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Abstract. Industry 4.0 (I4.0) is a new era in the industrial revolution that emphasizes machine connectivity, automation, and data
analytics. The I4.0 pillars such as autonomous robots, cloud computing, horizontal and vertical system integration, and industrial
internet of things have increased the performance and efficiency of production lines in the manufacturing industry. Over the past
years, efforts have been made to propose semantic models to represent the manufacturing domain knowledge, one such model is
Reference Generalized Ontological Model (RGOM)1. However, its adaptability like other models is not ensured due to the lack
of manufacturing data. In this paper, we aim to develop a benchmark dataset for knowledge graph generation in Industry 4.0
production lines and to show the benefits of using ontologies and semantic annotations of data to showcase how I4.0 industry can
benefit from KGs and semantic datasets. This work is a result of collaborations with the production line managers, supervisors,
and engineers of a football industry to acquire realistic production line data2. Knowledge Graphs (KGs) or a Knowledge Graph
(KG) emerged as a significant technology to store the semantics of the domain entities. It has been used in a variety of industries,
including banking, the automobile industry, oil and gas, pharmaceutical and health care, publishing, media, etc. The data is
mapped with RGOM classes and relations using an automated solution based on JenaAPI, producing an I4.0 KG. It contains
more than 2.5 million axioms and about 1 million instances. This KG enables us to demonstrate the adaptability and usefulness
of the RGOM. Our research helps the production line staff to take timely decisions by exploiting the information embedded in
the KG. In relation to this, the RGOM adaptability is demonstrated with the help of a use case scenario to discover required
information such as current temperature at a particular time, status of the motor, tools deployed on the machine, etc.

Keywords: Industry 4.0, Production line, Knowledge Graphs, Industry 4.0 Knowledge Graph.

1. Introduction

The Industry 4.0 (I4.0) production line is a trending research topic that necessitates the automation of the produc-
tion line to meet smart manufacturing [1]. The goal of I4.0 is to use various technologies and artificial intelligence to

*Corresponding author. E-mail: m.yahya1@nuigalway.ie.
1https://w3id.org/rgom
2https://github.com/MuhammadYahta/ManufacturingProductionLineDataSetGeneration-Football-
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make better use of resources and optimize production [2], [3]. Meanwhile, in I4.0, the sensing technologies hosted
on machines generate immense amount of data in different types and formats. During the manufacturing process,
the machines and tools required to be automatically handled according to the context of the retrieved information to
enhance the efficiency of the overall production line [4].

In the I4.0 manufacturing production line., various operators require access to different types of information ac-
cording to their interests and roles. For instance, an engineer from the maintenance department would be involved in
knowing the Critical To Process (CTP) or Key Process Index Variables (KPIV) information of machines on a daily
basis. The CTP or KPIV of machines includes information such as their nominal power requirement, current tem-
perature and/or pressure, and operating frequencies of the tools. On another side, an engineer from the production
department would like to analyze the product’s quality and would be interested in retrieving the CTP parameters
set down by the maintenance department for each product. These operators can be facilitated with such information
retrieved from information systems.

In order to enable the production line operators to access such information, semantic web is one of the possible
solutions. The semantic web has transformed the current document-based web into a more intelligent system. The
semantic web combines the data and content into a structured web environment, allowing software agents to exe-
cute tasks autonomously for users. The semantic web uses an ontology to represent the information in a machine-
processable structure [5]. According to Feilmayr et al. 2016 and Gruber et al. 1993, an ontology can be defined as
a formal, explicit specification of a shared conceptualization that is characterized by high semantic expressiveness
[6, 7]. The assertion of the data into ontology becomes a KG. According to Hogan et. al. 2021, a KG can be thought
of as a graph of data intended to gather and convey knowledge of the real world, with nodes denoting objects of
interest and edges denoting relationships between these objects [8]. The semantic web recommends best practices
for exposing, sharing, and integrating data, information, and knowledge, known as linked data. The data distributed
under an open license is referred to as linked open data [9]. In the last decade, KGs have been widely used in many
fields, e.g., geography, health care, education, news, social networks, cyber-security, and I4.0 [10].

Industry 4.0 Knowledge Graphs (I4.0 KGs) have been receiving significant attention recently, and many re-
searchers are working to build them such as manufacturing production lines KGs. However, most of the time, they
are limited to a specific use case [11]. These use cases are based on two possibilities (1) researchers are using syn-
thetic data, or (2) a use case is coming from industry based on their private company data. There are a few datasets
available for Industry 4.0 production lines, such as Bosch dataset1. The Bosch dataset reflects the production line
processes including its machines and their operations, and targets applications such as predictive maintenance. This
dataset does not provide any description of its attributes and therefore, it is very ambiguous and hard to understand.
For example, L3_S36_F3939 stands for a feature measured on line 3, station 36, that has a feature number 3939.
However, there is no explanation about what sort of station and feature they are. Moreover, private company data is
only accessible to enterprise researchers. For the earlier use case, there is an issue with reproducibility and making
the data findable, accessible, interoperable, and reusable, also known as the FAIR principles. However, to the best
of our knowledge, there is no open dataset (and associated KGs) for an Industry 4.0 production line.

Based on our investigations, the goals of this research work are (1) to prepare a realistic production line dataset
and (2) to generate a semantic representation of the data with the help of Reference Generalized Ontological Model
(RGOM). To achieve these goals, collaboration is made with the football industry (explained in Section 3) and the
results contribute to

– one of the first datasets following the FAIR principles representing the realistic data collected from football
production line,

– an automated approach for mapping the data into RGOM to build a KG,
– a demonstration of the RGOM adaptability in the form of a catalogue of competency questions (SPARQL

queries) that is provided by the collaborators.

1https://www.kaggle.com/c/bosch-production-line-performance/data
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The results demonstrate the efficiency of the RGOM against the dataset that could be utilized by the researcher’s
community. Additionally, this could motivate other industries to set up a linked data based production line.

The rest of the paper is organized as: Section 2 review the Related work by exploring state-of-the-art techniques
in this area. The dataset from the football production line is analyzed in Section 3. An approach to integrate the
production line data is illustrated in Section 4. The use case to verify the RGOM adaptability with the generated
dataset is presented in Section 5. Section 6 explains the extension of the benchmark to other use cases. Finally, the
paper is concluded in Section 7.

2. Related Work

In recent years, a number of initiatives have been undertaken to semantically represent the I4.0-based produc-
tion line domain knowledge where an application is built on top of it. An overview of the existing literature on
using datasets following ontologies to construct a knowledge graph is presented in this section. A summary of the
ontologies and the datasets being used to develop an I4.0 production line KG is presented here.

2.1. Extant ontologies with real use cases

In recent years, domain and application ontologies have been developed in different I4.0 settings. Along with
the development, approaches and use cases have been made available for reuse and validation. In 2016, Cheng
et al. proposed a modular approach to semantically model a demonstration production line in which the product,
process, parameter, and device ontologies were merged using a base ontology [12]. However, their paper lacks any
examples or evaluation of how the ontology can be used in practice. In another study by Jarvenpaa et al. 2019,
an ontology was proposed to represent both simple and combined capabilities of manufacturing resources [13].
Unlike Cheng et al. [12], the authors evaluated resource capabilities based on their ontology using laboratory-
based test data. Ramírez Durán et al. 2020 [14], proposed an ontological model (ExtruOnt) to semantically describe
a manufacturing machine known as an extruder machine. Specifically, their work focuses on extruder machines,
including extruder components, three-dimensional representations of components, spatial connections, features, and
sensors that provide information on the performance of machines. As a result, it can be used as a reference model
to construct ontologies that represent other manufacturing machines in I4.0. The authors were able to evaluate their
ontology with real data taken from the urola solutions. In a recent study, we developed RGOM [15] which is an
ontological model including a domain core terminology spanning from raw material to manufacturing a product.
The construction of RGOM has reused several classes and properties from previous studies [12], [13], [16] and
also modeled a number of missing concepts and relations. The common limitation of the extant ontologies is that
although the ontologies are developed based on domain knowledge, use cases, and datasets, the knowledge resources
especially the datasets are not publicly available, making it difficult to evaluate the ontologies.

2.2. I4.0 production line with KG generation

In line with smart manufacturing, many other studies have empowered ontologies with applicable use cases and
explored the advantages of KGs on top of ontologies to configure, manage, and optimize the production line. In
2018, in order to represent knowledge of manufacturing resource reconfiguration, a configuration-based ontology
was developed using the Web Ontology Language (OWL) [1]. This research focuses on the integration of manu-
facturing Cyber-Physical Systems (CPS) equipment based on an ontology-based resource integration architecture.
Ontology-based architecture is evaluated using data generated by the smart manipulators as clients and data stored
on the raspberry Pi as servers. A KG is constructed by mapping the data instances to ontology terminology. Ko-
valenko et al. 2018, presented AutomationML ontology to enhance the engineering processes in CPS design [17].
The ontology addresses the CAEX section of the AutomationML standard. However, the authors did not explain
how their ontology can be used with data instances to generate a KG. In another study, Liebig et al. 2019 proposed
a KG pipeline for industrial automation and control [18]. A KG is constructed by combining data collection, data
cleaning, and the use of various technologies. There has been a revolution in KG-based approaches in academia as
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well as in manufacturing companies, such as Bosch, and Siemens [19], [20]. Irlan et al. 2020, proposed Bosch I4.0
KGs on the top of a set of domain ontologies [19]. The purpose of their work is to integrate data from different
silos in order to address the problem of interoperability. According to Kalaycı et al. 2020, a Semantic Integration
at Bosch (SIB) framework was introduced to integrate Bosch manufacturing data to analyze the surface mounting
process pipeline [11]. To experiment with their framework, they developed surface mounting to map production
line data. In all, KGs have become a potential enabler to facilitate I4.0 production lines, as can be seen from the
various initiatives and interests. However, there lacks a clear explanation of the data instances to generate KGs and
the mapping mechanism among the datasets, ontologies and KGs.

To summarize, the current literature demonstrates an emerging trend towards the implementation of ontologies
and KGs to I4.0 production lines. Nevertheless, many studies did not demonstrate how to populate the ontologies
with data instances to construct a KG. There also lacks public access to the existing knowledge resources, particu-
larly the datasets that constitute the ontologies. As a solution to the lack of availability of production line datasets, a
collaborative effort is established with the football manufacturing industry with the goal of obtaining realistic data.
In order to construct a KG, dataset instances are populated into RGOM. The development of a KG-based on this
methodology can serve as a motivation for other smart manufacturing industries.

3. Football Production Line

This section explains the data acquisition and dataset construction. The production floor consists of several pro-
duction lines, each consists of 9 machines with five operators (humans) performing manual operations. A typical
football construction requires Thermoplastic polyurethane (TPU) roll, football cores, printing colours, glue, Laser
Cutting machine, Oval Printing machine, High-Frequency machine, Glue Spraying machine, Heat activating Con-
veyor machine, Forming Moulding machine, Ball Shaping machine, Ball Seam Gluing machine, and Heat drying
machine.

Fig. 1. Flow of a single production process. The black arrows shows the process flow in the production line and the blue arrows shows data
flow from the sensors to the monitoring unit. 1⃝ In a single process, the TPU roll is feed into Laser Cutting Machine. 2⃝ Laser Cutting Machine
converted the TPU roll into patches. 3⃝ Patches are printed via squeegee by the oval printing machine. 4⃝ Printed patches are cut into panels. 5⃝
Back sides of panels and cores are sprayed with glue. 6⃝ Glued panels and cores are pass by the heated conveyor to form moulding machine.
7⃝ Cores and panels are moulded. 8⃝ Balling shaping machine gives football shape to the moulded cores and panels. 9⃝ The gaps between the

panels are seal with glue via Ball seam glue machine. 10⃝ The glue is dry by the heat activating conveyor and 4 footballs are produced.
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During a single production process, these machines perform different processes on different materials and produce
four footballs as a finished product. Figure 1. depicts the single process flow of football production and the flow of
the sensors data in a manufacturing production line.

The sensors installed on the machines in the I4.0 based production line generate data that are send to the mon-
itoring unit. In order to collect the first real instance of the data, several meetings were held with production line
managers and engineers of Forward group limited regarding the operations of the machines, resources, processes,
and production. It generally involved recording the power consumption, temperature, pressure, location, type of
process performed at a given timestamp by the machines. Also, the working status and rotational speed of the mo-
tor and other attributes were also recorded. Table 1 depicts the tools and machines parameters which includes ma-
chine name, timestamp, temperature, pressure, power, laser die, bed, squeegee, heater, high-frequency die and many
others.

Initially, the collected data were stored in a file comprising two types of attributes such as static attributes and
variable attributes under the supervision of production line engineers and managers. Static attributes contain those
attributes of the machine whose values remain the same in each process of manufacturing e.g. Machine model,
process location, motor ID etc. On the other hand, variable attribute value changes in each process based on the
performance condition of the machine, e.g. temperature, pressure, diameter, etc. Using the minimum and maximum
values as well as the real value measured by the sensor, we are able to obtain the realistic data with the help of
uniform probability distribution in each sub-processes. Uniform probability distribution takes an input in a range
bounded between the possible minimum and maximum value describing the possible likelihood and values of a
variable [21]. The values of generated instances are computed using base values plus the random value generated
using uniform probability distribution in the range [a, b]. For instance, to generate a temperature value of machine1,
we can formally compute a new temperature value Temp2 from the previous value Tempprevious as follows:

Temp2 = Tempprevious + f (x), where f (x) =


0, if x < a
1

b−a , if a < x < b
0, if x > b

(1)

Where a and b are the maximum and minimum reference values from the production line supervisors and en-
gineers. For example, to compute an instance of the temperature for machine1 during the TPU roll cutting pro-
cess, a base value of temperature is taken that is 41°celsius . Using the uniform probability distribution f(x) =
random.uniform(a, b) in equation 1, where a is set to 1 and b is set to 5, this provides an f(x) of 0.25. Upon summing
f(x) value with previous temperature value, it gives the temperature value for machine1, 41.25°celsius. The same
procedure is used for other variable attributes.

After clarifying the two types of attributes regarding the entire production line, the data type for each machine
are analyzed and generated. As mentioned before, the production includes 9 machines that are explained in the
following subsections.

3.1. Laser Cutting Machine

Laser Cutting Machine (LCM) is a manufacturing machine that performs the first process in football production,
known as the cutting TPU process. A laser-based cutting tool is hosted by the LCM to convert TPU rolls into
patches. The laser is rotated with the help of a motor. LCM produces six patches in a single process as a refined
material that are given as input to the Oval Printing Machine (OPM).

3.2. Oval Printing Machine

The OPM hosts six tools i.e., three beds, three squeegees, and three heaters. Each tool has a different function,
for instance, the bed acts as a container to hold the patch, each squeegee prints different colour (colour 1, colour 2
and colour 3), and the heater driers the printed patches with a temperature ranging from 55 to 65-degree Celsius.
Squeegee has various attributes such as power consumption, pressure, hardness, etc. The six patches produced by
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LCM are passed as input material to the OPM. This machine performs a total of eight step-wise processes to print
the colours on the patches in a single production process. In the first process, patch one is placed on the first bed,
which is then forwarded to the squeegee for printing colour one. The printed patch placed on bed one is dried in
the heat of heater one. In the second process performed by OPM, the same operation is repeated by squeegee one
and heater one on patch two placed on bed two. Squeegee two prints colour two on the patch one and heater two
dry the printed patch. Now, the patch contains two colours. In the third process by OPM, bed three contains patch
three, while bed two and bed one contains patch two and patch three, respectively. At the end of third process, bed
one, two, and three contain patches one, two, and three with printed colours one, one and two, one, two and three,
respectively. The rest of the eight processes are performed in the same flow to print the three colours on the 4 to 6
patches. The output of the machine is passed to the High-Frequency Cutting Machine (HFCM)

3.3. High-Frequency Cutting Machine

The dry printed patches are transferred to the bed of an HFCM. A die-cutting tool hosted by HFCM cut off the
printed patch into four panels. HFCM performs a single process for each patch, a total of 6 processes are performed,
and 24 panels are produced in a single production process. An operator plucks the panels from the HFCM and
matches the panels for a single football which is passed to the next machine known as Glue Spraying Machine
(GSM).

3.4. Glue Spraying Machine

The GSM in the production line receives two input materials, i.e., 6 panels and a rubber material inside the
football known as the core. The glue is sprayed on the backside of the 6 panels and core with the help of a needle
(diameter of the needle is 0.5 millimeters) hosted on the GSM. The glue panels and core are sent to Heat Activating
Conveyor (HAC) machine.

3.5. Heat Activating Conveyor Machine

Heat Activating Conveyor (HAC) is a conveyor machine. It has a heating tool that generates heat with a tempera-
ture ranging from 45 to 55 degrees Celsius. The function of the HAC is to dry the glue on the backside of the core
and panels. The dried core and panels are sent to a ball shaping machine.

3.6. Ball shaping Machine

The panels attached to the core are provided as input to the ball shaping machine. The core and panels are placed
inside the ball shaping machine, where pressure with a 60-degree Celsius temperature is applied to convert the panels
on the core into a round shape. This manufacturing process results in the production of a semi-finished football. The
semi-finished football is passed to form moulding machine.

3.7. Form Moulding Machine

A form moulding machine is an assembly machine. It is used to assemble the panels on the core. It performs a
total of 4 processes in a single production process. This machine output is provided to the ball seam glue machine
as an input.

3.8. Ball Seam Glue Machine

The ball seam glue machine performs a manufacturing process. The ball seam glue machine hosts a needle with a
diameter of 0.5 millimeters, aiming to fill the gap between panel to panel with the glue. The filled gap of the product
is then sent to the heat drying conveyor machine.
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3.9. Heat Drying Conveyor Machine

This is the final machine in the football production process. The function of the heat drying conveyor machine is
similar to that of machine 5. The glue (wet) football is then passed through a Heat drying conveyor to become dry.
After the process of machine 9, operators clean the ball, pack it in polybags, and then in the cartoon.

4. An Approach to Integrate the I4.0 Production Line Data

The acquired data becomes increasingly available in the data storage. However, most of the time, the raw data
are stored in various formats, disregarding their semantics and relations. It may restrict the usability of the data,
e.g., querying information, data analysis, etc. Therefore, there is a pressing need to represent this data in a semantic
representation, i.e., Linked open Data. Semantically enriched representation of data or KGs adds meaning and
context to data through ontologies and vocabularies that make it more easily understood and interpreted by humans
and machines [22]. This leads to several benefits including improved data integration, data understanding, data
interoperability, and faster discovery of knowledge via more powerful data querying and analysis [23–25]. We
present the new release of the I4.0 KG dataset, comprising comprehensive semantic descriptions and values of the
machine’s processes involved in a single football production line.

Fig. 2. An illustration of the approach to integrate data.
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Fig. 3. Pipeline for knowledge graph construction.

This section describes the approach to build I4.0 KGs from the football production lines data that can be queried
by any staff in the production line. Figure 2 illustrates the workflow for constructing the KG which is comprised
of four layers, Layer 1: Unstructured Data Sources, Layer 2: Knowledge Graph Construction, Layer 3: Football
Production Line Knowledge Graph, and Layer 4: Users and Applications. The following subsection describes the
layers and the interaction of the different components.

4.1. Layer 1: Unstructured Data Sources

The tools and sensors hosted by machines generate a huge amount of data at different timestamps in the manu-
facturing production line. The generated data is usually unstructured and is usually stored in different formats (e.g.,
csv, xml, json, text, etc.) by the data storage. Accessing the unstructured data in terms of information requires a lot
of pre-processing and manual efforts. It is difficult for the production line staff to access the information from the
data.

4.2. Layer 2: Knowledge Graph Construction

The goal of building an I4.0 KG can be accomplished with core and domain ontologies of the Reference Gener-
alized Ontological model (RGOM), to which the data from Layer 1 is mapped to construct a KG. Figure 3 depicts
the pipeline to construct I4.0 KGs. The RGOM and data sources are given as input to the reader component. The
reader component read the ontology resources i.e., class, object and data properties from the RGOM and parsed data
records from the data sources. The data instances are mapped with RGOM classes and properties by the mapping
components that are described in Section 4.2.2. The subsections below describe the components involved in Layer 2.

4.2.1. RGOM
The development of the football production line KG is based on our initial work that is about RGOM [15]. RGOM

is a generalized ontology representing the essential concepts of I4.0, illustrated in Figure 4. One of the main char-
acteristics of RGOM is its modular design and is the combination of domain ontologies (device ontology, process
ontology, manufacturing ontology, etc.) and core ontologies (sensor ontology, time ontology, location ontology).
The use of core ontologies helps to benefit from the context of the data and provides added value information. Ad-
ditionally, RGOM is inspired by the standards adopted by Reference Architectural Model Industry 4.0 (RAMI4.0)
which is of key importance for developing the I4.0 applications.

In order to develop the KG based on RGOM, only the most relevant ontologies to the I4.0 are selected which
are the core ontologies and domain ontologies. Figure 4 depicts the concepts and relations reused from rele-
vant existing ontologies (ssn:Sensor, ssn:Property, sosa:madeObservation, sosa:observes, time:Time, time:hadTime,
dc:isPartOf ), while there are several newly defined concepts such as Power, Tool, Part, Service, etc. The modules
in the RGOM ontology are discussed as follows.
Manufacturing Ontology: The manufacturing ontology objective is to semantically describe the resources in the
manufacturing production line. The Staff concept represents all the people participating in the production activities,
i.e., technicians, operators, and managers. The ManufacturingFacility concepts characterize different physical enti-
ties and hardware modules in the factory. The concepts of the production line are decomposed into; Workstations
contains the physically integrated machines; Cell is the combination of the workstation to perform a complex task; a
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Fig. 4. Figure illustrates some of the main classes, sub classes and relations of domain and core ontologies in RGOM ontology.

line include cells. This decomposition presents a potential reconfigurable processing line. Additionally, this taxon-
omy makes it possible to describe the manufacturing facility context at various nest levels such as the characteriza-
tion of line or to illustrate the context of the cell that belongs to that line. The physical entities in the manufacturing
facility are the resources linked to other ontologies via object properties.
Machine Ontology: The machine is the main resource to process raw or refined material into semi or finished
production on the production line. The machine performs the process with the help of tools by itself or with inter-
vention from the human. It can be either a processing or assembly machine processing a raw or refined material or
assembling the refine parts. The machine is a manufacturing facility and is part of the workstation.
Process Ontology: A set of tasks or operations completed by a resource is known as Process(es). The process(es)
performed by a resource(s) can be controlled operations as well as machining or assembly ones. The process ontol-
ogy represents the fundamental taxonomy of all the processes executed in the manufacturing and is specified with
contextual such as process happensIn location, process appliesTo a product, machine performProcess process, etc.
Product Ontology: Product ontology covers the basic taxonomy related to products based on the IEC 62890. The
components are the parts assembled by an assembling machine into a finished product. The customers can place an
order of one of the two, i.e., for service to the bought product or buying a new product.
Core Ontologies: Establishing the context of certain manufacturing tasks is difficult and is a major problem in the
industrial domain since it includes many different entities linked to time and locations. Time, Location, Process,
Machine and Resource are the primary concepts to semantically represent the manufacturing knowledge in line with
domain ontologies. The use of core ontologies with domain presents useful information regarding various situations,
e.g., inquiring about the status of the motor at a particular time (Listing 3).

4.2.2. Mapping Between RGOM and Data
Now we discuss the mapping between RGOM and data which involves the mapping of the structured data from

the production line to the ontological terms of RGOM, i.e., classes and properties. Algorithm 1 outlines the mapping
process, starting with initializing the ontology classes and properties required for the mapping. It then goes through
each record in the data, the values in the columns and creates individuals, and their associated object/data properties.
Using the semantics defined in the ontology model, an object property is chosen to form a triple with the subject and
object individuals. For example, as can be seen from Figure 2 in Layer 2 of the data mapping into ontology terms,
the algorithm gets the class type ManufacturingMachine and ManufacturingProcess from the ontology file, and



N. Yahya et al. / A Benchmark Dataset with Knowledge Graph Generation for Industry 4.0 Production Lines 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 1: mapping data to rgom
Input: ontologymodel, data
Output: ontologymodel.write()

1 namespace← IRI ;
2 resource← ontologymodel.getResource(namespaces +“classtype”); // e.g., Machine, Process etc.
3 r1← Null ;
4 r2← Null ;

...
5 rn

th ← Null ;
6 objectProperty = ontologymodel.getProperty(namespace + “objectproperty”); // e.g., performProcess etc.
7 dataProperty = ontologymodel.getProperty(namespace + “dataproperty”); // e.g., hasName, hasTime etc.
8 for each record in data do
9 if (record.column{1} != Null && record.column{1} != (“”))

10 then
11 r1← ontologymodel.createIndividual(namespace+record.column{1}, resource);
12 r1.addProperty(dataProperty, record.column{l}); //literal column

13 if (record.column{2} != Null && record.column{2} != (“”))
14 then
15 r2← ontologymodel.createIndividual(namespace+record.column{2}, resource);
16 r2.addProperty(dataProperty, record.column{l}); //literal column
17 r2.addProperty(ob jectProperty, r1);

...
18 if (record.column{ith} != Null && record.column{ith} != (“”))
19 then
20 rn

th ← ontologymodel.createIndividual(namespace+record.column{ith}, resource);
21 rn

th.addProperty(dataProperty, record.column{l}); //literal column
22 rn

th.addProperty(objectProperty, r2);

23

iterates over the data records in the data file. In a single iteration, the columns machine1 and machine1_process from
the spreadsheets is created as a subject and object with the aforementioned class types, respectively. Based on the
condition, the parsed literal values are linked via data property to the resources. For instance, object property, such
as performsProcess, from the ontology file which links the resources to form a triple i.e., data:LaserCuttingMachine
smo:performsProcess data:CuttingTPURollProcessNumber51. Moreover, the values in the database column can
also be mapped to the attributes of the KG via column mapping using R2RML [26].

As a result, data will be successfully mapped to RGOM. In Figure 5, we show a snippet of the machine_9
individuals along with their features i.e processMaterial, hasTools, consumesPower, performsProcess, isInLocation,
hosTools.

4.3. Layer 3:Knowledge Graphs

KG is a knowledge base that uses a graph-structured data model or topology to integrate data. KGs are often used
to store interlinked descriptions of entities – objects, events, situations, or abstract concepts. Whilst the data mapped
into the ontology concepts and properties becomes a KG3. The I4.0 KG contains the football production line data
that the engineers use to analyze the machines and process CTP parameters on a daily basis.

3https://web.stanford.edu/class/cs520/
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Fig. 5. Illustration of machine 9 instance with their attributes instances.

4.4. Layer 4: Users and Application Layer

At this layer, different users and applications can access the connected data via the KG. The KG offers a SPARQL
endpoint to take queries from the users and applications and return the results to them, i.e., what tools are hosted
by machines, monitoring the status of a machine motor, etc. SPARQL4 is a standard query language used to access
data from KG-based on RDF and OWL. The users and applications benefit from the semantics provided by the KG
in a standardized format.

5. Use Case: RGOM Adaptability

In this section, a use case on the KG-based dataset is presented. The use case deals with the adaptability of
RGOM on realistic football production line data. The RGOM semantically integrates the heterogeneous data of the
machines in a football production line into I4.0 KG5. The data from the I4.0 KG is queried without requiring extra
time and manual effort.

The production process of a football contains nine machines where each performs different sub-processes (Figure
1). The data produced during this process contains the domain knowledge of the machines, tools hosted on the
machines, processes performed on them, tools deployed on the machines, tools critical parameters, and contextual
data generated by the sensors hosted on the machines at some timestamp. The approach presented in Section 4 is
followed to semantically integrate the data. At first, we gathered the data sources containing the data about all the

4https://www.w3.org/TR/sparql11-query/
5https://drive.google.com/drive/folders/15G4tgVheu-gOHg8Ia4VKwF2UgXeZFWzn?usp=sharing
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machines which are then analyzed in line with the RGOM classes and relations. The main classes and relations of
RGOM are depicted in Figure 3. Next, the data is mapped with the ontology terms, i.e., classes and relations with
Jena API6. Upon the population of data into ontology terms, an RDF triple store is obtained, known as an I4.0 KG.

To produce a single football, an average of 1730 triples, 1355 logical triples, and 233 declaration triples are
produced. In one hour of the production line, a total of 9 main processes are executed, producing 36 footballs and
22150 triples on average from 2903 individuals.

Besides, three I4.0 KG-based datasets are generated to provide the researcher’s community to evaluate their tools
and techniques. These datasets are comprised of ten days, twenty days, and thirty days of data from a football
production line. The types of machines and their parameters are explained in Section 3. The total number of axioms,
logical axioms count, declaration axioms count, and individual count in each KG is illustrated in Table 2. The
number of classes, object properties, and datatype properties was the same for each KG.

Table 2
Summary of the axioms in each Knowledge graph

KGs Total number of Axiom Logical Axiom Count Declaration axioms Count Individual Count

10 Days 525865 525503 225 166273
20 Days 1050535 1050173 225 332363
30 Days 1470280 1469918 225 465238

After the construction of the KG, several queries are provided by the domain experts to find the usefulness of the
KG. The SPARQL endpoint at the application layer of I4.0 KGs paves the way for different applications to access
the required information embedded in the KG. Given a production line where the job at hand is to utilize the query
drawn from listing 1 in order to access the type of machines and their names involved.

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>
SELECT *
WHERE

{ {
?Machine a smo:ProcessingMachine;

}
UNION{

?Machine a smo:AssemblingMachine;
}

?Machine smo:hasName ?Name.
}

Listing 1. Query to retrieve the machines involved in the production line.

Figure 6 shows the results returned from the listing 1 query. It can be seen from the figure that the production line
consists of a single assembly line and eight processing machines, each with their name.

Furthermore, the production line manager can utilize the listing 2 query to find the tools present on a machine.
The result of the listing 2 query is shown in Figure 7. It can be seen from the figure that machine 2 has a name and
uses different types of tools such as one motor, three beds, three heaters, and three squeegees. The query fetches
machine 2 name and different types of tools that resides in the KG.

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>

PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>

SELECT ?machine ?tool

WHERE
{
d:Machine_2 smo:hasName ?machine;

smo:hasTool ?tool.
}

Listing 2. Query to retrieve the tools hosted on machine 2.

6https://jena.apache.org
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Fig. 6. Listing 1 query provides the number of machines involved in production line with their names.

Fig. 7. Listing 2 query provides tools hosted by machine 2.

Similarly, an engineer from the maintenance department wants to query the KG for CTP parameters to check the
current observation of the sensor or status of the motor. For instance, a maintenance engineer can retrieve the status
of a motor at a particular period of time by using the query in listing 3. The query fetches the status of the motor at
different timestamps is illustrated in Figure 8.

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>

PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>

PREFIX tm: <http://www.w3.org/2006/time#>

SELECT DISTINCT ?Motor_Name ?Status ?Start_time

WHERE
{
d:Machine_1 smo:hasTool ?motor.

?motor smo:hasName ?Motor_Name.

?motor smo:hasMotorState ?state.

?process tm:hasTime ?time.

?state smo:hasState ?Status.

?time tm:hasStartTime ?Start_time.

FILTER (?Start_time > "2021-06-01T 10:11:00Z"∧∧xsd:dateTime &&

?Start_time < "2021-06-01T 10:12:55Z"∧∧xsd:dateTime).
}

Listing 3: Query to retrieve the the status of machine 2 motor at certain time period.
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Fig. 8. Result returned by the query in listing 3

PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>

PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>

PREFIX tm: <http://www.w3.org/2006/time#>

PREFIX sosa: <http://www.w3.org/ns/sosa#>

SELECT DISTINCT ?machine ?Start_time ?result

WHERE
{
?machine smo:hasTool ?tool.

?tool sosa:madeObservation ?observation.

?observation sosa:hasSimpleResult ?result.

?time tm:hasStartTime ?Start_time.

FILTER (?tool != d:M6_Folding_Mold_machine_Pressure_Sensor.)
}

Listing 4. Query to retrieve the CTP parameter (Temperature) with time.

In order to retrieve the temperature (a CTP parameter) query in listing 4 is utilized. The reuse principle of Linked
Open Data has been followed by reusing the SOSA vocabulary as depicted in list 4. Figure 9 shows the fetched
results of the query in listing 4.

Fig. 9. Listing 4 query provides tools hosted by Machine 2.

Furthermore, a query in listing 5 is used to find the total number of processes performed by a machine and the
total number of tools that each machine used during a given time period. The query returns all the machines with
total number of processes it performed during a given time period and the total number of tools used by them, shown
in Figure 10. for instance, in the list, machine_1 has performed a total of 100 processes and used a total of three
tools during the time from 12:55:13 to 14:36:04.

6. Extension of the Benchmark to Other Use Cases

The current work showcases the potential of applying the RGOM to a larger picture. The concepts introduced
in RGOM can be utilised for the majority of production lines which will facilitate a wider use of our approach for
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PREFIX smo: <http://www.semanticweb.org/manufacturingproductionline/>

PREFIX d: <http://www.semanticweb.org/manufacturingproductionline/data/>

SELECT DISTINCT ?machine (count(distinct ?process) as ?process_count)

(count(distinct ?tool) as ?tool_count)

WHERE
{
?machine smo:performsProcess ?process.

?machine smo:hasTool ?tool.

?process sosa:hasTime ?time.

?time tm:hasStartTime ?start_time.

?time tm:hasFinishTime ?finish_time.

FILTER (?start_time > "2021-06-08T 12:55:13Z"∧∧xsd:dateTime &&

?finish_time < "2021-06-12T 14:36:04Z"∧∧xsd:dateTime}
GROUP BY ?machine order by ?machine

Listing 5. Query to retrieve the count of processes performed by machines and count of tools used by them during a time period.

Fig. 10. Listing 5 query provides count of processes performed by machines and count of tools used by them during a time period.

generating KGs for different use cases. For example, this approach can be extended not only to other similar manu-
facturing processes such as volleyball and rugby ball production, but also to other more generic production lines that
incorporate welding processes. This can help other industries map their customised data into RGOM and construct
an industry-specific KG. Additionally, to build KGs for a different manufacturing industry, one should adopt the
RGOM framework to add definitions of required classes and relations. For instance, in ongoing work, we have been
collaborating with Bosch to incorporate RGOM in their welding production line. We have created new concepts
such as WeldingMachine as Machine, WeldingRobot, WeldingGun, and Electrode as Tool, WeldingOperation and
MaintenanceOperation as Operation, and Workpiece as Material. This developed welding ontology demonstrates
the adaptability of RGOM [27]. Adopting a similar mechanism will help digital transformation for those who have
not set up a Linked Data-based production line.

The I4.0 KG dataset can be utilised in predictive maintenance [28]. For example, one useful use case of the I4.0
KG dataset is predicting the temperature of a machine. In manufacturing factories, the temperature of the machine
is of high significance and critical. During the process execution, the tools are operating under a set point. The
increase in temperature can adversely affect the machine which impacts the product quality. The assessment of
the temperature information enables the setting up of condition-based machine tool temperature monitoring and
prevents any impact on the quality of the end product. Furthermore, the I4.0 KG can be used by deep learning
models to carry out entity matching, nodes classifications, link prediction, knowledge graph completion [29–31].

7. Conclusion

The purpose of this research is to introduce a benchmark dataset with KG generation for I4.0 production lines,
and specifically leverage the advantages of ontologies and semantic annotation of the data to showcase how I4.0
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industry can benefit from KGs and semantic datasets. We identified that the current research work has been limited
to two use case possibilities, (1) using synthetic data and (2) an Industry-based use case that comes with private
company data. private company data is made accessible only to people associated with the enterprise. Moreover,
the earlier use case faces an issue of reproducibility and FAIR principles. This work tries to bridge the gap between
academic researchers and industry by providing the former (first case) access to data that is not easily and publicly
available. To address this limitation, a dataset is designed by acquiring realistic data from a football production line.
An automated solution is developed which maps the dataset attributes with RGOM terms, i.e., classes and relations
in the form of I4.0 KGs. The results of the competency questions on the I4.0 KG illustrate the adaptability of the
RGOM in a production line. The adaptability of RGOM demonstrates the usefulness of the dataset, Hence, it can be
extended to similar production line such as Volleyball and Rugby ball.

Further studies need to be carried out in order to validate the dataset on other ontological models. Further research
should be undertaken to apply KG embedding and diffusion techniques to have a complete I4.0 KG.
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