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Abstract. Industrial standards provide guidelines for data modeling to ensure interoperability between stakeholders of an indus-
try branch (e.g., robotics). Most frequently, such guidelines are provided in an unstructured format (e.g., pdf documents) which
hampers the automated validations of information objects (e.g., data models) that rely on such standards in terms of their com-
pliance with the modeling constraints prescribed by the guidelines. This raises the risk of costly interoperability errors induced
by the incorrect use of the standards. There is, therefore, an increased interest in automatic semantic validation of information
objects based on industrial standards. In this paper we focus on an approach to semantic validation by formally representing the
modeling constraints from unstructured documents as explicit, machine-actionable rules (to be then used for semantic validation)
and (semi-)automatically extracting such rules from pdf documents. While our approach aims to be generically applicable, we
exemplify an adaptation of the approach in the concrete context of the OPC UA industrial standard, given its large-scale adoption
among important industrial stakeholders and the OPC UA internal efforts towards semantic validation. We conclude that (i) it
is feasible to represent modeling constraints from the standard specifications as rules, which can be organized in a taxonomy
and represented using Semantic Web technologies such as OWL and SPARQL; (ii) we could automatically identify modeling
constraints in the specification documents by inspecting the tables (P=87%) and text of these documents (F1 up to 94%); (iii) the
translation of the modeling constraints into formal rules could be fully automated when constraints were extracted from tables
and required a Human-in-the-loop approach for constraints extracted from text.

Keywords: Semantic Validation, Information Extraction, Natural Language Processing, Human-in-the-Loop, OPC UA

1. Introduction

Interoperability in the industry has been a research
topic since the 1970s [1] and became even more
relevant during the fourth industrial revolution, as
Cyber-Physical Production Systems (CPPS) rely on
networked manufacturing equipment that needs to

*All authors have contributed with equal effort to the work and
therefore are listed in alphabetical order.

be seamlessly integrated, often in run-time, dynamic
workflows [2]. To ensure such interoperability, indus-
trial standards are core to many industries and repre-
sent vital elements in the ecosystem of that industrial
domain by providing shared guidelines for data repre-
sentation and exchange. For example, the International
Electrotechnical Commission’s (IEC) Common Infor-
mation Model (CIM) provides a data model for stan-
dardized information exchange of energy grid descrip-
tions [3]. Another example is OPC Unified Architec-
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Fig. 1. Standard development, standard usage and the need for semantic validation (shown in red).

ture (OPC UA, https://opcfoundation.org/) - an indus-
trial standard that ensures interoperability between in-
dustrial devices on the technical, syntactical, and se-
mantic levels: while the transport protocols and pay-
load formats are defined on the technical and syn-
tactical levels, semantic interoperability is achieved
through extensible information models, which capture
domain-specific knowledge. OPC UA is becoming a
very important and widely used standard across the
industry. Leading global IoT vendors including AWS,
Google Cloud, IBM, Microsoft, SAP, and Siemens are
using OPC UA as the industrial standard. There are
millions of industrial devices already supporting OPC
UA. Therefore, in this paper, we focus on this standard
for a use case study.

We distinguish two core stages in the life-cycle of
an industrial standard, which we depict in Fig. 1 and
discuss in the context of OPC UA. First, standard
development is undertaken by an industrial standard-
ization body. The outcomes of this process are for-
mal (machine-readable) models accompanied by addi-
tional (human-readable) documents that describe how
the models shall be used. Thereby, the human-readable
document may include restrictions beyond the formal
model’s expressiveness. In the case of OPC UA, stan-
dard development is performed by the OPC Foun-
dation which involves experts from the industry and
academia around the world (left part of Fig. 1). The
OPC Foundation has defined rich domain independent
semantics for OPC UA information models captured
in one of the OPC UA base specifications. Several

domain-specific working groups are part of the OPC
Foundations. Their role is to issue domain-specific in-
formation models, compliant with the meta-model de-
fined in the base specification, in the form of OPC
UA companion specifications, e.g., in the domains of
Robotics, Machinery, etc.

A second key stage is the standard usage, when
stakeholders in the domain of the standard create infor-
mation objects that follow the guidelines proposed by
the standard, thus achieving interoperability in that in-
dustrial domain. In the case of OPC UA, several man-
ufacturers around the world rely on this standard to en-
sure the interoperability of their devices with the de-
vices from other manufacturers. To that end, engineers
employed by these manufacturers need to write OPC
UA information models of such devices. These mod-
els are serialized as structured, XML-based documents
(also referred to as NodeSet files) capturing the struc-
ture and functionality of the device by following the
OPC UA standard laid out in the base and (relevant)
companion specifications (right side of Fig. 1).

Provided that the information objects fully com-
ply with the guidelines of the standard, interoperabil-
ity across stakeholders subscribing to the standard is
achieved. However, the semantics defined by (most
of) the standards are often only available as unstruc-
tured (pdf) documents. Currently, the assumption is
that the engineer creating information models has a
thorough understanding of the base/companion speci-
fications and has correctly applied all pertinent guide-
lines described in several hundred pages. In practice,
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this is unrealistic and often leads to the incorrect ap-
plication of the standard which triggers costly interop-
erability errors. There is, therefore, a need for auto-
matic semantic validation, in order to easily and reli-
ably check the compliance of an (OPC UA) informa-
tion model with relevant standard specifications.

In this work, we address this common pattern in the
landscape of industrial standards, with a focus on OPC
UA. Automatic semantic validation is crucial in the
concrete case of OPC UA. Besides its widespread use
in industry to describe millions of industrial devices,
the number of companion specifications is also signif-
icantly increasing year by year. As of 2021, there were
28 companion specifications. By 2022 36 companion
specifications are available and many are under devel-
opment. This situation prompted the OPC Foundation
to initiate an OPC UA Semantic Validation Working
Group in July 2019 with OPC UA and semantic ex-
perts as members with the primary goal to provide the
foundation to create valid, consistent NodeSets. As a
part of this goal, the OPC UA experts identified the
modeling constraints in the OPC UA core specifica-
tions manually by reading the specification documents
and understanding them. Semantic experts are working
towards a formal representation of the constraints as
formal, machine-actionable rules in order to validate
them on the nodesets. However, this process of man-
ually collecting the constraints and formalizing them
as rules is a tedious and time-consuming activity. Mo-
tivated by this stringent need in the case of OPC UA,
our work focuses exactly on addressing such scenarios
in industrial standards.

Concretely, we propose an approach to semantic
validation in which modeling guidelines available in
non-structured specifications are translated into for-
mally represented rules that are machine-actionable
and can be used to automatically validate the correct-
ness of the information models in terms of their com-
pliance with the specifications (red elements in Fig. 1).
We investigate the following research questions:

– RQ1: To what extent can informal modeling
guidelines be captured into formal rules? Is it
possible to identify such rules? Can they be orga-
nized in a taxonomy? What is the best way to rep-
resent them? If capturing informal guidelines into
formal rules is possible, it is unfeasible to expect
that this process will be performed manually by
interested stakeholders, such as the specification
authors. Therefore, this process should be sup-

ported as much as possible, as addressed by the
next two RQs.

– RQ2: To what extent can modeling guidelines be
automatically identified in the specification doc-
uments? How complex is the task of identify-
ing modeling constraints in specifications? What
methods are amenable for this task?

– RQ3: To what extent can informal modeling
guidelines be automatically mapped to formal
rules? What methods can be used to that end?

We answer these research questions through the fol-
lowing methodology leading to several contributions:

– We propose a high-level approach for the extrac-
tion of modeling constraints from specifications
and their formal representation, e.g., as SPARQL
rules. The proposed technical solution has sev-
eral core components: (1) a catalog of major rule
types and their corresponding representations as
SPARQL query (templates); (2) a component to
automatically identify constraints in specification
documents; (3) methods for generating rules from
textual constraints identified in stage (2) accord-
ing to templates proposed in stage (1).

– We apply the steps of this approach in the con-
crete case of OPC UA specifications, resulting
in contributions such as: (a) an OPC UA specific
rule catalog and classification including the cor-
responding SPARQL rules; (b) OPC UA specific
semi-automatic methods for extracting rules from
pdf documentations.

– We evaluate the performance of the technical
components individually. Then we provide a fea-
sibility evaluation of the proposed method for one
concrete OPC UA specification in the Machinery
domain and perform an evaluation campaign in-
volving Machinery working group experts.

We continue by providing further motivation for our
work and background related to OPC UA in Sect. 2. In
Sect. 3 we describe the proposed high-level approach
that can be potentially applied to other standard docu-
ments. The following sections investigate our research
questions within the context of our use case in this pa-
per, which is OPC UA, including the rule taxonomy
(Sect. 4), methods for automated modeling constraint
extraction (Sect. 5), and methods for generating formal
rules from modeling constraints (Sect. 6). These indi-
vidual components are evaluated in Sect. 7. We discuss
related work and concluding remarks in sections 8 and
9 respectively.
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2. Background and motivation

2.1. Background: OPC UA

Basic OPC UA Notions. OPC UA is a framework for
industrial communication that additionally provides
information modeling capability. The communication
of OPC UA is based on the client/server principle,
but part 14 of the specification also introduces a pub-
lish/subscribe communication paradigm.

OPC UA information modeling provides structure
and context to the data of a production facility. It fa-
cilitates the description of devices, such as sensors, ac-
tuators, as well as whole production machines, in an
object-oriented and semantically meaningful way [4].

The basic elements of the information model are:
(1) nodes that represent objects, variables, methods,
etc., and (2) references which are used to model rela-
tions between nodes. Eight different node classes are
defined by OPC UA: ObjectType, Object, DataType,
VariableType, Variable, ReferenceType, Method, and
View. Depending on the node class, a set of attributes
is defined for each node. One of the most important
attributes, which is supported by every node class, is
the NodeId. The NodeId is used to unambiguously
identify each node by a so-called NamespaceIndex
and an Identifier. Some other attributes are the Node-
Class itself, the DisplayName (a human-readable name
for the node), Description (a human-readable descrip-
tion of the purpose of the node), maybe a Value,
and many more. Nodes can be instantiated based on
the defined ObjectTypes or VariableTypes, similarly
to object-oriented programming. These objects, vari-
ables, and methods are called instance Nodes.

The OPC UA information model is extensible, and
it is used by domain experts for certain domains (e.g.,
machinery) to create Companion Specifications. The
experts agree upon the modeling and release it as an
industry-standard model, which can be used free of
charge by any other stakeholder in that domain, e.g.,
other machine vendors. Thus, these OPC UA Compan-
ion Specifications facilitate interoperability at the se-
mantic level.

Figure 2 shows an example of an information model
from the Machinery Companion Specification using
the graphical notation defined in the OPC UA base
specification part 3. The abstract ObjectType Machin-
eryItemIdentificationType has two variables Manufac-
turerUri and YearOfConstruction. These variables are
related to the ObjectType via a HasProperty refer-
ence. The HasSubType reference is used to specify

Fig. 2. Part of the OPC UA information model as it is defined in the
Machinery Companion Specification.

another ObjectType called MachineIdentificationType
which inherits the properties from MachineryItemI-
dentificationType. As this ObjectType is not defined as
abstract, instances of this type (Objects) can be cre-
ated. Even if no instance is shown in this example, and
not every aspect of the model is explained, it provides
insight into the OPC UA information modeling con-
cepts. More details can be found in [5].

OPC UA specifies an XML Schema, which defines
the information model as an XML serialization. Such
XML files are called OPC UA NodeSet files and can
be generated with both open-source and commercial
tools. The NodeSet file can be loaded and instantiated
by an OPC UA server to make the information avail-
able to other clients. This exposed information model
is the server’s address space.

Need for semantic validation. Even if OPC UA pro-
vides sophisticated information modeling possibilities,
it lacks the ability to define restrictions on the model.
Such restrictions could be beneficial to enforcing se-
mantic interoperability when applying the information
model in a certain use case. Currently, constraints on
the model have to be documented in text, using natural
language. Thus, currently, they cannot be checked au-
tomatically. As an example, the Machinery companion
specification states, that the property variable YearOf-
Construction, as shown in Fig. 2, shall be a four-digit
number, such as "2022" or "2023". However, this con-
straint is only specified in the companion specification
(textual) and not in the information model. Thus, noth-
ing prevents a machine manufacturer from incorrectly
using the information model as defined in the com-
panion specification and assigning the value "22" in-
stead of "2022". The problem occurs when a system in
the factory tries to automatically schedule maintenance
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actions based on the age of the machine. The system
will not be able to interpret "22" as the year "2022"
and will fail. Other examples of information that cur-
rently cannot be modeled in OPC UA are exact mul-
tiplicities (e.g., an object shall reference exactly n ob-
jects of a specific type), or limitations on the structural
model (e.g., a folder shall contain only objects of a set
of specific types). This shows that the semantic valida-
tion of machine information models against the stan-
dard is crucial to ensure interoperability between ma-
chines and thus avoid costly errors and malfunctioning
due to the incorrect use of the standard.

Such errors could be avoided by ensuring that the
NodeSet correctly follows the specification guideline.
This "validation" process is currently the task of the
engineer that creates such NodeSets and it is unrealis-
tic since the OPC UA base specification itself contains
about one thousand pages and the number of compan-
ion specifications is rapidly increasing yearly to ad-
dress the demand for ensuring interoperability between
machines from different domains.

Fig. 3. Rules defined in the OPC UA information model.

There is therefore a need for a paradigm shift to-
wards automated, semantic validation of OPC UA in-
formation models. To that end, the OPC Foundation al-
ready investigates the possibility of incorporating rules
in the OPC UA NodeSet files in the future. Figure 3
depicts how this could be modeled in OPC UA in a
very abstract way using the graphical OPC UA nota-
tion. The exact implementation is still subject to de-
bate and not the focus of this paper. However, the fig-
ure illustrates the basic idea, which is specifying rules
for individual nodes within the OPC UA information
model. Generally speaking, these rules express restric-
tions on the node or instances of the node.

To enable such a paradigm shift within OPC UA mo-
tivated our work towards a (semi-)automated approach
for extracting the constraints from the specifications,
organizing them into a rule taxonomy, and formalizing
them in a formal query language. Thereby, a transfor-
mation from OPC UA NodeSets to OWL [6] enables
the use of Semantic Web technologies, e.g., SPARQL

for rule specifications (a technical realization of such a
validation process is reported in Sect. 7.2).

One or more OPC UA Nodesets are transformed
into an OWL ontology by following the transforma-
tion rules defined in [6]. The transformation is done
by mapping each OPC UA node, its attributes and ref-
erences to the pertinent OWL elements, namely OWL
class, property (ObjectProperty, DataTypeProperty,
AnnotationProperty), OWL named individual, etc. As
an example, the result of the transformation process
applied to the excerpt of the Machinery Companion
Specification from Fig. 2 is illustrated in Fig. 4. This
OWL ontology can then be loaded into a SPARQL
server, such as Apache Jena Fuseki, and queried via
SPARQL.

Fig. 4. Part of the OPC UA information model as it is defined in the
Machinery Companion Specification transformed to OWL

2.2. Motivation: stakeholders use case

Several stakeholder groups can benefit from our
work that supports this paradigm shift towards seman-
tic validation. Firstly, users of the Companion Specifi-
cations, e.g., a machine vendor will be able to check
the conformance of the created address space of, e.g.,
a machine with the applied Companion Specification.
As a result, plant operators can rely on conformance
with companion specifications and simplify integra-
tion procedures.

Secondly, Companion Specification creators (i.e.,
members of the OPC UA working groups) will be able
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Fig. 5. Overall approach for deriving rules from specifications of industrial standards.

to check consistency between their companion specifi-
cation and NodeSet files created in terms of this speci-
fication. They will also be able to provide a mechanism
to enforce semantic interoperability (by providing for-
mal rules in addition to the pdf-based companion spec-
ification). Capturing the informal specification of stan-
dards in formal rules will make sure that the standards
are correctly applied, thus supporting interoperability.
This stakeholder group greatly benefits from the auto-
mated support for the process of creating formal rules.
The generated rules can, furthermore, be supplemented
with additional, manually formulated rules that are ei-
ther not present in the pdf document or could not be
extracted automatically.

On a long term, work on formal verification of
compliance with standard specifications addresses the
needs of all stakeholder groups. This paper primar-
ily focuses on supporting companion specification cre-
ators in turning their specifications into formal rules.
Our goal is that OPC UA experts shall, in the future,
use the results and tools described in this paper and
apply them on existing and new companion specifica-
tions. This will provide them with an extensive set of
automatically generated rules, which can then be ex-
tended as necessary.

3. Overall approach: Deriving rules from
industrial standard specifications

We propose a high-level approach to support trans-
lating modeling guidelines expressed in specification
documents into formal, machine-actionable rules that
can be used for semantic validation. To that end, we
introduce the following terminology:

– Constraints represent concrete snippets in the
standard specifications that express modeling
constraints which are candidates for being for-
malized into rules. Modeling constraints can be
specified either in an unstructured (textual) or
semi-structured (tabular, list) form. Constraints
are not machine-actionable but have an informal
character to the reader of the specification. For
example in tables, the terms WidgetType, Refer-
ence names, NodeClass, TypeDefintion, etc., sig-
nify the constraints allowed with respect to Wid-
getType node.

– Rules are used to express constraints. Rules may
be expressed in different languages. We propose
the term semi-formal rules for rules that follow
a specific structure but are not intended to be
machine-actionable (e.g., Semi-Formal Notation
(SFN) used in Section 4.3), and the term for-
mal rules for rules that are structured, formally
represented and machine-actionable information
(e.g., rules represented in SPARQL, SHACL).
Thus, formal rules can be used on the informa-
tion models in order to verify that they com-
ply with the constraints expressed in the speci-
fication. Example rules generated from the con-
straint information available in tables are: Widget-
Type IsAbstract False, WidgetType HasProperty
Color which should be of datatype String. Com-
plex modeling constraints might require represen-
tation through multiple rules, known as Rule Sets.

– Rule Templates are generalized versions of rules
that use template variables. Rules (both semi-
formal and formal) are derived from templates by
replacing the template variables with specific val-
ues. Rule templates are an important mechanism
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for supporting automatic rule extraction by being
populated with automatically extracted values.

The overall approach for rule extraction encom-
passes several key stages as visualized in Fig. 5:

1. Stage 1: Rule taxonomy creation: a first stage is
understanding whether modeling constraints de-
scribed in a standard’s specification are amenable
to be represented as formal rules. If this is fea-
sible, rules that can capture such constraints
need to be identified, represented in a language
with formal semantics that is machine-actionable
(e.g., SPARQL) and organized in a taxonomy.
Some modeling constraints are common across
the standards, while some are specific to each
standard. However, the representation of model-
ing constraints as (semi-) formal rules is highly
specific to the standard.

2. Stage 2: Constraint extraction from specification
documents, identifies those snippets in the spec-
ifications that contain information that should be
represented as formal rules. Such information
could be present through multiple modalities in-
cluding textual descriptions, tables, or images. In
principle, these different modalities can be used
individually or in tandem to increase the perfor-
mance of the extraction process.
We propose here two methods: (1) one based on
extracting constraints from tables in the specifi-
cation and (2) focused on identifying language
snippets that extract constraints. Several steps are
involved in extracting modeling constraints from
tables which include: (a) identifying the tables
from specification documents; (b) the tables can
be categorized into multiple table types based
on the row and column headings of the tables
which are the key terms that differentiate be-
tween multiple table types. However, the identifi-
cation of table types is a domain-dependent task
and it should be performed by identifying the
key terms with respect to each table type. These
lists of key terms are standard and are applied in
the table and constraint extraction algorithm that
functions dynamically in extracting constraints
from a target table from any companion speci-
fication document (from the tested 28 specifica-
tions) given as input to this algorithm. ; (c) once
the table types are identified, the modeling con-
straints specific to those tables can be extracted
easily.

3. Stage 3: Rule generation represents making the
transition from the modeling constraints ex-
tracted from the specification document (in Stage
2) into formally represented rules as identified
in Stage 1. One or more rule templates are cre-
ated for each rule type identified in the rule tax-
onomy, which can be used to automate this pro-
cess when a clear mapping can be established be-
tween automatically extracted information from
the standard specifications and the template vari-
ables (e.g., in case of generating the rules from
constraints extracted from tables). If such a map-
ping is not possible, human intervention might
be needed (e.g., this might be required for con-
straints extracted from text).
This process requires a method for classifying
modeling constraints to rule types: in our ap-
proach, the extracted constraints are first classi-
fied into several predefined rule types defined in
the rule taxonomy. This can be done automat-
ically for the constraints extracted from tables
since the constraints are extracted based on table
types; for constraints extracted from text human
intervention is required. In this paper, we mainly
focus on the classification of constraints from ta-
bles. Classification of constraints extracted from
text is subject to future work.

4. Stage 4: Constraint and rule validation. Al-
though the aim is to automate the constraint ex-
traction and rule generation, automated methods
rarely provide perfect results. Therefore, a con-
cluding stage in this pipeline involves domain
experts who validate (and if needed correct) the
outputs of stages 2 and 3 above. With this pro-
cess, ground truth data is collected from experts
to inform the further development and extension
of the existing methods.

The concrete techniques used to implement the
stages of our approach highly depend on the char-
acteristics of the standard at hand. Therefore, some
of the steps described above are generic and can be
applied across standards while others are specific to
the standard under consideration. However, the over-
all pipeline can be potentially applied to standard
documents from different domains by performing the
domain-specific steps when required. In the next sec-
tions, we describe how we implemented these stages
in the context of the OPC UA standard.
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4. Stage 1: Rule taxonomy creation

The creation of a rule taxonomy and the correspond-
ing rule templates addresses RQ1. The process in-
volved the following four steps (see Fig. 6):

– Step 1: Identify constraint types. First, we eval-
uated whether the tables present in the OPC
UA companion specifications represent modeling
constraints with regard to the OPC UA informa-
tion model. The core specification was not con-
sidered, because a preliminary analysis showed
that it contains unique constraints and, therefore,
it provides limited potential for identifying rule
templates. The output of this step was the iden-
tification of various modeling constraint types,
e.g., ObjectTypeDefinition constraint. Examples
of identified constraints can be found in Sect. 5.

– Step 2: Structure rule taxonomy. As stated above,
modeling constraints can be verified by checking
one or often multiple rules. The different rules
were structured in a taxonomy (see Sect. 4.2) but
not yet formulated.

– Step 3: Formulate rules in SFN/SPARQL. An ex-
ample for each rule within the taxonomy was for-
mulated in SFN. In addition, some rules were also
expressed in SPARQL, which allows them to be
verified against existing OPC UA Node Sets af-
ter they are translated to OWL, as described in
Sect. 2.1 (see Sect. 4.3).

– Step 4: Create rule templates. The constraint-
specific information of each rule was replaced by
template variables, resulting in rule templates. Fi-
nally, the rule templates were also organized in a
taxonomy (see Sect. 4.3).

Additional information about each step and interme-
diate results are provided in the following sections.

4.1. Step 1: Identify constraint types

Modeling constraint types identified during the anal-
ysis of OPC UA companion specifications were orga-
nized in a constraint taxonomy (Fig. 7). Thereby, con-
straint types were associated to one of three different
constraint classes:

– Non-Checkable Constraint - The OPC UA speci-
fication contains information that could be inter-
preted as a modeling constraint but cannot actu-
ally be checked on the information model. For ex-
ample, the specifications describe which of many

Identify constraint
types

Structure rules in
a rule taxonomy

Formulate rules in
SFN and
SPARQL

Create SFN and
SPARQL rule

templates

1

2

3

4

OPC UA
Companion
Specification

List of
constraint

types

Rule
taxonomy

Rule
example

Rule
template

Fig. 6. Process for creating the rule taxonomy and templates.

OPC UA Status/Error codes should be used in
specific circumstances. Nevertheless, it may be
useful to also identify and document these Non-
Checkable Constraints.

– Runtime Constraint - Some of the information
provided by an OPC UA server is not present in
the NodeSet file but is dynamically created when
the server starts or while it is running.

– Offline-Checkable Constraint The main focus of
this work is on Offline-Checkable Constraints
that can be verified directly on the NodeSet, or on
the OWL-transformed version of the NodeSet.

OfflineCheckable
Constraint

Constraint

NonCheckable
Constraint

Runtime
Constraint

Fig. 7. Top-level constraint classes.

A modeling constraint can be expressed via one or
multiple rules. Therefore, the next step is to define
rules for each constraint.

4.2. Step 2: Structure rule taxonomy

Based on the modeling constraint types identified in
Step 1, a number of individual rules were derived and
subsequently classified into a rule taxonomy. The top-
level hierarchy of this taxonomy (Fig. 8) distinguishes
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between (1) Global Rules, (2) Node Rules, and (3) Type
Rules based on the scope of the rule application.

– Global Rule - A Global Rule is not associated
with a specific node in the NodeSet but expresses
some general rule to be fulfilled within the entire
NodeSet (e.g., within the entire device descrip-
tion). For example, the following semi-formal
rule expressed in SFN checks that the node Mo-
tionDeviceSystemType exists in the information
model (see also Fig. 9).
Example in SFN: The node MotionDeviceSystem-
Type exists.

– Node Rule - A Node Rule only applies to the node
that the rule is associated with.
Example in SFN: The node MotionDeviceSystem-
Type references a node MotionDevices. This node
has ModellingRule Mandatory.

– Type Rule - A Type Rule applies to all nodes de-
rived from the type node that the rule is associ-
ated with.
Example in SFN: For all instances of MotionDe-
viceSystemType: The instance references exactly
1 MotionDevices node.

NodeRule

Rule

GlobalRule TypeRule

Fig. 8. Top-level rule classes.

These three basic top-level categories are refined, as
shown in Fig. 28 - 30 (Appendix A), resulting in 3
Global Rules, 24 Node Rules and 18 Type Rules.

Currently, there exist only three different types of
Global Rules (Fig. 28). The most important one is to
check whether a specific node exists in the information
model. The other two are concerned with the initial-
ization of read-only and write variables. As they can-
not be associated with a specific node, such rules are
defined globally on the entire NodeSet file.

Restrictions regarding the attributes of a node, the
references between them, and a referenced node have
to be checked at the type level as well as on node in-
stances of an OPC UA information model. Thus, these
classes can be found in the taxonomy for NodeRules
and TypeRules.

Additionally, Node Rules have restrictions on gen-
eral Data Type Structures and Enumerations. These

rules and the further refinement of these rule classes
are depicted in Fig. 30.

For TypeRules, an additional rule is needed to check
that an abstract ObjectType is not instantiated as an
Object (Fig. 29).

4.3. Step 3-4: Rule examples and templates.

For each rule present in the taxonomy, an exam-
ple was formulated in SFN and SPARQL using in-
formation from companion specifications. These rules
were then generalized into rule templates by replacing
constraint-specific information with variables.

We decided to use SFN and SPARQL in this ex-
ample for several reasons. First, while SFN cannot be
used for automatic verification, it provides a human-
readable form of documentation describing the pur-
pose of the rule. Second, after consulting with OPC
UA experts, it was decided to use SPARQL as the
first candidate for a formal rule specification as it has
broad support in semantic web tools and OPC UA
NodeSets can be translated into OWL [6] as shown in
Sect. 2.1. And third, using SFN and SPARQL simulta-
neously demonstrates that the approach is not limited
to one specific language but can be extended by other
languages, e.g., SHACL or technologies from model-
driven engineering.

The rules and rule templates are not presented as
a whole here, but the following examples should pro-
vide an impression of general concepts and the gen-
eral form of rules formulated in SFN and as SPARQL
queries. In general, SPARQL rules produce an error
message if the rule is violated, and otherwise, they re-
turn no result. The rule, presented in Fig. 9, checks the
existence of a node MotionDeviceSystemType on the
global, NodeSet file level. The SPARQL query results
in a message if no such node could be found and re-
turns no results otherwise.

Fig. 9. SFN and SPARQL rule examples.

The SFN and SPARQL rule templates, depicted in
Fig. 10, are generalized versions of the rule which
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is depicted in Fig. 9. To derive these templates,
constraint-specific information (i.e., the information
provided by the contents of the table cells) of the rules
created in the previous step was replaced with tem-
plate variables. The examples depicted in Fig. 9 ver-
ify that a node with a specific browse name, provided
via the template variable @@BrowseName@@, ex-
ists in the ontology representing the NodeSet file. Such
templates are important because they can be used as
a basis for generating concrete rules by replacing the
template variables with concrete values.

Fig. 10. SFN and SPARQL rule template examples.

The process of formulating rules and, consequently,
rule templates is a trade-off between complexity and
re-usability. Complex rules covering many aspects at
once (e.g., the existence of a node, its data type, and its
value) are possible but are less re-usable across multi-
ple modeling constraint types and more rule templates
would be required. We, therefore, opted to formulate
more fine-grained rules checking each of the exempli-
fied aspects separately.

5. Stage 2: Constraint extraction from
specifications

To address RQ2, we investigated various methods
to support the automatic detection of modeling con-
straints in OPC UA specifications. The OPC UA indus-
trial standards, published in pdf format, convey infor-
mation by relying on three modalities: (i) tables captur-
ing in a structured way modeling guidelines pertinent
for the corresponding domain; (ii) graphical charts de-
picting the components of the information model (see
example in Fig. 2); (iii) textual descriptions explain-
ing the information represented in tables and graphi-
cal charts. We investigate to which extent information
related to modeling constraints can be extracted auto-
matically from tables (Sect. 5.1) and text (Sect. 5.2) in
OPC UA specification documents.

5.1. Constraint extraction from tables

We report an initial study to clarify whether tables
are a good source for modeling constraint extraction
(Sect. 5.1.1), the creation of a data set as a basis for this
process (Sect. 5.1.2), as well as an approach for ex-
tracting modeling constraints from tables (Sect. 5.1.3).

5.1.1. Preparatory Study: which tables are useful for
constraint extraction?

To extract all relevant modeling constraints from
specification documents an understanding of the infor-
mation structured in tables is needed and whether ta-
bles contain information that is relevant for the con-
straint extraction. Three of the authors performed an
analysis of 543 tables from 10 different companion
specifications and concluded that:

– tables are a rich and structured source of model-
ing constraints;

– there are several table types, and each table type
conveys specific OPC UA modeling constraint
types. For instance, a Reference TypeDefinition
table can include a symmetric modeling con-
straint and an inverse name modeling constraint
while an Object TypeDefinition table contains
among others cardinality and existence modeling
constraints.

As part of the conducted table analysis, 42 ta-
ble types are identified, 9 of which (e.g., Example,
Common-terms table types, etc.) are considered ir-
relevant for the modeling constraint extraction task.
Based on the number of instances (e.g., concrete ta-
bles) a table type has and the number of specifica-
tion documents that used this table type, the top most
frequent 11 table types are selected and used as in-
put to the automated extraction process described in
Sect. 5.1.3. These table types are: Object TypeDef-
inition, Enumeration, Method Parameters Definition,
Method AddressSpace Definition, Method ResultCode
Definition, DataType Structure, Reference TypeDefi-
nition, NamespaceURI, ProfileURI, NamespaceMeta-
data, Transition.

5.1.2. Data set creation
For the task of automatically extracting modeling

constraints from tables, 28 companion specification
pdf documents are considered. Figure 11 visualizes the
distribution of the selected table types in those 28 doc-
uments. It shows that Object TypeDefinition type ta-
bles appear most frequently and account for 43% of
all tables in the inspected specifications. Enumeration
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Fig. 11. Distribution of table types in 28 preselected OPC UA com-
panion specifications.

type tables make up 9% percent of all the tables in
these specifications. The tables from the 11 table types
selected as most frequent during the analysis phase
(Sect. 5.1.1) cover almost 75% of all occurring tables.
The rest 25.5% of tables (shown as Other in Fig. 11)
belong to table types that are very infrequent or are
specific to only a single document.

5.1.3. Approach for constraint extraction from tables
In this section, we focus on the process of automat-

ically extracting OPC UA modeling constraints from
tables. Figure 12 shows an overview of the approach.
In general, OPC UA Companion Specification docu-
ments have multi-modal forms of data such as tables,
texts, and flowcharts with constraint information. As
this task focuses on the extraction of modeling con-
straints from tables firstly, all tables from a pdf docu-
ment are extracted. From these extracted tables, target
table types are identified and simultaneously cell-wise
modeling constraint information in each concrete ta-
ble is pinpointed, extracted, and formulated as a gen-
erated (semi-)formal rule. Each step of this process is
explained next.

Step 1 - Table detection and extraction. This step
takes as input a pdf Companion Specification docu-
ment and returns a set of tables. It relies on Camelot
(https://camelot-py.readthedocs.io), an open-source
python library, specialized in the automatic detection
and individual extraction of different tables from pdf
documents. For the extracted tables a categorical sep-
aration of the required target table types is carried out
as explained next.

Step 2 - Table categorization. In this step, the set of
tables from the previous step is processed and each ta-
ble is categorized into its corresponding table type.

We apply a heuristics-based approach that relies on
making use of a filter based on two types of manu-
ally specified lists of key terms: (i) the first list con-

Fig. 12. Process of extracting constraints from tables.

tains terms that indicate that a table is of a certain
type; and (ii) the second list contains terms that are
not specific to that table type. These lists of key terms
are domain-dependent. For instance, here the domain
is OPC UA industrial standard and the key terms are
column names of the table along with a few specif-
ically occurring words in these tables, for example,
IsAbstract, EnumType, InverseName, etc. These key
term lists are constant for every companion specifica-
tion within OPC UA whereas for other industrial stan-
dards these lists of key terms must be customized de-
pending on their domain-specific vocabulary. Table 1
gives an overview of the number of indicative and non-
indicative strings with respect to each type of table,
applicable to all the Companion Specifications consid-
ered in this task.

Table 1
Number of strings for all considered table types.

Table type indicative strings non-indicative strings

ObjectType Type Definition 8 25
ReferenceType 3 0
MethodAddressSpace Type 3 11
DataType Structure 10 33
EnumerationType 11 55
MethodResultCode Type 4 1
MethodParameter Type 1 4
Transition Type 3 15
NamespaceType 2 18
Profile URI Type 4 6
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Algorithm 1 describes the steps taken to decide
which tables are of a certain table type. It takes as input
all extracted tables (tables) as well as the lists of in-
dicative and non-indicative terms for a given table type
(i_list and ni_list respectively). For each table (table)
and for all strings appearing in the table, the algorithm
checks whether any string present in the table appears
in the list of terms indicative of this table type, while
not appearing in the list of non-specific terms for that
table type. The algorithm outputs a vector of all tables
that comply to the currently checked table type.

Algorithm 1 Step 2 Table categorization into one table
type

procedure SELECT(tables, i_list, ni_list)
output← []
for table in tables do

for any str in table do
if str in i_list then

if str not in ni_list then
output← output + table

output← output.unique()
return output

The 11 table types and the 10 pairs of lists of indica-
tive and non-indicative keywords with respect to each
of these types that we picked for this experiment, align
with the companion specification template provided by
the OPC UA Foundation. But as these key terms signi-
fied for one table type can also appear for other table
types, further optimization of the keyword-based ap-
proach is required. Hence another list of non-key terms
or non-indicative list of strings is also added with re-
spect to each table type along with an indicative list
of strings. Namespace metadata and Namespace URI
type tables can be obtained by one common filter de-
fined for finding Namespace type tables. Therefore, a
total of 10 pairs of both indicative and non-indicative
lists of key terms have been used to categorically filter
required table types from all the tables extracted from
pdf in Step 1.

Figure 13 shows an example of a filter used to iden-
tify whether a table is of type Object TypeDefinition.
Strings such as "TypeDefinition" and "isAbstract False
True" indicate that the table is of type Object TypeDef-
inition, while the keywords "ToState" and "FromState"
refer to a Transition table and would thus classify a ta-
ble as not-ObjectTypeDefinition. Using this technique,
whenever we want to separate and identify a table type,
the filter associated with respect to that table type is

Fig. 13. Filtering Object TypeDefinition table types by using lists
of indicative/non-indicative strings.

used to further filter out that table type resulting in the
extraction of their exact types.

The main challenge in this step remains the incon-
sistencies in the appearance of a specific table type
in the companion specification documents. Since not
all tables are exactly compliant with the template de-
fined by the OPC UA companion specification, a ta-
ble could sometimes have different structural formats
with new or varying column names, new positioning of
the columns in the table, missing or misaligned rows
and columns, as well as typographical errors. There-
fore, the classification of the table types had to be fur-
ther customized to increase the correctness of table ex-
traction. Since only known inconsistencies observed
among the same table type were considered, the results
of the algorithm might vary when a new inconsistency
appears. Hence, further optimization to achieve a fully
accurate constraint information extraction from tables
is considered as a future goal.

Step 3 - Constraint identification & rule formulation.
Once the types of the extracted tables are known, for
each table type a set of its respective type-specific
modeling constraints are identified and formulated
into (semi-)formal rules using rule templates. The
constraints are identified in the following way (also
sketched in Algorithm 2). Firstly, by looping itera-
tively over the rows throughout the length of the table,
the required values present in the cells of each identi-
fied table are extracted. Some variables are defined for
every required column in the table for holding these
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values extracted from every table. Hence, an automatic
filling of these values into respective variables takes
place. For instance, a variable named ‘Sourcenode’
holds the ‘Sourcenode BrowseName’ value that ap-
pears in the cell at the 2nd row and 2nd column of
ObjectType tables. Similarly, the ‘References’ variable
holds all the ‘Reference’ values present in the Refer-
ence column starting from the cell at the 4th row, 1st
column, with reference values in this column extend-
ing throughout the length of the table until the last row.
In Algorithm 2, var1 holds a table from separated ta-
bles obtained from step 2, var2 holds the row index
value of table present in var1 and n is the row index
value from the starting row of actual values in the tar-
get column.

Algorithm 2 Step 3 Constraint Identification and Rule
formulation

1: procedure SELECT(var1, var2, n, template)
2: for var2 in range(n, length(var1)) do
3: col1← value in (row,col) from target col1
4: col2← value in (row,col) from target col2
▷ Example of rule formulation

5: “Node with” + col1 + “ has a ” + col2 + “.”
6: rule = populateTemplate(template, col1,

col2))
▷ For example, if col1 = Axis, col2 = variable

7: return rule

Subsequently, these variables that hold the modeling
constraint information automatically extracted from
tables are formulated as (semi-)formal rules by using
pre-defined rule templates, finally providing the gen-
erated rules(rule templates are explained in detail in
Sect. 4). This is feasible because the rule taxonomy
provides a mapping between constraints and rule tem-
plates (as explained in Sect. 6 and shown in Fig. 17).
This mapping suggests potential rule templates for the
given constraint. However, only rule templates that can
be fully populated (the values of all template variables
required by the rule template have to be provided by
the table) are selected and result in rules.

An example of a rule template is, ‘The <Sourcenode
BrowseName> <Reference> <Targetnode Browse-
Name> which should be of datatype <Datatype>’.
By using the variables that carry the values extracted
from cells of tables, we can formulate constraints
as described in the following example, ‘The Widget-
Type HasProperty Color which should be of datatype
String’, using the concept of string concatenation. The

Fig. 14. Constraint identification and rule formulation from an
Object TypeDefinition table.

variables are concatenated with strings in rule tem-
plates to formulate (semi-)formal rules corresponding
to the modeling constraints captured in tables. In this
way, from every identified and separated table type
in step 2, constraints are extracted and generated as
(semi-)formal rules in step 3 simultaneously. An eval-
uation of tabular constraint extraction is provided in
Sect. 7.3.

Figure 14 shows how a (semi-)formal rule can be
generated from the information extracted from tables.
These (semi-)formal rules are generated in order to
check the redundancy of rules described in tables and
text in the companion specification documents, this is
subject to future work. There is another output from
the table extraction which is presented in Fig. 18. This
figure shows that we can formalize the rules by pop-
ulating the SPARQL templates with information ex-
tracted from tables. Therefore, the table extraction is
used for two purposes and gives two outputs. Detailed
description about populating the SPARQL templates is
described in Sect. 6.1, 6.2.

5.2. Constraint extraction from text

OPC UA companion specification documents in-
clude large amounts of tables and figures. Neverthe-
less, it can be observed that the text surrounding the ta-
bles can extend the modeling constraints defined in the
tables or introduce new modeling constraints. There-
fore, the extraction of modeling constraints from text
is an important task. While extracting modeling con-
straints from tables is a straightforward process, ex-
tractions from text require a well-trained algorithm and
a human-in-the-loop for verification.
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We investigate two different approaches- a machine-
learning-based classification and a lexical-pattern-
based extraction, introduced in the next sections.

Fig. 15. Machine learning based process for extracting constraints
from text.

5.2.1. Machine learning (ML)-based approach
The first approach frames the modeling constraint

identification as a binary classification problem. It in-
volves training a classification model using labeled
sentences and then classifying new text inputs as con-
straints or not-constraints.

Training set. A prerequisite for this approach is the
availability of an annotated data set for the training of
the classification algorithm. For this purpose one com-
panion specification (PackML) was analyzed by the
authors of this paper (who are also OPC UA mem-
bers) and modeling constraints were manually identi-
fied. The resulting training data set includes 198 text
snippets which consist of either a single sentence or
several sequential sentences extracted from the speci-
fication and their binary classification as a constraint
(approx. 20% of the data) or not-constraint (80%). A
sample of the data can be seen in Table 2.

Figure 15 shows an overview of the extraction pro-
cess as discussed next.

Step 1 - Model training. By using the pre-annotated
text snippets 8 Scikit-learn (https://scikit-learn.org)
based machine learning models (Nearest Neighbors,
Linear Support-Vector Machine (SVM), Radial Basis
function SVM (RBF SVM), Standard Gradient Descent
(SGD), Decision Tree, Random Forest, Neural Net-
work and Adaptive Boosting (AdaBoost)) are trained to
recognize different types of output - in our context, to
differentiate between constraints and not-constraints.
The annotated sentences from the PackML training
data were split into Train and Test sets with a ratio
of 4:1. When trained with enough example data, the
models can then predict the type of new text inputs.

Step 2 - Sentence extraction. The next step is to ex-
tract all sentences from the pdf specification document
from which the constraints should be derived.

Since the first chapters of each companion speci-
fication include general information about OPC UA,
terms explanations as well as introductory examples,
they are not considered for this task. For the extraction
of the rest of the sections, Spacy (https://spacy.io) and
PyPDF2 (https://pypi.org/project/pyPdf/), Python li-
braries supporting various Natural Language Process-
ing tasks such as information extraction, are used.

Step 3 - Binary classification. After a set of sen-
tences is extracted, each sentence needs to be cate-
gorized as constraint or not-constraint. First, the ex-
tracted sentences, as well as the training data, are pre-
processed using stop word removing, lemmatization
and tokenization. Second, each of the trained models
is applied to the extracted sentences and their results
are compared. The results are discussed in Sect. 7.4.1.

5.2.2. Lexical-pattern-based approach
In the English language, a sentence can be consid-

ered a rule if it conveys a semantic meaning of some
function or some property or something that "has to
be present" in some entity or needs to be necessarily
followed. Such sentences have a syntactical structure
that contains representative words such as must, have
to, should, will, etc. Such words are called auxiliary
verbs and play a key role in identifying if a statement
is a "compulsory condition" and thus a constraint. This
observation prompted us to experiment with a lexical-
pattern-based constraint extraction, depicted in Fig. 16
and explained next.

Step 1 - Linguistic patterns identification. The first
step of the approach is to analyze the structure of sen-
tences likely to express modeling constraints. For in-
stance, a modeling constraint could be expressed with

https://scikit-learn.org
https://spacy.io
https://pypi.org/project/pyPdf/
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Table 2
A sample of the gold standard data for the PackML companion specification.

Text Snippet isConstraint

UnitCurrentMode - is used to display the current mode of the instance of this type. The DataType is Enumeration which is
abstract, but an instance shall be assigned a concrete enumeration, which corresponds to the enumeration listed in Support-
edModes.

yes

EquipmentInterlock.Blocked - If TRUE, then processing is suspended because downstream equipment is unable to receive
material (e.g. downstream buffer is full).

no

Linguistic Pattern
Identification

Linguistic Pattern
Matching

OPC UA  
Companion 

Specification

2

Constraints

1

lexical
patterns

OPC UA 
Companion
Specification

OPC UA 
Companion
Specification

OPC UA 
Companion
Specification

Annotated 
Sentences 

Fig. 16. Rule-based approach for extracting constraints from text.

an auxiliary verb in a lexical pattern structure such as
pronoun/noun/(proper noun) + auxiliary verb + verb.
An example is: "At least one instance of a Motion-
DeviceSystemType must be instantiated in the Device-
Set.". The word MotionDeviceSystemType is a proper
noun and vocabulary belonging to the OPC UA con-
text, must be is an auxiliary verb, and these words are
followed by the verb instantiated. Subsequently, the
following lexical patterns are formulated:

1. pattern1 = [’POS’:’SCONJ’,’OP’: ’?’, ’POS’:’DET’,
’POS’: ’NOUN’,’OP’: ’?’, ’POS’: ’PROPN’]

2. pattern2 = [’POS’: ’PROPN’, ’POS’: ’NOUN’,’OP’:
’?’, ’POS’: ’PUNCT’,’OP’: ’?’, ’POS’: ’AUX’,
’POS’: ’PUNCT’, ’OP’: ’?’, ’POS’: ’DET’,’OP’:
’?’, ’POS’: ’ADV’, ’OP’: ’?’, ’POS’: ’VERB’]

Here POS is a linguistic attribute that defines the
parts of speech of the word in our pattern. Opera-
tors and quantifiers define how often the token must

be matched. In the above pattern the operator OP:
‘?’ makes the Parts of speech or POS token with the
AUX or auxiliary verb matching, optional, by allow-
ing to match 0 or 1 times. Similarly, PROPN - repre-
sents a proper noun, PUNCT - represents punctuation,
DET - represents determiner, ADV - represents adverb,
SCONJ - represents subordinating conjunction (e.g., if,
while, that).

Step 2 - Linguistic patterns matching. For this task,
we use Spacy and its Matcher object, which allows for
the specification of linguistic patterns and leads to ex-
tracting only sentences structured according to the pre-
assigned pattern, which are likely to be modeling con-
straints. We evaluate this method in Sect. 7.4.2.

6. Stages 3&4: Rule generation and validation

Our third research question focuses on the feasibil-
ity of mapping modeling constraints specified in the
tables and text of specification documents to rules. In
the case of OPC UA, there is a strong link between
table types and rule types, and rules can be generated
automatically from tables as we describe in Sect. 6.1
(and based on the algorithm introduced in Sect. 5.1.3).
As it is more difficult to connect textual constraints to
(semi-)formal rules, we rely on a Human-in-the-loop
approach to identify correct rules for modeling con-
straints extracted from text (Sect. 6.2).

6.1. Generating rules from tables

All tables found in the companion specifications are
classified as NonCheckableConstraint, RuntimeCon-
straint, or OfflineCheckableConstraint (as discussed in
Sect. 4.1). NonCheckableConstraints are tables with
information that can not be checked on the informa-
tion model. An example would be the description of
parameters. RuntimeConstraints can only be checked
on a running instance of an OPC UA server because
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Fig. 17. Snippet of the Rule Taxonomy, which is an ontology describing the types of modeling constraints, types of rules as well as the mappings
from constraint types to rule types.

the information is not directly available in a Node-
Set file. Examples would be Server Profiles or Names-
pace URIs. Our work focuses on the so-called Of-
flineCheckableConstraints, which are concerned with
information about the structure of the information
model.

To document the constraint taxonomy, rule tax-
onomy, relations between constraints and rules, and
rule templates, we created the ontology illustrated in
Fig. 17. The specific snippet depicted illustrates the
class structure (TBox) of the ontology and the rules
that can be used to express and ObjectTypeDefinition
constraint. Concrete constraints found in the specifi-
cations are instances of the corresponding constraint
class. Likewise, necessary rules to express the con-
straint are instances of the corresponding rule class.

To automate the generation of rules from tabular
data, we relate each one of an OfflineCheckableCon-
straint to a set of possible rules via an OWL class def-
inition. If a table is found in a companion specifica-
tion, the first step is to look up if the table represents
an OfflineCheckableConstraint. If so, the information
from the table is parsed (using techniques described in
Sect. 5.1), and an applicable rule template (based on
the constraint to rule mappings provided) is retrieved
from the set. Afterward, the template variables from
the rule template are populated with the retrieved in-
formation from the table (with the algorithm described
in Sect. 5.1.3). This procedure is repeated until all nec-
essary rules are created for the particular constraint.

Fig. 18. Procedure of generating SPARQL rules from tables.

As an example, 13 different rule templates are avail-
able to express an ObjectTypeDefinition constraint
(Fig. 17). The needed information, e.g., that a node has
a certain attribute value or the reference is of a cer-
tain type, is extracted from the tables and used to fill
in the template variables in the related SPARQL rule
templates. These completed rule templates can now be
executed on the SPARQL endpoint, which has loaded
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Fig. 19. HC task designed for constraint verification.

the OPC UA information model. Violations of the rules
are reported as error messages.

Figure 18 shows an example of this procedure. In the
upper part of Fig. 18, a snippet of the ObjectTypeDefi-
nition table is shown for the WidgetType, as defined in
the Machinery companion specification. It shows the
part of the table where it is stated that the WidgetType
is not abstract. This is done by setting the value of the
IsAbstract attribute to False.

Among others, the ObjectTypeDefinition constraint
is related to the AttributeHasSpecificValue_NR rule
template, which checks if a certain attribute has a spe-
cific value. In this case, it checks if the attribute Is-
Abstract has the value “False”. The template of the
AttributeHasSpecificValue_NR rule is depicted in the
lower part of Fig. 18. The template variables are now
assigned with the values from the table to make the
SPARQL rule executable. For this, the algorithm from
Sect. 5.1.3 is used but with a SPARQL output. The
SPARQL rule will lead to the error message if the Wid-
getType is defined as abstract in the OPC UA informa-
tion model.

6.2. Generating rules from text with
human-in-the-loop

While the types of modeling constraints expressed
in certain table types can be mapped to suitable (semi-
)formal rule templates thus enabling the automated
generation of (semi-)formal rules from tabular data
(Sect. 6.1), generating rules from text is a much harder

process. As currently there is insufficient training data
to train automatic classifiers for this task, we propose
a Human-in-the-Loop (HiL) approach to map textual
modeling constraints to (semi-)formal rules. The ap-
proach involves three tasks in order to (1) verify the
correctness of textual modeling constraints to remove
noise introduced by the automated extraction modules;
(2) classify modeling constraints into categories linked
to rule types; (3) validate the resulting rules. As such,
these tasks also serve as an approach to implement
Stage 4: Constraint and Rule Validation of the overall
approach presented in this paper (see Sect. 3, Fig. 5 ).

We rely on Human Computation (HC) techniques
for the HiL approach. HC implies outsourcing specific
tasks of a system, which cannot be fully automated,
to human participants and leveraging the human pro-
cessing power to solve those tasks. HC has been al-
ready successfully applied in a variety of domains for
verification tasks [7] and we believe it is an important
building block of a semi-automated method to support
the steps needed for the derivation of (semi-)formal
rules from pdf-based specifications. Next, the designed
HC approach is explained and later in Sect. 7.5 a dis-
cussion of the results of an expert-sourcing validation
campaign is presented.

Human Computation task design. The HC solution
consists of three tasks, which are designed to be com-
pleted by experts from the OPC UA working groups.
In a first task, as shown in Fig. 19, the evaluators are
asked to verify whether an extracted sentence (1 in
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Fig. 20. HC task designed for constraint classification.

Fig. 21. HC task designed for rule validation.

Fig. 19) represents a modeling constraint. To provide
enough background information for the decision the
task includes additional context (2) such as the para-
graph from which the sentence is extracted as well
as relevant materials from the OPC UA Online Refer-
ence tool (https://reference.opcfoundation.org). To fur-
ther support the experts, Instructions (3) are available
in which nomenclature is explained and detailed task
explanations with examples are provided. To allow for
easy aggregation of responses provided by multiple ex-
perts, the task is designed as closed-ended (4). In case
the evaluator is unsure whether the sentence refers to a

modeling constraint they can select the Uncertain op-
tion. A comment field (5) is also available for remarks
that the experts would like to share.

When the evaluator selects that the sentence is a
modeling constraint, Task 1b, shown in Fig. 20, is dis-
played. The goal is to classify the constraint (1 in Fig.
20) into the rule type to which it refers to (2). For in-
stance, the constraint can be related to an Object Type-
Definition or an Enumeration. To support the gener-
ation of rules the user is also asked what restrictions
(e.g., cardinality) (3) are defined in the constraint. As
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with a previous task, a comment field (4) is available
as well.

Based on the selection in Task 1b and the created
Rule Taxonomy a set of rules can be generated which
are to be used to validate that the constraint is adhered
to and Task 2, shown in Fig. 21, follows. Here the par-
ticipant’s role is to validate whether the shown (semi-
)formal rule (set) (2 in Fig. 21) correctly and com-
pletely reflects the constraint expressed in the extracted
sentence (1).

The form in which the rules are shown is a vari-
able and should be decided based on the evaluation
population. In the shown example in Fig. 21 a struc-
tured natural language was selected, however, a for-
mal rule language such as SPARQL could be used as
well - the choice ultimately depends on the technical
expertise of the participants. As with Task 1 Instruc-
tions (3) are available and a Yes/No/Uncertain answer
(4) is expected. In case the person does not agree with
the proposed rule (set) they are asked to select whether
the rule (set) is incorrect, incomplete, incorrect and
incomplete or superfluous. A comment filed (5) is in-
cluded in case the evaluator wants to share some fur-
ther insights regarding the rule.

While human effort is still needed for the constraint
extraction and rule validation, by applying the de-
signed HiL approach the manual effort of the experts
is significantly reduced. Indeed, with this approach we
manage to circumvent the efforts of manually inspect-
ing the full specification document, extracting model-
ing constraints, and formulating (semi-)formal rules so
that the experts are only required to perform a verifica-
tion of the automatically produced results.

7. Evaluation

Since some methods presented above are still ex-
perimental, they are not all integrated in the current
workflow of the proposed approach. Having said that,
there is an automated core processing pipeline that
consists of the rule taxonomy and the rule templates
(Stage1) which inform the rule generation (Stage3)
based on data extracted from the tables in the OPC
UA specifications (Stage2). For the methods for mod-
eling constraint extraction from text, a complete auto-
mated workflow is not possible, therefore a HiL ap-
proach is chosen. Here modeling constraints identified
in text (Stage2) are converted into semi-formal rules by

mapping to the elements of the taxonomy developed in
Stage1 through HiL methods proposed in Stage4.

Therefore, at this stage, evaluation primarily fo-
cused on assessing the performance and quality of in-
dividual elements of the proposed approach includ-
ing: (i) the rule taxonomy and rules defined in Stage 1
(Sect. 7.1 and 7.2); (ii) the methods for extracting con-
straints from tables and text (Sect. 7.3 and 7.4) and (iii)
the feasibility of HC tasks for constraint and rule vali-
dation as envisioned in Stage 4 by performing an eval-
uation campaign with OPC UA experts from the Ma-
chinery domain (Sect. 7.5). With such focused evalua-
tions the goal was to understand the feasibility and be-
havior of the proposed individual elements across sev-
eral specifications. An end-to-end evaluation of the en-
tire approach is ongoing work and will focus on well-
defined use cases from selected OPC UA specifica-
tions.

7.1. Evaluation of rule taxonomy

As described in Section 5.1, the rule taxonomy was
created based on the analysis of the modeling con-
straints related to a type of table in a companion spec-
ification. Therefore, the question arose whether and to
what extent this rule taxonomy would enable express-
ing constraints present in the textual part of the speci-
fications.

To validate the coverage of the rule taxonomy, we
manually identified the textual modeling constraints
in the Machinery companion specification. Afterward,
these constraints were analyzed to see if the already
identified rules could also be used to express them. We
found that the rule taxonomy can already cover the vast
majority of these textual modeling constraints. Only
two global rules had to be added, which are concerned
with instantiating variables. This seems reasonable as
this kind of information can hardly be expressed in a
table and needs additional context.

We conclude that, although the rule taxonomy was
created based on modeling constraints expressed in ta-
bles, it is sufficiently complete to also express con-
straints described in the textual part of the specifica-
tions. Having said that, the rule taxonomy is by no
means a final collection of rules, but a core set of rules
that can (and should) be extended as required.

7.2. Evaluation of SPARQL rules

Another important question to clarify was whether
the SPARQL rules created as part of the rule taxonomy
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could be applied successfully on a concrete OPC UA
information model.

To that end, in conformance with the Robotics com-
panion specification, an information model was cre-
ated, including instance nodes. These instance nodes
are needed for evaluating some of the rules. Figure 22
illustrates the applied process. As SPARQL cannot
be executed directly on the OPC UA NodeSet file, a
transformation from an OPC UA NodeSet to an OWL
ontology was required. More details about the OPC
UA to OWL transformation can be found in [6] and
Sect. 2. Afterward, the resulting ontology was loaded
into a triplestore (Apache Jena Fuseki) to exemplify
rule checking based on 12 different SPARQL rules.
These rules were evaluated by checking the rules’ out-
puts against the expected results. As the information
model provides only a limited amount of possible Ob-
jectTypes, Objects, Variables, etc., only a subset of the
defined rules was implemented in SPARQL.

Transform OPC
UA NodeSet to
OWL ontology

Load ontology file
into SPARQL

Server

Formulate rule as
SPARQL query

Trans-
formation

Rules

Robotics
OPC UA
NodeSet 

Robotic
OPC UA  
OWL File

Fuseki Server with
loaded Robo�cs

OPC UA ontology

Results

Fig. 22. Process for evaluating SPARQL rules.

7.3. Evaluation of constraint extraction from tables

To assess the performance of the modeling con-
straint extraction from tables (described in Sect. 5.1),
we compute: (i) True Positives (TP) which occurs
when a table of a certain type (e.g., Enumeration) is
extracted and classified correctly as its type; (ii) False
Positives (FP) for tables of a specific type (e.g., Ref-

Fig. 23. Precision of table extraction per companion specification.

erence TypeDefinition) that are extracted and classified
as a table of a different, incorrect type (e.g., Enumer-
ation); (iii) Precision as formalized in Eq. (1). Due to
the nature of the input sources and the implemented
solution False Negative and True Negative situations
arise very rarely and are not considered for the purpose
of this task.

Precision =
T P

T P + FP
(1)

Since the constraints are formulated using the val-
ues obtained from the tables, it can be stated that once
a table is extracted correctly, the constraints associated
with it will also be properly extracted. In the majority
of cases, the constraint extraction is directly propor-
tional to the correctness of the table extraction as con-
straints are derived from the table values. Therefore,
the main focus of the evaluation is on table extraction
and categorization, also as a proxy for the correctness
of constraint extraction.

7.3.1. Table extraction and categorization
Figure 23 shows the precision of extraction from

each of the 28 selected companion specifications,
thereby resulting in an average precision of 0.87 and
standard deviation of 0.134. As mentioned in Step 2
some customization of the algorithm is needed for doc-
uments that do not follow the guidance and template
provided by OPC UA exactly. The more inconsisten-
cies in the layout the lower the precision scores are. In
section 7.3.2 a more detailed error analysis is provided.
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Fig. 24. Comparison between the total number of tables and the
correctly extracted tables for each companion specification.

Figure 24 illustrates the Recall analysis. Recall can
be formalized in terms of True Positive and False Neg-
ative as expressed in Eq. (2).

Recall =
T P

T P + FN
(2)

There are a total of 1998 target tables (tables of
the types selected for the extraction) in the considered
companion specification documents. With the used al-
gorithms 1357 True Positive table extractions were
possible thereby also leading to proper constraint ex-
tractions for those tables. This results in a recall of
approx. 68% for the automatic extraction of tables
and the corresponding modeling constraints captured
in these tables. However, True Positive extractions are
in some cases higher in numbers than the actual num-
ber of tables present. This can occur when a large table
split into several pages is perceived as multiple tables
by the extraction algorithm. Another case where a sin-
gle table is extracted as multiple smaller tables is when
there is irregular spacing or positioning of columns in
the table. In some other scenarios, a single table is ex-
tracted twice because it fits the conditions of more than
one table type. Such special scenarios that lead to some
challenges or complexities in extraction are discussed
in detail in the following section.

7.3.2. Error analysis
We hereby discuss the difficulties in the extraction

of tables (and constraints) from pdf documents. Over-
all six different error types were identified which led

Fig. 25. Error types encountered during the processing of each
companion specification.

to challenges or imperfections in extraction. Figure 25
shows an overview of the occurrence of those errors in
the processing of each companion specification.

– Error 1: Error due to fixed line-scale value. The
line-scale value is a feature in Camelot and plays
a key role in the proper extraction of data in tabu-
lar format from a pdf document. It has the purpose
of a line-size scaling factor. After testing different
values on the companion specification, we empir-
ically determined a line-scale value of 80. Never-
theless, the fixed value becomes an issue for ta-
bles on which the algorithm has not been trained
and which are not defined in the OPC UA speci-
fication templates.

– Error 2: Error due to the intersection of words
in table-type-specific vocabulary lists. In Step 2
from Sect. 5.1.3 the usage of table-type-specific
vocabulary lists for table categorization is dis-
cussed. While in most cases the keywords in-
side the table are specific to a single table type,
there are few cases where the same identification
words are included in several table types. This
causes some tables to be classified incorrectly
(False Positive).

– Error 3: Error due to page-breaks. Page-breaks
are observed in many companion specifications
documents and become an issue for the extrac-
tion when a table is split into multiple pages. In
cases where the table continuation does not in-
clude headings or column names, it does not get
extracted and a loss of constraints can be ob-
served. On the other hand, when the split table
includes a heading on each page, this can result
in the extraction of several tables instead of one,
which is not an issue for the correct extraction of
constraints, however, the performance metrics get
affected.
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– Error 4: Error due to improper alignment of
columns and table structures. Improper align-
ment of columns inside the tables also leads to
incorrect or missing constraint extractions even
when the table extraction is correct. Such prob-
lems are mainly observed in NamespaceMetadata
and NamespaceURI tables.

– Error 5: Typographical errors or unexpected spe-
cial characters. Other factors that can negatively
influence table extractions are typographical er-
rors or misprints. Newline characters in unex-
pected positions in tables or incorrect column
names also lead to errors in the extraction of con-
straints.

– Error 6: Error due to some unique structure of
a table type that is not covered within the algo-
rithm. In a few cases no particular error in the al-
gorithm was found causing the incorrect or miss-
ing extractions. A possible explanation could be
the nonconformity of some tables to the standard
companion specification template structures.

To conclude, the approach for the automatic extrac-
tion of tables and corresponding modeling constraints
from OPC UA pdf specification documents achieves a
Recall of 68% and an average Precision of 87%. Cus-
tomizing the algorithm to the unique structures in dif-
ferent documents could result in better performance,
however, it would also reduce the dynamic nature of
the algorithm and would not improve extractions from
future documents if they use incompatible structures.
Moreover, the currently used Camelot software has
some limitations as discussed above for extracting in-
formation from tables in textual documents. This soft-
ware should be improved in order to increase the over-
all performance of information extraction from tables.
On the other hand, the structuring of tables in the OPC
UA documents and the correct usage of table templates
provided by the OPC Foundation while creating the
companion specification documents could further con-
tribute to an increased quality of the information ex-
traction algorithms.

7.4. Evaluation of constraint extraction from text

For the evaluation of the constraint extraction from
text, one further companion specification document
(Machinery) was selected, for which a gold standard
was manually created. The data set was retrieved semi-
automatically by using an automatic extraction method
and the expertise of the authors for corrections and ex-

tensions of the extracted data. In total the gold stan-
dard data set includes 44 constraints and 229 non-
constraints.

7.4.1. Machine learning (ML)-based approach

The eight supervised machine-learning-based mod-
els (Nearest Neighbors, Linear SVM, RBF SVM,
SGD, Decision Tree, Random Forest, Neural Net-
work, AdaBoost) were chosen because they are widely
used scikit-learn library-based classifiers [8]. The con-
figurations of the classifiers were default with small
changes (see Table 3) and TfidfVectorizer1 was used as
feature extractor.

Table 3
The configuration of Scikit-learn based binary classifiers

Classifier Configuration

Nearest Neighbors KNeighborsClassifier(10)
Linear SVM SVC(kernel="linear", C=0.025)
RBF SVM SVC(gamma=0.002, C=1000)

SGD
SGDClassifier(loss=’hinge’, penalty=’l2’,
alpha=1e-3, random_state=42,max_iter=5,
tol=None)

Decision Tree DecisionTreeClassifier(max_depth=5)

Random Forest
RandomForestClassifier(max_depth=5,
n_estimators=10, max_features=10)

Neural Network MLPClassifier(alpha=1, max_iter=1000)
Ada Boost AdaBoostClassifier()

The machine-learning-based approach was first
tested on the 20% of PackML gold-standard which was
not used for the training of the algorithms. The mod-
els previously trained with 80% of the PackML gold-
standard data are evaluated by testing the performance
of each classifier in terms of precision, recall, F1 score,
and accuracy. The results are shown in Table 4. Due
to the imbalance of the data weighted average is used
for the evaluation metrics. Results indicate that Neu-
ral Network (Multi-layer Perceptron) outperforms the
rest of the models and produces the best results with a
recall of 0.95.

Recall indicates how many relevant items are re-
trieved. In other words, how many constraints are de-
tected correctly by the algorithms. Among the evalu-
ation metrics shown in Table 4, we chose to focus on
recall due to the unbalanced data set consisting of only

1https://scikit-learn.org/stable/modules/generated/sklearn.feature
new_extraction.text.TfidfVectorizer.html



Y. Bareedu et al. / Deriving semantic validation rules 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
PackML test results in weighted average.

Classifier Precision Recall F1-score Accuracy

Nearest Neighbors 0.93 0.93 0.93 0.93
Linear SVM 0.76 0.87 0.81 0.87
RBF SVM 0.93 0.92 0.93 0.92
SGD 0.90 0.90 0.90 0.90
Decision Tree 0.92 0.92 0.92 0.92
Random Forest 0.90 0.87 0.80 0.87
Neural Network 0.95 0.95 0.94 0.95
AdaBoost 0.90 0.90 0.90 0.90

a small number of constraints, each of which is highly
valuable for the extraction. Additionally, we consider
False Positives as less important than False Negatives
because for the validation approach, it is important that
no constraints are missed.

To further assess the constraint extraction approach,
the PackML trained models are tested on the Machin-
ery specification document as well. The results are
shown in Table 5 and indicate that the best perfor-
mance is achieved using Linear SVM and Random
Forest. The recall values reach 86% which is suffi-
ciently good for such an experiment (training with one
document and testing on another one).

Table 5
Machinery test results on the entire data.

Classifier Precision Recall F1-score Accuracy

Nearest Neighbors 0.79 0.83 0.81 0.83
Linear SVM 0.74 0.86 0.80 0.86
RBF SVM 0.80 0.77 0.78 0.77
SGD 0.79 0.76 0.77 0.77
Decision Tree 0.80 0.81 0.80 0.81
Random Forest 0.74 0.86 0.80 0.86
Neural Network 0.79 0.83 0.81 0.83
AdaBoost 0.79 0.79 0.79 0.79

In the light of these experiments, we conclude that,
when the training and test data are similar (from the
same set), Neural Networks work very well. However,
Linear SVM and Random Forest achieve more consis-
tent results, even if there is a considerable difference
between the training and test set. Therefore, we can in-
terpret that, Neural Networks might have the problem
of overfitting while Linear SVM and Random Forest
can be generalized to new data more easily.

7.4.2. Lexical-pattern-based approach
The evaluation of the lexical pattern-based approach

consists in comparing the performance of the linguis-
tic pattern matching to a manually curated gold stan-
dard. Using the Machinery companion specification as
an input document, the linguistic patterns defined in
Sect. 5.2.2 are applied. As a result, all sentences are
extracted that fit the constraint patterns, which leads
to (i) 26 True Positives (extracted sentences labeled as
constraints in the gold standard); (ii) 131 False Posi-
tives (extracted sentences labeled as not-constraints in
the gold standard); (iii) 18 False Negatives (sentences
that did not get extracted but are labeled as constraints
in the gold standard). Using Eq. (1) and Eq. (2) we cal-
culate a precision score of approximately 0.17 and a
recall of 0.59.

In comparison to the ML-based approach evaluated
in the previous section, the modeling constraints ex-
traction based on linguistic patterns does not achieve
good results. Since the OPC UA data is large, natural-
language-based and diverse, modeling constraints can
be expressed in different structures. Nevertheless, for-
mulating a higher number of linguistic patterns would
result in a higher number of False Positives. To con-
clude, the ML-based extraction proved to be more flex-
ible and thus outperformed the lexical pattern-based
approach. However, training an ML model that of-
fers high accuracy predictions is a more complex and
expensive approach. Therefore, based on the require-
ments and desired results one should make a trade-off
between high accuracy and low resource extraction.

7.5. Feasibility evaluation with domain experts

To evaluate the usefulness and clarity of the de-
signed HC Tasks for the verification of automatically
extracted constraints and generated rules (Stage 4 of
our approach) an expert-sourcing validation campaign
was conducted in the concrete context of the OPC UA
Machinery specification.

7.5.1. Expert validation campaign of the Machinery
specification

From the gold-standard Machinery data created by
the authors, we selected: (i) 60 sentences, 70% of
which were considered by authors to represent mod-
eling constraints; and (ii) the rules that could be for-
mulated for the constraints expressed by these sen-
tences. Six OPC UA experts (named in the Acknowl-
edgement section) that were involved in the creation
of the chosen companion specification document (Ma-
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(a) Overview of the agreement among experts on the classification of
the input sentences in absolute numbers and in percentages.

(b) Overview of the classification of the input sentences by the authors
and by the experts in absolute numbers.

Fig. 26. Results of the constraint classification task in terms of (a) agreement among experts on the classifications, and (b) alignment between
the classification proposed by the authors (left) and by the experts’ majority vote (right).

chinery) were asked to perform the validation tasks.
The rules in Task 2 (Fig. 21) were shown in a struc-
tured natural language, rather than SPARQL so that
they are understood also by experts not familiar with
the SPARQL syntax.

The validation campaign was run on Amazon Me-
chanical Turk (https://www.mturk.com) - a crowd-
sourcing platform that offers the possibility to imple-
ment HC processes. The platform allows for easy re-
sults aggregation and makes it possible to avoid se-
quence bias by showing the tasks in a random order to
each of the evaluators.

For the campaign, the extracted sentences were split
into two batches of 30 sentences (and their correspond-
ing rules), and 3 experts were assigned to each batch.
The evaluators completed the tasks within two weeks
and each of them submitted 25-30 responses. This
setup allowed for the collection of 3 responses on aver-
age per sentence and provided 168 judgments in total.

Since there was no variety in the classes to which
the selected sentences referred to (e.g., Object Type-
Definition), Task 1b (Constraint Classification) was not
included in the validation campaign. In the next sub-
sections, the results of both HC tasks are analyzed to
identify areas for improvement of the approach.

7.5.2. Constraint extraction from text (Task 1)
Figure 26 shows an overview of the results of the

constraint classification task. Based on the experts’

judgments a majority vote could be calculated for al-
most 90% of the sentences, however, a complete agree-
ment among the experts was not achieved on over 50%
of the data items as it is seen in Fig. 26a. Since for each
task a variable number of evaluations were collected,
Krippendorff’s alpha coefficient was used to calculate
the inter-rater agreement among the experts. The alpha
score of 0.19 indicates very low agreement and shows
that the identification of constraints is a difficult task.

In Fig. 26b a comparison between the classification
proposed by the authors and the classification resulting
from the experts’ validations is shown. Sentences, for
which a majority vote could not be established, have
been added to the category "Uncertain". When com-
paring the majority vote of the experts against the au-
thors’ classification there is an overlap on less than
60% of the sentences. These results add to the state-
ment that identifying constraints in OPC UA docu-
ments is a complex problem and textual definitions are
open to interpretation. Therefore identifying textual
constraints and defining formal rules to verify them
is an important task for ensuring the conformity of
OPC UA Nodeset files to the OPC UA base/companion
specifications, which can be enabled by the proposed
validation approach.

7.5.3. Rule validation (Task 2)
In this section, the ability of the proposed rules to

completely and correctly capture textual constraints is
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examined. Because of the low agreement among the
experts on the constraint verification task, rules were
not validated by all participants and a majority voting
was not feasible for all judgments. Moreover, 45% of
the rule validations were evaluated only by a single ex-
pert and for 67% of the rules defects were identified
by one evaluator only. Since an inter-rater agreement
score is not meaningful considering the gathered data,
we compute for each expert the percentage of their
agreement with the proposed rules.

The expert scores vary from 33% to 100% and result
in an average of 68% acceptance of the proposed rules.
The frequency of found defects for the 18 rules, for
which a defect was selected by at least one evaluator,
can be seen in Fig. 27. While no rule set was found to
be superfluous, 8 rules were judged as incomplete and
6 as incorrect. In 4 of the rule sets both defects (incom-
pleteness and incorrectness) were found, where each
have been selected by at least one expert. In the com-
ments added by the experts for this task, exact mistakes
and proposals for improvements were identified.

To conclude, the campaign results show that (i) the
task of constraint identification is difficult even for ex-
perts, and (ii) the human-in-the-loop approach enables
the successful identification and classification of in-
valid constraints and rules which is essential for im-
proving the automatic algorithms.

It is important to note that the feasibility evaluation
involved a large amount of manual effort in preparing
the input data, however, with the improvement of the
automatic extraction algorithms, these efforts will be
reduced. An important outcome of the performed val-
idation campaign is the establishment of a gold stan-
dard for the Machinery specification, which will act as
training data for our automatic approaches so that for
the extraction of constraints from further specifications
the manual effort will be further minimized.

8. Related work

We position our work in the landscape of using Se-
mantic Web technologies in industrial settings (Sect.
8.1), and then discuss related work on information ex-
traction in general (Sect. 8.2), and semantic informa-
tion extraction (Sect. 8.3) in particular.

8.1. Application of Semantic Web technologies in
industrial settings

Semantic Web technologies have been extensively
applied to support various industrial applications in the

Fig. 27. Frequency of the defects identified by the experts for rules
that were marked as invalid in absolute numbers and in percentages.

last decade ranging from combining sensor networks
with the Web [9] to augmenting products with se-
mantic descriptions [10] or enabling smart city infras-
tructures [11]. The application of these technologies
has been taking place in a variety of (mission-critical)
domains, such as manufacturing [12, 13], electric
grids [14], or buildings [15] and addressed tasks both
during the engineering (e.g., engineering model inte-
gration, digital twin model consistency management)
and operation&maintenance (monitoring and anomaly
detection, optimization and reconfiguration) phases of
cyber-physical systems in such domains [16]. Further-
more, an important task is the verification of techni-
cal information objects (e.g., ontologies, semantic data
sets) in terms of complying with constraints specified
in languages such as SHACL, SWRL, or SPARQL.

Against this backdrop, in this paper, we investigate a
novel setting for the application of Semantic Web tech-
nologies in the context of industrial standards, in par-
ticular as a solution option for automating validation
processes of information models based on standards.
Our work is in line with the current paradigm shift
in such standards towards automatic standard valida-
tions. In particular, the OPC UA Semantic Validation
Working Group (which we described in Sect. 1) fo-
cuses on providing the foundation to create valid, con-
sistent NodeSets. However, their work is hampered by
the high manual effort to identify modeling constraints
in text and capturing them in a formal, machine-
actionable rule language. Therefore, in this study, we
worked towards a (semi-) automatic approach to vali-
date the OPC UA information models and to the best
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of our knowledge, we are the first to work on such an
approach.

8.2. Information extraction

A key goal of our work is extracting relevant con-
straint information from unstructured documents that
can be then translated into (semi-) formal rules. This
is in essence an information extraction task. Informa-
tion extraction (IE) takes natural language-based text
as input and produces detailed, fixed-format data us-
ing technology-based methods [17]. The challenge de-
pends on the complexity of the data [18]. The closer
the data is to natural language, the greater the re-
quired effort. The input data might come from social
media, e-mails, chatbots, websites, ontologies, docu-
ments, etc [19]. The information can be extracted by
using various NLP, text mining and machine learning
(ML) methods [20] depending on the desired model-
ing. Thus, the significant interplay between syntax and
semantic modeling should be considered [21]. More-
over, the methods might be a part of supervised or
unsupervised concepts such as sentence classification,
estimation, text generation, similarity, graph creation,
ontology-learning, etc. In either case, IE aims to con-
vert the knowledge into a structured form suitable for
computer manipulation, opening up many possibilities
for using it [19]. In contrast to this state of the art, we
are working not only on text but also on table forms
and aiming to use mixed methods, including classifi-
cation, text similarities, and text generation.

Hence, several studies which use information ex-
traction methods in the NLP domain, such as text clas-
sification, intent extraction, text similarity, and para-
phrasing, exist. In order to achieve one of those tasks,
information extraction can be used as a step for a
higher purpose such as grammatical knowledge ex-
traction. Although the studies in the English language
dominate the field, there are many studies for other
languages as well. For example, there is a study [22]
about information extraction on Past, Present, and Fu-
ture Tenses, and there is another example of Hungarian
noun phrase extraction from textual documents [23].

Information extraction from text-based documents
has been investigated for various purposes for a cou-
ple of decades [24]. Sentiment analysis -for instance-
is one of the main working areas in text mining and
IE. It is the base of the emotion and intent classifica-
tion of texts. By tagging the sentences or paragraphs
as positive, negative and neutral, we can make sense
of the text. Therefore, it can be used for child filters

of the internet, analyzing the user comments as cus-
tomer service, etc. Another study from the economy
domain is interested in information extraction for qual-
itative financial data [20]. The project aims to pre-
vent text-based qualitative data overload from differ-
ent text-based sources by using NLP techniques. A
literature review in the medical domain about infor-
mation extraction from clinical data [25], claims that
around 300 different articles were examined in terms
of IE tools, methods, data sources, and applications.
The FRODO (A Framework for Distributed Organiza-
tional Memories) [26] project, for example, started be-
fore 2000 and focused on document analysis to extract
relations and entities.

The other technical method for document analysis is
text classification. In [27], text documents in the busi-
ness domain such as e-mails, office documents, pdf
files, etc., are classified using a knowledge base. An
additional interesting example of the studies in the in-
dustry is resume automation [28] for human resource
departments. It is a different domain regarding being
interested in personal and other structured data types.

Text-based regulations are very similar and interest-
ing documents for us because they are giving informa-
tion about constraints and rules regarding the domain.
There is an example from the Game industry about
documents called Automated Extraction and Classi-
fication of Slot Machine Requirements from Gam-
ing Regulations [29]. The rules from state and fed-
eral laws and regulations were extracted using primi-
tive rule-based algorithms and Naive Bayes. Another
similar work on legal regulations focuses on obtaining
machine-readable data from legal sources to create an
appropriate computable representation of building reg-
ulations [30]. Finally, security-related terms from var-
ious unstructured data sources were extracted in [31].

As it is seen, there is an endless amount of work in
the field of information extraction.

8.3. Semantic information extraction

A core part of our work is proposing methods to
(semi-)automatically extract validation rules from the
standard specifications, thus being related to the large
body of work on information extraction (IE) in the con-
text of the Semantic Web (i.e., semantic information ex-
traction recently reviewed in [32]. This review identi-
fied that IE systems have been applied in numerous do-
mains and have been developed for different types of
sources - structured text, semi-structured text, unstruc-
tured text, images, and tables or mixed multi-modal
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forms [33]. While many studies focus on text-based
sources, there are other modalities that can be used as
a base for information extraction, such as tables and
schema. In [34] the authors aim to make a classifi-
cation of information, structured in tables, and define
the relations between cell information. In a few stud-
ies, multiple modalities such as either graph and text
together or a combination of table and text are used
for information extraction. In those studies, the main
goal is to extract semantic and well-formed machine-
readable data from huge online or offline data [35].

An important distinction also refers to the extracted
information which can be entities, concepts, binary re-
lations (i.e., triples) or more complex n-ary relations
(i.e., rules, axioms). As the focus of our work is on ex-
tracting rules, which can be seen as complex n-ary re-
lations, we identified the following examples of works
focused on extracting n-ary relations. In [36], seman-
tic relations between concepts are extracted from med-
ical semi-structured text based on belief states. The use
of IE for the generation of triples from documents is
discussed in [37]. A more complex problem is acquir-
ing rules, which often can contain several triples. Rules
have been acquired from web content [38], [39] or tex-
tual content, e.g., in the medical domain [40].

There are also approaches where the output of IE
results in a complex knowledge structure such as a
knowledge graph. For example, in [41] the main goal
is the creation of a legal knowledge graph based on the
Austrian platform RIS (https://www.ris.bka.gv.at). For
the population of the knowledge graph legal entities
(such as legal rules, references, contributors, etc.) are
extracted from structured resources and from text. For
the extraction, both machine and deep learning tech-
niques are used as well as a rule-based approach.

There are also studies about information extraction
from communication standards. Information extrac-
tion from smart devices in home Wi-Fi networks con-
sists in a string matching between input data and a
prebuilt smart device rule database. Therefore, the fo-
cus is on device information extraction from unstruc-
tured strings rather than complex human language-
based documents. One of the latest studies [42] which
is closer to our purpose is setting up an error-tolerant
procedure that extracts information from Natural Lan-
guage (NL) Communication Standard Documents.
They handle Alternating Bit Protocol (ABP) as a use
case. Above all, we deal with multi-modal textual data
for complex technical documents to generate semantic
validation rules. While [42] mainly focuses on incon-
sistency inside the document, we would like to extract

the semantic net and query mechanism for information
models.

In summary, our work focuses on technical docu-
ments, explores both textual and tabular modalities,
and aims to extract rules (e.g., complex n-ary rela-
tions). This is the first effort to perform this complex
information extraction task in communication stan-
dards to the best of our knowledge. OPC UA specifi-
cations are handled in the project’s first phase scope.
However, in the future, we would like to expand our
approach to other industrial communication standards,
such as Asset Administration Shell2.

9. Conclusions and future work

The use of industrial standards is core to indus-
trial engineering across application domains to in-
troduce cannons for digital communication, data ex-
change, etc. that ensure interoperability across domain
stakeholders. However, a commonly taken approach is
that standard specifications are provided in non/semi-
structured documents which makes it difficult to auto-
mate compliance checks of information artifacts rely-
ing on them, as demonstrated by the concrete use case
of OPC UA. Therefore, a paradigm shift in the area of
industrial standards is needed towards more machine-
processable, explicitly represented standard specifica-
tions, additionally to textual specifications, so that the
validation of information artifacts can be automated.

To support such a paradigm shift towards automated
semantic validation, we proposed a high-level ap-
proach for representing and (semi-)automatically ex-
tracting formal rules from unstructured standard doc-
uments and then instantiated this approach in the case
of OPC UA and reached the following conclusions.

In terms of RQ1, we found that it was feasible to
represent modeling guidelines from the specifications
as formal rules. Furthermore, these rules could be or-
ganised in a taxonomy represented by means of an
OWL ontology, thus benefiting from the capabilities
of explicit semantic representation of the Semantic
Web technologies. We used SPARQL to provide rule-
templates that can be instantiated into concrete rules
and also tested a subset of these rules on the Robotics
companion specification. We found that the current
taxonomy of rules could express constrains available

2www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation
/Details_of_the_Asset_Administration_Shell_Part1_V3.pdf?
__blob=publicationFile&v=12
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both in tabular and textual format, and can be easily
extended as needed.

Related to RQ2, as a first step towards automating
the derivation of rules from specifications, in the con-
text of OPC UA, both tabular and textual informa-
tion can be processed to identify modeling constraints
with a high precision (P=87%) for tables and high per-
formance for extraction from text (F1 up to 94%). In
terms of methods, although they require training data,
machine learning methods lead to more promising re-
sults than approaches relying on lexico-syntactic pat-
terns, which are hampered by the high variety in the
style of the text across domains as well as specification
creators. Furthermore, the evaluation campaign with
the Machinery experts showed that the way modeling
constraints are expressed in text is often highly am-
biguous and leads to low agreement even across ex-
perts. This further motivates the need for methods as
presented in this paper where a combination of tech-
niques are used to identify, verify and explicitly define
formal rules corresponding to such constraints to re-
duce the ambiguity of the textual specifications.

Related to RQ3, generating rules based on automat-
ically identified modeling constraints in the specifica-
tions could be solved in two ways in the OPC UA con-
text. Firstly, fully-automated generation was possible
based on information available in tables as the table
types are already indicators of types of rules that are
expressed; pre-requisites were a clear understanding
of modeling constraint and formal rule types, a map-
ping between these as well as the use of rule templates
as defined in the rule taxonomy. Second, to connect
textual modeling constraints to formal rules a Human-
in-the-loop approach was proposed, given the lack of
training data for automating this task.

Limitations and Future work. The following future
work items address the current limitations of this work:

– Reduce manual effort required by some of the
methods. The extraction methods in Stage2 re-
quire manual input in terms of keywords for ta-
ble identification or training data. As this work
advances, it is to be expected that after the re-
peated application to a high number of specifica-
tions, the manual effort of method adaptation will
decrease (e.g., keywords specified for extracting
tables for one specification will be largely appli-
cable to the next specifications). Furthermore, in
ongoing work we are experimenting with a rule-
extraction method that is semi-automated (i.e.,
extraction rules are learned automatically from

text and validated by an expert), thus further re-
ducing the amount of manual input. Future work
on testing this approach on other OPC UA speci-
fications will explicitly consider and quantify the
(decrease of) manual effort when the approach is
applied to a new specification.

– End-to-end evaluation of proposed approach.
While the individual steps of the proposed ap-
proach have been tested on a significant OPC UA
corpus, evaluation has focused on the function-
ing of individual methods. Ongoing efforts focus
on the identification of several use cases that al-
low the end-to-end evaluation of the proposed ap-
proach, with all its individual methods. While the
core building blocks of the approach have been
investigated and evaluated on several compan-
ion specifications, an integrated tool-chain for the
end-to-end process is part of the future work.

– Improve rule taxonomy. It was found that both
the taxonomy and rule template definitions heav-
ily depend on the language used to express the
rules and, in the case of SPARQL, also on the spe-
cific OPC UA NodeSet to OWL Ontology trans-
formation. Thus, if the OPC UA NodeSet to OWL
Ontology transformation changes, the SPARQL
rules may also require adaptations. Also, a two
step approach for rules, separating the navigation
to the focus node from the actual rule applica-
tion would help to reduce the amount of needed
rules. Therefore, we will investigate alternative
approaches for representing the rule taxonomy in
order to reduce the complexity of the taxonomy
and provide simpler rule templates.

– Explore multi-modal constraint extraction. While
modeling constraints could be identified both in
tables and text, we observed an overlap of content
across the information expressed in these modal-
ities which currently is not taken into account.
Therefore, we wish to advance the constraint ex-
traction methods by leveraging this overlap as a
signal of which information is a modeling con-
straint (e.g., strong signal when the constraint is
mentioned in both modalities).

– Provide rule explanations through provenance in-
formation. The multi-model extraction will lead
to a more complex rule extraction workflow.
Therefore, providing traces on how a rule was
derived and what it means (e.g., based on the
originating part of a specification) is important
for OPC UA Specification authors and end-users
of these specifications that want to validate their
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files. Ideally, if a rule identifies an issue in a file,
it is important to provide rule provenance infor-
mation in terms of tables, text snippets that lead
to its derivation as well as the version of speci-
fication it was derived from as a first immediate
documentation for the end-user to debug/improve
his files. To achieve such features, we will en-
able the auditability of the rule extraction process
through a provenance tracing and representation
middleware.

– Extend to other OPC UA specifications beyond
those considered as part of current work.

– Apply approach to other industrial standards.
While the points above deepen the work in the
context of the OPC UA standard, an orthogonal
effort will be investigating (i) to what extent the
methods and algorithms developed for OPC UA
are applicable in the context of other industrial
standards; (ii) what challenges need to be solved
when applied to other standard; and (iii) what is
a typical effort during such adaptation. While we
expect that the core stages of the approach will be
applicable for the case of most standards, meth-
ods in individual stages will have to be adapted to
the particularities of that standard (e.g., the rule
catalog will have to reflect rules relevant for that
standard, the constraint extraction methods will
have to be modified to the particularities of the
documents that capture the standard, etc.). Hav-
ing said that, the work presented in this paper will
offer not only a general process to follow but also
valuable suggestions about the range of possible
methods to be used in each individual stage and
their typical challenges and performance. We are
currently investigating a new application use case
for the Asset Administration Shell communica-
tion standard.

With the future work mentioned above, this work
has the potential to bring a major contribution towards
automatic, semantic validation within the widely used
OPC UA standard, as well as other industrial stan-
dards, thus leading to improved interoperability in in-
dustrial engineering settings and exploring the capabil-
ities of Semantic Web technologies for this novel and
important problem.
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Appendix A. Rule Taxonomies

Figures in this appendix depict the created rule tax-
onomies.
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Fig. 28. Identified Global Rules.
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Fig. 29. Identified Type Rules.
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Fig. 30. Identified Node Rules.
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