over the years. One such language is
R2RML (RDB to RDF Mapping Language), one of the two recommendations by the RDB2RDF W3C Working
Group4 to define semantic mappings [18]. It supports transformation rules defined by users, while the other recom-
mendation, Direct Mapping [19], does not. Another language is RDF Mapping Language (RML) [20, 21], which
allows underlying data in formats beyond relational databases and is a superset of R2RML. RML allows data from
CSV, JSON, and XML data sources. In our work we make use of RML and we introduce RML in more details in
Section 5.2.

2.3. GraphQL

GraphQL schemas and GraphQL resolver functions are basic building blocks in the implementations of GraphQL
servers. The former describe how users can retrieve data using GraphQL APIs. The latter contain program code in-
cluding how to access data sources and structure the obtained data according to the schema. We introduce GraphQL
schemas and GraphQL resolver functions in Section 2.3.1 and Section 2.3.2, respectively.

2.3.1. GraphQL Schemas
In a GraphQL API, the GraphQL schema defines types, their fields, and the value types of the fields. Such a

schema represents a form of vocabulary supported by a GraphQL API rather than specifying what the data instances
of an underlying data source may look like and what constraints have to be guaranteed [22]. There are six different
(named) type definitions in GraphQL, which are scalar type, object type, interface type, union type, enum type and
input object type. Listing 1 depicts a GraphQL schema example.

An object type represents a list of fields and each field has a value of a specific type such as object type or scalar
type. A scalar is used to represent a value such as a string. In Listing 1, there are three basic object type definitions,
which are University (line 1 to line 4), Department (line 5 to line 8), and Professor (line 12 to line 15).
They all have field definitions which represent the relationships to scalar types or to other object types. For instance,
the University type has a field definition UniversityID of which the value type is String (line 2), and
a field definition departments of which the value type is a list of Departments (line 3). GraphQL allows
defining abstract types by supporting the interface type and the union type. An interface type defines a list of fields
and allows object types to implement. An object type can then implement an interface type with the requirement
that the object type includes all fields defined by the interface type. The schema in Listing 1 contains an interface
type, Author with an AuthorID field of which the value type is String (line 9 to line 11). The object type
Professor implements Author and must have the same definition for AuthorID field (line 13) as that in
Author. A union type defines a list of possible types. An enum type describes the set of possible values that are in
scalars. For more details of union and enum types, we refer the reader to the latest GraphQL specification in [1].

GraphQL allows fields to accept arguments to configure their behavior [1]. These arguments can be de-
fined by input object types. An input object type defines an input object with a set of input fields; the in-
put fields are either scalars, enums, or other input objects. This allows arguments to accept arbitrarily com-

4https://www.w3.org/2001/sw/rdb2rdf/

https://www.w3.org/2001/sw/rdb2rdf/

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 1: Example of a GraphQL schema.

1 type University{
2 UniversityID: String
3 departments: [Department]
4 }
5 type Department{
6 DepartmentID: String
7 head: String
8 }
9 interface Author{

10 AuthorID: String
11 }
12 type Professor implements Author{
13 AuthorID: String
14 doctoralDegreeFrom: [University]
15 }
16 input UniversityFilter{
17 UniversityID: StringFilter
18 departments: DepartmentFilter
19 _and: [UniversityFilter]
20 _or: [UniversityFilter]
21 _not: UniversityFilter
22 }
23 input DepartmentFilter{
24 DepartmentID: StringFilter
25 head: StringFilter
26 _and: [DepartmentFilter]
27 _or: [DepartmentFilter]
28 _not: DepartmentFilter
29 }
30 input StringFilter{
31 _eq: String
32 _in: [String]
33 _neq: String
34 _nin: [String]
35 _like: String
36 }
37 type Query{
38 UniversityList(filter: UniversityFilter): [University]
39 DepartmentList(filter: DepartmentFilter): [Department]
40 AuthorList: [Author]
41 ProfessorList: [Professor]
42 }

plex structs, which can capture notions of filtering conditions. For instance, according to the definitions of
UniversityFilter (line 16 to line 22) and StringFilter (line 30 to line 36), we can define an input
argument as UniversityID:{_eq:"u1"} to capture the meaning of "UniversityID is equal to ‘u1’", where
_eq represents the equal to operator. In our approach, _and, _or and _not are used to represent boolean ex-
pressions. For instance, _or:[{UniversityID:{_eq:"u1"}},{UniversityID:{_eq:"u2"}}] rep-
resents the expression "UniversityID is equal to ‘u1’ or ‘u2’". In the example schema, we use the term filter to
represent the name of an input argument (e.g., line 38). Such input arguments defined as input objects are not built-
in constructs of GraphQL. Therefore, their meanings are essentially defined by the program code of the GraphQL
server implementation, i.e., the resolver functions which manage requests to underlying data sources and structure
the returned data according to the GraphQL schema. Our approach presented in Section 4 and Section 5 uses input
arguments named as filter to represent filter conditions.

6 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Listing 2: Example of a resolver function for the UniversityList field.

1 const UniversityList = (university_id) => {
2 let query = "";
3 if(university_id)
4 query = db_conection.select().from(’university’).where(’id’, university_id);
5 else
6 query = db_conection.select().from(’university’);
7 return query.then(rows => rows.map(row => new University(row)));
8 };

Additionally, a GraphQL schema supports defining types that represent operations such as query and mutation.
The schema presumes the Query type as the query root operation type. As Listing 1 shows, in the Query type
definition (line 37 to line 42), there are four field definitions, which are UniversityList, DepartmentList,
AuthorList, and ProfessorList. For instance, the returned type of UniversityList is [University],
a list of Universities. The UniversityList takes an argument defined as UniversityFilter as an
input for capturing the notion of a filtering condition.

2.3.2. GraphQL Resolver Functions
In a GraphQL API, apart from the GraphQL schema defining types, their fields, and the value types of the fields,

resolver functions are responsible for populating the data for fields of types in the GraphQL schema. For instance,
for the schema example shown in Listing 1, there are four fields defined in the Query type. Therefore, in the
GraphQL server implementation, we are supposed to define resolver functions to populate data for these fields,
UniversityList, DepartmentList, AuthorList, and ProfessorList. In our approach, we assume
that the GraphQL schema supports a query that retrieves all the instances for each interface type or object type.
Therefore, we use the name of each interface type or object type concatenated with ‘List’ as the name of a field in
the Query type, where the returned type is a list of the interface or object type. This is a way to state the behavior
of a field in the Query type. We emphasize that what a GraphQL query can retrieve over the underlying data
sources relies on how the resolver function is implemented. For instance, if the underlying data source is a relational
database, the resolver function should contain code specifying the SQL query to be evaluated. Listing 2 illustrates
an example resolver function (written in JavaScript syntax) for the UniversityList field. We assume that the
underlying data source is a relational database that contains a table named university with a column named id. In
line 4, given an input argument (university_id) representing the id of a university, a query is evaluated against the
relational database. In line 7, the data is structured according to the University object defined in the JavaScript code
which corresponds to the University type definition in the schema shown in Listing 1.

3. GraphQL-Based Framework for Data Access and Data Integration

This section introduces an overview of the GraphQL-based framework for data access and integration and two
basic processes in this framework.

3.1. Overview of the Framework

Figure 2 illustrates the framework for data access and integration based on GraphQL in which an ontology drives
the generation of GraphQL server that provides integrated access to data from heterogeneous data sources. These
data sources may be based on different schemas and formats and may be accessed in different ways (e.g., as tabular
data accessed via SQL queries or as JSON-formatted data accessed via API requests). To address the heterogeneity,
the framework relies on an ontology that provides an integrated view of the data from the different sources, and
corresponding semantic mappings that define how the data from the underlying data sources is interpreted or anno-
tated by the ontology (arrows (a)) and (b)). Furthermore, two processes are defined. The first process generates the
GraphQL server. The second process deals with answering queries and is performed after the GraphQL server is set

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

GraphQL Server

GraphQL Schema

Semantic
Mappings

(a)
(b)

(i) (ii)

Databases or Data Sets

Ontology

Generic Resolver
Function

CSVJSON
(2)

(3)

(1)

(4)

GraphQL Server Generation Process

GraphQL Query Answering Process

Figure 2. GraphQL-based framework for data access and integration.

up. In accordance with these two processes, there are two types of intended users or developers in the framework.
One type is users or developers of the GraphQL server generator, who should have prior knowledge of the ontology,
semantic mappings and the domain. The other type is end users using a GraphQL server for data access and inte-
gration, who may or may not be familiar with the Semantic Web or ontologies. For the purpose of writing GraphQL
queries, they need basic prior knowledge of GraphQL, which can be learned from the self-documenting API of the
generated GraphQL server showing the schema. We introduce more details about these two processes in Section 3.2
and Section 3.3, respectively.

3.2. GraphQL Server Generation Process

This process includes generating both a GraphQL schema for the API provided by the server (arrow (i)) and a
generic resolver function (arrow (ii)). Given an ontology as an integrated view of data from multiple data sources,
we propose a method for generating a GraphQL schema based on this ontology, with the result that the schema
becomes a view of the data to be integrated. Additionally, we propose a generic implementation of resolver functions
that takes semantic mappings as inputs, so that the server is able to get data from underlying data sources. In
Sections 4 and 5, we elaborate on the implementation of our approaches for generating a GraphQL schema and the
generic resolver function, respectively. This GraphQL server generation process does not need to be repeated unless
the ontology or the semantic mappings change. After this generation process, the GraphQL server can be set up.

This process requires users or developers who are familiar with the query mechanisms of underlying data sources,
domain ontologies that can be used for data access or integration. Consequently, they can define the scope of the
ontology that will be used for generating the GraphQL schema for the server, as well as the semantic mappings that
will be used for generating the generic resolver function. This type of automatic generation of GraphQL servers
based on ontologies and semantic mappings can also benefit general GraphQL application developers, since it can
eliminate the need to build GraphQL servers from scratch.

3.3. GraphQL Query Answering Process

During this process the query is validated against the GraphQL schema (arrow (1)); the underlying data sources
are accessed via resolver functions, the retrieved data is combined, the data is structured according to the schema
(arrows (2) and (3)); and finally the query result is returned (arrow (4)).

A GraphQL query example and corresponding query result are shown in Figure 3. The example query is: "Get
the university including the head of each department where the UniversityID is ‘u1’". The query takes as an input an
argument defined as filter:{UniversityID:{_eq:"u1"}}, which follows the syntax of the input object
type UniversityFilter. As mentioned in Section 2.3.1, the meaning of an input argument defined as an input
object type is essentially determined by the program code of the resolver functions. Thus the query example shown

8 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1 {
2 UniversityList(
3 filter:{
4 UniversityID:{_eq:"u1"}
5 })
6 {
7 departments{
8 head
9 }

10 }
11 }

(a) Query.

1 {
2 "data":{
3 "UniversityList":
4 [{
5 "departments":[
6 {"head":"Harry,Potter"},
7 {"head":"Sheldon,Cooper"}
8]
9 }]

10 }
11 }

(b) Query Response.

Figure 3. Example GraphQL query/response.

in Figure 3a illustrates one way that we make use of input objects to represent filtering conditions. In general,
however, the input object types can be used in various ways for any field, depending on the implementation of the
GraphQL server.

As mentioned earlier, domain users are the intended users of GraphQL servers, regardless of whether they have
prior knowledge of the Semantic Web or ontologies. In order to write GraphQL queries, they only need to have a
basic understanding of GraphQL, which can easily be explored via the GraphQL API provided by the server.

4. Ontology-Based GraphQL Schema Generation

As mentioned in Section 2.3.1, the GraphQL schema represents a form of vocabulary supported by the GraphQL
API rather than specifying what the data instances of an underlying data source may look like and what constraints
have to be guaranteed. Therefore, we focus on GraphQL language features supporting semantics-aware and inte-
grated data access, namely how data can be queried, rather than reflecting the semantics of a complex knowledge
representation language in the context of a GraphQL schema. Section 4.1 introduces how a GraphQL schema is for-
malized, and Section 4.2 introduces how an ontology is represented via a description logic TBox. Given an ontology
represented in a description logic TBox, the concept and role names can be used to generate types and fields in a
GraphQL schema. The general concept inclusions in a description logic TBox can be used to specify how to connect
generated types and fields in a GraphQL schema. Then, in Section 4.3, we present the core algorithm (Schema Gen-
erator) for generating a GraphQL schema based on an ontology. In Section 4.4, we present the intended meaning of
GraphQL schemas generated by the Schema Generator.

4.1. GraphQL Schema Formalization

According to [22, 23], a GraphQL schema can be defined over five finite sets. These five sets are F ⊂ Fields,
A ⊂ Arguments, T ⊂ Types, S ⊂ Scalars, and D ⊂ Directives where T is the disjoint union of
OT (object types), IT (interface types), UT (union types), IOT (input object types) and S (scalar types). Fields,
Arguments, Types, and Directives are pairwise disjoint, countably infinite sets representing field names,
argument names, type names, and directive names, respectively. Scalars, which is a subset of Types, represents
five built-in scalar types, which are Int, Float, String, Boolean, and ID. Moreover, the GraphQL schema
definition language introduces non-null types and list types, called wrapping types, according to types in Types.
Given a type t belonging to Types, the former is denoted as t!, while the latter is denoted as [t]. WT is used to
denote the set of all types that can be formed by wrapping the types in T, and WS denotes the set of all types that
can be formed by wrapping the scalar types in S. In our current work, considering the knowledge representation
language we use for the ontology (see next section), we do not need directive and union types. Therefore, a GraphQL
schema S is defined over (F, A, T, S) consisting of two assignments that are typeS and implementationS :

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– typeS = typeFS ∪ typeAFS where,

* typeFS : (OT ∪ IT ∪ IOT)× F⇀ T∪ WT, which is a partial function since a type has a set of fields which is a
subset of F, assigns a type to each field that is defined for an object type, an interface type or an input object
type,

* typeAFS : dom(typeFS) × A ⇀ S ∪ WS ∪ IOT, which is a partial function since a field has a set of arguments
which is a subset of A, assigns a type to every argument of fields that are defined for a type;

– implementationS : IT → 2OT∪IT assigns a set of object types or interface types to every interface type.

Figure 4 illustrates a formalized representation of the GraphQL schema shown in Listing 1. In the formaliza-
tion, we have sets F, A, IT, OT, S and IOT, which contains all the field names, argument names, interface type
names, object type names, scalar type names and input object type names, respectively. Additionally, the formal-

– F = {UniversityID, departments, DepartmentID, head, AuthorID, doctoralDegreeFrom, _and, _or, _not,
_eq, _in, _neq, _nin, _like, UniversityList, DepartmentList, AuthorList, ProfessorList};

– A = {filter};
– T = IT ∪ OT ∪ S ∪ IOT where,

* IT = {Author},
* OT = {Query, University, Department, Professor},
* S = {String},
* IOT = {UniversityFilter, DepartmentFilter, StringFilter};

– typeS = typeFS ∪ typeAFS where,

* typeFS = {(University, UniversityID) 7→ String,
(University, departments) 7→ [Department],
(Department, DepartmentID) 7→ String,
(Department, head) 7→ String,
(Author, AuthorID) 7→ String,
(Professor, AuthorID) 7→ String,
(Professor, doctoralDegreeFrom) 7→ [University],
(UniversityFilter, UniversityID) 7→ StringFilter,
(UniversityFilter, departments) 7→ DepartmentFilter,
(UniversityFilter, _and) 7→ [UniversityFilter],
(UniversityFilter, _or) 7→ [UniversityFilter],
(UniversityFilter, _not) 7→ UniversityFilter,
(DepartmentFilter, DepartmentID) 7→ StringFilter,
(DepartmentFilter, head) 7→ StringFilter,
(DepartmentFilter, _and) 7→ [DepartmentFilter],
(DepartmentFilter, _or) 7→ [DepartmentFilter],
(DepartmentFilter, _not) 7→ DepartmentFilter,
(StringFilter, _eq) 7→ String,
(StringFilter, _in) 7→ [String],
(StringFilter, _neq) 7→ String,
(StringFilter, _nin) 7→ [String],
(StringFilter, _like) 7→ String,
(Query, UniversityList) 7→ [University],
(Query, DepartmentList) 7→ [Department],
(Query, AuthorList) 7→ [Author],
(Query, ProfessorList) 7→ [Professor]};

* typeAFS = {((Query, UniversityList), filter) 7→ UniversityFilter,
((Query, DepartmentList), filter) 7→ DepartmentFilter};

– implementationS = {Author 7→ {Professor}}.

Figure 4. The formalization of the GraphQL schema shown in Listing 1.

10 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
The syntax and semantics for the description logic used in our approach.

Name Syntax Semantics

Construct

Top concept ⊤ ∆I

Atomic concept P PI ⊆ ∆I

Role R RI ⊆ ∆I ×∆I

Attribute A AI ⊆ ∆I ×∆I
D

Datatype d dI ⊆ ∆I
D

Conjunction P ⊓ Q PI ∩ QI

Role value restriction ∀R.P {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI → y ∈ PI}
Role qualified number restriction = 1R.P {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI ∧ y ∈ PI}| = 1}
Attribute value restriction ∀A.d {x ∈ ∆I | ∀y ∈ ∆I

D : (x, y) ∈ AI → y ∈ dI}
Attribute qualified number restriction = 1A.d {x ∈ ∆I | |{y ∈ ∆I

D | (x, y) ∈ AI ∧ y ∈ dI}| = 1}

TBox GCI P ⊑ Q PI ⊆ QI

ABox
Concept assertion P(a) aI ∈ PI

Role assertion R(a, b) (aI , bI) ∈ RI

Attribute assertion A(a, v) (aI , vI) ∈ AI

ization contains field declarations in the set typeFS ; argument declarations in typeAFS ; object types implementing
interface types declarations in implementationS . For instance, (University,UniversityID) 7→ String
declares that the University type has a field UniversityID of which the returned type is String;
((Query,UniversityList),filter) 7→ UniversityFilter declares that the UniversityList field
accepts an input argument which is defined as the type UniversityFilter; Author 7→ {Professor} de-
clares that the Professor type is one of the types that implement the interface Author.

4.2. Ontology Representation by a Description Logic TBox

In this work we assume that the ontology is represented by a TBox in a description logic which is an extension
of FL0 by adding qualified number restrictions and datatypes. FL0 allows atomic concepts, the universal concept,
intersection and value restriction [24]. This description logic can represent the semantics that can be reflected in
a GraphQL schema for data access and integration where the schema follows the GraphQL schema definition lan-
guage. Note that we do not aim to represent the full ontology in DL, but that, for our purposes, we only need the part
of the ontology that is needed for data access. Therefore, we only use the DL constructors that cover the existing
GraphQL features for data access.

The syntax and semantics of the description logic used in our approach are shown in Table 1. The introduction of
datatypes is based on the work presented in [25] and [26]. Let NC, NR, NA, and D be disjoint finite sets of concept
names, role names, attribute names, and datatype names respectively. An interpretation I consists of a non-empty set
∆I representing the domain of individuals, and an interpretation function ·I . In addition, the interpretation includes
an interpretation domain for data values ∆I

D which is disjoint from the domain of individuals ∆I [25]. A datatype,
such as integer, is interpreted as a subset of ∆I

D and a value such as the integer 5 is interpreted as an element of ∆I
D.

Thus, the interpretation function ·I assigns to each atomic concept P ∈ NC a subset PI ⊆ ∆I , to each d ∈ D a set
dI ⊆ ∆I

D, to each role r ∈ NR a relation rI ⊆ ∆I ×∆I , to each attribute a ∈ NA a relation aI ⊆ ∆I ×∆I
D, to each

individual name i an element iI ∈ ∆I , and to each data value v an element vI ∈ ∆I
D.

A TBox over NC, NR, NA and D is a finite set of general concept inclusions (GCI) where each GCI is a statement
in the form of B ⊑ C, where B and C are concepts. For generating GraphQL schemas, we use normalized TBoxes
that contain only GCIs in the normal forms given in formula 1 where P,Q ∈ NC, r ∈ NR, a ∈ NA, and d ∈ D. There

NF1 : P ⊑ Q NF2 : P ⊑ ∀r.Q NF3 : P ⊑= 1r.Q NF4 : P ⊑ ∀a.d NF5 : P ⊑= 1a.d (1)

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

NC = {University, Department, Author, Professor}, NR = {departments, doctoralDegreeFrom},
NA = {UniversityID, DepartmentID, head, AuthorID}, D = {xsd:string},

University ⊑ ∀ departments.Department
University ⊑ =1 UniversityID.xsd:string
Department ⊑ =1 DepartmentID.xsd:string

Department ⊑ =1 head.xsd:string
Author ⊑ =1 AuthorID.xsd:string

Professor ⊑ Author
Professor ⊑ =1 AuthorID.xsd:string

Professor ⊑ ∀ doctoralDegreeFrom.University

Figure 5. Example of a TBox.

exist normalization rules to obtain such a TBox (e.g., an axiom P ⊑ Q ⊓ M is converted to two axioms, P ⊑ Q
and P ⊑ M) [27]. Baader et al. show that such normalization rules can preserve a conservative extension of a TBox
in FL0 [28]. A conservative extension guarantees that subsumptions according to the original TBox coincide with
those with respect to the normalized TBox. An example TBox input is shown in Figure 5.

4.3. Schema Generator Algorithm

Algorithm 1 shows the details to generate a GraphQL schema. The output for the example is the schema shown
in Listing 1. First, the algorithm iterates over the concept names in NC (line 1 to line 5). For each concept, such as
University in the TBox, the concept name (University) is used as the name of an object type to be generated
(line 2); the term concatenated with ‘Filter’ is used as the name of an input type (UniversityFilter) to be
generated (line 3); the term concatenated with ‘List’ is used as the name of a field (UniversityList) of the
Query type (line 4). Additionally, each such field of the Query type is assigned an argument named ‘filter’, with a
type that is the corresponding input type (e.g., filter:UniversityFilter to UniversityList) (line 5).
Next, the algorithm iterates over GCIs in the TBox (line 6 to line 30). For a GCI in the form of NF1, the name of
the super-concept is used as the name of an interface type to be generated; a field for the Query type named by
concatenating the interface type name and ‘List’ is generated; the previously generated object type corresponding
to the sub-concept implements the generated interface type.

From line 13 to line 21, the algorithm deals with GCIs containing roles, which can be of the form NF2

or NF3 (such as University ⊑ ∀ departments.Department). In both cases, a field definition (e.g.,
departments) of the object type (e.g., University) and a field definition (departments) of the input type
(UniversityFilter) are generated. However, for NF3, the returned type of the field is defined as the original
object type corresponding to the concept appearing on the right side of the GCI (line 20). For NF2, the returned type
is defined as a wrapped type, which is a list type (line 17). For instance, the departments field declaration for
the University type is departments:[Department]. The algorithm deals with GCIs containing attributes
in a similar way (line 22 to line 30). For example, the University object type has a field declaration, which is
UniversityID:String.

We define a function Φ for mapping a datatype that exists in the TBox to a scalar type in GraphQL. Due to the
fact that current GraphQL supports five basic scalar types which are ID, Float, Int, Boolean, and String,
our current implementation of function Φ focuses on mapping datatypes xsd:float, xsd:int, xsd:string
and xsd:boolean to scalar types Float, Int, String and Boolean, respectively. However, GraphQL allows
users to define custom scalar types, and the values of such custom types should be JSON serializable. Therefore,
our Φ function can be extended in the future for mapping any datatype besides the above four types from a TBox
into a custom scalar type in GraphQL.

By generating the GraphQL schema based on an ontology, the schema will contain object or interface types cor-
responding to concepts in the ontology, and field declarations corresponding to relationships in the ontology. When
a GraphQL query is sent to the GraphQL server, a resolver function parses the query to determine which type in the
schema is requested. It then parses the relevant definitions corresponding to such a type in the semantic mappings to

12 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 1: Schema Generator
Input : NC; normalized TBox T B; Φ, mapping a datatype in D to a scalar type
Output: a GraphQL schema S

1 for P ∈ NC do
2 OT = OT ∪ {P} // extend S with an empty object type, P
3 IOT = IOT ∪ {PFilter} // extend S with an empty input type, PFilter

/* add following field/argument declarations to the Query type */
4 typeFS = typeFS ∪ {(Query, PList) 7→ [P]}
5 typeAFS = typeAFS ∪ {((Query, PList),filter) 7→ PFilter}
6 for t ∈ T B do
7 if t is of the form P ⊑ Q (i.e., NF1) then
8 IT = IT ∪ {Q} // extend S with an empty interface type, Q
9 IOT = IOT ∪ {QFilter} // extend S with an input type, QFilter

/* add following field/argument declarations to the Query type */
10 typeFS = typeFS ∪ {(Query,QList) 7→ [Q]}
11 typeAFS = typeAFS ∪ {((Query,QList),filter) 7→ QFilter}
12 implementationS(Q) = implementationS(Q) ∪ P // declare that the object type P

implements Q
13 if t is of the form of P ⊑ ∀r.Q (i.e., NF2) then
14 if P ⊑= 1r.Q ∈ T B then
15 Do nothing, this case will be handed in line 19 to line 21
16 else

/* add following field declarations to P and PFilter */
17 typeFS = typeFS ∪ {(P, r) 7→ [Q]} // r: [Q]
18 typeFS = typeFS ∪ {(PFilter, r) 7→ QFilter} // r: QFilter
19 if t is of the form of P ⊑= 1r.Q (i.e., NF3) then

/* add following field declarations to P and PFilter */
20 typeFS = typeFS ∪ {(P, r) 7→ Q} // r: Q
21 typeFS = typeFS ∪ {(PFilter, r) 7→ QFilter} // r: QFilter
22 if t is of the form of P ⊑ ∀a.d (i.e, NF4) then
23 if P ⊑= 1a.d ∈ T B then
24 Do nothing, this case will be handed in line 28 to line 30
25 else

/* add following field declarations to P and PFilter */
26 typeFS = typeFS ∪ {(P, r) 7→ [Φ(d)]} // r: [Φ(d)]
27 typeFS = typeFS ∪ {(PFilter, r) 7→ Φ(d)Filter} // r: Φ(d)Filter
28 if t is of the form of P ⊑= 1a.d (i.e., NF5) then

/* add following field declarations to P and PFilter */
29 typeFS = typeFS ∪ {(P, r) 7→ Φ(d)} // r: Φ(d)
30 typeFS = typeFS ∪ {(PFilter, r) 7→ Φ(d)Filter} // r: Φ(d)Filter

retrieve data. For instance, if a query requests all the entities of the University object type, the resolver function
parses the semantic mappings that are defined for the University concept to get information regarding how to access
the underlying data sources.

4.4. The Intended Meaning of a Generated GraphQL Schema

In Section 4.3, we present the Schema Generator which takes a TBox representing an ontology as an input, to
generate a GraphQL schema. Such a GraphQL schema can describe how to access underlying data sources in which
the data can be annotated by the ontology. The underlying data can thus be viewed as an ABox for the TBox.
Therefore, a GraphQL query that conforms to this GraphQL schema can be considered as a query over the ABox.
To make this intention more formal we consider an ABox A as a finite set of assertions of the form P(x), R(x, y) or

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

University(university_1), University(university_2);
Department(d1), Department(d2), Department(d3), Department(d4);

departments(university_1, d1), departments(university_1, d2),
departments(university_2, d3), departments(university_2, d4);

UniversityID(university_1, "u1"), UniversityID(university_2, "u2");
head(d1, "Harry, Potter"), head(d2, "Sheldon, Cooper"),
head(d3, "Paul, Atreides"), head(d4, "Jack, Lee").

Figure 6. Example of an ABox.

A(x, z), where P ∈ Nc,R ∈ NR, A ∈ NA, x and y are instance names, z are literals. Figure 6 illustrates an example
ABox based on the TBox in Figure 5.

Let O be an ontology represented by a TBox T ; let S be a GraphQL schema over (F , A, T , S) generated by
Algorithm 1 based on T ; let Q be a GraphQL query over (F , A, T , S) such that Q conforms to S. Evaluating Q
over underlying data sources that are instantiated in terms of O can be defined as retrieving an ABox A based on T :

– If Q requests an object or an interface type t with a field f of which the returned type is a scalar type s or the
wrapping type [s] (i.e., t ∈ OT ⊔IT, f ∈ F, s ∈ S, and (t, f) 7→ s ∈ typeFS or (t, f) 7→ [s] ∈ typeFS), we can find
the corresponding assertions in the ABox A of forms: t(x) and f (x, z);

– If Q requests an object or an interface type t1 with a field f of which the returned type is another object
or interface type t2 or the wrapping type [t2] (i.e., t1, t2 ∈ OT ⊔ IT, f ∈ F, and (t1, f) 7→ t2 ∈ typeFS or
(t1, f) 7→ [t2] ∈ typeFS), we can find the corresponding assertions in the ABox A of forms: t1(x), t2(y) and
f (x, y).

For instance, given the query (cf. Figure 3a) and the ABox (cf. Figure 6), University(university_1),
departments(university_1, d1), departments(university_1, d2), head(d1, "Harry, Potter"), head(d2, "Shel-
don, Cooper") are supposed to be retrieved. The above definition presents the meaning of the GraphQL schema
generated based on a TBox for evaluating GraphQL queries. The definition relies on the Schema Generator where
for each concept, the algorithm creates a corresponding type with the same name of the concept, same for roles and
attributes. This guarantees to find the corresponding assertions from the ABox. However, in practice, as we pre-
sented in Section 2.3.2, how a GraphQL query retrieves data over the underlying data sources, depends on how the
resolver function is implemented when we construct GraphQL servers. In the next section, we present how resolver
functions can be implemented in a generic way based on semantic mappings.

5. Generic GraphQL Resolver Function

In general, there are two styles for implementing resolver functions for a GraphQL server. One option is to
implement one resolver function per type (object or interface) defined in the GraphQL schema, where such a function
states how to fetch the data to populate relevant fields. For instance, since the Query type in Listing 1 has four field
definitions (UniversityList, DepartmentList, AuthorList, and ProfessorList), we may provide
four resolver functions for getting entities of the University, Department, Author and Professor types
from underlying data sources, respectively. The other option is to provide a resolver function for every field of every
type defined in the GraphQL schema, such that this resolver could return data for this field of any type. In our
framework, we adopt the first style because it can be easily generalized based on semantic mappings. That is, we
implement a generic resolver function that can be used to populate objects of any object type or interface type, and
can be viewed as a built-in function of the GraphQL server. In Section 5.1, we introduce how a GraphQL query is
represented by Abstract Syntax Trees (ASTs), in which one represents query fields and others represent the filter
expression. Section 5.2 introduces the RDF Mapping Language (RML), which is used for representing semantic
mappings, and Section 5.3 describes the components of the generic resolver function. In Section 5.4, we present the
core algorithm for the generic resolver function, which is responsible for accessing underlying data sources based
on semantic mappings.

14 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

UniversityFilter

StringFilter

UniversityID

_eq String

"u1"

(a) Example Abstract Syntax Tree for filter fields.

[University]

[Department]

departments

head

String
(b) Example Abstract Syntax Tree for query fields.

Figure 7. Example Abstract Syntax Trees for the query shown in Figure 3a.

5.1. GraphQL Queries Represented by Abstract Syntax Trees

In general, a GraphQL query can be represented using a single AST that contains nodes representing the fields
requested in the query, and also contains additional nodes for the input arguments that may be used for each of
these fields. In our approach, we assume that each query accepts an input argument which captures the notion of a
filter condition. Therefore, we specify the query evaluation in two steps: (i) evaluating for a filter condition, which
is represented via an input argument that is defined as an input object type in the schema, (ii) evaluating for those
fields that are requested in the GraphQL query. For instance, in the query example shown in Figure 3a, the field
having a filtering condition is different from the requested fields (the former is UniversityID while the latter
includes departments and head). In the evaluation step for the filter condition, the identifier information of the
filtered out instances of the requested type (i.e., University) are obtained after accessing the underlying data
sources. In the next step, the underlying data sources are accessed again to retrieve only the requested fields for the
filtered instances. Therefore, to enable such two steps in the query evaluation, we use multiple ASTs to represent
a GraphQL query (cf. Figure 7, these two ASTs represent the query shown in Figure 3a), one of which captures
the input argument structure (Figure 7a), and the other of which captures the structure of the query, including the
requested fields and their types (Figure 7b). More specifically, every node in such ASTs represents either a named
type (i.e., object type, interface type, input type, or scalar type), a wrapping type, or a field. Additionally, ASTs
that represent input arguments also contain nodes that represent the values of scalar-typed fields (e.g., "u1" in the
AST shown in Figure 7a). The types (i.e., UniversityFilter, StringFilter, String) or wrapping types
(i.e., [University], [Department]) are drawn with rectangle nodes. The fields (i.e., UniversityID, _eq,
departments, head) are drawn with rounded rectangle nodes.

In practice, a filter condition is converted into disjunctive normal form (DNF).5 A query result in DNF contains
data formed by the union of data that satisfies each disjunct. Therefore, in the step of evaluating for a filter condition:
(i) multiple ASTs are generated where each represents one of the disjuncts, (ii) the underlying data source are
accessed several times to obtain instances satisfying each disjunct, (iii) a union of identifier information for these
instances of the requested type is returned.

5.2. RDF Mapping Language (RML)

RML is a declarative mapping language for linking data to ontologies [29]. An RML document has one or more
Triples Maps, which declare how input data is mapped into triples of the form (subject, predicate, object).

5A statement is in DNF if it is a disjunction of conjunctions of literals. A disjunction uses the OR (∨) operator. A conjunction uses the AND
(∧) operator.

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

An example of RML mappings is shown in Listing 3. A Triples Map contains the following three components
(Logical Source, Subject Map and a set of Predicate-Object Maps). A logical source declares the
source of input data to be mapped. It contains definitions of source that locate the input data source, reference
formulation declaring how to refer to the input data, and logical iterator declaring the iteration loop
used to map the input data. For instance, line 2 to line 6 in Listing 3 constitute the definition of a logical source. The
definition declares that the data source is a JSON-formatted data source on the Web and also describes the way of
iterating the JSON-formatted data (line 5). A subject map declares a rule for generating subjects when transforming

Listing 3: Example of RML mappings transforming university domain data.

1 <UniversityMapping>
2 rr:logicalSource [
3 rml:source "http://example.com/universities.json";
4 rml:referenceFormulation ql:JSONPath;
5 rml:iterator "$.data.universities[*]";
6];
7 rr:subjectMap [
8 rr:template "http://example.com/university/{uid}";
9 rr:class schema:University;

10];
11 rr:predicateObjectMap [
12 rr:predicate schema:UniversityID;
13 rr:objectMap [
14 rml:reference "uid";
15];
16];
17 rr:predicateObjectMap [
18 rr:predicate schema:departments;
19 rr:objectMap [
20 rr:parentTriplesMap <DepartmentMapping>
21 rr:joinCondition [
22 rr:child "uid";
23 rr:parent "university_id";
24];
25];
26].
27
28 <DepartmentMapping>
29 rr:logicalSource [
30 rml:source "http://example.com/departments.csv";
31 rml:referenceFormulation ql:CSV;
32];
33 rr:subjectMap [
34 rr:template "http://example.com/department/{department_id}";
35 rr:class schema:Department;
36];
37 rr:predicateObjectMap [
38 rr:predicate schema:DepartmentID;
39 rr:objectMap [
40 rml:reference "department_id";
41];
42];
43 rr:predicateObjectMap [
44 rr:predicate schema:head;
45 rr:objectMap [
46 rml:reference "HEAD";
47];
48].

16 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

underlying data into triples, including how to construct URIs of subjects (e.g., line 8) and specifying the concept to
which subjects belong (e.g., line 9). A predicate-object map consists of one or more predicate maps declaring how
to generate predicates of triples (e.g., line 12), and one or more object maps or referencing object maps defining how
to generate objects of triples. An object map can be a reference-valued term map or a constant-valued term map.
The former declares a valid reference to a column (relational data sources), or to an object (JSON data sources). The
latter declares the value of the object as constant data. For instance, line 39 to line 41 make up a reference-valued
term map. Line 19 to line 25 constitute a definition of a referencing object map including the join condition based
on two triples maps. A referencing object map refers to another triples map (called a parent triples map) by using
a rr:joinCondition property to state the join condition between the current triples map and the parent triples
map. A join condition contains two properties, rr:child and rr:parent, of which the values must be logical
references to logical sources of the current triples map and the parent triples map, respectively.

5.3. Components of the Generic Resolver Function

We show the basic technical components of the generic resolver function including QueryParser and Evaluator
in Figure 8. In Algorithm 2, we show the generic resolver function. The inputs to the generic resolver function
are a GraphQL schema, a GraphQL query and semantic mappings. The GraphQL query and schema are inputs of
the QueryParser. The QueryParser parses a query including a filter expression given as an input argument, and
outputs the corresponding ASTs (cf. Figure 7) for the input argument and the query structure, respectively (shown as
arrows 1⃝ and 2⃝ in Figure 8). As mentioned in Section 5.1, in our practical solution a filter condition is converted
into disjunctive normal form. In Algorithm 2, the QueryParser parses the query, converts a filter expression into a
union of conjunctive expressions, and generates an AST for each conjunctive expression and an AST for the query
structure (line 2). Then, the filter expression (line 5 to line 7 in Algorithm 2, frame a⃝ in Figure 8) and the query
fields (line 9 and line 13 in Algorithm 2, frame b⃝ in Figure 8) are evaluated. The Evaluator is responsible for
sending requests to underlying data sources and fetching data according to an AST. During evaluation of the filter
expression, for each AST representing a conjunctive (sub-)expression, an evaluator is called to request data that
satisfies the conjunctive (sub-)expression (line 6). After a call to an evaluator based on an AST (filter_ast in line 6),
data representing the requested type, which contains identifier information, is returned (identifier_info in line 6).
Taking the query in Figure 3a represented by the ASTs shown in Figure 7 as an example, the requested type is
University and data that can identify university instances is supposed to be returned in identifier_info. Such
identifier information is captured in semantic mappings, which are used to construct the URIs for subjects where
such subjects represent instances of the University concept. For instance, in line 8 of the RML mappings example
in Listing 3, the values of the uid attribute of the underlying data source are used to construct URIs of subjects
representing instances of the University concept. The identifier information returned by evaluating each filter_ast is
merged into filtered_identifiers (line 7). During evaluation of the query fields, such merged identifier information is
taken into account in the call to the evaluator of the query fields (line 9 in Algorithm 2, arrow 3⃝ in Figure 8).

As mentioned in Section 4.3, by generating the GraphQL schema based on an ontology, we can therefore, for each
object or interface type and each field declaration, find the corresponding concept and relationship in the ontology.
Since such concepts and relationships are used to define semantic mappings, when a generic resolver function

QueryParser Evaluator

Evaluator(s)

An AST representing the query structure,
query_ast

ASTs representing (sub-)expressions,
filter_asts

identifiers of entities of the root node of the AST,
filtered_identifiers

Generic Resolver Function

GraphQL Schema
GraphQL Query

Semantic
Mappings Requests to underlying data sources

Data from underlying data sources

Data from underlying data sources

Requests to underlying data sources

Query
Result

Semantic
Mappings

GraphQL Server

GraphQL Schema

Semantic
Mappings

(a)

(i) (ii)

Ontology

Generic Resolver
Function(1)

(4)

GraphQL Server Generation Process

GraphQL Query Answering Process

1

2

3

a

b

Figure 8. Technical components in the generic resolver function.

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 2: Generic Resolver
Input : a GraphQL query: query; a GraphQL schema: schema; the semantic mappings: triples_maps
Ouput: a list of objects of the type to be queried

1 Initialize an empty list: query_result
2 call QueryParser taking query and schema as inputs, to get ASTs: f ilter_asts, query_ast
3 if f ilter_asts is not Empty then

/* there is an input argument given to the query */
4 Initialize an empty set: f iltered_identi f iers
5 for filter_ast in filter_asts do
6 call Evaluator taking f ilter_ast and triples_maps as inputs: identi f ier_in f o
7 merge f iltered_identi f iers and identi f ier_in f o: f iltered_identi f iers
8 if f iltered_identi f iers is not Empty then
9 call Evaluator taking query_ast, triples_maps and f iltered_identi f iers as inputs: query_result

10 else
11 Do nothing, there is not any instance from data sources satisfying the filter condition.
12 else

/* there is not an input argument given to the query */
13 call Evaluator taking query_ast, triples_maps as inputs: query_result
14 return query_result

retrieves data from the underlying sources of a requested type and relevant fields, it can therefore understand the
semantic mappings regarding how to access underlying data sources and structure the returned data according to
the GraphQL schema. Taking the query in Figure 3a represented by the ASTs shown in Figure 7 as an example,
as the requested type is University, the generic resolver function can therefore make use of relevant triples
maps (line 1 to line 26 in Listing 3) defined in semantic mappings which are used for transforming underlying data
following the semantics related to the University concept in the ontology.

5.4. The Evaluator Algorithm

We present the details of Evaluator in Algorithm 3 and show an example in Figure 9 of how evaluators work for
answering the query in Figure 3a. An AST and a number of triples maps from the semantic mappings are essential
inputs to the algorithm. For a given AST, we can obtain the object type and fields that are requested in the query based
on the root node and child nodes, respectively (line 2). For instance, taking the ASTs in Figure 7 as examples, the root
type and the field for evaluating the filter expression are University and UniversityID, and the root type and
the first level requested field for evaluating query fields are University and departments, respectively. After
getting the relevant triples maps based on the root node type (line 4 in Algorithm 3, e.g., UniversityMapping
in Listing 3) or from the argument (line 28, the parent triples map, DepartmentMapping, which is an argument
in the recursive call of an evaluator), the algorithm iterates over triples maps and merges the data obtained based on
each triples map (line 5 to line 30). Exploring this in more detail, the algorithm parses each triples map to get the
logical source and relevant predicate-object maps (line 8 and line 9). As described in Section 5.2, there are three
different types of predicate-object map depending on the different maps of object, which are a reference-valued
term map, a constant-valued term map or a referencing-object map. The algorithm iterates over the predicate-object
maps and parses each one (line 10 to line 16). For a reference-valued term map, the mapping between the predicate
and the reference column or attribute is stored (line 12, e.g., {UniversityID: uid} is stored in pred_attr),
which will be used for rewriting a filter expression according to the underlying data source (line 18, e.g., uid =
’u1’), annotating the obtained underlying data (line 21, e.g., HEAD is annotated as head for Department data).
For a constant-valued term map, the mapping between the predicate and the constant data value and type is stored
(line 14). Both pred_attr and pred_const will be used to annotate the data from underlying sources (line 21).

In the phase of evaluating a filter expression, local_filter, which represents the rewritten filter expression, is a nec-
essary argument when sending requests to underlying data sources (line 19). While in the phase of evaluating query
fields, filter_ids, being a NULL value or having at least one element, is a necessary argument (line 19, arrow (a)

18 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 3: Evaluator
Input : an Abstract Syntax Tree: ast; the semantic mappings: triples_maps; the referencing data: ref ; the identifiers for

filtered out result: filtered_ids
Output: result of evaluating a filter expression or query fields

1 Initialize an empty list: result
2 get the root type and query fields from ast: root_type, query_ f ields
3 if triples_maps is Empty then
4 get relevant triples maps based on the root_type: triples_maps
5 for tm in triples_maps do
6 Initialize an empty list: re f erencing_poms
7 Initialize two empty lists: pred_attr, pred_const
8 get the logical source from tm: source
9 get all the predicate-object maps from tm based on query_ f ields: poms

10 for pom in poms do
11 if object_map in pom is a reference-valued term map then
12 extend pred_attr with a map between the predicate and column/attribute
13 if object_map in pom is a constant-valued term map then
14 extend pred_const with a map between the predicate and data value, type
15 if object_map is a referencing-object map term map then
16 extend re f erencing_poms with pom
17 parse ast and get the filter expression: f ilter_expr
18 localize f ilter_expr based on pred_attr: local_ f ilter
19 access the data source based on source, local_ f ilter, re f , f iltered_ids: temp_result
20 if temp_result is not Empty then
21 annotate temp_result based on pred_attr, pred_const
22 for (pred, object_map) in referencing_poms do
23 get the sub tree from ast based on pred: sub_ast
24 parse ob ject_map: parent_triples_map, join_condition
25 parse join_condition: child_ f ield, parent_ f ield
26 get the referencing data from temp_result on child_ f ield: child_data
27 re f = (child_data, parent_ f ield)
28 call Evaluator based on sub_ast, parent_triples_map, re f : parent_data
29 join temp_result and parent_data based on join_condition, pred: temp_result
30 merge result and temp_result: result
31 return result

in Figure 9). A NULL value represents the fact that the GraphQL query does not include an input argument. After
obtaining the data from the underlying data sources, the data is serialized into JSON format (key/value pairs) in
which the keys are predicates stated in the predicate-object map (line 21), where each predicate corresponds to a
field in the GraphQL schema. In the next step, the algorithm iterates over predicate-object maps in which the object
map refers to another triples map (called a parent triples map) (line 22 to line 29). An evaluator is called again to
fetch data based on this parent triples map (line 28, arrow (4) in Figure 9). For the query example, the parent triples
map refers to the DepartmentMapping. Since such a referencing-object map definition states the join condi-
tion between the current triples map (UniversityMapping) based on child_ f ield (uid) and the parent triples
map (DepartmentMapping) based on parent_ f ield (university_id) (line 21 to line 23 of the mappings
in Listing 3), we can pass referencing data (re f), which contains the data obtained according to the current triples
map and parent_ f ield, to the call of an evaluator when we fetch data according to the parent triples map (line 28).
Such referencing data is taken into account, in the recursive call to an evaluator, when the request is sent to the
underlying data sources (line 19, arrow (b) in Figure 9). After the data is obtained according to the parent triples
map (arrow (c) in Figure 9), it is joined with data obtained according to the current triples map (line 29, frame (A)

in Figure 9).

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Evaluator

department_id;department_name;HEAD;university_id
1;"Department of Magic";"Harry, Potter";"u1"
2;"Department of Physics";"Sheldon, Cooper";"u1"
3;"Department of Precognition";"Paul, Atreides";"u2"
4;"Department of Computer Science";"Jack, Lee";"u2"

{
 "data":{
 "universities":[
 {"uid": "u1","uname": "University 1"},
 {"uid": "u2","uname": "University 2"}]}
}

line 2: root_tye='University',
 query_fields=['UniversityID']
line 4: triples_maps=[<UniversityMapping>]

line 12: pred_attr={'UniversityID': 'uid'}

line 18: local_filter='uid = ´u1´'
line 21: temp_result = [{'uid': 'u1'}]

line 17: filter_expr='UniversityID = ´u1´'

...
line 31: result = [{'uid': 'u1'}]

line 2: root_tye='University', query_fields=['departments']
line 4: triples_map=[<UniversityMapping>]

line 16: referencing_poms={'departments': OBJECT_MAP}
line 19: temp_result=[{'uid': 'u1'}]

line 25: child_field='uid', parent_field='university_id'
line 26: child_data=['u1']
line 27: ref=(['u1'], 'university_id')

Evaluator Evaluator

line 2: root_tye='Department', root_query_fields=['head']
line 5: triples_map=[<DepartmentMapping>]

line 12: pred_attr={'head': 'HEAD'}
line 19: temp_result=[{'HEAD': 'Harry, Potter', 'university_id': 'u1' },
 {'HEAD': 'Sheldon, Cooper', 'university_id': 'u1'}]
line 21: temp_result=[{'head': 'Harry, Potter', 'university_id': 'u1' },
 {'head': 'Sheldon, Cooper', 'university_id': 'u1'}]

line 31: result=[{'head': 'Harry, Potter', 'university_id': 'u1' },
 {'head': 'Sheldon, Cooper', 'university_id': 'u1'}]line 29: join([{'uid': 'u1'}],

 [{'head': 'Harry, Potter', 'university_id': 'u1' },
 {'head': 'Sheldon, Cooper', 'university_id': 'u1'}],
 'departments',
 ('uid', 'university_id'))
temp_result=[{
 'departments':[
 {'head': 'Harry, Potter'}, {'head': 'Sheldon, Cooper'}
]
 }]

line 28

http://example.com/universities.json http://example.com/departments.csv
Department Data SourseUniversity Data Sourse

A call of Evaluator for
evaluating the filter
expression

A call of Evaluator for getting
University entities

A call of Evaluator for getting
Department entities

AST AST AST

line 31: result=[{
 'departments':
 [{'head': 'Harry, Potter'},{'head': 'Sheldon, Cooper'}]
 }]

(1) (2) (3)

(4)

(a) (b)

(c)

(A)

JSON CSV

child_field
parent_field

[University]

[Department]

departments

head

String

[Department]

head

String

UniversityFilter

StringFilter

UniversityID

_eq String

"u1"

Figure 9. Example for answering the query in Figure 3a, (1)-(3) indicate the requests to and responses from the data sources; (a)-(c)
indicate the parameter passing between the calls to Evaluators; (4) indicates a recursive call to Evaluator for getting the data of Departments;
frame (A) indicates a join operation.

6. Related Work

The widely used Semantic Web-based techniques and the recently developed GraphQL have led to a number of
works relevant to our GraphQL-based framework for data access and data integration. We extend the summary of
approaches presented in [30] by adding several new related approaches and new perspectives on the comparison. Ta-
ble 2 summarizes these systems and our approach. These systems can be divided into two categories, namely OBDA-
based systems and GraphQL-based systems. The former group contains Morph-RDB [31, 32], Morph-CSV [33]
and Ontop [34, 35]. The latter group consists of GraphQL-LD [36], HyperGraphQL [37], UltraGraphQL [38, 39],
Morph-GraphQL [30], Ontology2GraphQL [40] and our OBG-gen.

As a new perspective to the summary in [30], all the approaches (except for GraphQL-LD) have two processes:
(i) the service setup (preparation) process and (ii) the query answering process. During the service setup process,
some approaches need semantic mappings as input such as Morph-RDB, Morph-CSV, Ontop, Morph-GraphQL
and OBG-gen. In such systems, semantic mappings are used in a similar manner to represent differences between
global and local schemas. Morph-CSV needs additional annotations for tabular data. OBG-gen needs an ontology
and semantic mappings together in order to generate a GraphQL server that is intended not only for semantics-
aware data access but for data integration. Morph-GraphQL requires semantic mappings to generate a GraphQL
server intended for data access. It does not consider data integration scenarios where integrated views are required.
Ontology2GraphQL needs a meta model for the GraphQL query language and requires an ontology following
the meta model for generating the GraphQL schema. HyperGraphQL requires no inputs during the service setup
process, but the developer must build the GraphQL server from scratch. UltraGraphQL, based on HyperGraphQL,
requires RDF schemas of SPARQL endpoints for bootstrapping the GraphQL server. In actuality, GraphQL-LD
does not require any GraphQL servers, but instead focuses on how to represent GraphQL queries using SPARQL
algebra and how to convert the results of a SPARQL query into a tree structure in response to a GraphQL query.

For the query answering process, OBDA-based approaches (i.e., Morph-RDB, Morph-CSV and Ontop) accept
SPARQL queries and translate them into SQL queries. Ontop and Morph-RDB handle underlying data stored in rela-
tional databases, while Morph-CSV deals with data stored in CSV files. Our approach, OBG-gen, accepts relational
data, CSV-formatted data and JSON-formatted data as the underlying data. The remaining approaches are based
on underlying data in SPARQL endpoints and translate GraphQL queries into SPARQL queries. GraphQL-LD,
HyperGraphQL, and UltraGraphQL require context information expressed in JSON-LD. Such JSON-LD context
information contains URIs of classes to which instances in the RDF data belong.

20 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 2
Summary of related approaches.

Service Setup (Preparation) Process Query Answering Process
Approach

Input Output Input Output Underlying Data

Morph-RDB [31, 32] semantic mappings – SPARQL query SQL query Relational data

Morph-CSV [33]
semantic mappings,

tabular metadata
– SPARQL query SQL query Tabular data

Ontop [34, 35] semantic mappings – SPARQL query SQL query Relational data

GraphQL-LD [36] – –
GraphQL query,

JSON-LD context
SPARQL query SPARQL endpoint

HyperGraphQL [37] –
GraphQL server

(manually)

GraphQL query,

JSON-LD context
SPARQL query SPARQL endpoint

UltraGraphQL [38, 39]
RDF schemas of

SPARQL endpoints

GraphQL server

(automatically)

GraphQL query,

JSON-LD context
SPARQL query SPARQL endpoint

Morph-GraphQL [30] semantic mappings
GraphQL server

(automatically)
GraphQL query SQL Query Relational data

Ontology2GraphQL [40]

a meta model, an

ontology follows

the model

GraphQL server

(automatically)
GraphQL query SPARQL query SPARQL endpoint

OBG-gen
semantic mappings,

an ontology

GraphQL server

(automatically)
GraphQL query

SQL query,

API requests

Relational data,

CSV-formatted data,

JSON-formatted data

7. Evaluation

In this section, we present an evaluation of the framework shown in Section 3. We consider a real case application
scenario in the materials design domain, and two synthetic benchmark scenarios based on the Linköping GraphQL
Benchmark (LinGBM)6 [41] and GTFS-Madrid-Bench7 [42], respectively.

The evaluation aims to answer the following research questions:

– RQ1: Can the generated GraphQL server provide integrated access to heterogeneous data sources? For instance
in the real case application scenario, data from different sources may follow different models and is shared or
queries in different ways.

– RQ2: How does the generated GraphQL server compare to other OBDA systems and other GraphQL-based
systems in terms of query performance and its behavior for increasing dataset sizes?

– RQ3: Is the proposed approach, ontology-based GraphQL server generation, a general approach that can work
in different domains for data access and integration?

We performed all experiments on a server machine with Intel Xeon Gold 6130 @ 2.10GHz CPUs. The ma-
chine runs a 64-bit CentOS Linux 7 (Core) operating system. We reserved 8 CPU cores and 4GB memory for the
experiments.

7.1. Real Case Evaluation

In the real case evaluation, we focus on a use case in the materials design domain where the task is data integration
over two data sources, Materials Project [43] and OQMD (The Open Quantum Materials Database) [44].

6https://github.com/LiUGraphQL/LinGBM
7https://github.com/oeg-upm/gtfs-bench

https://github.com/LiUGraphQL/LinGBM
https://github.com/oeg-upm/gtfs-bench

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Motivation. The materials science domain, like many other domains, is at an early stage when it comes to intro-
ducing Semantic Web-based technologies into its data-driven workflows. A large number of research groups and
communities have thus developed a variety of data-driven workflows, including data repositories [45, 46] and data
analytics tools. As data-driven techniques become more prevalent, more data is produced by computer programs
and is available from various sources, which leads to challenges associated with reproducing, sharing, exchanging,
and integrating data among these sources [47–51]. Figure 10 illustrates an example of searching for gallium nitride
materials with the reduced chemical formula of GaN in three databases of the materials design domain, Materials
Project [43], OQMD [44] and NOMAD (Novel Materials Discovery) [52]. As shown in the results, each of them
contains a column that represents chemical composition, but with different column names or different insights (i.e.,
‘Formula’ for Materials Project and NOMAD, ‘Composition’ for OQMD). The ‘Formula’ column for Materials
Project actually represents the reduced chemical formula. More detailed information regarding the chemical com-
position can be found based on the value of the ‘Nsites’ column. For instance, for the second row of the result from
Materials Project, we can derive that the unit cell formula is Ga2N2 based on the values of the ‘Formula’ and ‘Nsites’
columns. Meanwhile, the ‘Formula’ column for NOMAD represents the unit cell formula rather than the reduced
chemical formula. Unlike the other two databases, OQMD contains a column for reduced chemical formulas, but
with a different column name (‘Composition’). Such differences have to be addressed in order to integrate or ex-
change data from these data sources. Apart from such differences in terminology, the data that needs to be accessed
or integrated from multiple data sources is typically heterogeneous in different models (i.e., relational data stored
in relational databases, and hierarchical data stored in JSON data stores). In our previous work, we developed the
Materials Design Ontology (MDO) [53] to enable ontology-driven data access and integration. Furthermore, we
have applied our MDO and OBG-gen in the OPTIMADE (Open Database Integrations for Materials Design) [54]
consortium which is a domain effort to make materials databases interoperable. As the work in the consortium is
under development, our application is at the level of a proof of concept. Details are presented in [55, p. 141-148].

Figure 10. Example of searching materials from Materials Project, OQMD and NOMAD.

22 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Data. We collect data from the Materials Project and OQMD representing five different types of real-world entities
(Calculation, Structure, Composition, Band Gap and Formation Energy). We define semantic mappings (for all the
systems, see the next paragraph) based on MDO to interpret such data. We collect data in the sizes of 1K, 2K, 4K,
8K, 16K and 32K from each database for populating the five entities. The size 1K means 1000 entities of each entity
type. We represent this data in different formats such as tabular data for relational databases and for CSV files, and
JSON-formatted data for JSON files. Additionally, for HyperGraphQL and UltraGraphQL in our evaluation, we
create an RDF file based on RML mappings and MDO for each dataset setting. We have six dataset settings for
the experiments, which are 1K-1K, 2K-2K, 4K-4K, 8K-8K, 16K-16K and 32K-32K. Taking 2K-2K as an example,
for each entity type, the test data contains data in the size of 2K from Materials Project and 2K from OQMD,
respectively.

Systems. We compare our tool, OBG-gen in two versions (OBG-gen-rdb and OBG-gen-mix) with four systems:
Morph-RDB [32], Ontop [35], HyperGraphQL [37], and UltraGraphQL [39]. OBG-gen-rdb represents the case
where the generated GraphQL server handles data in relational databases, and OBG-gen-mix represents the case
where the generated GraphQL server handles data not only in relational databases but also data in JSON and CSV
formats. They take different RML mappings as inputs. Morph-RDB and Ontop are representatives from the group
of OBDA-based tools. They access relational databases as data sources by translating SPARQL queries into SQL
queries based on semantic mappings. As for the group of GraphQL-related tools, we intended to include Morph-
GraphQL and Ontology2GraphQL in our evaluation. However, Morph-GraphQL fails to parse mappings; Ontol-
ogy2GraphQL cannot be run due to a lack of detailed instructions regarding its setup. In the case of GraphQL-LD,
since it focuses on querying Linked Data via GraphQL queries and a JSON-LD context using a SPARQL engine
instead of a GraphQL interface, we did not consider it in our evaluation. Therefore, HyperGraphQL and its exten-
sion UltraGraphQL are the GraphQL engines that are included in our evaluation. They can query Linked Data that
may be provided by local RDF files and remote SPARQL endpoints. The semantic mappings for all the systems in
the evaluation are based on MDO. OBG-gen generates the GraphQL schema based on MDO. UltraGraphQL and
HyperGraphQL use a modified version of the generated schema since they require directive definitions to specify
the correspondences between query entries and the data. Figure 11 shows how the systems are configured in the
evaluation. HyperGraphQL and UltraGraphQL are provided with the same RDF data for each dataset setting. OBG-
gen-rdb, Morph-RDB and Ontop are provided with two MySQL database instances hosting data from the Materials
Project and OQMD respectively. Conceptually, OBG-gen-mix is also provided with two database instances. How-
ever, each instance contains different formats of data such as data in a MySQL database, or in CSV or JSON files.

Semantic Mappings
(RDB sources)

OBG-gen-rdbUltraGraphQL,
HyperGraphQL

RDF Triple Store

Morph-RDB

SPARQL
Query

GraphQL
Query

RDBRDB

GraphQL
Query

Input to Systems

Triple Store Generation

Systems Interacting with Data Source(s)

Ontology

GraphQL
Schema

Ontop

SPARQL
Query

OBG-gen-mix

JSON CSV

Semantic Mappings
(Various sources)

Mappings Definition

Figure 11. Outline of the real case evaluation.

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

More detailed, the instance for Materials Project has Composition data in JSON format and Band Gap data in CSV
format. The instance for OQMD has Structure and Band Gap data in JSON format and Formation Energy data in
CSV format. The data representing other entities for each instance is stored in MySQL database instances.

Queries. We create queries that cover different features, aiming to evaluate our system based on qualitative aspects
regarding what functionalities the system can satisfy and quantitative aspects regarding how the system performs
over different data sizes. Additionally, we use competency questions stated in the requirements analysis of MDO
to create queries with domain interests. Query features of queries without and with filter expressions are shown
in Table 3 and Table 4, respectively. From the perspective of GraphQL, we consider which choke point a query
covers. The details of choke points are introduced in LinGBM.8 These choke points are regarding the key technical
challenges. We characterize all queries using the perspectives of choke points, domain interest (DI), and result size
(RS). DI indicates that the query is a domain-interest query. Such a query corresponds to a relevant competency
question stated in the requirements analysis of MDO. For RS, as the dataset grows, we consider whether the result
size increases linearly (L) or more than linearly (NL), or stays a constant value (C). For queries with filter expressions
we take into account the filter expression form and whether the filtering AST differs from the query AST (Diffs),
such as in the example in Figure 7b where the filtering AST and the query AST are different.

Table 5 shows more details of meanings of different filter expressions for Q6–Q12. The filter expressions for Q6
and Q12 are more simple than those for Q7–Q11 where the filter expressions have sub-expressions connected by
boolean operators. Query features in terms of DI, and the filter expression form can help us understand systems
qualitatively; Diffs and RS help in understanding systems quantitatively in the scaling analysis over different data
sizes. We show Q1 in Figure 12a and Q7 in Figure 13a. The results of these two queries are given in Figure 12b and
Figure 13b, respectively. Q1 requests all the structures containing the reduced chemical formula of each structure
composition. Q7 requests all the calculations where the ID is in a given list of values, and the reduced chemical
formula is in a given list of values.

Experiments and measurements. We evaluate the query execution time (QET) of the different systems over the
six dataset settings. Separately for each query, we run the query four times and always consider the first run to be a
warm-up, then take the averaged value of the remaining three runs. Figure 14 illustrates the measurements over the

Table 3
Features of queries without filter conditions.

Query Choke Points Domain Interest (DI) Result Size (RS)

Q1 2.1, 2.2 L
Q2 2.1, 2.2 ! L
Q3 1.1, 2.1, 2.2 ! L
Q4 1.1, 2.1, 2.2 ! L
Q5 2.2 L

Table 4
Features of queries with filter conditions.

Query Choke Points Domain Interest (DI) Diffs filter expression form Result Size (RS)

Q6 1.1, 2.1, 2.2, 4.1, 4.4 ! A C
Q7 1.1, 2.1, 2.2, 4.1, 4.4 ! A & B C
Q8 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & (B | C) C
Q9 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & B C
Q10 1.1, 2.1, 2.2, 4.1, 4.4, 4.5 ! ! A & (B & C) NL
Q11 2.2, 4.1, 4.4, 4.5 ! (A & B) & ((A & B) | C) NL
Q12 2.2, 4.1, 4.4 ! A NL

8https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points

https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points

24 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Meanings of filter expressions in Q6 to Q12.

Query Filter expression meaning
Q6: A id is in a list
Q7: A & B id is in a list and reduced chemical formula is in a list
Q8: A & (B | C) id is in a list and (reduced chemical formula is in list a1 or list a2)
Q9: A & B property name is "Band Gap" and value is greater than 5

Q10: A & (B & C)
reduced chemical formula is in a list and (property name is "Band Gap" and value
is greater than 5)

Q11: (A & B) & ((A & B) | C)
(property name is "Band Gap" and value is greater than 4) and ((property name is
"Band Gap" and value is greater than 4) or reduced chemical formula is in a list)

Q12: A reduced chemical formula contains silicon element

{
StructureList{

hasComposition{
ReducedFormula
}

}
}

(a) List all the structures containing
the reduced chemical formula of

each structure’s composition.

{
"data": {

"StructureList": [
{"hasComposition": {"ReducedFormula": "CeCrS2O"}},
{"hasComposition": {"ReducedFormula": "TlP(HO2)2"}},
{"hasComposition": {"ReducedFormula": "YClO"}}

]
}

}

(b) The JSON response (an excerpt) of the query.

Figure 12. Example GraphQL query (Q1) in the real case evaluation and the corresponding JSON response (excerpt).

six data sizes per query (Q1–Q12). Figure 15 and Figure 16 illustrate the measurements of all systems per data size
for queries without filtering conditions and with filtering conditions, respectively. The measures for all data sizes
and all queries are available online.9 For UltraGraphQL, we have measurements only for queries Q1–Q4 because
UltraGraphQL does not support queries with filtering conditions. For HyperGraphQL answering queries with filter
expressions, we have only the measurement for Q6 because the system can only deal with filtering by resource IRIs.

Results and discussion. By analyzing the obtained measurements, we summarize three observations. The first
observation is that both GraphQL servers generated by OBG-gen-rdb and OBG-gen-mix can answer all 12 of the
queries covering different features (such as choke points). Therefore, the framework presented in Section 3 is fea-
sible for data access and integration; this answers RQ1. Particularly, the GraphQL schema generated based on the
ontology can provide an (integrated) view of underlying (heterogeneous) data; the generic resolver function based
on the semantic mappings is capable of accessing heterogeneous data sources, combining the retrieved data (which
may be in different formats), and structuring the data according to the GraphQL schema.

The second observation is regarding queries without filtering conditions (Q1–Q5) (cf. Figures 14 and 15). All of
the systems have increases of QETs as the size of the dataset increases. However, Morph-RDB is less sensitive to
the data size increase compared with other systems. UltraGraphQL and HyperGraphQL outperform other systems
for some smaller datasets (e.g., UltraGraphQL’s QETs of Q1 and Q2, HyperGraphQL’s QETs for Q1 from 1K-1K
to 4K-4K). We explain this by the fact that these two systems have additional context information declaring URIs
of classes to which instances in the RDF data belong, which is unlike the other systems which have to make use of
semantic mappings to output queries to be evaluated against the underlying data sources. OBG-gen-rdb outperforms
Morph-RDB for some queries in smaller datasets (e.g., Q1 in 1K-1K, Q5 in 1K-1K and 2K-2K). For some queries,

9https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation

https://github.com/LiUSemWeb/OBG-gen/tree/main/evaluation

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

{
CalculationList(
filter: {

_and: [
{
ID: {

_in:["6332","8088","21331",
"mp-561628","mp-614918"]

}
}
{
hasOutputStructure: {

hasComposition: {
ReducedFormula: {

_in:["MnCl2","YClO"]
}

}
}

}
]

}
)
{

ID
hasOutputCalculatedProperty {

PropertyName
numericalValue

}
}
}

(a) List all the calculations where the ID is in a given
list of values and the reduced chemical formula is in

a given list of values.

{
"data": {
"CalculationList": [

{
"ID": "6332",
"hasOutputCalculatedProperty": [

{
"PropertyName": "Formation Energy",
"numericalValue": -1.3247

},
{
"PropertyName": "Band Gap",
"numericalValue": 1.807

}
]

},
{
"ID": "mp-614918",
"hasOutputCalculatedProperty": [

{
"PropertyName": "Formation Energy",
"numericalValue": -40.6691

},
{
"PropertyName": "Band Gap",
"numericalValue": 2.2287

}
]

}
]

}
}

(b) The JSON response (an excerpt) of the query.

Figure 13. Example GraphQL query (Q7) in the real case evaluation and the corresponding JSON response (excerpt).

OBG-gen-rdb and Morph-RDB have close QETs (e.g., Q2 in 1K-1K). Ontop outperforms the other two in smaller
datasets (e.g., Q1 in 1K-1K to 8K-8K, Q5 in 1K-1K to 4K-4K), but is more sensitive to data size increase compared
with Morph-RDB.

The third observation is regarding how OBG-gen-rdb, Ontop and Morph-RDB perform for queries with filter
conditions (Q6–Q12) (cf. Figures 14 and 16). Ontop outperforms the other two engines for most cases, but is
more sensitive to the change of datasets increase (e.g., Q9 from 1K-1K to 8K-8K). According to [34], Ontop has a
mapping optimization step which is not included in the query execution period. This could be a reason why Ontop
outperforms the other engines. OBG-gen-rdb and Morph-RDB behave similarly for Q6 with stable QETs and Q12
with slight increases, as the data size increases. As Table 4 shows, the result size of Q6 is a constant over all the
datasets in different sizes. Additionally, the filter expressions for Q6 and Q12 are simpler compared with those
of Q7–Q11. Therefore, the QETs for evaluating filtering expressions for Q6 and Q12 are less than those of Q7–
Q11. For other queries (Q7–Q11) Morph-RDB outperforms OBG-gen-rdb, however the differences between the
two systems are less than those for queries without filtering conditions (e.g., Q1–Q4). The filtering conditions in
GraphQL queries for OBG-gen-rdb and in SPARQL queries for Morph-RDB are written within WHERE clauses
in SQL queries, thus will be evaluated against the back-end databases. A similar observation is also found in [30]
where the experiment metrics shows that Morph-RDB outperforms other systems (e.g., Morph-GraphQL) as the
size of dataset increase due to the SPARQL to SQL optimizations [30].

26 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q1
OBG-gen-rdb
OBG-gen-mix
Morph-RDB

Ontop
UltraGraphQL
HyperGraphQL

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q2
OBG-gen-rdb
OBG-gen-mix
Morph-RDB

Ontop
UltraGraphQL
HyperGraphQL

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q3
OBG-gen-rdb
OBG-gen-mix
Morph-RDB

Ontop
UltraGraphQL
HyperGraphQL

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q4
OBG-gen-rdb
OBG-gen-mix
Morph-RDB

Ontop
UltraGraphQL
HyperGraphQL

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q5
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q6
OBG-gen-rdb
OBG-gen-mix
Morph-RDB

Ontop
HyperGraphQL

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q7
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q8
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q9
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q10
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q11
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

1K-1K 2K-2K 4K-4K 8K-8K 16K-16K 32K-32K
101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e

Q12
OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

Figure 14. Query Execution Time (QET) per query on materials dataset.

Based on the second and the third observations, we can answer the research question RQ2. The GraphQL servers
generated by OBG-gen perform similarly compared with other systems for queries without filtering conditions, but
are more sensitive to the increase of datasets even they can outperform for some queries in smaller datasets. By
comparing OBG-gen-rdb, Ontop and Morph-RDB, we summarize the reasons as follows. As shown in Section 5, the
implementation of OBG-gen is based on representing a GraphQL query with Abstract Syntax Trees (cf. Figure 7). In
this way, two basic requests are sent to underlying data sources to get the data with respect to the semantic mappings.
While for Morph-RDB and Ontop, based on semantic mappings, a SPARQL query is translated to a single SQL
query. For queries with filtering conditions, all the three engines (OBG-gen-rdb, Morph-RDB and Ontop) can take
the advantages of rewriting filter conditions into SQL queries so that the increases of QETs as data size increases
are not obvious.

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (a) QET for dataset 1K-1K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (b) QET for dataset 2K-2K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (c) QET for dataset 4K-4K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (d) QET for dataset 8K-8K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (e) QET for dataset 16K-16K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Q1 Q2 Q3 Q4 Q5
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (f) QET for dataset 32K-32K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

UltraGraphQL
HyperGraphQL

Figure 15. Query Execution Time (QET) per data size on materials dataset for queries without filtering conditions.

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (a) QET for dataset 1K-1K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (b) QET for dataset 2K-2K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (c) QET for dataset 4K-4K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (d) QET for dataset 8K-8K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (e) QET for dataset 16K-16K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Q6 Q7 Q8 Q9 Q10 Q11 Q12
100

101

102

103

104

105

106

QE
T

in
 m

s,
lo

g
sc

al
e (f) QET for dataset 32K-32K

OBG-gen-rdb
OBG-gen-mix

Morph-RDB
Ontop

HyperGraphQL

Figure 16. Query Execution Time (QET) per data size on materials dataset for queries with filtering conditions.

28 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

7.2. Evaluation based on LinGBM (Linköping GraphQL Benchmark)

To show the generalizability of our system, we conduct an evaluation based on LinGBM. It is developed as a
performance benchmark for GraphQL server implementations. LinGBM provides tools for generating datasets (data
generator)10 and queries (query generator),11 and for testing execution time and response time (test driver).12

Data. The dataset generated by the data generator is a scalable, synthetic dataset regarding the University domain,
including several entity types (e.g., University and Department). We generate data in scale factors (sf) 4, 20 and 100
where a scale factor represents the number of universities [41]. We then create three MySQL database instances to
store the data in these three scale factors, respectively. We use a modified version of the GraphQL schema provided
by LinGBM for our GraphQL server, and define RML mappings according to the work in Morph-GraphQL.13 The
modification part is regarding input object type definitions so that they can be used to represent filtering conditions.

Queries. The experiments are performed over eight query sets, where each set contains 100 queries that are gen-
erated using the LinGBM query generator based on a query template (QT). A query template has placeholders for
input arguments. The query generator can generate a set of actual queries (query instances) based on a query tem-
plate in which the placeholder in the query template is replaced by an actual value. We select eight query templates
(QT1–QT6, QT10 and QT11) for constructing eight query sets (QS1–QS8). We show an example query according
to QT5 in Listing 4. The other six query templates from LinGBM require GraphQL servers to have implementations
for functionalities such as ordering and paging which are not considered currently by OBG-gen. However, these
functionalities are interesting for future extension of OBG-gen.

Experiments, results and discussion. Same as the real case evaluation, we evaluate the query execution time
(QET) of our system on the three datasets. Each query from a query set is evaluated once. We show the average

Listing 4: A query according to QT5.

1 {
2 DepartmentList(filter:{ nr: { _eq: 314 } }) {
3 nr
4 subOrganizationOf {
5 nr
6 undergraduateDegreeObtainedBystudent {
7 nr
8 emailAddress
9 memberOf {

10 nr
11 subOrganizationOf {
12 nr
13 undergraduateDegreeObtainedBystudent {
14 nr
15 emailAddress
16 memberOf { nr }
17 }
18 }
19 }
20 }
21 }
22 }
23 }

10https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen
11https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
12https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
13https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2

https://github.com/LiUGraphQL/LinGBM/tree/master/tools/datasetgen
https://github.com/LiUGraphQL/LinGBM/tree/master/tools/querygen
https://github.com/LiUGraphQL/LinGBM/tree/master/tools/testdriver_QET_QRT
https://github.com/oeg-upm/morph-graphql/tree/master/examples/LinGBM-v2

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 6
Average QET (in seconds) in the evaluation based on LinGBM.

Scale Factor QS1 (QT1) QS2 (QT2) QS3 (QT3) QS4 (QT4) QS5 (QT5) QS6 (QT6) QS7 (QT10) QS8 (QT11)
4 0.11 0.13 0.12 0.15 0.19 0.13 0.10 0.26
20 0.12 0.15 0.12 0.18 0.51 0.15 0.18 0.90

100 0.15 0.27 0.12 0.26 13.85 0.23 0.72 4.41

query execution times for the different query sets in Table 6. Based on the obtained measurements, we observe that
our system has slight increases for QS1, QS2, QS4, QS6 and QS7 in terms of the average QETs. For QS3, the
average QET is stable for all the three datasets. For QT5, the increase from 0.51 seconds at data scale factor 20 to
13.85 seconds at data scale factor 100 is due to the dramatic increase in result size. More specifically, the queries
in QS5 and QS8 need to access the ‘graduateStudent’ table which increases dramatically in size from 50,482 rows
in the table (sf =20) to 252,562 (sf =100). This is the reason for the average QET of QS8 increasing in sf =100.
Additionally, each query in QS5 repeats a cycle two times (‘university’ to ‘graduateStudent’ to ‘university’) and
requests the students’ emails and addresses along the way. This causes the larger increase in average QET of QS5.
The above synthetic experiments indicate that our system can work in another domain than the materials science
domain.

7.3. Evaluation based on GTFS-Madrid-Bench

We furthermore demonstrate the generalizability of our system by evaluating it against GTFS-Madrid-Bench,
which is a benchmark for evaluating OBDI systems.

Data, queries and systems. The dataset provided by GTFS-Madrid-Bench is a scalable dataset regarding the
Transport domain (the metro system of Madrid), including several entity types (e.g., Route, Stop, Shape and Trip).
We use the data generator provided by GTFS-Madrid-Bench to generate data in scale factors (sf) 1, 5, 10 and 50.
For instance, the dataset in sf 1 contains 13 instances for the Route type, 1,262 instances for the Stop type, 58,540
instances for the Shape type and 130 instances for the Trip type. An increase in sf from 1 to 5 results in an increase in
the dataset size of 5 times (e.g., 65 instances for the Route type and 6,310 instances for the Stop type). Each instance
is represented by a row in the corresponding relational table. These scale factors are also used for the experiments
in [42]. We then create four MySQL database instances to store the data in these four scale factors, respectively. A
total of 18 queries are included in the GTFS-Madrid-Bench benchmark that cover the different features of SPARQL
1.1. For conducting the experiment based on GTFS-Madrid-Bench, we select four queries (Q1–Q4) to create corre-
sponding GraphQL queries. Among these four queries, Q1 retrieves all the shape entities where each shape entity
is a polygon associated with a trip; Q2 retrieves all the stop entities where the latitude is greater than a specific
value; Q3 retrieves accessibility information of all stop entities; Q4 retrieves all the route entities and their associ-
ated agency entities [42]. The other queries contain SPARQL 1.1 features such as order by, group by and distinct.
Currently, OBG-gen does not implement functionalities to cover these features. However, these functionalities are
interesting for future extension of OBG-gen. In addition to OBG-gen-rdb, we conduct experiments based on Ontop
to learn how two engines behave in this GTFS-Madrid-Bench benchmark scenario.

Experiments, results and discussion. Same as the previous two evaluation scenarios, we evaluate the query exe-
cution time (QET) of systems on different datasets. We show the measurements in Table 7. According to the mea-
surements, both OBG-gen-rdb and Ontop show increases in QETs for all four queries as the dataset increases. How-
ever, as with the observation in the real case evaluation, Ontop behaves less sensitively to the increase in dataset. In
terms of how the two systems behave for different queries, both engines spend more time to answer Q1 (without any
filter conditions). It takes OBG-gen-rdb more than 3,600 seconds to answer it for scale factors 10 and 50. Although
Ontop is able to answer Q1 in less time than OBG-gen, it cannot finish the execution because it runs out of the
reserved 4GB memory for scale factor 50. More specifically, Q1 needs to access the ‘Shape’ table which increases
dramatically in size from 58,540 rows in the table (sf =1) to 292,700 (sf =5) and furthermore to 585,400 (sf =10) and
2,927,000 (sf =50). Both engines have relatively stable QETs for Q4 that retrieves all the route entities without any
filter conditions. The corresponding ‘Route’ table is relatively small (e.g., 13 for sf 1 and 1,300 for sf 100). Q2 and

30 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 7
QET (in seconds) in the evaluation based on GTFS-Madrid-Bench.

Scale Factor System Q1 Q2 Q3 Q4
OBG-gen-rdb 82.22 0.373 0.337 0.085

1
Ontop 7.311 0.132 0.100 0.014

OBG-gen-rdb 2610 1.743 1.413 0.115
5

Ontop 37.596 0.480 0.384 0.030
OBG-gen-rdb time out 4.700 3.030 0.143

10
Ontop 75.072 0.939 0.703 0.048

OBG-gen-rdb time out 84.159 50.125 0.255
50

Ontop out of memory 8.052 4.044 0.155

Q3 retrieve all the station entities but with different filter conditions. The two engines spend more time to evaluate
Q2 since the result size of Q2 is larger than that of Q3.

7.4. Summary and Discussion

For evaluating our approach, ontology-based GraphQL server generation, we conducted an experiment motivated
by the materials design domain and experiments based on two synthetic benchmark scenarios (LinGBM and GTFS-
Madrid-Bench). Based on the measurements of these experiments, we can answer the three research questions
presented at the beginning of Section 7. Our approach can generate GraphQL servers for data access and data
integration and can be used in various domains (RQ1 and RQ3). The other GraphQL interfaces, HyperGraphQL and
UltraGraphQL, can be used for data integration to a limited extent due to the fact that they do not support various
filter conditions. This means questions with filter conditions cannot be answered. By comparing our approach with
other well-known systems (e.g., Morph-RDB and Ontop), we learn that our system can perform relatively similar to
others in terms of QETs for queries with filter conditions, and for some queries without filter conditions in smaller
datasets (RQ2). Morph-RDB and Ontop are both less sensitive to the data size increase. The reason for this can
be explained by the fact that they have optimization techniques that enable queries to be executed in a shorter
amount of time. For instance, Ontop has a mapping optimization step which is not included in the query execution
period [34]; Morph-RDB has a query rewriting optimization step where projections and selections are pushed down
for removing non-correlated subqueries [31]. However, our approach supports data integration where the underlying
data is from different kinds of sources (i.e., OBG-gen-mix), in contrast to Morph-RDB and Ontop that only support
data integration where the underlying data is from relational databases.

8. Concluding Remarks and Future Work

To leverage ontologies for generating GraphQL APIs to support semantics-aware data access and data integra-
tion, in this paper, we have presented a GraphQL-based framework (cf. Section 3) for data access and integration
in which an ontology drives the generation of the GraphQL server. Our approach consists of a formal method to
generate a GraphQL schema based on an ontology (cf. Section 4), and a generic implementation of resolver func-
tions (cf. Section 5). In detail, ontologies play two roles in our approach: one is as an integrated view of underlying
data sources for generating a GraphQL schema; the other is as a basis for defining semantic mappings on which
the generic GraphQL resolver function is based. Generating a GraphQL schema based on an ontology rather than
just semantic mappings (e.g., Morph-GraphQL) can ensure to have an integrated view of data in data integration
scenarios. Such a schema does not need to be regenerated when new data sources are added, unless the ontology
needs to be modified. We show the feasibility and usefulness of our approach in terms of using GraphQL for data
integration and avoiding implementing a GraphQL server from scratch, based on a real-world data integration sce-
nario motivated by the materials design domain (cf. Section 7.1) and two synthetic benchmark scenarios, LinGBM
and GTFS-Madrid-Bench (cf. Sections 7.2 and 7.3).

Our current effort of OBG-gen focuses on the current GraphQL language features that support semantics-aware
and integrated data access. In the future we will follow the development of the GraphQL language and investigate

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

if any new features for data access can be generated formally based on the description logic currently used by
OBG-gen or whether a more expressive language is needed. Additionally, optimizing our generic resolver function
to improve query performance (e.g., adapting the mapping partition group rules recently proposed in [56]) and
extending our approach to support various query features (e.g., order by, group by) are interesting directions for
future work. Furthermore, from a practical point of view, we will implement a search system for OPTIMADE, based
on our approach, in the materials design domain.

Acknowledgements. This work has been financially supported by the Swedish e-Science Research Centre
(SeRC), the Swedish National Graduate School in Computer Science (CUGS), the Swedish Research Council
(Vetenskapsrådet, dnr 2018-04147 and dnr 2019-05655), and the Swedish Agency for Economic and Regional and
Growth (Tillväxtverket).

References

[1] Facebook Inc., Specification for GraphQL-June 2020 Edition. http://spec.graphql.org/draft/.
[2] B. Bhattacharya, An introduction to GraphQL federation, Accessed: 2022-07-29. https://tyk.io/blog/

an-introduction-to-graphql-federation/.
[3] Apollo Inc., Introduction to Apollo Federation, Accessed: 2022-07-29. https://www.apollographql.com/docs/federation/.
[4] B. Smith, Ontology, in: The furniture of the world, Brill, 2012, pp. 47–68. doi:10.1163/9789401207799_005.
[5] C. Welty, Ontology Research, AI Magazine 24(3) (2003), 11. doi:10.1609/aimag.v24i3.1714.
[6] R. Studer, V.R. Benjamins and D. Fensel, Knowledge engineering: Principles and methods, Data & Knowledge Engineering 25(1) (1998),

161–197. doi:10.1016/S0169-023X(97)00056-6.
[7] R. Stevens, C.A. Goble and S. Bechhofer, Ontology-based Knowledge Representation for Bioinformatics, Briefings in Bioinformatics 1(4)

(2000), 398–414. doi:10.1093/bib/1.4.398.
[8] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi and P.F. Patel-Schneider, The Description Logic Handbook: Theory, Implementation

and Applications, 2nd edn, Cambridge University Press, 2007. doi:10.1017/CBO9780511711787.
[9] M. Lenzerini, Data Integration: A Theoretical Perspective, in: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems, PODS ’02, Association for Computing Machinery, 2002, pp. 233–246. doi:10.1145/543613.543644.
[10] D. Calvanese and G. De Giacomo, Data Integration: A Logic-Based Perspective, AI magazine 26(1) (2005), 59–59.

doi:10.1609/aimag.v26i1.1799.
[11] A. Doan, A. Halevy and Z. Ives, 1 - Introduction, in: Principles of Data Integration, Morgan Kaufmann, 2012, pp. 1–18. doi:10.1016/B978-

0-12-416044-6.00001-6.
[12] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini and R. Rosati, Ontology-Based Data Access and Integration, in: Encyclopedia of

Database Systems, Springer, New York, NY, 2018, pp. 2590–2596. doi:10.1007/978-1-4614-8265-9_80667.
[13] G. Xiao, D. Hovland, D. Bilidas, M. Rezk, M. Giese and D. Calvanese, Efficient Ontology-Based Data Integration with Canonical IRIs, in:

The Semantic Web 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, Proceedings, Lecture Notes in
Computer Science, Vol. 10843, Springer,Cham, 2018, pp. 697–713. doi:10.1007/978-3-319-93417-4_45.

[14] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati and M. Zakharyaschev, Ontology-Based Data Access: A Survey,
in: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences
on Artificial Intelligence Organization, 2018, pp. 5511–5519. doi:10.24963/ijcai.2018/777.

[15] O. Corcho, F. Priyatna and D. Chaves-Fraga, Towards a new generation of ontology based data access, Semantic Web 11(1) (2020), 153–160.
doi:10.3233/SW-190384.

[16] G. Wiederhold, Mediators in the Architecture of Future Information Systems, Computer 25(3) (1992), 38–49. doi:10.1109/2.121508.
[17] P. Vassiliadis, A Survey of Extract-Transform-Load Technology, Integrations of Data Warehousing, Data Mining and Database Technolo-

gies: Innovative Approaches 5(3) (2009), 1–27. doi:10.4018/978-1-60960-537-7.ch008.
[18] S. Das, S. Sundara and R. Cyganiak, R2RML: RDB to RDF Mapping Language, Accessed: 2022-07-29. https://www.w3.org/TR/r2rml/.
[19] M. Arenas, A. Bertails, E. Prud’hommeaux and J. Sequeda, A Direct Mapping of Relational Data to RDF, Accessed: 2022-07-29. https:

//www.w3.org/TR/rdb-direct-mapping/.
[20] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens and R. Van de Walle, RML: A Generic Language for Integrated RDF

Mappings of Heterogeneous Data, in: Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd International
World Wide Web Conference (WWW 2014), CEUR Workshop Proceedings, Vol. 1184, 2014. http://ceur-ws.org/Vol-1184/ldow2014_paper_
01.pdf.

[21] A. Dimou, M. Vander Sande, J. Slepicka, P. Szekely, E. Mannens, C. Knoblock and R. Van de Walle, Mapping Hierarchical Sources
into RDF Using the RML Mapping Language, in: 2014 IEEE International Conference on Semantic Computing, 2014, pp. 151–158.
doi:10.1109/ICSC.2014.25.

http://spec.graphql.org/draft/
https://tyk.io/blog/an-introduction-to-graphql-federation/
https://tyk.io/blog/an-introduction-to-graphql-federation/
https://www.apollographql.com/docs/federation/
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/rdb-direct-mapping/
https://www.w3.org/TR/rdb-direct-mapping/
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014_paper_01.pdf

32 H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[22] O. Hartig and J. Hidders, Defining Schemas for Property Graphs by Using the GraphQL Schema Definition Language, in: Proceedings of
the 2nd Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)
co-located with SIGMOD/PODS ’19: International Conference on Management of Data, GRADES-NDA’19, Association for Computing
Machinery, 2019, pp. 1–11. doi:10.1145/3327964.3328495.

[23] O. Hartig and J. Pérez, Semantics and Complexity of GraphQL, in: Proceedings of the 2018 World Wide Web Conference, WWW ’18,
2018, pp. 115–1164. doi:10.1145/3178876.3186014.

[24] F. Baader, O.F. Gil and M. Pensel, Standard and Non-Standard Inferences in the Description Logic FL0 Using Tree Automata., in: GCAI-
2018. 4th Global Conference on Artificial Intelligence, Vol. 55, 2018, pp. 1–14. doi:10.29007/scbw.

[25] I. Horrocks, P.F. Patel-Schneider and F. Van Harmelen, From SHIQ and RDF to OWL: The making of a web ontology language, Journal
of Web Semantics 1(1) (2003), 7–26. doi:10.1016/j.websem.2003.07.001.

[26] I. Horrocks and U. Sattler, Ontology Reasoning in the SHOQ(D) Description Logic, in: Proceedings of the 17th International Joint Con-
ference on Artificial Intelligence - Volume 1, IJCAI’01, Morgan Kaufmann Publishers Inc., 2001, pp. 199–204–.

[27] F. Baader, I. Horrocks, C. Lutz and U. Sattler, An Introduction to Description Logic, 1st edn, Cambridge University Press, 2017.
doi:10.1017/9781139025355.

[28] F. Baader, P. Marantidis and M. Pensel, The Data Complexity of Answering Instance Queries in FL0, in: Companion Proceedings of
the The Web Conference 2018, WWW ’18, International World Wide Web Conferences Steering Committee, 2018, pp. 1603–1607.
doi:10.1145/3184558.3191618.

[29] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini and R. Rosati, Linking Data to Ontologies, in: Journal on Data Semantics
X, Springer, 2008, pp. 133–173. doi:10.1007/978-3-540-77688-8_5.

[30] D. Chaves-Fraga, F. Priyatna, A. Alobaid and O. Corcho, Exploiting Declarative Mapping Rules for Generating GraphQL
Servers with Morph-GraphQL, International Journal of Software Engineering and Knowledge Engineering 30(06) (2020), 785–803.
doi:10.1142/S0218194020400070.

[31] F. Priyatna, O. Corcho and J. Sequeda, Formalisation and Experiences of R2RML-Based SPARQL to SQL Query Translation Using Morph,
in: Proceedings of the 23rd International Conference on World Wide Web, Association for Computing Machinery, 2014, pp. 479–490.
doi:10.1145/2566486.2567981.

[32] Morph-RDB, version 3.12.5, Accessed: 2022-07-29. https://github.com/oeg-upm/morph-rdb/releases/tag/v3.12.5.
[33] D. Chaves-Fraga, E. Ruckhaus, F. Priyatna, M. Vidal and O. Corcho, Enhancing Virtual Ontology Based Access over Tabular Data with

Morph-CSV, Semantic Web 12(6) (2021), 869–902. doi:10.3233/SW-210432.
[34] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro and G. Xiao, Ontop: Answering SPARQL

queries over relational databases, Semantic Web 8(3) (2017), 471–487. doi:10.3233/SW-160217.
[35] Ontop, version 4.2.1, Accessed: 2022-07-29. https://github.com/ontop/ontop/releases/tag/ontop-4.2.1.
[36] R. Taelman, M. Vander Sande and R. Verborgh, GraphQL-LD: Linked Data Querying with GraphQL, in: Proceedings of the ISWC 2018

Posters & Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference (ISWC 2018),
CEUR Workshop Proceedings, Vol. 2180, CEUR-WS, 2018. http://ceur-ws.org/Vol-2180/paper-65.pdf.

[37] Semantic Integration Ltd., HyperGraphQL, version 2.0.0, Accessed: 2022-07-29. https://github.com/hypergraphql/hypergraphql/releases/
tag/2.0.0.

[38] L. Gleim, T. Holzheim, I. Koren and S. Decker, Automatic Bootstrapping of GraphQL Endpoints for RDF Triple Stores, in: Proceed-
ings of the QuWeDa 2020: 4th Workshop on Querying and Benchmarking the Web of Data co-located with 19th International Semantic
Web Conference (ISWC 2020), CEUR Workshop Proceedings, Vol. 2722, CEUR-WS, 2020, pp. 119–134. http://ceur-ws.org/Vol-2722/
quweda2020-paper-2.pdf.

[39] Semantic Integration Ltd., UltraGraphQL, version 1.0.0, Accessed: 2022-07-29. https://git.rwth-aachen.de/i5/ultragraphql.
[40] C. Farré, J. Varga and R. Almar, GraphQL Schema Generation for Data-Intensive Web APIs, in: Model and Data Engineering, Springer,

Cham, 2019, pp. 184–194. doi:10.1007/978-3-030-32065-2_13.
[41] S. Cheng and O. Hartig, LinGBM: A Performance Benchmark for Approaches to Build GraphQL Servers, in: Web Information Systems

Engineering – WISE 2022 - 23rd International Conference on Web Information Systems Engineering, Biarritz, France, November 1–3,
2022, Lecture Notes in Computer Science, Vol. 13724, Springer, Cham, 2022. doi:10.1007/978-3-031-20891-1_16.

[42] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus and O. Corcho, GTFS-Madrid-Bench: A benchmark for virtual knowl-
edge graph access in the transport domain, Journal of Web Semantics 65 (2020), 100596. doi:10.1016/j.websem.2020.100596.

[43] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K.a. Persson, The Materials
Project: A materials genome approach to accelerating materials innovation, APL Materials 1(1) (2013), 011002. doi:10.1063/1.4812323.

[44] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig and C. Wolverton, Materials Design and Discovery with High-Throughput Density Functional
Theory: The Open Quantum Materials Database (OQMD), JOM 65 (2013), 1501–1509. doi:10.1007/s11837-013-0755-4.

[45] P. Lambrix, R. Armiento, A. Delin and H. Li, Big Semantic Data Processing in the Materials Design Domain, in: Encyclopedia of Big Data
Technologies, Springer, 2019. doi:10.1007/978-3-319-63962-8_293-1.

[46] P. Lambrix, R. Armiento, A. Delin and H. Li, FAIR Big Data in the Materials Design Domain, in: Encyclopedia of Big Data Technologies,
Springer, 2022. doi:10.1007/978-3-319-63962-8_293-2.

[47] S.R. Kalidindi and M. De Graef, Materials Data Science: Current Status and Future Outlook, Annual Review of Materials Research 45
(2015), 171–193. doi:10.1146/annurev-matsci-070214-020844.

[48] A. Agrawal and A. Choudhary, Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials
science, APL Materials 4 (2016), 053208:1–10. doi:10.1063/1.4946894.

https://github.com/oeg-upm/morph-rdb/releases/tag/v3.12.5
https://github.com/ontop/ontop/releases/tag/ontop-4.2.1
http://ceur-ws.org/Vol-2180/paper-65.pdf
https://github.com/hypergraphql/hypergraphql/releases/tag/2.0.0
https://github.com/hypergraphql/hypergraphql/releases/tag/2.0.0
http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf
http://ceur-ws.org/Vol-2722/quweda2020-paper-2.pdf
https://git.rwth-aachen.de/i5/ultragraphql

H. Li et al. / Ontology-Based GraphQL Server Generation for Data Access and Data Integration 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[49] A. Tropsha, K.C. Mills and A.J. Hickey, Reproducibility, sharing and progress in nanomaterial databases, Nature Nanotechnology 12
(2017), 1111–1114. doi:10.1038/nnano.2017.233.

[50] S. Karcher, E.L. Willighagen, J. Rumble, F. Ehrhart, C.T. Evelo, M. Fritts, S. Gaheen, S.L. Harper, M.D. Hoover, N. Jeliazkova, N. Lewin-
ski, R.L.M. Robinson, K.C. Mills, A.P. Mustad, D.G. Thomas, G. Tsiliki and C.O. Hendren, Integration among databases and data sets to
support productive nanotechnology: Challenges and recommendations, NanoImpact 9 (2018), 85–101. doi:10.1016/j.impact.2017.11.002.

[51] J. Rumble, J. Broome and S. Hodson, Building an International Consensus on Multi-Disciplinary Metadata Standards: A CODATA Case
History in Nanotechnology, Data Science Journal 8 (2019), 12:1–11. doi:10.5334/dsj-2019-012.

[52] C. Draxl and M. Scheffler, NOMAD: The FAIR concept for big data-driven materials science, MRS Bulletin 43(9) (2018), 676–682.
doi:10.1557/mrs.2018.208.

[53] H. Li, R. Armiento and P. Lambrix, An Ontology for the Materials Design Domain, in: The Semantic Web - ISWC 2020 - 19th International
Semantic Web Conference, Athens, Greece, November 2-6, 2020, Lecture Notes in Computer Science, Vol. 12507, Springer, Cham, 2020,
pp. 212–227. doi:10.1007/978-3-030-62466-8_14.

[54] C.W. Andersen, R. Armiento, E. Blokhin, G.J. Conduit, S. Dwaraknath, M.L. Evans, Á. Fekete, A. Gopakumar, S. Gražulis, A. Merkys,
F. Mohamed, C. Oses, G. Pizzi, G.-M. Rignanese, M. Scheidgen, L. Talirz, C. Toher, D. Winston, R. Aversa, K. Choudhary, P. Colinet,
S. Curtarolo, D. Di Stefano, C. Draxl, S. Er, M. Esters, M. Fornari, M. Giantomassi, M. Govoni, G. Hautier, V. Hegde, M.K. Horton,
P. Huck, G. Huhs, J. Hummelshøj, A. Kariryaa, B. Kozinsky, S. Kumbhar, M. Liu, N. Marzari, A.J. Morris, A.A. Mostofi, K.A. Persson,
G. Petretto, T. Purcell, F. Ricci, F. Rose, M. Scheffler, D. Speckhard, M. Uhrin, A. Vaitkus, P. Villars, D. Waroquiers, C. Wolverton, M. Wu
and X. Yang, OPTIMADE: an API for exchanging materials data, Scientific Data 8(217) (2021). doi:10.1038/s41597-021-00974-z.

[55] H. Li, Ontology-Driven Data Access and Data Integration with an Application in the Materials Design Domain, PhD thesis, Linköping
University, Sweden, 2022. doi:10.3384/9789179292683.

[56] J. Arenas-Guerrero, D. Chaves-Fraga, J. Toledo, M.S. Pérez and O. Corcho, Morph-KGC: Scalable Knowledge Graph Materialization with
Mapping Partitions, Semantic Web (2022). doi:10.3233/SW-223135.

	Introduction
	Background
	Ontologies and Description Logics
	Data Integration
	GraphQL
	GraphQL Schemas
	GraphQL Resolver Functions

	GraphQL-Based Framework for Data Access and Data Integration
	Overview of the Framework
	GraphQL Server Generation Process
	GraphQL Query Answering Process

	Ontology-Based GraphQL Schema Generation
	GraphQL Schema Formalization
	Ontology Representation by a Description Logic TBox
	Schema Generator Algorithm
	The Intended Meaning of a Generated GraphQL Schema

	Generic GraphQL Resolver Function
	GraphQL Queries Represented by Abstract Syntax Trees
	RDF Mapping Language (RML)
	Components of the Generic Resolver Function
	The Evaluator Algorithm

	Related Work
	Evaluation
	Real Case Evaluation
	Evaluation based on LinGBM (Linköping GraphQL Benchmark)
	Evaluation based on GTFS-Madrid-Bench
	Summary and Discussion

	Concluding Remarks and Future Work
	References

