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Abstract. Nowadays new graph-oriented database engines (GDBMS) are capable of managing large volumes of graph data.
These engines, like any other database engine, have an internal query optimizer that proposes a query execution plan (QEP) for
each query they process. This step is entirely necessary since without it queries to large amounts of data may need hours to
terminate. Selecting a “good enough” query plan is a difficult task as there may be thousands of possible query plans to consider
just for a single query. The development of a good query planner is considered the “Holy Grail” in database management systems.

Recent results show how neural network models can help in the optimization process in Relational Database Management
System (RDBMS), however, performance prediction in the area of graph databases is still in its infancy. There are two challenges
in predicting graph query performance using machine learning models, yet to be addressed: the first is to find the most suitable
query representation in a format that can be interpreted by Machine Learning (ML) algorithms; the second (which depends on
the first challenge), is the learning algorithm used to predict performance. Herein we propose a method that actually fills in such
a gap, by providing first a query characterization that (second) allows us to develop a deep learning model to estimate query
latency later on. We adapt an existing model using convolutions over trees to generate a model that SPARQL queries and evaluate
it against Wikidata, using their query logs and data. Our model correctly predicts the latency for queries in 87% of the validation
set and we provide an explanation to those queries that we fail to predict the latency.

Keywords: Tree convolution, database optimization, query latency prediction, graph databases

1. Introduction

Nowadays new graph-oriented database engines
(GDBMS) are capable of managing large volumes of
graph data. Commercial solutions (from Oracle, Ama-
zon Neptune or Neo4J), as well as open source solu-
tions like Virtuoso 1 or Apache Jena Fuseki 2 or the re-
cent MillenniumDB [24], are examples of them. These
engines, like any other database engine, have an in-
ternal query optimizer that proposes a query execu-
tion plan (QEP) for each query they process. This step
is entirely necessary since without it queries to large
amounts of data may need hours to terminate (query
complexity is at its best linear in terms of the data

*Corresponding author: cbuil@inf.utfsm.cl
1Virtuoso Open Source Edition:

http://vos.openlinksw.com/owiki/wiki/VOS.
2Apache Jena Fuseki: https://jena.apache.org/documentation/fuseki2/.

queried). Selecting a “good enough” query plan is a
difficult task as there may be thousands of possible
query plans to consider just for a single query [12]. The
development of a good query planner is considered the
“Holy Grail” in database management systems.

Recent results show how neural network models can
help in the optimization process in Relational Database
Management System (RDBMS). These models esti-
mate intermediate results from query executions for
later use within the query optimizer [9], help pre-
dicting database loads [6] or can replace conventional
query optimizers within relational database engines,
such as in [13, 15], predicting the entire query plan la-
tency.

As stated in [19] “latency is the most important met-
ric in a DBMS, as it captures all aspects of perfor-
mance”. Query performance estimation is also of inter-
est for workload allocation in more complex systems
such as cloud database services and the growing in-

1570-0844/23/$35.00 © 2023 – IOS Press and the authors. All rights reserved
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terest in implementing concepts such as “Self-Driving
Database Management Systems” [19]. In general, la-
tency is used as a metric to meet Quality-of-Service
objectives [3, 6].

In contrast to the DBMS area, performance predic-
tion in the area of graph databases is still in its in-
fancy. For query prediction in graph databases, the lat-
est results come from the use of machine learning tech-
niques such as SVRs or clustering algorithms such
as k-nearest neighbor (K-nn) [7]. There are two chal-
lenges in predicting graph query performance using
machine learning models. The first is to find the most
suitable query representation in a format that can be in-
terpreted by Machine Learning (ML) algorithms. The
second (which depends on the first challenge), is the
learning algorithm used to predict performance.

To the best of our knowledge, there is no solution us-
ing Deep Learning techniques for latency prediction of
SPARQL queries on graph databases. Finally, the gap
in performance prediction hinders progress in optimiz-
ing SPARQL queries and other applications mentioned
above.

Herein we propose a method that actually fills in
such a gap, by providing first a query characterisation
that allows us to develop a deep learning model to es-
timate query latency later on.

The rest of the paper is organized as follows: Sec-
tion 2.1 introduces the SPARQL and RDF concepts
necessary in the paper while Section~ 3 introduces the
related work so far, focusing especially on Database
Query Processing. Section 4 presents the Deep Learn-
ing architecture we propose for solving the SPARQL
query latency prediction problem and in Section 5 we
evaluate the proposal. In Section 6 discuss the results
we obtained and finally, we conclude in 7. We also pro-
vide the code and the data for our model and experi-
ments in the Github companion repository3.

This work is the extension of the research presented
in [4]. The main differences are:

– A new Related Work section, which presents to
the reader the state of the art in using Machine
Learning techniques in database systems opti-
mization.

– A new Architecture Section that introduces our
new model for SPARQL query latency prediction,
which is based on Tree Convolution Deep Neural
Networks [18] and Autoencoders. This approach

3https://github.com/cbuil/sparql-latency-prediction

is totally different from our previous work and is
the core of the current contribution.

– A new Experiments Section, in which we use data
from the Wikidata [23] dataset and query logs.

2. Preliminaries

In this Section we introduce some brief preliminar-
ies for RDF, SPARQL and Database Query Processing
used throughout.

2.1. RDF and SPARQL

RDF RDF is the graph-based data model at the heart
of the Semantic Web. RDF terms can be IRIs (I),
literals (L) or blank nodes (B). A triple (s, p, o) ∈
I ∪ B× I× I ∪ B ∪ L is called an RDF triple, where s
is called the subject, p the predicate, and o the object.
An RDF graph is a set of RDF triples.

SPARQL SPARQL is the standard query language
for RDF [2]. Let V be a set of variables. A tuple
t ∈ I∪B×I×I∪B∪L is called a triple pattern. Blank
nodes in triple patterns can be considered as query
variables for our purposes. A set of triple patterns is
called a basic graph pattern. We denote by var(t) and
var(P) the set of variables found in a triple pattern t
and basic graph pattern P, respectively. We call a vari-
able ?x ∈ var(P) a join variable if it appears in two or
more triple patterns of P, and a lonely variable other-
wise.

We define the semantics of SPARQL queries in
terms of solution mappings. A mapping µ is a partial
function µ : V → I ∪ B ∪ L where the domain of µ
(dom(µ)), is the set of variables on which µ is defined.
Consider a triple pattern t, we denote by µ(t) the im-
age of the triple pattern t under µ, i.e. µ(t) is the triple
obtained by replacing the variables in t according to
µ. We say that two mappings µ1 and µ2 are compat-
ible, denoted µ1 ∼ µ2, µ1(?x) = µ2(?x) for every
?x ∈ dom(µ1) ∪ dom(µ2). Given sets of mappings Ω1

and Ω2, we then define their join as We can now define
the evaluation of a triple pattern and a basic graph pat-
tern over an RDF graph G (the latter being defined as
a join over its triple patterns):

Letting µ(P) denote the image of P under µ, with
respect to the latter definition, we can equivalently say
that

SPARQL offers a wide range of query operators that
can be used to combine or modify the results of ba-

https://github.com/cbuil/sparql-latency-prediction
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sic graph patterns, such as union, optional, filters, ag-
gregates (counts, averages, etc.), property paths, etc.
In this paper, we focus on predicting the performance
of queries having only projections (SELECT) join
and optional operations between basic graph patterns,
which form the core of SPARQL queries.

2.2. Database systems and implementation plans

In [10] the authors present a general architecture
(Figure 2.2) for query processing: (1) query parser, (2)
query rewriter, (3) query optimizer, (4) plan refinement
and query execution engine. The parser reads the query
and transforms it into the system’s internal represen-
tation. Then, in (2) the query is rewritten by creating
a logical query plan from this internal representation.
The query optimizer is in charge of applying differ-
ent optimizations depending on the type of system, the
physical state, the indexes to be used, the nodes to send
the query to, etc. As a result, the query optimizer gen-
erates an optimized query plan that specifies how the
query will be executed. This plan is refined and trans-
formed into an executable plan by the plan refinement
component which will finally be executed by the query
execution engine.

Figure 2 shows some details of the optimization
process executed for the query on the left side of
that Figure. The order of the triples is determined by
the cardinality estimates for predicates and types of
triples. Note that in this case the triple (?person
dbo:birthPlace :Cuba) is executed first be-
cause the predicate dbo:birthPlace is the lowest
cardinality predicate defined in the statistics file. Note
also that the triple (?person dbo:birthDate
?birth) executed is the third one executed because
it is a triple of type var_uri_var so it is usually
more expensive during execution. An inappropriate se-
lection of the order in which the intermediate results of
a query are executed can cause significant impacts on
the execution time of a query, as well as on the hard-
ware resources.

3. Related Work

Before stepping into describing our contribution we
present the existing approaches for query optimization
in both, relational and graph database systems. In the
former, we divide the approach in those works that
predict the cardinalities used to optimize a query and
those works that focus on predicting the performance
of queries.

3.1. Cardinality prediction in RDBMS

Akdere et al. [3] use Reinforcement Learning (RL)
combined with traditional human-designed cost mod-
els to automatically learn optimized query plans. They
use dense neural networks to minimize the cost (in-
termediate results cardinality) of a subplan resulting
from a join operation. The authors encode each inter-
mediate table, generated after a join operation, using
1-hot vectors which are then concatenated. The RL
algorithm iterates over the predictions of possible joins
choosing at each step the least costly one until the com-
plete plan until the algorithm obtains the optimal plan.

Kipf et al. [9] proposed a deep learning cardinality
estimator called the Multi-Set Convolutional Network
(MSCN). It predicts co-relationships of joins within
the data, addressing some weaknesses in techniques
such as sampling basic statistics by table. MSCN uses
Deep Sets [26] which allows expressing query features
using sets, which can then be used as input for deep
learning models. The authors extract each query fea-
ture using the following sets:

1. Table Set: samples information from each table,
using one-hot vectors as their internal represen-
tation.

2. Join Set: similarly as in the “Table Set”, the au-
thors use one-hot vectors for representing joins
between tables in the query.

3. Predicate Set: the authors represent predicates in
triples of the form (col, op, val), using one-hot
vectors for the predicate (col), the operator (op)
and for the value a normalized number between
[0 : 1].

In general, these cardinality estimators rely on the
use of predicate statistics and operators, which are
typically represented in trees that encode the query
structure. However, these MLP (fully connected neu-
ral nets) models may not have the appropriate induc-
tive bias for them [5]. In despite of that, there are some
works like in [13], which conclude that cardinality pre-
diction does not necessarily lead to the optimisation of
a good plan.

3.2. Performance prediction in RDBMS with Machine
Learning

One of the pioneering works in performance predic-
tion using machine learning techniques is [3]. The au-
thors encode SQL queries using operator-level features
in conjunction with query execution plan information:
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Fig. 1. (1) query parser, (2) query rewriter, (3) query optimizer, (4) plan refinement component and query execution engine.

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX : <http://dbpedia.org/resource/>
SELECT ?person ?birth ?death
FROM <http://dbpedia.org> WHERE {

{
?person dbo:birthPlace :Cuba ;
tdf:type dbo:Athlete .
?person dbo:birthDate ?birth ;

FILTER (isLITERAL (?birth ))
FILTER ( ?birth < "1900-01-01"^^xsd:date )

}
OPTIONAL { ?person dbo:deathDate ?death . }

}
LIMIT 100

(a) SPARQL query.

(stats
(meta

...
(count 89337663))

...
((VAR rdf:type dbo:Athlete>) 114848)
(dbp:birthPlace 41949)
...
(dbo:birthDate 232640)
...
(dbo:deathDate 69706)
...
(dbo:federalState 81)
...

(b) Query statistics used by the optimizer

Fig. 2. On the left a SPARQL query and the statistics used for its optimization within the query planner on the right.

– At the plan level: they extract features from the
query optimizer estimates, such as operator car-
dinalities and plan execution costs, together with
the occurrence count of each type of operator in
the query plan. A single model is used for these
types of features (a Nu-SVR and Kernel Canoni-
cal Correlation Analysis (KCCA)).

– At the operator level: they extract characteristics
that apply to all operators, such as: I/O estimates,
number of tuples, selectivity, and the execution
times of each operator. In this case, the authors

use multivariate linear models for each operator.
These are nested according to the order of execu-
tion provided by the engine, using the predictions
of the lowest level operators as inputs for the next
operator in the tree until the algorithm returns the
complete plan prediction.

From this work several others followed, using Deep
Neural Networks to predict query performance. Mar-
cus et al. [15] propose a deep neural network which
focuses on training query plan structures. It follows
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a similar concept to the one described in [18] nest-
ing small modules or units of dense neural networks
(nodes) to build a tree-structured network. Each neural
unit processes one operation in the plan, the leaf units
correspond to scan operations on tables. The query
characteristics they use are, cost estimates, I/O, in-
termediate results, join type, hash algorithms, sorting
method, among other data. In addition to the interme-
diate latency of the operator, each leaf unit also pre-
dicts a vector representative of the processed input.
This vector is then used as input for the next node that
receives as input the two nodes (the left and right) plus
the features inherent to the join type, until it reaches
the root of the query and the algorithm outputs the
query plan latency. Because the features used are only
those delivered by the PostgreSQL optimizer this solu-
tion does not need an expertly defined feature design.
However, its success depends on the optimizer deliv-
ering relevant information from each operator of the
query plan. This affects its re-usability in the context
of graph database engines where it is difficult to ob-
tain such descriptive information from the optimizer
beyond the optimized tree.

Neo [14] is one of the most recent works using neu-
ral network models and reinforced learning to build an
end-to-end solution for query optimization in RDBMS
systems. Neo learns to make optimization decisions
by taking into account the order of joins, physical
operators and index selection. The performance ob-
tained is competitive with optimizers for enterprise
RDBMS systems such as Microsoft SQL Server and
Oracle. Neo brings together some of the most useful
techniques previously seen for vector coding of SQL
queries. The query-level features are divided into 2
components. The first uses the top half of an adja-
cency matrix to encode cross joins, whose vectors are
then concatenated. The second component encodes the
predicate columns using one of 3 methods:

– One-hot vector marking the presence or absence
of a predicate.

– Histograms: similar to above but the 1 in the pred-
icate position is replaced by the selectivity of the
predicate (normalized to [0, 1]) using histograms.

– R-vector: rescues semantic information in pred-
icate embeddings using word2vec-based mod-
els [17].

At the level of execution plans, characteristics are
encoded preserving their inherent structure as trees.
For each plan or sub-plan the model creates a vec-
tor tree where each node contains information about:

types of joins, type of search operations on the data (ta-
ble, indexes, etc.). Next, Deep Neural Network called
“Value Network” processes the previous code above
using tree-based convolutions (TBCNN) [18], and can
predict the execution performance of queries or sub-
queries. Similarly to CNN networks for computer vi-
sion problems, the Neo architecture (especially the use
of Tree-Based CNN), is designed to create a suitable
inductive bias for query optimization.

3.3. SPARQL Performance prediction

As we have mentioned, SPARQL query perfor-
mance prediction has not been widely addressed. To
our knowledge, the most relevant work is the one pro-
posed by Hasan and Gandon in 2014 [7]. The authors
use Support Vector Machine for regression (Nu-SVR)
and K-Nearest Neighbors (Knn) to predict query ex-
ecution time. SPARQL queries are encoded as input
vectors of the algorithms by mixing the following ap-
proaches:

– Algebraic: the authors extract the frequency of the
operators present in the body of the query.

– Graph patterns: queries are represented as graphs
in order to extract their BGPs. Using that graph
representation the authors apply the K-medoids
algorithm on the query dataset [7]. The intuition
is related to the fact that SPARQL queries are in
essence formed by patterns of triples that search
for matches in the data stored in the database.
Graph patterns are shaped by these triple patterns,
so if the graph patterns of two queries are very
similar they may have similar execution times as-
sociated with them.

In [1], the authors use similar feature and model
extraction approaches as in [7]. In addition to execu-
tion time, the authors predict other performance met-
rics such as CPU and memory usage. Unlike in [7],
each type of triple is modeled as a structurally differ-
ent subgraph in order to further differentiate the train-
ing examples. The computation of the edit distance be-
tween all queries is replaced by randomly selecting the
K centroids of the queries generated in each template
used in [7].

While there are a variety of systems implementing
a query optimizer using Deep Learning in the rela-
tional database management systems area, in the graph
database world these optimizers are scarce. We learned
from them the techniques to develop our Deep Learn-
ing for graph databases, which we describe in the next
Section.
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4. Tree-Based Convolutional Neural Networks for
SPARQL query performance prediction

Based on the problem raised in Section 1 and the
advances in the field described in Section 3, we de-
scribe our solution below. As mentioned previously, a
prediction model based on deep networks faces two
main challenges for query execution time prediction:
(i) selecting the right set of features to encode a query;
(ii) the definition of the network architecture that ex-
ploits the features defined in (i) to perform predictions.
In particular, we will take advantage of the SPARQL
query structure to train a tree-based convolutional neu-
ral network.

Section 4.1 details the feature extraction techniques
explored, which we will then apply to the data sources
identified in the same Section 4.1. Section 4.2 details
the proposed neural network architecture that uses the
extracted features for training and subsequent evalua-
tion of the proposal.

4.1. Feature extraction

Feature extraction from SPARQL queries is one of
the two fundamental challenges for this research. For
some learning tasks there is a consensus on the forms
of data representation used. For example, images are
generally represented using a matrix in which each cell
represents the intensity of a pixel on the scale [0, 255].
For color images the RGB format is used, which is
represented by 3 matrices (one for each channel). In
other learning tasks related to audio signal processing
it is common to use codification such as: ’waveforms’
(waveform) and spectrograms [20].

Unlike these tasks, SPARQL queries do not have
a community-accepted codification for the execution
time prediction task. In this research, we follow the
methodology for feature extraction in SQL queries de-
fined in Neo, which includes the definition of general
query features and execution plan-level features. In the
following, we propose the feature extraction that we
use.

4.1.1. Query-level characteristics
For query-level features we use two approaches, al-

gebraic feature extraction and graph pattern feature ex-
traction.

Algebraic Characteristics The algebraic character-
istics record the frequencies of SPARQL operators
present or not in the queries as characteristics. More in
detail, we selected as features the occurrence of opera-

tors: BGPs, joins, OPTIONAL, UNION and FILTER,
among others. We also include as query features the
number of triple patterns (bgps) in the queries and the
depth of the tree. Additionally, instead of including
only the occurrences of joins between BGPs, we also
include joins between triple patterns. This allows us
to include more information in the model, since most
joins occur between triple patterns in the query. If the
query contains the LIMIT operator, we use its numeric
value.

Figure 3 (left side) shows an example of algebraic
feature extraction. The procedure followed is as fol-
lows:

1. Use Apache Jena ARQ to extract the tree algebra
from the SPARQL query.

2. Count frequency of terms used per query.
3. Produce a vector of n features (one per term) per

query.
4. Add the depth of the tree and the amount of bgps.

Graph patterns The second approach benefits from
the ability to model SPARQL queries as graphs to ex-
tract patterns from them. This uses similarity patterns
between queries, represented as graphs using a vector
of Kgp dimensions, where the value of each feature is
the structural similarity between that query pattern and
any of the other representative patterns in the dataset.

Figure 3 (right side) shows an example of extracting
features from graph patterns for a SPARQL query. We
describe the process as follows:

The first step is to build a graph representative of the
SPARQL query. For this, we join the triples taking into
account the nodes that are common variables between
them. Finally, we replace both variables and literals by
a node with a common symbol (Figure 3 with “?”).

The second step is to make clusters from the queries
using the k-medioids algorithm [8]. K-medioids
choose the centroids (Kgp centroids) using a distance
function as the Edit Distance. In Figure 3 (right side)
each circle represents a cluster of queries in which we
identify each centroid by a color.

Finally, to obtain the vector representation of Kgp
(the query pattern), we compute the structural similar-
ity between a query graph p j and the center ki of the
cluster query graph C(k). The term d(pi,C(k)) is the
edit distance between the query graphs pi and C(k),
obtaining a normalized similarity between 0 and 1 (0
being the most different and 1 being the most equal).

sim(pi,C(k)) =
1

1 + d(pi,C(k))
. (1)
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Fig. 3. Query level feature extraction methods: algebra feature encoding (left side), graph pattern encoding (right side).

The results of [7] propose the combination of both
approaches (Algebra Features and Graph Pattern Fea-
tures) to obtain better performance. We use that com-
bination to extract query-level dataset features. In the
next Section we will define the features at the execu-
tion plan level.

Histograms of predicates The Jena optimizer pro-
poses a cardinality estimate for each triple. Jena calcu-
lates that value depending on the type of triple and the
predicate included in the query. For example, a triple
of type VAR_URI_VAR, where the predicate used is
wdt:P31 (’instance of’) has an associated cardinal-
ity of more than 51 million results. However, if it is
present in a triple of type VAR_URI_URI the opti-
mizer delivers a cardinality of ’4’. We will use the car-
dinalities of the traditional optimizer normalized to [0,
1] as the value associated with each predicate, with 1
being the maximum cardinality among all predicates
sampled.

4.1.2. Characteristics at the implementation plan
level

Regardless of the operators in a SPARQL query, per-
formance is largely determined by the order in which
the engine executes the query patterns. An early triple
pattern with a bounded variable execution may save
minutes of query processing. Such order is determined
by the predicate selectivity within the query. The query
engine by first selects the triples whose predicate has
lower selectivity according to a file storing the per-
predicate statistics, codifying its execution plan as a

binary tree. We extract such binary tree and codify it
for later use within our model as shown in Figure ??.
The leaf nodes of the tree represent the triples that
execute SCAN operations on the database. The inter-
mediate nodes represent the JOIN operations between
the triples. The execution plan has to be analyzed in a
bottom-up fashion, with the lower left nodes being the
first to be executed.

We enrich each node’s information by adding node
semantic information such as the estimated cardinality
for the node according to the optimizer, cost informa-
tion, etc. This information is provided by the query op-
timizer, and also introduces a high dimensionality in
the node vectors due to the fact that the databases are
composed of thousands of predicates. In a single query
hundreds of predicates may be present, needing a large
vector to codify it. This problem is not common in the
context of relational systems, whose joins are executed
between a relatively small number of tables.

4.2. Deep neural network architecture

We now present our architecture for predicting
SPARQL query execution times. Similarly to the work
in Neo [13], we propose a neural network trained to
predict query latency for a complete execution plan
P( f ). Our goal (as opposed to Neo) is not to learn
from partial query plans P(i) ⊂ P( f ), since that re-
search is bounded to latency prediction. However, a
proposed optimizer using this architecture in the con-
text of SPARQL should be trained on P(i) sub-plans
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to approximate the best possible latency estimate such
that P(i) ⊂ P( f ).

We feed this architecture with a training set A com-
posed by N execution plans {P( f )

n }N
n=1 each of them

with a known latency L(P( f )
n )).

Our goal is to find a parametrized function h that
maps P( f ) −→ L(P( f )). We choose h that minimizes
the error of estimating query latency using a quadratic
loss function (L2) over the training set A :

θ∗ = argminθMSE
(

L(P( f ), h(P( f ), θ)
)
, (2)

where θ∗ is the set of model parameters and MSE is the
mean square error defined as

MSE
(

L(P( f )), h(P( f ), θ)
)

=
1

N

N∑
n=1

(L(P( f )
n )−h(P( f )

n , θ))2.

4.2.1. Architecture
Figure 4 shows our generic architecture. We de-

signed it to create an inductive bias suitable for query
latency prediction: the network design encodes the
intuition details of the causes that produce fast or
slow query execution. Experts studying query execu-
tion plans learn to recognize sub-optimal or good plans
by tree pattern matching. The intuition behind is that
the architecture can recognize these patterns by ana-
lyzing the subtrees from a query execution plan, sim-
ilarly to what experts do. Consequently, the model is
essentially an expert at recognizing query execution
trees, learning them automatically, from the data itself,
using a technique called tree convolution [18].

As shown in Figure 4, the first step is to introduce
the query-level encoding into the model through sev-
eral fully-connected layers. (i) the architecture con-
catenates the vector produced by the last dense layer
with the plan-level coding, i.e., the same vector is
added to each node in the tree. This is a technique
known as “spatial replication” [13], to combine fixed-
size data (query-level encoding) and dynamically sized
data (plan-level encoding). (ii) Next, we feed the plan-
level encoding into our Autoencoder architecture (Sec-
tion 4.2.3 to reduce the high dimensionality produced
by the large amount of graph edges. (iv) we concate-
nate the autoencoder output with the query level en-
coding and feed with it the tree convolution layers [18],
an operation that has as input and output a tree with
the same structure but different node-level dimension.
(v) Subsequently, we apply a dynamic clustering oper-

ation [18], as explained in Section 4.2.4. This archi-
tecture has many similarities with the architecture pro-
posed by Marcus et al. [13], however we adapted it to
deal with a graph query language (i.e. no fixed schema,
thousands of different edges, etc.).

4.2.2. Convolutions on trees
Convolutional Neural Networks (CNN) are a very

popular option when the learning task is done over spa-
tial hierarchies [25], like images [11] or time series
[22]. As in Neo 4, we use a tree-based convolutional
architecture [18] since we want to learn the hierarchy
of a SPARQL query plan, which is very similar to a
SQL query plan. Thus, we naturally process the plan
structure [16] by sliding a set of shared filters over each
part of the plan tree, capturing a wide variety of local
relationships between parent and child nodes.

These filters search for combinations of the JOIN
type between triple patterns, depending on the specific
predicates present in these triple patterns. These out-
put filters provide the signals used by the final lay-
ers of the network and highlight relevant query el-
ements. Some of these query elements are the im-
plications of join order predicate or the implications
of using a very common edge in the RDF graph
(such as the type predicate) on the left or right side
of a JOIN. For example, executing a triple of type
VAR_URI_URI or VAR_URI_LITERAL first signifi-
cantly decreases the cardinality of intermediate and fi-
nal results and hence execution time, whereas a triple
of type VAR_URI_VAR is usually associated with
high cardinality and hence high-latency queries, spe-
cially if the previous URI represents a very common
edge in graph database.

Following Neo’s approach, the tree query is gener-
ated with a pre-order path, where at each step not only
the root, but also the left and then adding the right child
of the tree, generates at each step the locality of a tree
(parent / left child / right child). Then, we use a tradi-
tional 1D convolution operation applied on the tree to
learn the queries.

Since query trees has exactly two child nodes,
each convolutional filter has three weighting vectors:
ep, el, er, one of the parent node, one for the left child
and another for the right child of the tree, forming the
vector xp of a node and its left and right children, xl

and xr respectively. We set to ~0 left and right children

4TreeConvolution used in Neo, simplified for binary trees.
https://github.com/RyanMarcus/TreeConvolution

@github.com:RyanMarcus/TreeConvolution
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Fig. 4. Architecture of the proposed neural network including query-level and execution plan-level features, autoencoder and dynamic pooling

when they are leaves. Finally, output of a filter x′p of a
node xp, is computed as follows:

x′p = σ(ep · xp + el · xl + er · xr). (3)

Equation 3 shows how the weights learn the local
hierarchies of a tree node by using σ(·) as activation
function, i.e. a nonlinear transformation, and (·) as dot
product (or scalar product). This transformation prop-
agates through the nodes of the tree up to the root, in-
dependently of the size of that tree. In order to extract
different and useful features from a tree, we apply a set
of filters adding also multiple tree convolutional lay-
ers. By means of these layers we learn the relationships
between nodes from different parts of the tree. Hence,
the first tree convolution layer learns local features be-
tween a node and its children. While the last tree con-
volution layer learns complex features (e.g., recogniz-
ing a sequence of left-deep joins5.

The intuition behind the tree convolution filters we
apply is to encode the size of the query plan inter-
mediate results and propagate them through the query
operators represented by nodes in the trees. Since the
amount of intermediate results is directly proportional
to the selectivity of the predicates in the triple patterns
(which retrieves the query data from disk), and the
amount of properties is large we use an autoencoder to
reduce the query dimensionality from leaf nodes.

4.2.3. Pre-training with autoencoders for leaf nodes
“In RDBMSs, JOIN operations are performed be-

tween a relatively reduced and fixed set of tables, how-
ever, the scenario in GDBs is more complex. As al-
ready mentioned, JOIN operations in GDBs could be
described as ’dynamic’. This is because JOINs in the
SPARQL language are defined between predicates by
matching variables between two triples. The above im-

5Join operations are ordered starting on a left side leaves.

plies that depending on the size and diversity of the
ontology of a database, the vectors of nodes in the
execution plan tree may contain thousands of predi-
cates (around 10,000 of different properties in Wiki-
data6, which map to predicates in the query). In order
to address this problem, we propose to perform a pre-
training on the node vectors using autoencoders. The
use of autoencoders allows to reduce the dimension of
the node vectors while preserving the node informa-
tion.

The autoencoder consists of a neural network com-
posed of densely connected layers that reduce the out-
put dimension. They do that by stacking layers in the
“encoder” and then increasing in the “decoder” lay-
ers. We train first with the node vectors of all the trees
in the training set. Next, only the encoder layers are
reused in the architecture.

Fig. 5. Autoencoder architecture that reduces the dimensionality
generated by the large amount of properties (edges) in a graph
database

6https://www.wikidata.org/wiki/Wikidata:List_of_properties



10

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4.2.4. Fixed vector with dynamic pooling
After applying the convolutional layers on the plans,

we follow the approach in Neo by extracting the fea-
tures identified by the tree convolution filters. The new
tree has exactly the same shape and size as the original
one, which varies among the different plans, but with
nodes of smaller dimension. Therefore, the extracted
features cannot be sent directly to a neural layer of
fixed size. To address this problem we apply a dynamic
pooling layer [18]. Specifically, we use the maximum
value in each dimension of the features detected by the
tree-based convolution. After pooling, the fixed vector
summarizing the plan information is suitable to be pro-
cessed by dense hidden layers, until finally the layer
with 1 output unit allows predicting the query latency.
Finally, the network can be trained in a supervised en-
vironment using backpropagation.

5. Experiments

In the previous Sections we proposed our architec-
ture to solve the query latency prediction problem for
querying RDF graph databases. We now present the
experiments to assess our architecture against other
state-of-the-art approaches. We will see how our Tree-
Based Convolutional Neural Network statistically out-
performs the other algorithms.

5.1. Method

Neural network training commonly follows the
same order: (i) first clean the data and separate them
into training, validation and test sets, (ii) extract fea-
ture vectors, (iii) train the models (selecting the best
combination of hyperparameters according to the vali-
dation set) selecting the model that best minimizes the
error, (iv) test those models on the test set.

Wikidata In the evaluation we used real world data
and queries from Wikidata [23]. Wikidata is a collab-
oratively edited knowledge base hosted by the Wiki-
media Foundation. It is a common source of data for
Wikimedia projects such as Wikipedia, and it has been
made available to the general public under a public do-
main license. Wikidata stores 86,671,701 items (RDF
resources), and 1,084,935,969 statements (triples7).

For (i) we use the Wikidata log files from a spe-
cific time period8. We filtered these query logs keeping

7https://tools.wmflabs.org/wikidata-todo/stats.php
8All intervals from Wikidata truthy logs

only the queries that returned results, removing those
with the SERVICE keyword. We divided the remain-
ing queries in training, validation and testing sets, with
a distribution of 20% for the testing queries, while we
used 70% and 30% for training and validation sets re-
spectively. We run all these queries in the Wikidata
snapshot latest truthy9.

In Section A.1 we describe the process we followed
to (ii), extracting the query characteristics (i.e. extract-
ing the features vector).

To complete step (iii), we use a grid search, since
it allows us to identify the best combination of hyper-
parameters exhaustively and using some constraints.
We selected the number of layers, number of units per
layer, activation functions, optimizer and learning rate
as hypeparameters as shown in Table 1. To select the
best combination of them we use 70% of the queries as
training data and the remaining 30% as validation set
(excluding 20% of the entire dataset used for testing).
Best model is obtained with LeakyReLU as activation
function, Adam optimizer, learning rate = 0.00015 and
three convolution layers of 512,256,128 units in each
layer.

Table 1
Hyperparameters values for gridsearch

Hyperparameter values

Activation function ReLU, Leaky ReLU, tanh
Optimizer Adam, Adagrad, SGD
Learning rate {0,0015,0.00015 }
Units number of the first Tree con-
volution layer

{1024, 512, 256, 128}

Units number of the second Tree
convolution layer

{512, 256, 128,0}

Units number of the third Tree con-
volution layer

256, 128,0

Units number of the fourth Tree
convolution layer

256,0

5.1.1. Baseline Hyperparameters Tuning
We now compare the architecture we propose with

other state-of-the-art proposals. Specifically, we com-
pare the NuSVR approach in [7] and a dense neural
network similar to the one proposed for query-level
features. The details of the baseline models and the hy-
perparameter tuning performed are specified below.

9https://dumps.wikimedia.org/wikidatawiki/entities/

https://tools.wmflabs.org/wikidata-todo/stats.php
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Tuning of NuSVR hyperparameters The Support
Vector Machine with NuSVR kernel proposed in [7],
uses the Algebraic features and graph patterns speci-
fied in Section 4.1.1. In this case it is necessary to ad-
just the hyperparameters:

– Nu: upper bound on the fraction of training errors
and a lower bound on the fraction of support vec-
tors. Must be in the interval (0,1].

– C: Penalty parameter C of the error term.

For selecting NuSVR hyperparameters we run a grid
search. That procedure performs 10 iterations by se-
lecting random values bounded in certain ranges of the
hyperparameters C and nu. We then select the com-
bination of hyperparameters that performs best on the
validation set. The lowest RMSE is obtained using a
value C = 200 with a nu = 0.4.

5.1.2. Hyper Parameter Tuning
The second architecture proposed as a baseline cor-

responds to a neural model as dense layers (Dense-
Model hereafter) with the following characteristics:

Use as input vectors the query-level features: alge-
braic features, graph patterns and predicate cardinali-
ties, detailed in 3.1.1, 3.1.1 and 3.1.2 respectively. Hid-
den 3-layer model with ReLU activations. After the ac-
tivations in layers L1 and L2, and L3, a Dropout layer
was applied with a dropout probability of 0.25. The
output layer contains 1 single linear unit corresponding
to the network prediction.

After selecting the best hyperparameters and run-
ning our model with them, in the next Section we
present the results for our work.

6. Results and discussion

In this Section we present the process for validat-
ing the architecture and verify whether we fulfill our
hypotheses and goals or not. In particular we explain
the evaluation metrics we selected and the expected re-
sults. This section shows the data that accompany the
most important results of the work and are the basis for
the conclusions presented in Section 7.

6.1. Metrics

We use the Mean Square Error (MSE) as the loss
function to evaluate our neural network models. MSE
minimizes the quadratic differences between the esti-
mated value and the true value. Hasan and Gandon [7]

use the Root Mean Square Error (RMSE) which is a
variant of MSE, however it penalizes excessive large
errors.

MSE(test) =
1

m

m∑
i=1

(y(test)
i − ŷ(test)

i )2, (4)

RMSE(test) =

√√√√ 1

m

m∑
i=1

(y(test)
i − ŷ(test)

i )2. (5)

Another common error metric and loss function
in regression problems is the Mean Absolute Error
(MAE). As a loss function it minimizes absolute differ-
ences between the estimated value and the true value.
It tends to be more robust to outliers than the MSE. We
use all these three metrics to validate our experiments.

MAE(test) =
1

m

∑
|y(test)

i − ŷ(test)
i |. (6)

Figure 6 shows that our full model and the same
model using auto-encoders perform similarly. When
using only trees the model clearly performs worse.
This poses a very interesting situation, in which the
auto encoder seems to not provide any help in the
query latency prediction. The auto encoder helps to re-
duce the dimensionality when having a large amount
of different RDF predicates (present in all queries in
both training and validation data sets), lowering the
model’s training time. However, the dimensionality
seems already incorporated in the model without the
auto encoder.

Figure 7 shows the predictions our deep learning ar-
chitecture made for the validation (left) and test (right)
sets. Each point in the plot represents a query in the
dataset, showing the value on the X axis the model’s
query execution prediction and on the Y axis the actual
query execution time.

– Green dots represent queries whose prediction are
considered good: (|y− ŷ| <= y ∗ 0.2).

– Blue dots represent queries whose prediction are
considered acceptable y ∗ 0.2 < (|y − ŷ| <= y ∗
0.4).

– Red red dots correspond to bad predictions.

We consider most of the predictions good since the
difference between the predicted query execution time
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Fig. 6. Figure shows the model convergence according to RME and MAE metrics. X axis represents the amount of epochs while the Y axis
presents the metrics used. According to the hyperparameters grid search we executed, “full model adam” is the best model using three TreeConv
layers (feeding it with the query and query execution tree characteristics). We also evaluated the use of autoencoders to reduce the amount of
parameters added by the properties within the data, using the same “full model adam”. We represented that in the box “full aec adam 3L”,
however we did not obtain better results. Finally, we also show our model using only tree characteristics in the plot labelled “only trees adam 3”

and the actual time the query engine needed to run
the same query has a difference below 20%. For in-
stance, a query needing 0.5 seconds to be executed,
our model predicted that it would need between 0.59
or 0.41 seconds, which is reasonable for the query en-
gine to make a decision about what plan to chose to
execute the query. For larger query execution times (25
seconds or more), our model predicts correctly most of
the query execution times. Moreover, a 20% in a query
of 30 seconds would be around 5 seconds up or down,
which allows more informed decisions to the query op-
timizer.

The amount of bad predictions is minimal, however
most of these bad predictions are in those queries that
are faster to terminate. This poses problems since the
model may predict that a query takes 10 seconds in
while it only needs 0.5 for being executed. We look

more in detail to these queries that our model failed to
correctly predict its execution time in Section 6.2.

6.2. Discussion

After completing the query latency prediction we
find it mandatory to look at those queries that the
model incorrectly predicted their latency. The goal is
to identify query patterns that may have been over-
looked by our statistical approach. All the queries used
in the evaluation along with their codification results,
and predicted latency are available in the Github repos-
itory for our project10. These queries are marked as
red in Figure 7 (1,743 out of 20,632, 7% of the to-
tal). To these queries we run a canonicalization soft-

10https://github.com/cbuil/sparql-latency-prediction

https://github.com/cbuil/sparql-latency-prediction
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Fig. 7. Predictions using the proposed architecture for validation and test suites. On the left the predictions using our model over the validation
set, on the right the predictions using our model over the test set. Green dots represent those queries that our model correctly predicted its
execution time.

ware [21] for finding common SPARQL queries (vari-
able normalization, translating queries to a common
representation, etc.). That software found 366 repeated
queries, which we remove from the analysis, leaving
1377 queries for our analysis.

Missing query operators In the remaining queries
there are 174 COUNT queries, 301 queries having a
property path operator, 112 VALUES operator, as well
as 151 queries using vocabularies different from Wiki-
data, which we do not support. That makes 738 queries
not supported by our model, 53% of the queries in the
dataset.

Single triple pattern queries The largest group of
queries misclassified by our model is the group of
queries with a single triple pattern having the P31
Wikidata property (type of ), with a total of 408
queries, around 30% of the wrongly classified queries.
We hypothesize that this is the largest set of queries
since there are 117,967 different types in Wikidata11.
Our model that seems to consider in a similar way data
with type Human (Q5) with thousands of instances and
television network (Q1254874), with less than 1,000.

11https://www.wikidata.org/wiki/Property_talk:P31

7. Conclusions

In this paper we presented a Deep Learning model
to predict SPARQL query latencies. This model con-
tributes to the solution of the open problem of finding
an optimal query plan to a database query, in our case
an optimal query plan to a RDF graph database using
SPARQL queries. To find such an optimal query plan is
an open research problem in all types of database sys-
tems, most notably on Relational Database Systems,
which have several frameworks approaching it. We
start our model by looking at one of these solutions,
and we build a reusable characterisation of SPARQL
queries that feed our model. We adapt the existing
model from Neo process SPARQL queries and evalu-
ate it against Wikidata, using their query logs and data.
Our model correctly predicts the latency for queries in
an 87% of the validation set and we provide an expla-
nation to those queries that we fail to predict the la-
tency.

As future work we plan to improve our model to
correctly predict the query latencies from our analysis
in Section 6.2 by adding more operators to our query
characterisation. We will also develop a new query op-
timizer for MillenniumDB [24], based on the current
model.

https://www.wikidata.org/wiki/Property_talk:P31
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Appendix A. Appendix

A.1. Validation by means of hypothesis testing

In this Section we validate that we can generalize the
results we obtain to different datasets. To do that we
use the ’Student’s t-test for dependent samples’, pro-
cess that we describe in the following lines.

A.1.1. Student’s t-test for dependent samples
The Student’s t-test for dependent or paired samples

is generally used to compare the means of one sample
or two paired or dependent samples. In the case of us-
ing only one sample, the test is performed by compar-
ing the resulting means of two events occurring in the
same sample. Similarly, it is possible to apply this test
by comparing the means of two events occurring over
two samples, as long as it is guaranteed that these sam-
ples are dependent. The objective is to verify whether
the records of event 1 change significantly with respect
to those of event 2.

In our case, we apply the t-test on dependent sam-
ples to verify whether the difference in means between
the results (using the RMSE metric) obtained with the
proposed solution and the results of the baseline model
(NuSVR 3.4.6) is statistically significant or not.

To apply the test we execute the following steps:

1. Use the queries extracted and processed from the
Wikidata database (Section 4.1.2).

2. Select 5 random subsets from 85% of the training
data separated in Section 4.1.2. The other 15%
will be used as validation set.

3. Train the proposed TreeConvModel, Dense-
Model and NuSVR model on each training sub-
set of step (1).

4. Evaluate each model on the test set obtaining in
each case the RMSE.

Table 2
RMSE and MAE values for the 2 models in the 5 partitions for the
test set.

Tree_Conv NuSvr
mae rmse mae rmse

0 5.098 18.695 18.455 42.059
1 5.302 19.177 18.594 42.402
2 5.377 19.129 18.627 42.190
3 5.622 19.241 18.622 42.273
4 5.376 19.156 18.778 46.934
mean 5.355 19.08 18.615 43.171
std 0.188 0.219 . 0.115 2.107

Figure 8 shows the results obtained for the RMSE
metric in each of the testing partitions. We see how

the proposed model outperform the baseline model.
We now determine whether the difference in the means
over the sample (5 random subsets) for each model
represents a true difference in the population from
which the obtain the sample. To make this compari-
son, we use a t-test using the difference between the
two means and dividing by the standard error of the
difference between the two dependent sample means:

t =
Ā− B̄

S D̄
, (7)

where Ā is the mean RMSE for the proposed so-
lution, B̄ the mean RMSE for the NuSVR, and S D̄
the standard error of the differences between the two
means.

We obtain the standard error:

S D̄ =
S D√

N
, (8)

S D =

√∑
D2 − (

∑
D)2

N

N − 1
, (9)

where: S D̄ is the standard error of the differences
between sample means, S D represents the standard de-
viation of the mean differences (for a population sam-
ple), D is the difference between the RMSE of each
pair of samples for events A and B, N is the number of
individuals in the sample (5 in this case).

Given the above, the observed t-value can be used to
test the following hypothesis:

H0 : µD = 0.

HA : µD > 0,
(10)

where µD represents the difference in sample
means. Hypothesis H0 states that there is no difference
between the means of the returns between the models,
which is rejected in favor of HA :> 0 when |t| > tα,
where tα the critical value is obtained from a t Student
distribution for N − 1 = 4 degrees of freedom.

We can also interpret the test using a p-value: if the
p-value > α, then the hypothesis H0 that there is no
difference between the sample means is accepted. Oth-
erwise, it is rejected in favor of the alternative hypoth-
esis HA.
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Fig. 8. This Figure shows RMSE (left) and MAE (right) metrics for 5-folds (random selection of 5 training and validation sets) evaluated within
the two model’s test set: “full model adam” (best model according to the grid search in Figure 6) and NuSVR using as parameters C = 200 and
µ = 0.4/.

TreeConvMolde vs NuSvr

tα 0.05
p-value 0.0000128
t -26.090

Table 3
Results of the t and pvalue statistical tests from pairs of TreeCon-
vModel and NuSVR model.

Table 3 includes the results of applying the above
procedure. A p-value of 0.0000128 < 0.05 indicates
that the hypothesis H0 is rejected, so it can be con-
cluded that there is a statistically significant difference
between the RMSE of the proposed model and the
baseline.

Since there is a significant difference between the
performances of the models under analysis, we can af-
firm that the superiority of the proposed model with
respect to the baseline for the analyzed dataset are sig-
nificant. Next, we present the final conclusions of the
research.

To conclude this Section, we can safely say that our
prediction model outperforms the existing state of the
art models. This is however no surprise since we are
using Deep Learning models, and more modern archi-
tecture. The most important outcome we want to high-
light are the precision of our predictions. These may
allow a query planner to take more informed decisions
about how to process a query, even though we still

need calculate better those query that execute faster
than predicted.

Appendix B. Effectiveness of the use of
autoencoders

We also studied the effect of using an autoencoder as
a pre-training technique to reduce the dimensionality
in the query plan node vectors.

Some details of the autoencoder training are added
below:

– The input and output of the network corresponds
to vectors of fix size, taking into account the in-
formation of the nodes of all the plans that form
the dataset for the training set.

– We propose 1 hidden layer for the encoder and 1
for the decoder.

– The units per layer shall be selected so that the
last layer of the “encoder” summarizes at least 4
times the number of input features.

– Adagrad will be used as optimizer with a learning
rate in the order of 0.0001.

We next explore the effectiveness of pretraining
with autoencoder to summarize plan-level informa-
tion. The architecture tested has the following charac-
teristics:

– Grid Search as described in Section 5.
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Fig. 9. Comparison of architecture performance using preprocessed and non-preprocessed data with the proposed autoencoder.

– We fix the LeakyReLU activation function.
– We set the learner’s learning rate to 0.00015.
– We fix layers at plan level with 512, 256, 128

units per layer.
– We run one network using the best configuration

using the best query-level features obtained pre-
viously

Figure 9, shows the performance on the training and
validation sets of: a network with execution plan level
information; a network with query and execution plan
level information; and a network similar to the previ-
ous one with the plan node level data previously pre-
processed by the autoencoder. We see how the use
of the autoencoder does not introduce meaningful im-
provements in terms of model generalization. How-
ever, it does have a positive impact on the training time
and hardware resources needed to train the model. This
is because it significantly decreases the number of net-
work parameters.
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