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Abstract.

Property graphs (PG) and RDF graphs are two popular database graph models, but they are not interoperable: data modeled in

PG cannot be directly integrated with other data modeled in RDF. This lack of interoperability also impedes the use of the tools
of one model when data are modeled in the other.
In this paper, we propose PRSC, a configurable conversion to transform a PG into an RDF graph. This conversion relies on PG
schemas and user-defined mappings called PRSC contexts. We also formally prove that a subset of PRSC contexts, called well-
behaved contexts, can be used to reverse back to the original PG, and provide the related algorithm. Algorithms for conversion
and reversion are available as open-source implementations.

Keywords: Property Graph, RDF graph, Conversion, Schema

1. Introduction

Graphs are a popular database model. In this model, knowledge is represented through objects and links between
these objects.

Today, there are two mainly used models of graphs: Property Graphs and RDF.

Property Graphs (PGs) are a family of implementations, in which data are represented with nodes and edges, and
labels and properties (key-value pairs) can be attached to these nodes and edges. Property Graphs are not a uniform
model: some implementations like Neo4j ! only allow exactly one label for each edge. Most PG engines offer easy to
use graph query languages like Cypher [1] and Gremlin [2] that rely on graph traversal. While no uniform standard
has been settled yet, the Property Graph needs a Schema Working Group * is working towards defining a schema
language for PG, and a unified formalization of the PG model. In the rest of this paper, following other authors [3],
the variability of implementations is neglected and PGs are considered as a uniform model.

Another popular graph model is the Resource Description Framework (RDF) model [4]. In this model, data
are represented with triples that represent links between resources. The resources and the links between them are
identified through Internationalized Resource Identifiers (IRI). This data model is a W3C standard, and has been

*Corresponding author. E-mail: julian.bruyat @liris.cnrs.fr.
Thttps://neodj.com/
Zhttps://www.w3.org/Data/events/data-ws-2019/assets/position/Juan%20Sequeda.txt
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2 J. Bruyat et al. / PRSC

studied through a large quantity of works, like RDFS [5] and OWL [6] for inference, or SHACL [7] for data
validation. This model has been extended by RDF-star [8] that helps writing properties on triple terms in a more
concise manner, but does not provide exactly the same modeling capabilities as PGs [9].

While PG and RDF are both based on the idea of using graph data, the choice of one removes the ability to use
the tools developed for the other. In [10], the maintainers of Amazon Neptune, a graph database service that can
support both models independently, report that their users choose the solution that best suits their current use case,
then struggle because they are stuck with the tools of this model even if the tools of the other model would better
answer the new business problem they have. Generally speaking, this diversity of graph models, and more precisely
the lack of interoperability, hinders graph database adoption.

The foreseen scenario is the conversion from PG to RDF without information loss, so that users can modify
their data and convert them back to the original PG model. We herein propose the reversible conversion part of
this scenario. In a previous paper [11], we introduced the motivations behind PREC (PG to RDF Experimental
Converter), a user-configured mapping from Property Graphs (PG) to RDF graphs and proposed a mapping language
to let the user describe how to convert the node labels, the edges and the properties of the original PG to an RDF
graph. By converting the data stored in PGs into RDF, users are then able to use all the tools available for RDF.

In this paper, we introduce a new mapping language, named PRSC?, driven by a schema and a description of how
to convert the elements of the types in the schema to RDF. This mapping language is formally defined, and conditions
under which the conversion produced by PRSC is reversible are also defined. The PRSC engine is available under
the MIT licence* and can connect both to a Cypher endpoint and Gremlin endpoint.

The rest of this paper is organized as follows. Section 2 gives an overview on PRSC to understand its principles.
Section 3 gives generic formal definitions of PGs and RDF graphs. Section 4 gives a formal definition of a PRSC
conversion, which is essentially a formal definition of Section 2. Section 5 studies reversibility, and proves that some
contexts can convert PG to RDF graph without information loss. Section 6 discusses the existing works to make
easier interoperability between PGs and RDF graphs relatively to PRSC. Section 7 discusses the proposed solution
and describes some future works.

2. PRSC in practice

The Property Graph exposed on Figure 1 describes the relationship between Tintin and Snowy. It is composed
of two nodes. The first one holds the label Person and two properties: the first property has “name” as its key and
“Tintin” as its value, the second has “job” as its key and “Reporter” as its value, or more simply its name is “Tintin”
and its job is “Reporter”. The other node only has one property: the name “Snowy”. These two nodes are connected
by an edge that holds one label, TravelsWith, and a property that tells that it is “since” “1978”.

A similar example represented in RDF-star is exposed on Listing 1. Most information that was in the PG is repre-
sented by the triples in lines 1-4 and 6. The information about since when Tintin travels with Snowy is represented
through an RDF-star triple.

Using the user-defined mapping, PRSC is able to convert the PG in Figure 1 into the RDF-star graph in Listing 1,
and more generally any Property Graph with the same schema into the corresponding RDF graph. The mapping the
user must provide to the PRSC engine in Turtle-star format [12], and is exposed on Listing 2. Rules are split in two
parts:

— The target part that describes which elements of the Property Graph are targeted. The target is described
depending on three criteria: (1) whether the element must be an edge or a node, (2) the labels and (3) the
properties of the element.

— The production part that describes the triples to produce with a list of template triples. Values in the pvar
namespace are mapped to the blank node in the resulting RDF graph. The literals that use valueOf as their
datatype are converted to the property values in the RDF graph.

The mapping, named PRSC context, exposed on Listing 2 reads as follows:

3PG to RDF: Schema-driven Converter, pronounced “presque”
“https://github.com/BruJu/PREC, https:/npmjs.com/package/prec
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P :TravelsWith

rerson since: 1978
name: "Tintin" - » name: "Snowy"
job: "Reporter”

Fig. 1. A small PG about Tintin that serves as a running example in this paper

Listing 1 An example of an RDF-star graph in Turtle Format
:nl rdf:type ex:Person
:nl foaf:name "Tintin"
:nl ex:profession "Reporter"
:nl ex:isTeammateOf _:n2
<< _:nl ex:isTeammateOf _:n2 >> ex:since 1978
:n2 foaf:name "Snowy"

Listing 2 The PRSC context that maps the PG running example to the RDF graph running example

:PersonRule

# Target: all nodes with label "Person" and two properties "name" and "job"
a prec:PRSCNodeRule ;
prec:label "Person" ;
prec:propertyKey "name", "job" ;
# Production part of the rule: a template graph
prec:produces
<< pvar:self rdf:type ex:Person >> ,
<< pvar:self foaf:name "name"""prec:valueOf >> ,
<< pvar:self ex:profession "job"""prec:valueOf >>

:NamedRule

# Target: all nodes with no label and one property "name"
a prec:PRSCNodeRule ;
prec:propertyKey "name" ;
# Production part of the rule
prec:produces
<< pvar:self foaf:name "name"""prec:valueOf >>

:TravelsWithRule

# Target: all edges with the label "TravelsWith" and one property "since"

a prec:PRSCEdgeRule ;

prec:label "TravelsWith" ;

prec:propertyKey "since" ;
# Production part of the rule

prec:produces

<< pvar:source ex:isTeammateOf pvar:destination >> ;
<< << pvar:source ex:isTeammateOf pvar:destination >> >> ex:since "since"""prec:valueOf.

— The first rule is named _: PersonRule (line 1)

# The rule is used for all PG nodes (line 3) that only have the node label ‘“Person” (line 4) and have the
properties “name” and “job” (line 5). In our example, the node corresponding to Tintin matches this
description, but Snowy does not as it misses the Person label and the job property.

* It will produce three triples:

* One triple with a blank node as its subject, rdf:type as its predicate and ex:Person as its
object (line 8). Each node from the Property Graph is identified by a distinct blank node. In this
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example, _:nl rdf:type ex:Person will be produced.

* Another triple with the same blank node as its subject, foaf : name as its predicate and a literal
that matches the value of the name property in the PG (line 9). The PRSC engine converts all literals
whose datatype is prec:valueOf into the value of the corresponding property in the PG. In this
example, _:nl rdf:type “Tintin” will be produced.

* One last triple is produced with the same blank node as its subject, ex : profession as its pred-
icate and a literal corresponding to the value of the property job (line 10). In this example, _:n1l
ex:profession “Reporter” will be produced.

— The second rule is named _ : NamedRule (line 12).

*k

%

It is applied to nodes (line 14) that have no labels and only one property: name (line 15). This is the case
of the PG node used to describe Snowy but not the one that describes Tintin as it has an extra label and
an extra property.

These PG nodes will be converted into one triple with a blank node that identifies the PG node as its
subject, foaf :name as its predicate and the literal that correspond to the value of the name property
as its object (line 18). In this example, the triple _:n2 foaf:name “Snowy” is produced.

— The third rule is named _: TravelsWithRule (line 20):

*

It is used to convert edges (line 22) whose only label is “TravelsWith” (line 23) and with one and only
one property named “since” (line 24).

These edges are converted by producing a triple with the identifier of the source PG node as the subject,
ex:isTeammateOf as the predicate and the identifier of the destination PG node as the object (line
27). In this example, the triple _:nl ex:isTeammateOf _ :n2 is produced.

A triple with a quoted triple is created by the rule on line 28: the triple that was created by the line
27 in used on the subject position of the triples created by this triple, ex: since is used as the pred-
icate and the value of the “since” property is used as the object. In our example, the triple « _:nl
ex:isTeammateOf _:n2 » ex:since 1978 is produced.

Note that in this example, pvar: self is not used in lines 27 and 28. If it was used, it would be mapped
to a blank node that identifies the edge. The consequence of not using it is a smaller RDF graph, at the
cost of if several PG edges with the “TravelsWith” label were present between the two same nodes, the
RDF representation of these edges would have been merge.

Note that this mechanism of using quoted triples to describe templates in a pure Turtle-star file was already
presented in our previous work [11]: compared to R2RML [13], it lets the user describe the triples to produce with a
syntax closer to the triples that will actually be produced, but this process makes harder to express templated terms,
for example a named node <http://example.org/person/{name} >, that users may want to use in subject
position in which the { name} part is substituted with the value of the name property.

3. General definitions

This section introduce some standard definitions, mostly inspired from previous works.

3.1. Notations and conventions

Let Str be the set of all strings. Strings are noted between quotes. For example, “node”, “edge” and “Snowy”

are strings.

Definition 1 (Domain and image of a function). For all partial functions f : D — A, Dom and Img are defined as

follows:

- Dom(f) = {x| 3y € A, such that f(x) =y}
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- Img(f) = {y | 3x € D, such that f(x) = y}.
Example 1. For the partial function inverse : R — R, with inverse(x) = 1/x, Dom(inverse) = Img(inverse) =
R — {0}.
Let E be a set, we recall that 2€ denotes the set of all parts of E.

3.2. Compatible functions

For all functions f, we recall that they can be seen as sets: f = {(x, f(x)) | x € Dom(f)}. For all sets S of
2-uples, S can be seen as a function iff (if and only if) V(x, y1,y2), (x,y1) €S A (x,y2) €S = y1 = yo.

Example 2. Consider the three functions fi, fa, f3 exposed on Table 1.

Table 1

Some functions defined both with the usual function notation and with a set notation

Function notation Set notation
0 ifx=0
i) = {1 o fi = {(0.0).(1,1)}
66 ifx=-2
fo(x) =433 ifx=-1 fo={(-2,66),(-1,33),(0,0)}
0 ifx=20
i _J10 ifx=0 -
f3(x) = { 1 a1 f3=1{(0,10),(1,1)}

As f1, f2 and f3 can be defined with a set, it is possible to use the usual set operations.
The set f1 U fo = {(—2,66),(—1,33),(0,0), (1,1)} is a function: the first element of all tuples has a different
value. Using a function notation, it may be written as:

66 ifx=-2  [fa(—2)=66]
)33 ifx=-1 [f(-1)=33
(fl Uf2)<x) Yo ifx=0 [f(0) = f2(0) =0
1 ifx=1 [fi(1) =1]

On the opposite, f; U f3 = {(0,0), (0,10),(1,1)} is not a function. Both (0,0) and (0, 10) are members of the
set f1 U f3, (fi U f3)(0) would be equal to both f;(0) = 0 and f3(0) = 10 which are different values.

Remark 1. Instead of using the notation {(xq, f(x0)), (x1, f(x1)), ... }, the notation {xg — f(x0), x1 — f(x1),...}
is sometimes used to clarify the fact that a set is a function. For example, f3 may be noted as f3 = {0 — 10,1 — 1}.

Definition 2 (Functions compatibility). Two functions f and g are compatible iff f U g is a function, i.e.
V(x.y7g)s (X.77) € f A (x.yg) € 8 = yr = Y.

Remark 2. Two functions f and g are compatible iff Vx € Dom(f) N Dom(g), f(x) = g(x).
3.3. Property Graph

Definition 3 (Property Graph). Following the definition of Angles in [3], a property graph PG is defined as the tuple
(Npg, Epg, srcpg, destpg, labelspg, propertiespg), where:

— Npg and Epg are finite sets with Npg N Epg = 0. Npg and Epg are respectively the list of nodes and the list
of edges of the property graph PG.
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6 J. Bruyat et al. / PRSC

— srcpe © Epg — Npg and destpg : Epg — Npg are two total functions. These two functions map each edge to
its starting and destination nodes.

— labelspg : Npg UEpg — 257 is a total function. This function maps the nodes and edges to their sets of labels.

— propertiespg : (Npg U Epg) X Str — V is a partial function. This function describes the properties of the
elements. V is the set of all possible property values.

The set of all property graphs is denoted PGs.

In this paper, property graph nodes and edges are grouped under the term element.
When notations are not ambiguous, we allow ourselves to omit the pg part. When the name of the graph is too
long, the notation N(PG) is used instead of Npg.

Example 3 (Running example of a Property Graph). The PG exposed on Figure 1 can formally be defined as 7T
with

— Nrr = {n1,n2}  Err = {e1}

- srerr = {e1 — ny };destrr = {e1 — na}

— labelstr = {ny — {“Person”} ;ny — (0;e1 — {“TravelsWith’}}
. (n1, “name”) — “Tintin”; (ny, “job”) — “Reporter”

= propertiestr = (na, “name”) — “Snowy”; (eq, “since”) — 1978 }

Definition 4 (The empty PG). The empty PG, which is the PG that contains no nodes and no edges, is formalized

as follows: PGy with Npg, = Epg, = 0, srcpg, = destpg, = labelspg, = 0 — 0 and propertiespg, : O x § — 0.

3.3.1. Renaming Property Graphs and isomorphism
The chosen formal definition of the running example is not the only one that is possible: for example an arbitrary
element named a could have been used in place of n; as the first listed node identifier in example 3.

Definition 5 (Renaming function). For all sets N1, No, E1, E5 where Ny N E; = () and Ny N E5 = (), a renaming is
a bijective function ¢ : Ny U E; — No U E5 where Vi € Ny, ¢(n) € Ny AVe € Eq,¢(e) € Es.

Example 4. An example of a renaming function ¢7 from Nyr = {ny,n2}UErr = {e1} to Nrpv = {a, b} UEry =
{c}is ¢rr = {n1 — a;na — by ey — c}.

Definition 6 (Property Graph renaming). Let G be a property graph and ¢ be a renaming function. The PG renaming
function is defined as follows: rename(¢, G) = H with

- Ny = {¢(n) | 3x € Ng}

- Ey={¢(e) | Je € Eg}

- srey e € Ey— ¢(sreg(91(e)))

— desty : e € Ey — ¢(destg(¢1(e)))

— labelsy : m € Ny U Egy +— labelsg (¢~ (m))

— propertiesy : (m, prop) € (Ny U Ey) x Str — propertiesg(¢~1(m), prop)

Example 5. Let us consider 77, the PG about Tintin defined in example 3, and ¢ the renaming function defined
in the example 4.
The PG produced by rename(¢rr, TT) = TT' is

Ll NTT/ = {a, b} ;ETT/ = {C}

- srerr = {c > a} ;destrr = {c — b}

— labelsyr: = {a — {“Person” } ;b — 0;c — {“TravelsWith” }}

(a, “name”) — “Tintin”; (a, “job") — “Reporter”}

— propertiesyr = { (b, “name”) — “Snowy”; (C, “since”) — 1978
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Table 2

List of prefixes used in this paper

Prefix IRI

rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
xsd http://www.w3.0rg/2001/XMLSchema#
ex http://example.org/

prec http://bruy.at/prec#

pvar http://bruy.at/prec-var#

Definition 7 (Isomorphic property graph). V(G, H) € PGs?, G and H are isomorphic iff 3¢, rename(¢,G) = H

Note that both TT and TT’ match the graphical representation given in Figure 1. An informal way to define the
isomorphism between two PGs is to check if they have the same graphical representation.

Existing works [1, 14] on query languages for PGs focus on extracting the properties of some nodes and edges,
and never look for the exact identity of the elements. It is therefore possible to affirm that the exact identity is not
important, and that if two PGs are isomorphic, they are the same PG for practical matter.

3.4. RDF-star definition

Definition 8 (Atomic RDF terms). Let I be the infinite set of IRIs, L = Str x I be the set of literals and B be the
infinite set of blank nodes. The sets /, L and B are disjoint.

IRIs, literals and blank nodes are grouped under the name “Atomic RDF terms".

Notation: In the examples, the IRIs, the elements of I, will be either noted as full IRIs between brackets, e.g.
<http://example.org/Tintin> or by using prefixes to shorten the IRl e.g. ex: Tintin. The list of pre-
fixes used in this paper is described on Table 2.

Literals, the elements of L, can be noted either by using the usual tuple notation, e.g. ("1978”,xsd:integer)
or with the classical compact notation “1978”*sd:inteser,

Finally, the blank nodes, the elements of B, are denoted by blank node labels prefixed with the two symbols “_:
e.g. _tedge, :2021 or _:node3b.

Definition 9 (RDF(-star) triples and graphs). The set of all RDF triples’ is denoted RdfTriples and is defined as
follows:

— Vsubject € I U B,Vpredicate € I,Yobject € I UBU L, (subject, predicate, object) € RdfTriples.

— Vtsubject € RdfTriples,Vtobject € RdfTriples, and for all sub ject, predicate and ob ject defined as above,
(tsub ject, predicate, ob ject), (subject, predicate, tob ject) and (tsub ject, predicate, tob ject) are members of
RdfTriples.

A subset of RdfTriples is an RDF graph.
The atomic RDF terms defined in Definition 8 and RDF triples are terms. A triple used in another triple, in subject
or object position, is a quoted triple.

Example 6.

1. The triple (ex:tintin,rdf:type,ex:Person) is an element of RdfTriples. Tts Turtle representation is
ex:tintin rdf:type ex:Person

2. The RDF graph exposed on Listing 1 is composed of 5 triples written in Turtle format. In our formalism, the
second triple, _:tintin foaf:name "Tintin",is (_:tintin, foaf:name, “Tintin”"é'd:"”i”g).

SFor the sake of readability, although RDF-star is not yet part of the official RDF recommendation [4], we conflate RDF-star and RDF in this
paper. When we mention an RDF triple or an RDF graph, we allow them to contain quoted triples.
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8 J. Bruyat et al. / PRSC

3. (ex:tintin, ex:travelsWith, ex:snowy) is an element of RdfTriples.
((ex:tintin, ex:travelsWith, ex:snowy), ex:since, “1978”*s¢inieser) i an element of RdfTriples that has a
quoted triple in subject position.

Definition 10 (Term ownership). The € operator is extended to triples to check if a term is part of a triple.

term = s
V' (s € RdfTriples N term € s)
V term = p
\% term = o
V (o € RdfTriples N\ term € 0)

Vterm € IUBULURdfTriples,¥ (s, p,0) € RdfTriples,term € (s, p,0) <

Example 7 (Term ownership examples).

rdf:type € (ex:tintin, rdf:type, ex:Person).
ex:snowy ¢ (ex:tintin, rdf:type, ex:Person).
_n € (_n,rdf:type, ex:Person)

_e & (_:n,rdf:type, ex:Person)
xsd:string € (xsd:string, ex:p, ex:0)
xsd:string & (ex:tintin, ex:name, “Tintin
— ex:tintin € ((ex:tintin, ex:travelsWith, ex:snowy), ex:since, 1978y wsdiinteger)

» xsd: string)

Definition 11 (List of blank nodes used in a graph). VG C RdfTriples, B; is the list of blank nodes in the RDF
graph G i.e. B = {bn € B |3t € G,bn € t}.

Example 8. Let GTT be the RDF graph exposed on Listing 1. Bgrr = {_:tintin, _:snowy}

4. PRSC: mapping PGs to RDF graphs
PRSC enables the user to convert any Property Graph to an RDF graph by using user-defined templates.
4.1. Property graphs with blank nodes

Let us note that, in the respective definitions of PGs and RDF, the sets N and E of nodes and edges (in any PG)
and the global set B of blank nodes (in RDF), are very loosely characterized. The only constraints are that N and
E are disjoint and finite, and that B is disjoint from the sets of IRIs and literals. Theoretically, nothing prevents a
property graph to take its nodes and edges in the set B, in other words, to have N C B and E C B.

Furthermore, for any PG G, we can build an isomorphic PG H such that Ny U Eyy C B. As discussed in Sec-
tion 3.3.1, being isomorphic to G, H is indistinguishable from G for any practical purpose, because the exact identity
of nodes and edges is not important: only the structure and the values of the PG is. Therefore without any loss of
generality, we can restrict our work to PGs whose nodes and edges are elements of B.

Definition 12 (Blank Node Property Graph). Let BPG s be the set of property graphs with blank nodes only (BPG),
i.e. BPGs = {G € PGs | (Ng U Eg) C B}.

The PG to RDF graph conversion function that will be defined later is only defined for BPGs. Building a BPG
isomorphic to the one that we want to actually convert, i.e. assigning to each node and edge a blank node and
sticking to this choice for the duration of the conversion process, can be seen as the first step of the conversion.
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Example 9. By defining the renaming function ¢prr = {n1 — _:nl;ny — _:n2;e; — _:el}, it is possible to build
the BPG BT T = rename(¢prr, TT):

- Ngrr = {_nl, _n2}; Egrr = {_:el}
— sreprr = {_iel — _:nl};destrr = {_:el — _:n2}
— labelsprr = {_:nl — {“Person” }; :n2 — 0; _:el — {“TravelsWith” }}
roperti _ J(znl, “name”) — “Tintin”; (_:nl, “job”) — “Reporter”
properfiesprr = (_:n2, “name”) — “Snowy”; (_:el, “since”) — 1978
By construction, BT T is isomorphic to TT, and as Ngy7 U Egrr C B, BTT € BPGs.
4.2. Type of a PG element and PG schemas

We define the type of a PG element and PG schemas as follows.
Let PG be a PG.

Definition 13 (Property keys of an element). keyspg is the function that maps an element to the list of property keys
for which it has a value, i.e. keyspg : Npg U Epg — 25", with
Vm € (Npg U Epg), keyspg(m) = {key | propertiespg(m, key) is defined}.

Definition 14 (Type of a PG element). A type is a triple € Types = ({“node”, “edge”} x 25" x 25'),
The type of an element m € Npg U Epg is

“node” if m € Npg
“edge” ifm € Epg

peofsatm) = ({ b tabetspo(m) keysram)

A set of PG types is named a schema.
The functions kind, labels and keys are defined for types such that Viype = (u,l,k) € Types,kind(type) =
u, labels(type) = I, keys(type) = k.

Example 10. Table 3 shows the types of the PG elements in the running example.

Table 3
The types of the elements in the PG BTT
m typeo fprr(m)
_nl  (“node”,{“Person”}, {"name”,” job”})
_in2 (“node”, 0, { “name”})

_cel (“edge” ,{“TravelsWith” }, { “since” })

Remark 3. If two PGs F and G are isomorphic, their elements share the same type.
Indeed, by definition, 3¢ a renaming function from the elements of F' to the elements of G, and Vm € Np U

Ep, typeo fr(m) = typeofc(¢(m)).
4.3. Template triples

PRSC resorts to a mechanism of templating: to produce an RDF graph from a PG, we use tuples of three elements,
named template triples, that will be mapped to proper RDF triples.
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10 J. Bruyat et al. / PRSC

Definition 15 (Placeholders). There are four distinct elements, not included in either of the previously defined sets,
named valueOf, ?self, ?source and ?destination®.

Let pvars = {?self, ?source, ?destination}. pvars elements serve as placeholders that will be replaced by the
blank nodes that represent the nodes and edges in the PG.

Let P = {(l,valueOf) | I € Str}. Elements of P can be noted with the same syntax as literals, for example
“name” <01 is the pair (“name”, valueOf). Each element of P serves as a placeholder to be replaced with an RDF
literal that represents the value of a property in the PG.

Definition 16 (Template triples). A template triple is a member of Templates and is defined as follows:

— Vsubject € IUpvars,Vpredicate € I,Yob ject € IUpvarsULUB, (sub ject, predicate, ob ject) € Templates.

— Vtsubject € Templates,Vtobject € Templates, and for all sub ject, predicate and ob ject defined as above,
(tsub ject, predicate, ob ject), (sub ject, predicate, tob ject) and (tsub ject, predicate, tob ject) are members of
Templates.

Note that unlike Rd fTriples, the elements of Templates can not contain blank nodes but can contain placehold-
ers: pvars members can be used in subject (first) and/or object (third) position as they will be mapped later to blank
nodes, and members of P are allowed in object position as they will be mapped later to literals.

Any subset of Templates is named a template graph. The PRSC engine will use template graphs to produce
RDF graphs.

Example 11. The triple (ex:tintin, rdf:type, ex:Person) is both an element of RdfTriples and an element of
Templates.

The triples (?self, rdf:type, ex:Person) and (ex:tintin, ex:name, “name are members of Templates
but not of Rd fTriples because the first one uses an element of ?self and the second uses an element of P.

) precValueOf)

Definition 17 (Placeholders and template triple ownership). The term ownership from Definition 10 is extended to
placeholders and template triples:

Vterm € I UBU LU RdfTriples U Templates,N(s, p,o0) € RdfTriples U Templates,

term = s

(s € RdfTriples U Templates N term € s)
term = p
term = o

(o € RdfTriples U Templates A term € o)

term € (s, p,0) <

<< <L

4.4. PRSC context

In this paper, the notion of PRSC context is the keystone to let the user drive the conversion from a PG to an
RDF graph. It maps PG types to template graphs. Hence, an algorithm can retrieve in the context the template graph
associated to each type of a PG and replace the placeholders of this template graph with data extracted from the PG.

Definition 18 (PRSC Context). A PRSC context ctx : Types — 27¢"Plies is a partial function that maps types to
template graphs. All template graphs must be valid, i.e.
Vtype € Dom(ctx):

— V(key,valueOf) € P, (3t € ctx(type) | (key,valueOf) € t) = key € keys(type).
— (kind(type) = “node”) = [Pt € ctx(type) | 7source € tV ?destination € t).

SIn practice, our implementation of this paper maps valueOf to the IRI prec: valueOf and all terms prefixed with ? to the pvar namespace.
Examples given in Turtle reflect the implementation instead of fully fitting the theoretical definitions.

O O d oy U W NP

[ T N N N N N N N O O O O O R O O O N N N N e e R N T
H O W I o U W NP O W W Jd oUW N R O WV o Jo U W NP O VW W Jdo U s W N PO



@ J oy U W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

J. Bruyat et al. / PRSC 11

Intuitively, we use the placeholder literals of type valueO f as placeholders for property values, so the used prop-
erty keys must be in the type. ?source and ?destination are used as placeholders for the source and the destination
nodes of an edge, so a node template should not use these values.

The set of all czx functions is noted Ctx.

Definition 19 (Complete PRSC contexts for a given PG). A PRSC context is said complete for a property graph
G € BPGs iff there is a template graph defined for each type used in G. The set of all complete contexts for a PG G
is noted Ctxg = {ctx € Ctx | Vm € Ng U Eg, typeofc(m) € Dom(ctx)}.

Example 12. Table 4 exposes an example of a complete czx function for our running example.

Table 4

An example of a complete context for the Tintin Property Graph.

type ctx(type)
(?self, rdf:type, ex:Person)
(“node” {“Person”} {“name” « .Ob”}) ?sel . « » valueOf
, s , 6 (?self, foaf:name, “name )
(?self, ex:profession, © job” 4eOr)
(“node”, 0, { “name”}) (?self, foaf:name, “name” e0r)
(“edge”, { “TravelsWith” } , { “since” }) (?source, ex:isTeammateOf, Tdestination)

Example 13. The example exposed in Table 5 is not complete for the PG BT T as its domain lacks the type of _:n2
and the type of _:el.

Table 5

An incomplete context for the Tintin PG

type ctx(type)
(?self, rdf:type, ex:Person)
(“node”, {“Person”} , { “name”, “job”})  (?self, foaf:name, “name” *e0r)

(?self, ex:profession,  job” 4eOr)

Example 14. The example exposed in Table 6 is not a context because “surname”, which is used in the template

YN

graph mapped to the first listed type (“node”, { “Person”} ,{“name”, “job” }), is not a value in { “name”, “job” }.

Table 6
A function that is not a context

type ctx(type)
(“node”, {“Person”} , { “name”, “job”})  (?self, ex: familyName, “surname” 01
(“node”, 0, { “name” }) (?self, foaf:name, “name” @e0r)

(“edge” , { “TravelsWith” } , { “since” }) (?source, ex:isTeammateOf, ?destination)

4.5. Application of a PRSC context on a PG

We now define formally the conversion operated by PRSC. A PRSC conversion of a PG depends on a chosen
context ctx € Ctx.

Definition 20 (Property value conversion). For the conversion of property values to literals, we consider that we
have a fixed total injective function toLiteral : V — L, common for all PGs and contexts. We suppose that toLiteral
is reversible, i.e. we are able to compute toLiteral™'.
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Definition 21 (The prsc function). The operation that produces an RDF graph from the application of a PRSC
context ctx € Ctx,, on a property graph pg € BPGs is noted prsc(pg, ctx). The result of the prsc function is the
union of the RDF graph built by converting all elements of the PG, into RDF. The conversion of a single element is
materialized by the build function.

Vitps C Templates,Npg € BPGs,Nm € N,g UE ., build(tps, pg,m) = {Bpem(tp) | tp € tps} with B, ,, defined
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as follows:

Templates — RdfTriples

JruL —L
Brem 1 | — 1
pvars — B
(Bpgm (%) Bpem (Xp), Bpem(X0))  if x = (x5, X, Xo) € Templates
X ifxeLUI
m if x = 7self
Bpam(X) = ¢ src(m) if x = 7source N\m € E g,
dest(m) if x = ?destination N\ m € Ep,
toLiteral(properties(m, prey))  if X = (Prey, valueOf) € P
undefined otherwise

As said previously, the result of prsc is the union of the graphs produced by build, i.e.

prsc(pg, ctx) = U build(ctx(typeof(m)), pg, m)

meEN, UE),,

Example 15. Table 7 exposes the resolution of prsc on our running example.

Table 7
Application of a PRSC context on the running example
b typeof(b) ctx(typeof (b)) build(ctx(typeof (b)), PG, b)
(?self, rdf:type, ex:Person) (_:nl, rdf:type, ex:Person)
(“node” ,{“Person”} , lwO .
_mnl N 5 Sjob"}) (?self, foaf:name, “name” "¢ f) (L:nl, foaf:name, “Tintin”)
name” , “jo
J (?self, ex:profession,  job” @ueOr) (L:nl, ex:profession, “Reporter”)
_n2 (“node”, 0, { “name” }) (?self, foaf:name, “name” *10r) (_:n2, foaf:name, “Snowy”)
“ d 77’ (IT l W'[h” s
_cel (fedge {{;‘ ) mff}; i} (?source, ex:isT eammateOf, ?destination) (_:nl, ex:isTeammateOf, _:n2)
since

The resolution of ns is as follows:

build(ctx(typeof(_:n2)), TT, _ny)
=build(ctx((“node” , 0, { “name” })), TT, _:ns)

=build({ (pvar:self, foaf:name, “name” ’”ec:"al”eOf)} ,TT, _:ns)

= {(_:ng, foaf:name, toLiteral(propertiesrr(_:na, “name”)))}

={(_:n2, foaf:name, toLiteral(“Snowy”))}
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J. Bruyat et al. / PRSC 13

Algorithm 1: The prsc function
Input: pg € PG, ctx € Ctx
Output: An RDF graph

1 Main Function prsc(pg, ctx):
rdf «+ {}

2
3 forall element m € N, U E,, do
4

tps = ctx(typeo fpg(m))
/* build function */
5 built + {}
6 forall 7p € tps do
7 L built < built U {B(tp, pg,m)}
8 | rdf < rdf U built
9 | returnrdf
/* In the formal definition, pg and m are implicitly passed to 8 x/

10 Function §(z, pg, m):
11 if 1 € Templates then

12 (s,p,0) <t

13 return (3(s, pg,m),B(p, pg.m), (0, pg,m))
14 else if t € L then return ¢

15 else if # € I then return ¢

16 else if 7 € P then

17 (key, valueOf) < t

18 return properties,q(m, key)

19 else

20 assert(t € pvars)

21 switch ¢ do

22 case 7self do return m

23 case 7source do return src,,(m)

24 case ?destination do return dest ,,(m)

— { (_:n2, foaf:name, “S nowy” “sEs1ring) }

Algorithm 1 gives an algorithmic view of the prsc function.

5. PRSC reversibility

When PGs are converted into RDF graphs, an often desired property is to not have any information loss. To
determine whenever or not a conversion induces information loss is to check if the conversion is reversible, i.e. if
from the output, it is possible to compute back the input.

This section first shows that not all PRSC contexts are reversible. Then, properties are exhibited about PRSC
contexts, leading to a description of a subset of reversible PRSC contexts, i.e. contexts that we prove do not induce
information loss.

5.1. Reversibility in this paper

In this paper, we define the reversibility of a function f as the ability to find back x from f(x). This implies that:
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— The function f must be injective. Indeed, if two different values x and x’ can produce the same value y, it is
impossible to know if the value responsible for producing y was x or x'.

— The inverse function f~! must be computable in reasonable time. To illustrate this, a public-key encryption
function is supposed to be injective. It is theoretically possible, although prohibitively costly, to decipher
a given message by applying the encryption function on all possible outputs until the result is the original
encrypted message. This is not the kind of “reversibility” we are interested in.

We say that a context ctx is reversible if the function prsc(-, ctx) : pg — prsc(pg, ctx) is reversible.
More formally, when studying reversibility, we want to check if for a given ctx € Ctx, we are able to define a
tractable function prsc_,; such that Vpg € BPGs, [ctx € C 1Xpg = prscoy (prsc(pg. ctx)) = pgl.

Example 16 (A trivially non reversible context). Consider czxy € Ctx such that Viype € Types, ctxg(type) = (.
VG € BPGs, prsc(G, ctxp) = 0

As all PGs are mapped to the empty RDF graph, the use of the context ctxy makes the function prsc not injective,
and therefore not reversible.

As not all contexts are reversible, the next sections focus on characterizing some contexts that produce reversible
conversions.

5.2. Well-behaved contexts
5.2.1. Characterization function

To be able to reverse back to the original PG, we need a way to distinguish the triples that may have been produced
by a given member of Templates from the ones that cannot have been produced by it. For this purpose, this section

introduces the « function.

Definition 22 (Characterization function).

2TemplatesURdfTriples N 2RdfTriples

Templates U RdfTriples — 2R4/Triples

k= <{LUP —{L}
1 — 2!
BU pvars — {B}

Usriptec K(triple)  if x C RdfTriples U Templates (x is a graph or a template graph)
k(s) x k(p) x k(o) if x = (s,p,0) € RdfTriples U Templates

k(x) =< L ifxe LUP
{x} ifxel
B if x € BU pvars

Remark 4 (x on terms and triples is a super-set of the possible generated values). When comparing the definition of
the « function with the S functions defined in Section 4.5, it appears that:

— For elements in B, pvars, L and P, the image of « is equal to the corresponding image set of the 8 function.

— For elements in 7, the image of « is equal to a singleton containing that element; 8 maps any IRI to itself.

— If the given term is a triple, the image of « is the cross product of the application of the « function to the terms
that compose the RDF triple. As 8 on triples recursively applies itself to the three terms in the triple, we can
see that VB, Viriple, B(triple) € k(triple).
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J. Bruyat et al. / PRSC 15
Therefore, if x is a term or an RDF triple, for any 3 function, 3(x) € x(x).

Remark 5 (The result of build is a subset of the result of ). The build function, from which prsc is defined, uses
[ on each template triple. After § is applied, the union of the singletons containing each triple is computed. This is
similar to the definition of « on a set of triples.

From Remark 4, it can be deduced that if ¢ps is a set of template triples, Vpg, Vm, build(tps, pg,m) C k(tps).

Remark 6 (A template and its produced values share the same image through «). When using the « function, el-
ements in B and pvars both map to B, and elements in L and P both map to L. Elements in / are wrapped into a
singleton and both RdfTriples and Templates apply the function recursively on their members.

When using the 8 function:

— Elements in pvars map for all PG PG € BPGs to elements of Npg and Epg, which are both subsets of B.
— Elements in P map to elements in Img(toLiteral), which is a subset of L.

— Elements in L and / are mapped to themselves.

— Elements in Templates apply the 5 function recursively on their members.

Therefore, V¢ € Templates, x(B(r)) = «(t)

Example 17 (x applied to the running example from Figure 1).

k(?source) = B, k(_:nl) = B.

- k(foaf:name) = { foaf:name}.

k(“name”"e0r) = L, k(“Tintin”) = L.

k((?self, foafname, “name™ ¢Or)) = B x { foafname} x L.
k((_:nl, foaf:name, “Tintin”)) = B x {foaf:name} x L.

Note that

x k((_nl, foaf:name, “Tintin")) = k((?self, foaf:name, “name” " "¢Or))
% (_:nl, foaf:name, “Tintin") € k((?self, foaf:name, “name” *0r))

— k((?source, ex:isTeammateOf, 1destination)) = B x {ex:isTeammateOf} x B

Table 8 provides an example of applying k on the running example context of Table 4.

The idea behind the « function is to map all wildcards to a common value to be able to check whenever we are
able to distinguish the triples produced by different template triples with placeholders.

The « function maps all templates to a super-set ’ of all elements they can generate with the build function. All
RDF Triples are mapped by the « function to a subset of Rd fT riples they are member of.

Lemma 1. If a triple is generated by a template graph, then there exists a template triple with the same image
through «.
Vpg € PG,Ym € (N, U Ep,),Vtps C Templates,Vtd € build(tps, pg,m),3tp € tps | k(td) = «(tp)

Proof. (Sketch) This is a consequence of Remark 6 and the definition of build. O
Definition 23 (unique template triple). The unique predicate determines if inside a set of template triples, a given
template triple is the only one that can produce the triples it produces through build.

It is defined as follows with 7 € ts C Templates:

unique(t,ts) = (Vi' € ts,k(t) = k({') &t =1")

"Note that as k maps to a super set, it may catch false positives. For example, P can only generate elements in Img(toLiteral), but the k
function considers that all elements of L can be generated from P. For the scope of this paper, « catching false positives is considered acceptable,
as we are only trying to prove the reversibility of a given class of contexts, rather than to characterize the whole class of reversible contexts.
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Theorem 1 (Triples produced by a unique template triple). If a data triple and a unigue template triple have the
same value through «, then the data triple must have been produced by this template triple.
Vpg € BPGs,Yctx € Ctxf,,Ym € (Npg U Epy), let tps = ctx(typeof,e(m)), Vtd € build(tps, pg,m),Vtp € tps:

unique(tp, tps) A k(td) = k(tp) = td € build({tp}, pg,m)

Proof. We prove the theorem by contradiction.
Let us suppose that:

- (A) td € build(tps, pg,b)

— (B1) unique(tp, tps) = (V¢ € tps,k(tp) = k(') = tp = 1)
- (B2) k(td) = «(tp)

- (©) 1d & build({tp} . pg.b)

td € build(tps — {tp} ., pg.b) [(A) and (O)]
=3tdp € tps — {tp} ,k(tdp) = k(td) [Lemma 1]
=3tdp € tps — {tp},k(tdp) = k(tp) [(B2)]
=3tdp € tps — {tp} ,tdp = tp [(B1)]

=ip € tps — {1p}

As we reached a contradiction, it means that td € build({tp}, pg,b).
O

5.2.2. Well-behaved PRSC context
In this section, we define a subset of contexts that we call well-behaved PRSC contexts. In the next section, we
will prove that these contexts are reversible.

Definition 24. (Well-behaved contexts)
A PRSC context ctx is well-behaved if conforms to those 3 criteria:
Viype € Dom(ctx), let tps = ctx(type)

— Element provenance: all generated triples must contain the blank node that identifies the node or the edge it
comes from.

x YVt € tps, Tself €t

— signature template triple: tps contains at least one template triple, called its signature and noted sign..(type),
that will produce triples that no other template in ctx can produce. This will allow, for each blank node in the
produced RDF graph, to identify its type in the original PG.

x dsigne.(type) € tps,Vx € Dom(ctx), k(signq.(type)) C k(ctx(x)) = x = type

— No value loss: for all elements in the PG, we do not want to lose information stored in properties, and for
edges, the source and destination node. Each of these pieces of information must be present in an unambigu-
ously recognizable triple pattern.

x Vkey € keys(type), 3t € tps | unique(t,tps) A (key,valueOf) € t
* kind(type) = “edge” < 3t € tps | unique(t,tps) N Tsource € t
x kind(type) = “edge” < 3t € tps | unique(t,tps) A 1destination € t
The set of all well-behaved contexts is Ctxt, and the set of all well-behaved contexts for a PG G is C txg.
CtxT C Ctx and Ctxj; = Ctx* N Ctxg.
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Remark 7 (The template graphs used in well-behaved contexts are not empty). A well-behaved context cannot map
a type to an empty template graph: the signature template triple criterion ensures that every template graph contains
at least one template triple: Vips € Img(ctx), 3t € tps < ||tps|| > 1.

Remark 8 (Inside a well-behaved context, each template graph is different from all others). For any well-behaved
context ctx, two types cannot share the same template graph. Indeed, if two types share the same template graph,
i.e. typel, type2 with typel # type2 such that ctx(typel) = ctx(type2), it would contradict the signature template
triple criterion as it would lead to typel = type2.

Example 18. Table 8 studies the context used in our running example, exposed in Example 12.

Table 8
The running example context with the corresponding values through «
type ctx(type) k(ctx(rype))
(?self, rdf:type, ex:Person) (B x {rdf:type} x {ex:Person})
ml = (“node”, {“Person”} ,{ “name”, “job” }) (?self, foaf:name, “name” *1¢Or) U (B x {foaf:name} x L)
(?self, ex:profession, «job” ueOr) U (B x {ex:profession} X L)
m2 = (“node”, 0, { “name” }) (?self, foaf:name, “name” eOr) (B x {foaf:name} x L)

tel = (“edge”, { “TravelsWith” } ,{ “since” }) (?source, :isTeammateOf, Tdestination) (B x {:isTeammateOf} X B)

— The type tnl matches all criteria:

+ All triples contain 7self.

x At least one template triple is a signature: (?self, rdf:type, ex:Person) value through « is not contained
in the value through « of other types. It is also the case of (?self, ex:profession, “ job” <0/,

x The properties “name” and “job” have a unique template triple inside «(ctx(nl)).

— The type tn2 violates the signature template triple criterion as (?self, foaf:name, “name” *<0/)

template triple, is shared with the type 1,
— The type tel violates the element provenance criterion as ?self is missing. It also violates the no value loss
criterion as the term “since” "9/ is missing from any template triple.

, its only

For all these reasons, this context is not well-behaved.

Example 19 (A well-behaved context for the running example). Let czxrrwp be the function described in Table 9.
In this new context, an arbitrary ex:NamedEntity IRI is used to sign the PG nodes that have no labels and only a
name, and a classic RDF reification is used to model the PG edges.

Table 9
An example of a complete and well-behaved context for the Tintin Property Graph.
type ctx(type)
(?self, rdf:type, ex:Person)x
(“node”, { “Person” } , { “name”, “job” }) (?self, foaf:name, “name” *e0r)
(?self, ex:profession, job” 1e0f ) x

(?self, foaf:name, “name” 101

(“node”, 0, { “name”}) S
(?self, rdf:type, ex:NamedEntity)

(?self, rdf:sub ject, ?source)*
(?self, rdf:object, ?destination)*
(?self, rdf:predicate, ex:TravelsWith)x

(?self, ex:since, “since” V“’“"Of)*

(“edge” , { “TravelsWith” } , { “since” })

This context is well-behaved:

=W N
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— 7self appears in all triples,
— Template triples that are signature are marked with a x. At least one signature triple appears for each type,
— All property keys have a unique template triple.

Listing 3 is the RDF graph produced by the application of the context ctxyrwp on the PG BT T.

Listing 3 The RDF graph produced by the application of the well-behaved context ctzxr7wp on the running example PG BT'T.

From _:nl

:nl rdf:type ex:Person .

:nl foaf:name "Tintin" .

:nl ex:profession "Reporter" .

From _:n2

:n2 foaf:name "Snowy" .

:n2 rdf:type ex:NamedEntity .

From _:el

=] | | =

w1 |

_:el rdf:subject _:nl .
_:el rdf:object _:n2 .
_:el rdf:predicate _:TravelsWith .
_:el ex:since 1978 .

Remark 9 (Relationship between the empty PG and the empty RDF graph with well-behaved PRSC context). For
all well-behaved PRSC contexts, the only PG that can produce the empty RDF graph is the empty PG:

Vpg € PGs,ctx € Ctx;rg,

prsc(pg,ctx)|| = 0 & pg = PGy

Indeed, Remark 7 ensures that the template graphs are non empty. So any application of the build function with
any well-behaved context produces at least one RDF triple. As the produced RDF graph is the union of the graphs
produced by the use of build on each node and edge, the only way to have an empty result is to have no node nor
edge in the property graph.

5.3. Reversion algorithm

Algorithm 2 aims to convert an RDF graph, that was produced from a PG and a known well-behaved context,
into the original PG.

It is a 4 steps algorithm: 1) it first assumes that the PG elements are all blank nodes in the RDF graph, 2) it gives a
type to all elements with the FindTypeO f Elements function in Algorithm 3, 3) it assigns each triple to a single PG
element, corresponding to the production of the build function, with the AssociateT riplesWithElements function
in Algorithm 4, and 4) it looks for the source, destination and properties of all elements with the buildpg function
in Algorithm 5.

Further subsections prove that for all ctx € CtxT, for all PGs pg, applying these algorithms to rdf =
prsc(pg, ctx) actually produces pg, meaning that the reversion algorithm is a sound and complete implementation
of prsc! for well-behaved contexts.

Algorithm 2: The main algorithm to convert back an RDF graph into a PG by using a context

Input: rdf C RDFTriples, ctx € Ctx™
Output: An element of PG's or error
1 Main Function RDFToPG(rdf, ctx):
Elements < Byqf
typeof <+ FindTypeOfElements(rdf, ctx, Elements)
built from < AssociateTriplesWithElements(rdf, Elements, typeof)
return buildpg(ctx, Elements, typeof, built from)

AR W N
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Algorithm 3: Associate the elements of the future PG with their types

1
2
3

e ® N & v A

11
12

13
14
15
16

17

Input: rdf C RDFTriples,ctx € Ctx", Elements = B,qy
Output: A mapping between Elements and Dom(ctx) or error
Function FindTypeOfElements(rdf, ctx, Elements):
typeof «+ {}
forall element m € Elements do
/* Find possible types
candtypes,oges < {}
candtypes,gges < {}
forall rriple t € rdf | m € t do
forall rype € Dom(ctx) do
if k(signe.(type)) = k() then
if kind(type) = “node” then
‘ Candtypesnodes < Candtypesnodes U {type}
else

L candtypes,gges < candrypeseqqes U {type}

/+ Choose a type

‘ typeof(m) < type
else
L raise Error(No type found)

| return typeof

if (Altype € candtypes,oqes) or (type € candtypes,qges and candtypesnodes = () then

*/

*/

Algorithm 4: Associate each triple to the element that has produced it

1

e ® 9 S B W N

-
=)

Input: rdf C RDFTriples, Elements = By, typeof : Elements — Type
Output: A mapping Elements — 2R/Triples or error
Function AssociateTriplesWithElements(rdf, Elements, typeof):
builtfrom < {}
forall b € Elements do builtfrom(b) < {}
forall td € rdf do
bns < {term € td | term € B}
if (3!b € bns) or (3'b € bns | kind(typeof(b)) = “edge”) then
| builtfrom(b) < builtfrom(b) U {td}
else
L raise Error(No element provenance)

| return built from

5.3.1. Finding the elements of the PG
The first step of the algorithm assumes that the blank nodes of the RDF graph and the elements of the original
PG are the same.

Theorem 2 (Equality between the elements of a PG and the blank nodes of the RDF graph).

Vpg € PGs,ctx € Ctx;fg, rdf = prsc(pg, ctx),Npg U E g = Bray
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Algorithm 5: Produce a PG from the previous analysis of the elements and triples.

Input: ctx € Ctxt, Elements C B, typeof : Elements — Type, built from : Elements — 2R4fTriples
Output: A member of PGs or error
t Function buildpg(ctx, Elements, typeof, built from):
g is initialized to the empty PG
forall b € Elements do
labelsq(b) < labels(typeof (D))
if kind(typeof(b)) = “edge” then
srcg(b) <— extract(?source, built from(b), ctx(typeof(b)))
desty(b) < extract(?destination, built from(b), ctx(typeo f(D)))
N, <= Ng U {srcy(b),desty(b)}
E, <+ E, U {b}
else
| Ng < N, U{b}
forall key € keys(typeof (b)) do
L propertiesq(b, key) < extract(key, built from(b), ctx(typeof(b)))

e e N A R WD

—
-2

—-
w N

14 return g

15 Function extract(placeholder, tds, tps):
16 values < {}
17 forall tp € tps | unique(tp,tps) A placeholder € tp do

18 samekappa < {td € tds | k(td) = k(tp)}

19 if ||samekappal| # 1 then raise Error(Unique data triple is not unique)
20 td <— the only element in samekappa

21 answer < The term from rd that is at the same place as placeholder in tp
2 values < values U {answer}

23 if ||values|| # 1 then raise Error(Not exactly one value for a placeholder)
24 answer <— The only member of values

25 if placeholder € P then

2 | return roliteral™" (answer)

27 else

28 | return answer

Proof.

— The build function, described in Section 4.5, produces specific triples depending on the given template. The
template graphs cannot contain blank nodes: the blank node produced by prsc are forced to be the elements
of the converted BPG. So B4y C N, U Ej,.

— From Remark 7, we know that ctx(typeof,,(m)) contains at least one triple pattern 7. Combined with the
element provenance criterion from Definition 24, we know that ?self € t. When build is applied to tsign, a
triple that contains m is forced to appear, meaning that N,, U E,,; C Bgy.

O

Theorem 2 proves the correctness of the Elements < B,y step in Algorithm 2.

5.3.2. Finding the type related to each element
In this part of the proof, we show that the FindTypeO f Elements function from Algorithm 3 is correct, i.e. it is
able to find back the right type of all elements m in the original pg graph.
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Lemma 2. If a data triple shares the same value through « as one of the signature triples of a type, then the element
from which td was produced must be of this type:

Vtd € rdf,Vtype € Dom(ctx),Ym € Npg U E g,
[k(td) = k(signux(type)) A td € build(ctx(typeof(m)), pg,m)| = typeof(m) = type

Proof. Vtd € rdf,Vtype € Dom(ctx),Vm € Npg U Epq

Assuming (A) «(td) = k(sign..(type))

td € build(ctx(typeof(m)), pg, m)
= Jtp € ctx(typeof(m)) | k(td) = «(tp) [Lemma 1]
= Jtp € ctx(typeof(m)) | k(signex(type)) = k(tp) [A]

tp € ctx(typeof(m)) }

= Sip € anliypeos (m) | K(signan(vpe) = 1p) € ets(iypeos(m))) | /b = erxibpeeim)

[Signature template triple}

= typeof(m) = type in Definition 24

Definition 25. The candtypes,oqes and candtypes,qqes, introduced in Algorithm 3, can be formally defined as:

candtypesuoge(b) = {type € Dom(ctx) | kind(type) = “node”
A3td € rdf | b € td N k(signe(type)) = k(td)}

candtypes,qqe.(b) = {type € Dom(ctx) | kind(type) = “edge”
A3td € rdf | b € td A k(signey(type)) = k(td) }

They give the set of all node types and edge types, respectively, for which one of their signature triple could have
produced a triple with b.

Theorem 3 (candtypes correctness).

— Vb € N, candtypes,oqe(b) = {typeof,s(b)}
- Vb € E,g, candtypes,oa.(b) = () and candtypes,qqe(b) = {typeof,s(b)}.

Table 10 provides an overview of the cardinality of the different candtypes sets.

Table 10
A simple view of Theorem 3
||[candtypesnode (b)|| Hcandtypesedgg QI
b € Npg 1 any
b € Ep 0 1

Proof.

Vb € B4y, Vtype € candtypesoges(b)
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Per Definition 25, kind(type) = “node” A td € rdf | b € td N k(signe(type)) = k(td).
We are going to restrict the portion of the graph rd f where such triples td may be located:

td € rdf
& e U build(ctx(typeof(m)), pg, m) [Definition of rdf / prsc]
MENyUE
. k(td) = k(signe(type
= 1d € U build(ctx(type), pg, m) ( )and ieﬁlmta(zyp )

mEN,,,UE,, |typeo f (m)=type

= 1d e U build(ctx(type), pg, m) [kind(type) = “node”]

MEN,y|typeof(m)=type

— We see that all triples td contributing to candtype,,q.(b) must have been produced by the signature triple
template applied to a node from the PG. Also remember that 7d must contain b.

- If b € Ny, then the signature triple of ctx(typeof(b)) must have generated a td containing b (since it
must contain ?self, according to Definition 24), so typeof(b) € candtypen,q.(b). Furthermore, no other
node can produce a td containing b (?self is the only blank node placeholder in node type templates), so
candtype,oq.(b) can not contain any other type. Therefore candtypenoq.(b) = {typeof(b)}.

- If b € E,,, it is impossible to produce the blank node b from any node m € N, (again, ?self is the only blank
node placeholder in node type templates). No 7d containing b can be found, so candtypes,oqes(b) is empty.

The reasoning for candtypes,qq.s(b) when b is an edge is similar as the one for candtypes,qes(b) when b is a
node: only b can produce triples containing itself, and it will, because having at least one signature triple with ?self
is imposed by Definition 24. So candtype,q,. = {typeof(b)}.

Finally, a blank node b € N, can appear in any number of triples that share the same value through « with an
edge signature template triple: an edge signature template triple can contain ?source or ?destination, that can be
mapped to any node depending on the PG. So candtype,qq.(b) can contain an arbitrary number of types in that
case. O

Remark 10. Theorem 3 not only shows that the FindTypeO f Elements function in Algorithm 3 will always find the
right typeof,, function by using candtypes, i.e. that it is computable from rdf and ctx, but Table 10 also explicitly
shows that the Error(No type found) scenario cannot appear if the RDF graph was produced from a PG, making the
FindTypeO f Elements function both sound and complete.

5.3.3. Finding the generated triples for each PG element
Theorem 4. In Algorithm 4, Vm € N, U E,,, build(ctx(typeo f,,(m), pg, m) = built from|m].

Proof. As rdf = UmeNMUEm build(ctx(typeof(m)), pg,m), each triple td € rdf is a member of at least one
build(ctx(typeof(m)), pg,m). For all triples td € build(ctx(typeof(m)), pg,m), the element provenance criterion
ensures that m € td. So the first step that consists in listing the blank nodes in #d as the potential elements m in the
set bns is correct: the actual element m is in the set.

The Algorithm associates each triple 7d with a single built from[m]:

— If there is only one distinct blank node m, it can only be produced by build(ctx(typeof(m)), pg, m) so putting
it in built from[m] is correct.
— If there are multiple distinct blank nodes:
* Node template graphs only allow 7self. No m € N,, can produce td as it would require a template with

at least two distinct members of pvars value, which is impossible. So td cannot be generated from an m
whose kind is “node”.
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+ Edge template graphs allow all values of pvars. But only 7self can be mapped to edges, ?source and
?destination must be mapped to nodes. If there are multiple distinct blank nodes, at most one is an edge,
the one mapped from ?self which is m, and the other ones can only be nodes. As the template graph is
an edge template graph and m is the only edge in the triple, it is correct to put it in built from|m].

— If rdf was produced by prsc, it is impossible to reach the Error(No element provenance) case: at least one
blank node is in the triple, and if there are multiple blank nodes we showed that there must be only one edge
blank node.

As each triple in rdf is attributed in built from[m] to the right element m that produced it from
build(ctx(typeof,g(m)), pg,m), Ym € Npg U E 5, built from[m] = build(ctx(typeof,qs(m)), pg, m).
O

5.3.4. Building the PG element
Cutting Property Graphs As an RDF graph is defined as a set of RDF triples, any subset of that set, as well as the
union of two RDF graphs, are formally defined and are also RDF graphs. To prove the correctness of the reversion
algorithm, similar operators are needed for our formalization of PGs.

In this section, the projection of a Property Graph is defined by focusing only on a single element, node or edge.
The concept of unification of PGs, which is the inverse of the projection, is also defined.

Let G be a PG.

Definition 26 ( projection of a Property Graph on an element). Vin € Ng U Eg, 7,,(G) is a PG such as:

- Ifm € Ng, Nnm(G) = {m} y Errm(G) = @, SFCn, (G) = dest,,m((;) =0 =0
-If m € Eg, Ny,) = {srcg(m),destg(m)},Ey, ) = {m}, srcg, ) = {m— srcg(m)}, desty, ) =
{m > destg(m)}
labelsg(x) ifx=m
-Vxe Nﬂm(c) U E,TM(G),labelsm(c)(x) = { @G( ) otherwise

— Vkey € keys(m), properties,, Gy(m,key) = propertiesi(m, key), all other values are undefined.

Intuitively, the 7 projection of a PG on a node is equal to the PG with only the node itself. The 7 projection of a
PG on an edge is the edge, and its source and destination nodes without the labels and properties of these nodes.

Definition 27 (Property Graph merge operator &). We now define the & merge operator on property graphs.
V(A, B) € PGs?,&(A, B) (or A @ B) is defined only if:

—EsNNg=0 ANsNEg=10
— srcy is compatible with srcp, desty is compatible with destg and properties, is compatible with propertiesg.
(see compatibility definition in Section 3.2).

Its value is ®(A, B) = C with:

— Nc = Ny UNpg

- Ec=E,UEg

— srce @ Ec — N¢, srce = srca U srep.

— destc : Ec — Nc, destc = desty U destp.

labelss(m) U labelsg(m) if both are defined
- Vm € Nc U Ec, labelsc(m) = labelsa(m) if only labels, (m) is defined
labelsg(m) if only labelsg(m) is defined

— propertiesc : (Nc UEc) X Str — V, propertiesc = propertiess U propertiesg.

Lemma 3. & is commutative, associative, and the neutral element is the empty PG PGy

Proof. (Sketch) & is defined by using the U operator, which is commutative, associative and whose neutral element
is (). The equivalent of §) for PGs is PGy. O
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Theorem 5. The € merge of the 7 projection of a PG on all its elements is equal to the PG itself:

VG € PGs,G= P 7u(G)

meNgUEG
Proof. The proof is provided in Annex A. O

Use of cut  The RDF graph built by prsc from a PG pg is equal to |, N,,UE,, build (ctx(typeof,g(m)), pg, m). The
build function is defined in such a way that the RDF triples it produces from an element m are only influenced by:

— m itself.

— Its labels, i.e. labels,q(m).

— Its property values, i.e. Yk, properties,q(m, k).

— If mis an edge, its source and destination nodes, i.e. srcp,(m) and desty,(m).

Therefore we can assert the following equality, Vpg € PGs,Vm € N, U E o, Vetx € Ctxpg:

build(ctx(typeof,e(m)), pg, m)
= build(ctx(typeofpe(m)), mn(pg), m)
7m(pg) can be considered as the minimal required Property Graph to produce the RDF triples related to the
element m in the PG pg.
Proof of the algorithm Here, we prove the correctness of the buildpg function in Algorithm 5.

Lemma 4. In Algorithm 5, at the end of an iteration of an element b € N,z U E,, the computed PG g, ., is equal
tO gpefore @ 7p(pg), where gp, fore 18 the PG at the beginning of the iteration.

Proof. The PG rr,(pg) is described in Table 11. Bold values are the ones for which we need to prove that we compute
the correct value: src,[b], dest,[b] and properties,[b, key]. Other values are trivially correct by construction.

Table 11
Description of the PG projection that is built in Algorithm 5
b € Npg b€ Epg

N(mp(pg)) {b} Img(src)UImg(dest)

E(np(pg)) 0 {p}

src(my(pg)) 0—0 b+ sreg[b)
dest(np(pg)) 0—0 b+ destg[b]

b € Npg U Epg

labels(np(pg)) {b > labels(type)}

properties(”b (Pg)) Ukeyeke)'x(type) {(b’ kEy) = propertiesg [b’ ke.v]}

In the following, we want to check that extract(?source, build(n,(pg), pg, b), ctx(typeof(b))) properly returns
sre(my(pg)). Proofs for ?destination / dest(m,(pg) and key € keys(typeof,q(b)) I properties(b, key) are identical.

The values set is filled by iterating on all ¢p such that unique(tp, tps) A7 source. The no value losscriterion ensures
that at least one such template triple exists, so the loop in extract is iterated at least once.

Theorem 1 ensures that the built set samekappa in the loop of the extract function will always have 1 element,
that we name td. Error(Unique data triple is not unique) may never be raised if rdf was produced by PRSC. By
definition of the build function, ?source in tp and src(mp(pg)) in td are at the same position.

After the loop, because only src(m,(pg)) is added to values in the loop, Error(Not exactly one value for a place-
holder) may never be raised.
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The last instructions differ for ?source / 7destination and property keys. In the case of ?source and ?destination,
the obtained value is directly the value of the PG node; in the case of P, the obtained RDF literal needs to be
converted into the proper PG property value, which is possible because toLiteral ! is assumed to be computable in
Section 4.5.

extract properly computes the values that are missing in 71, (pg). When these values are extracted, they are directly
merged with the U operator into the g PG. Values that were already known or can be computed from the values that
were just extracted, i.e. labels, (pe) s Nr,(pg) a0d Er (), are also merged into g.

As all values of 71, (pg) are merged into gpefores after = Gbefore B Tm(Pg)

O

Remark 11 (Completeness of buildpg). In the case where rdf is built from a PG pg, the value that a placeholder
is mapped to is the same everywhere, so we never run at the risk of encountering multiples values, i.e. Error(Not
exactly one value for a placeholder) is never raised. Furthermore, the proof of Lemma 4 shows that Error(Unique
data triple is not unique) may not be raised, because we know that each unique template triple has produced one
data triple.

Theorem 6. The PG returned by Algorithm 5 is pg.

Proof. The PG g in the algorithm is initialized to PGy. Lemma 4 shows that after each iteration in the loop with an
element b, the PG g is ¢-merged with the PG 7, pg. The loop iterates on all elements in the PG pg, so after all the
iterations, the PG g is equal to:

g =PGy® P mwpg

DEN,UE 5,

= @ P& [PGy is the neutral element of @)
BENUEp,

= P8 [Theorem 5]

O

As buildpg in Algorithm 5 correctly reconstructs pg, and as its value is directly returned by the RDFToPG
function in Algorithm 2, we have finally proven that the latter is a sound and complete implementation of prsc—!
function for any well-behaved PRSC context czx.

5.4. Edge-unique extension

In many cases, there is only one edge of certain types between two nodes, like the “TravelWith” edge in our
running example or for relationships like knowing someone, a parental relationship. .. For this type of edges, it is
more intuitive to represent them with a simple RDF triple, and get rid of the blank node corresponding to the edge.
However, Well-Behaved PRSC contexts require ?self in edge templates. In this section, we propose an extension to
allow ?self to be missing in edge templates and still produce reversible conversions.

Consider the Tintin PG exposed in Figure 1 and the context exposed in Table 12, which uses RDF-star to convert
the “since” property. The output of PRSC from those two inputs is exposed in Listing 4. By looking at the produced
RDF graph, it appears that the RDF graph captures all the information of the PG. More generally, RDF graphs pro-
duced by this context would always be reversible as long as the source PG does not contain multiple “TravelsWith”
edges between two given nodes.

Definition 28 (Edge-unique extension).
a) In a context czx, an edge-unique type edgeung is an edge type such that:
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Table 12
A context for the Tintin PG with the since property

type ctx(type)
(?self, rdf:type, ex:Person)
«@ 2 3 ” 3 ST R}) 2 . « » valueOf
(“node”, { “Person” } , { “name”, “ job” }) (?self, foaf:name, “name )
(?self, ex:profession, “job” ue0r)
(“node”, 0, { “name” }) (?self, foaf:name, “name” @e0r)

(?source, ex:isTeammateOf, Tdestination)
(“edge”,{ “TravelsWith” } ,{ “since” }) " . o e valucOf
((?source, ex:isTeammateOf, ?destination), ex:since, “since )]

Listing 4 The output of PRSC for the Tintin PG and the context exposed in Table 12

o

Tintin node

:nl rdf:type ex:Person .

:nl foaf:name "Tintin" .

:nl ex:profession "Reporter"

Snowy node

:n2 foaf:name "Snowy" .

TravelsWith edge

:nl ex:isTeammateOf _:n2 .
< _:nl ex:isTeammateOf _:n2 >> ex:since 1978 .

EYE

Al

— ctx(edgeunq) complies with the no value loss criterion and is not empty.
— For all triples 7p € ctx(edgeunq):

% Tsource € tp and ?destination € tp
* tp is a signature template triple, i.e. no other type has a template triple that shares its value through «.
% tp is a unique template triple, i.e. no other template triple in ctx(edgeung) shares its value through «.

b) A PG pg is said edge-unique valid for a context ctx if for all edge-unique types in the context, there is at most
one edge of this type between two given nodes:

typeofps(e) = typeofpe(e’)
Ve € E g, typeof,,(e) is an edge-unique type =(Ve' € E g, | A srcpg(e) = srepg(e’) =>e=¢)
A destpg(e) = destpg(e’)

¢) The prscEdgeUnique function is introduced to serve as a proxy to the prsc function to be applied only if the
given PG is edge-unique valid relatively to the given context:

. [ prsc(pg,ctx)) if pg is edge-unique valid for ctx
prscEdgeUnique(pg, ctx) = { undefined otherwise

Theorem 7 shows that prscEdgeUnique is reversible up to an isomorphism.

Theorem 7. Let ctx be a context such that each type either a) matches the constraints of a type in a well-behaved
PRSC context in Definition 24 or b) is an edge-unique type.

— Vpgl, pg2 such that prscEdgeUnique(pgl, ctx) = prscEdgeUnique(pg2, ctx), pgl and pg2 are isomorphic.

— It is possible to define an algorithm such that Vpg, from the RDF graph prscEdgeUnique(pg), the algorithm
computes a PG pg’ such that prscEdgeUnique(pg, ctx) = prscEdgeUnique(pg’, ctx), i.e. from the produced
RDF graph and the context, it is possible to compute a PG that is isomorphic to the original one.
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Proof. (Sketch) The context ctx is composed of two parts: a) the well-behaved part and b) the edge-unique part. The
well-behaved part has been proved to be reversible. As template triples used for edge-unique types are signatures,
their value trough « is different from the triples produced of the value through « of the triples of well-behaved part:
triples produced from edge-unique types are distinguishable from the rest of the RDF graph.

Denote W the set of all types in the well-behaved part and U the types in the edge-unique part. Let pg be a PG
such that rdf = prscEdgeUnique(pg, ctx) exists. It is possible to split pg using W and U:

pg = b mn(pg) @ b n(pg)

MENpUE g [typeo fyg (m) EW UEE g |typeofp (u) €U

12494 P8u

It is also possible to split rd f by defining an isFromWellBehaved predicate that uses « to filter triples that come
from types in the well-behaved part:
Vid € RdfTriples,isWellBehaved(td) < Jtype € W, 3tp € ctx(type), k(td) = k(tp).

rdf = {td € rdf | isWellBehaved(td)} U {td € rdf | ~isWellBehaved(td)}

rdfy rdfy

From all the theorems on well-behaved contexts, there is a bijection between pgw and rdfy,.

All template triples used in the template graph of edge-unique types are both signature and unique: from any
triple in rdf7;, it is possible to find which template triple produced it. Consider an arbitrary edge u, whose type is
an edge-unique type, i.e. typeof(u) € U. As edge-unique template graphs must also comply with the no value loss
criterion, all properties, the source node and the destination node of u can be found in a non ambiguous manner in
rdf ;. The only missing information is the edge identity, i.e. the blank node u itself.

By using a fresh blank node for u, it is possible to build a PG isomorphic to m,(pg) from rdf,,, by extension, a
PG isomorphic to pgy from rdf;, and by extension a PG isomorphic to pg from rdf.

O

5.5. Discussion about the constraints on well-behaved PRSC contexts

In this section, we discuss the acceptability of the different constraints posed by PRSC well behaved contexts in
terms of usability. In other words, to what extent do they limit what can be achieved with PRSC?

The no value loss criterion on well-behaved contexts ensures that the data are still present and can be found
unambiguously: as its name implies, this constraint is obviously required to avoid information loss. Therefore, it
should not be perceived as overly constraining when building PRSC contexts.

The signature template triple is a method to force the user to type the resources, which is usually considered to be
good practice. The type can either be explicit, through a triple with rd f:type as the predicate, or implicit through a
property that is only used by this type. For example, the template graph for a type Person could contains a template
triple for the form (?self, :personld, “pid”"*““°T). The constraint of a signature composed of only one triple can be
considered too strong: one may want to write a context that works for all PGs. For example, many authors [8, 15]
propose to map each label to an RDF type or a literal used an the object of a specific predicate like pgo: label.
More generally, users may want to use a composite key to sign their types. For these kinds of mappings, our ap-
proach identifies the type by finding the unique signature template is not be sufficient. It requires finding all the
signature template triples and deciding to which type they are associated, for example through a Formal Concept
Analysis process. This could be studied as a future extension of the PRSC reversion algorithm.

The element provenance constraint may hinder the integration of RDF data coming from a PG with regular RDF
data: it forces the user to keep the structure exposed in the PG, with blank nodes representing the underlying structure
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of the PG. The edge-unique extension enables to leverage this constraint, by avoiding to represent PG edges as RDF
nodes.

6. Related works

Many works already exist to address the interoperability between PGs and RDF.

A common pivot for PGs and RDF To achieve interoperability, some authors propose to store the data into an-
other data model, and then expose the data through classic PG and RDF APIs. Angles et al. propose multilayered
graphs [16], for which the OneGraph vision from Lasilla et al. [17] is a more concrete version. These works propose
to describe the data with a list of edges, with the source of the edge, a label and the destination of the edge. All edges
are associated with an identifier, that can be used as the source or the destination of other edges. However, authors
note that several challenges are raised about the way to implement the interoperability between the OneGraph model
and the existing PG and RDF APIs.

In a Unified Relational Storage Scheme [18], Zhang et al. propose to store the data in relational databases. While
they specify how to store both models in a similar relational database structure, they do not mention how they align
the data that come from one model with the data that come from another, for example to match the PG label “Person”
with the RDF type foaf:Person.

The Singleton Property Graph model proposed by Nguyen et al. [19] is an abstract graph model that uses the RDF
Singleton Property pattern that can be implemented both with a PG and an RDF graph. They also describe how to
convert a regular RDF graph or a regular PG into a Singleton Property Graph. But the use of the Singleton Property
pattern induces the creation of many different predicates, which hinders the performance of many RDF database
systems as shown by Orlandi et al.[20].

From PGs to RDF In terms of PG to RDF conversion, the most impactful work is probably RDF-star [8, 9, 21, 22],
an extension of the RDF model originally proposed by Olaf Hartig and Bryan Thompson to bridge the gap between
PGs and RDF by allowing the use of triples in the composition of other triples. Indeed, the most blatant difficulty
when converting PG to RDF is converting the edge properties. However, most PG engines support multi-edges,
i.e. two edges of the same type between the two same nodes. On the other hand, the naive approach consisting in
using the source node, the type of the edge and the destination node as respectively the subject, the predicate and
the object of an RDF triple would still merge the multi-edges. Converting each edge property to an RDF-star triple
that uses the former triple as its subject would lead to the properties of each multi-edge to be merged. Khayatbashi
et al. [23] study on a larger scale the different mappings described by Hartig and benchmark them, but they never
consider using different modelings for different PG types during the same conversion. By allowing triples to be used
as the subject and the object of other triples, it is possible to emulate the edge properties of PGs. To tackle the edge
properties problem, Das et al. study how to use already existing reification techniques to represent properties [24]:
the modelings that do not rely on quads can be used when writing a PRSC context.

Tomaszuk et al. propose the Property Graph Ontology (PGO) [15], an ontology to describe PGs in RDF. As this
solution only describes the structure of the PG in RDF, the produced data is forced to use this ontology, with the
exception of other already existing RDF ontologies without further transformations. Thanks to the Neosemantics®
plugin developed by Barrasa, Neo4; is able to benefit from RDF related tools like ontologies, and performs a 2-way
conversion from and to RDF-star data. However, the PG to RDF conversion performed by Barrasa tends to affirm
all triples it can, even for PG edges that may describe facts with a probability or that are time restricted: if the
marriage between Alice and Bob has ended in 2017, the triple :Alice :marriedto :Bob should probably
not be produced.

Gremlinator [25] allows users to query a PG and an RDF database by using the SPARQL language. This is a first
step towards federated queries. However, it supposes that data stored in the PG and data stored in the RDF graph
have a similar modeling and it does not support RDF-star.

8https://github.com/neo4;j-labs/neosemantics
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Instead of having a fixed mapping, our work on PREC [11] propose a mapping language named to drive the
conversion from PG to RDF. Delva propose RML-star [26], an extension of RML [13] and R2RML [27] that
introduces new RML directives to generate RDF-star triples. As discussed in Section 2, the format in which the
template triples are described in this work is closer to the produced triples, at the cost of reducing the ability to
produce templated IRIs or terms.

From RDF to PGs In Abuoda et al. [28] study the different RDF-star to PG approaches and identified two classes:
the RDF-topology preserving transformation which converts each term into a PG node, and the PG transformation
that converts literals into property values. They also evaluate the performance of these different approaches. The
PRSC reversion algorithm, and the general philosophy of this work clearly falls under the latter category. The
former can be considered as using a PG database to store RDF data.

In [29], Angles et al. discuss different methods to transform an RDG graph into a PG. They propose different
mappings, including an RDF-topology preserving one and a PG transformation. In [30], Atemezing and Hyunh
propose to use a mapping similar to the former to publish and explore RDF data with PG tools, namely Neo4;.
However, these works offer little customization for the user.

With G2GML [31], Chiba et al. propose to convert RDF data by using queries: the output of the query is trans-
formed into a PG by describing a template PG, similar to a Cypher insert query. This approach can be considered to
be a counterpart of PRSC, but to convert RDF into PG.

PG schemas Finally, the “Property Graph needs a Schema” Working Group propose a formal definition of PG
schemas [32]. Some PG engines, like TigerGraph, are based on the use of schemas. For PG engines that do not
enforce a schema at creation, like Neo4j or Amazon Neptune, the schema may be extracted from the data, as
proposed by Bonifati et al. [33] or Beereen [34]. As PRSC uses schemas for mapping between PGs and RDF
graphs, these approaches may be used to automatically list the types existing in the PG to convert i.e. the target of
the rule part in Listing 2. Then the user would only have to provide the way to convert these types into RDF, i.e. the
template graph part.

7. Conclusion

This work improves interoperability between the two worlds of Property Graphs and RDF graphs. We have
presented PRSC, a mapping language to convert PGs into RDF graphs. A mapping, named PRSC context, is written
by the user and is driven by a schema: PG elements are converted according to their type. By letting the user
configure the conversion, we aim to better integrate PG data into already existing RDF graphs: the produced RDF
graphs can be made to use a specific vocabulary, or comply with specific shapes.

We have also proved that some PRSC contexts, named well-behaved PRSC contexts, are reversible: they do not
induce any information loss, and therefore it is possible to reverse back to the original PG from the produced RDF
graph. Finally, we broaden the realm of reversible contexts with the edge-unique extension.

For big PGs, fully converting them into RDF may not scale. For this reason, future works include studying how
to use PRSC context not only for PG conversion but also to convert SPARQL queries into the usual PG query
languages Cypher and Gremlin. This would not only address the scalability issues, but also avoid data duplication
and help for federated queries.

The expressiveness of PRSC contexts could also be extended. As it is currently presented, PRSC contexts are
unable to reproduce RDF graphs complying with some ontologies, for example the PG ontology [15]. To solve this
issue, PRSC contexts should be able to introduce new blank nodes, and not be limited to the ones in the original
PG. This would lead to new challenges, as the presented reversion algorithm relies on the fact that all blank nodes
are PG elements.

Other extensions on expressiveness may also be interesting. For examples, types in PRSC contexts are closed, in
the sense that a complying element must have exactly the properties of the type, barring any other. Allowing extra
properties in elements of the PGs would be useful, but raises the challenge of converting properties that are not
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known in advance.

To let PG data further benefit from the tools that have been developed around RDF, PRSC could also be explored
in two directions. The use of blank nodes for the PG elements may not be suitable in all cases, especially in a
linked data context. PRSC could be extended to mint IRIs for nodes and edges of the PG, but this would require
an adaptation of the reversion algorithm. It would need to differentiate the minted IRIs from the “static" IRIs of the
template, which would require additional precautions on well-behaved contexts.

The provided reversion algorithm does not only work for RDF graphs that were produced by PRSC, but can work
on any compatible RDF graph. One way to use it would be to use PRSC to convert a PG to an RDF graph, modify
the produced RDF graph with RDF-specific tools, e.g. a reasoner, and then transform back the RDF graph into a PG.
However, this requires to formally characterize the modifications that can be performed on the RDF triples while
maintaining the ability to convert it back to a PG.
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Appendix A. Proof of properties on Property Graphs

In this section, we expose the proof for Theorem 5
A.l. Extra mathematical elements

Definition 29 (Restriction). For all functions f, for all sets X, f|, = {(x, f(x)) | x € X N Dom(f)}. f|x is called
the restriction of the function f to the set X.

Remark 12. The restriction of a function to its domain is equal to the function itself:

Flpom(py = {(x (%)) | x € Dom(f)} = f.

Remark 13. A functional definition of Definition 29 would be, for all functions f, f|, : x — f(x)ifx € X N
Dom(f), undefined otherwise.

Lemma 5. V functions f, sets X1 and Xa, fly, U flx, = flx, Ux,-

Proof.

flx, Uflx,
={(x. f(x)) | x € Xy N Dom(f)} U{(x. f(x)) | x € X2 N Dom(f)}
={(x.f(x)) | x € (X2 N Dom(f)) U (X2 N Dom(f))}
={(x. f(x)) | x € (X1 UX2) N Dom(f)}

=f |x1 UXo

Remark 14. V function f, sets X; and Xa, f| x, and f | x, are always compatible.
Theorem 8. (Dom(f) C U, Xi) = (UL, flx, = f)-

Proof.
U 1, = U A6 £() | x € Xi 0 Dom( )}

- {(x, f) [xeJxin Dom(f))}

i=1

=1 (% f(x) | xe (UXi) mDom(f)}

={(x.f(x)) [ x € Dom(f)} = f
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A.2. Redefinition of the projection
Remark 15. src,, ), desty, Gy and propertiesy, gy can be redefined by using the restriction:

— STy, (G) = STCG| (m}
- desty, (G) = destG|{m}

— properties;, () = propertiesg| {(mstr)|stresir}

Proof. For nodes, m € Ng cannot be in the domain of srcg, as their domain is a subset of Eg. Therefore, srcg| (m} =
0 — 0= sre, (6)-
For edges, m € Eg is forced to be in the domain of srcg, and its value is srcg(m). Therefore, srcg| (= (m —
sreg(m)) = sreq, ()
The same reasoning applies for destg.
The new definition of propertiesy, () that uses restrictions is immediate from the definition of the restriction.
O

A.3. Proof of Theorem 5

Proof. We first need to check if we can apply the & operator, i.e. if the two conditions of Definition 27 are met:

— When the 7 function is applied, nodes remain nodes and edges remain edges. The & operator also conserves
this property. As Vm, N ) € Ng and E; Gy C Eg, the first condition is met.

— The definition of & (restriction of the original function), the definition of & (union of the functions) and the
Lemma 5 (the union of two restriction is a restriction) imply that the src, dest and properties are compatible.

As @ is commutative and associative, we can write the following decomposition: @meNGUEG mm(G) =

(@me[vg ”nl(G)) S) (®mEEG ﬂ'm(G))

To prove the theorem, we are going to check if it is true for all functions related to G.

Edges (Eg):
EC @ m(G)= |J E@(G) [Definition of @ on E]
= ({J Em@G)u(J E@(6)))
= ( U 0)U( U {m}) = U {m} [Definition of 7 on E]
= Eg
Nodes (Ng):

N @ mlG)

meENGUEG

(U N6 u (| Nma(6))

meNg meEg

= N U (| Na(G)))

meEEg

To prove that the last expression above is equal to Ng, we need to prove that (| N(7u(G))) C Ng:

mekEg
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Vm € Eg, N(m,(G)) = {srcg(m),destg(m)} C Ng

= |J N@ma(G)) € |J Ne =No

mekEg mekEg

Source of the edges (srcg):

sre( @ m(G))

meNgUEg

U srcG|{m}

meNgUEg

sreg per Theorem 8, [since U {m} 2 Eg = Dom(srcg)]
meNgUEG
Destination of the edges (dests): The proof for dest; follows the same steps as the proof for srcg.

Properties (propertiesg) The proof is very similar to srcg.
Noticing that:

- Vm € Ng U Eg, properties(n,(G)) = propertiesc| (,, )| sresiry
= Unengurs 1m.s) | s € Stry = {(m,str) [ m € Ng UEg A str € Str} = (Ng U Eg) x Str
2 Dom(propertiesg)

we can reapply the same reasoning as for srcg to find

properties( @ 7n(G)) = propertiesg
meNgUEG

Labels (labelsg) The domain of definition of labels(ED,, ey, g, Tm(G)) is:

N &P m(G)UE( € mu(G)) =NsUEg

meNGUEG mENGUEG
The value of this function is Vx € Ng U Eg,
labels( U m(G))(x) = U labels(m,,(G))(x)

meNgUEg me NG @] EG
if labels(m,,(G))(x) is defined

From the definition of 7 applied on labels, two outcomes are possible for labels(n,,(G))(x):
— For m = x, labels(n,,(G))(x) = labelsg(x).

— For all other m # x, labels(r,,(G))(x) is either the empty set or undefined. In both cases, no extra value is

contributed to labels(\J,,cn.u, Tn(G)) (%)

It can be concluded that labels(U,,cn,k, 7m(G))(x) = labelsg(x), so labels(€D,,c n, Lk, 7m(G)) = labelsc.

Conclusion : We have demonstrated that

VG € PGs,Vf € {N, E, src,dest, labels, properties} , f(G) = f(@meNGUEG 7m(G)) therefore VG € PGs,G =

@meNGUEG 7 (G)
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