
ABECTO: Assessing Accuracy and
Completeness of RDF Knowledge Graphs
Jan Martin Keil
Heinz Nixdorf Chair for Distributed Information Systems,
Institute for Computer Science, Friedrich Schiller University Jena, Germany
E-mail: jan-martin.keil@uni-jena.de; ORCID: https://orcid.org/0000-0002-7733-0193

Abstract. Accuracy and completeness of RDF knowledge graphs are crucial quality criteria for their fitness for use. However,
assessing accuracy and completeness of knowledge graphs requires a basis for comparison. Unfortunately, in most cases, there
is no gold standard to compare against. As an alternative, we propose the comparison with other, overlapping RDF knowledge
graphs of arbitrary quality. We present ABECTO, a command line tool that implements a pipeline based framework for the
comparison of multiple RDF knowledge graphs. For these knowledge graphs, ABECTO provides quality annotations like value
deviations and quality measurements like completeness. This enables knowledge graph curators to monitor the quality and can
help potential users to select an appropriated knowledge graph for their purpose. We demonstrate the usefulness of ABECTO for
the improvement of knowledge graphs with two example use case applications.

Keywords: Data Quality, Knowledge Graph Evaluation, Knowledge Graph Quality, Ontology Evaluation, Ontology Quality

1. Introduction

Knowledge graphs provide domain knowledge for a wide range of applications. The faultless operation of these
applications depends on the quality of the used knowledge graph. Useful criteria for the selection or evaluation of
knowledge graphs include the quality dimensions accuracy and completeness. For example, inaccurate knowledge
about measurement unit conversions could cause wrong values in an integrated measurement dataset from sources
with different measurement units after an alignment of the measurement units [1]. Likewise, the use of inaccurate or
incomplete knowledge about publications would, for example, cause the calculation of wrong bibliometric values.

With knowledge graph we denote any kind of RDF graph, typically but not necessarily with a focus on actual
instances (A-Box) instead of schema definitions (T-Box), and including RDF graphs that are typically denoted as
ontology. State-of-the-art approaches for the validation of knowledge graphs, like SHACL [2] for A-Box statements
or OOPS! [3] for T-Box statements, use constraints on statements to detect missing or wrong statements. Therefore,
they can only detect outliers out of the range of plausible values or completely missing properties. However, they can
not detect wrong values in a plausible range or an incomplete set of statements, like a measurement unit conversion
factor of 0.001 instead of 1000, or one out of five publication authors missing. Assessing accuracy and completeness
of knowledge graphs requires data to compare with. The literature [4] regularly recommends to use a gold standard
for the evaluation. However, a gold standard does in most cases not exist. An alternative is the comparison with
other, overlapping knowledge graphs of arbitrary quality [5].

In an earlier comparison of unit ontologies we identified a large number of issue in these ontologies [1]. At
the same time, we identify a high need for automation of the comparison of knowledge graphs. However, the au-
tomation scripts for that specific comparison were not generally applicable. Therefore, we outlined a comparison

mailto:jan-martin.keil@uni-jena.de
https://orcid.org/0000-0002-7733-0193


framework [5] and developed the ABox Evaluation and Comparison Tool for Ontologies (ABECTO) [6], a generic
comparison tool for knowledge graphs. ABECTO provides a pipeline based framework for the comparison of mul-
tiple knowledge graphs. It enables their curators to monitor the quality and can help users to select an appropriated
knowledge graph to use. The source code is publicly available on GitHub1 and Zenodo [7] under the permissive
open source software license Apache 2.02. In this paper, we introduce the tool and two example applications.

The paper is structured as follows: We give an overview about related work in Section 2, provide requirements for
the tool in Section 3, introduce ABECTO in Section 4, explain the intended workflow with ABECTO in Section 5,
present two example applications in Section 6, and conclude the paper in Section 7.

2. Related Work

The quality of data can be expressed regarding several dimension. Wang and Strong [8] identified 20 general data
quality dimension. ISO 25012:2008 [9] provides an general data quality model. The defined quality dimensions have
also been used for the assessment of RDF data. In a systematic survey, Zaveri et al. [10] provide an comprehensive
overview of 18 quality dimensions and measures relevant for knowledge graphs. Based on that and on the W3C Data
Quality Vocabulary (QDV) [11], Radulovic et al. [12] built a knowledge graph specific quality model and provided
guidelines for its application. Likewise, but mainly based on the quality dimensions by Wang and Strong, Faerber
et al. [4] did an extensive investigation on five freely available large knowledge graphs. Also based on the work by
Zaveri et al., Debattista et al. [13] applied 27 quality measurements from several quality dimensions on all available
datasets in the Linked Open Data Cloud and determined the 11 most informative quality indicators using a Principal
Component Analysis (PCA). Our work focuses on the quality dimensions accuracy and completeness.

Wang and Strong define the quality dimension accuracy as “the extent to which data are correct, reliable, and
certified free of error” [8]. In context of knowledge graphs, this can be divide into (a) syntactic validity of RDF
documents and of literals, which is the compliance to syntactic rules, and (b) semantic validity of triples, which
determines whether the value is true [4, 10]. In this work, we focus on semantic validity, which is also referred to as
consistency with the represented reality [14] and must not be confused with inferential consistency.

The quality dimension completeness is defined by Wang and Strong as “the extent to which data are of sufficient
breadth, depth, and scope for the task at hand” [8]. For knowledge graphs, this can be divided into (a) schema
completeness, which assesses the degree to which relevant classes and properties are present, (b) population com-
pleteness, which assesses the degree to which relevant objects of the represented reality are present, (c) property
completeness or column completeness, which assesses the degree to which relevant property values are present, and
(d) interlinking completeness, which assesses the degree of resources interlinking to other knowledge graphs [4, 10].
In addition, Issa et al. [15] propose the three completeness types currency completeness, metadata completeness,
and labelling completeness. But in our point of view, currency completeness actually belongs to either schema com-
pleteness, property completeness, or the currency dimension, but is to vaguely defined for a clear judgment; meta-
data completeness actually belongs to the belivability dimension; and labelling completeness actually belongs to the
understandability dimension [10]. In this work, we focus on population completeness and property completeness.

2.1. Assessment of Accuracy and Completeness

For the two quality dimensions of accuracy and completeness applies that their assessments requires some source
for domain knowledge as a basis for comparison [4, 10, 12, 13]. The term “comparison” is ambiguously used in
the context of semantic web technologies [5]. We will use the term to describe the comparison of entire knowledge
graphs regarding certain aspects to evaluate or select knowledge graphs. Other notions of the term describe the com-
parison of single or a few resources in recommendation, matching or merging tasks or the comparison of knowledge
graph versions [5]. The basis for comparison is typically called a gold standard. However, the general lack of a
gold standard for the assessment of accuracy and completeness of knowledge graphs was constantly considered as

1https://github.com/fusion-jena/abecto
2https://opensource.org/licenses/Apache-2.0

https://github.com/fusion-jena/abecto
https://opensource.org/licenses/Apache-2.0


a problem since early work [16] on ontology evaluation until more recent works [4, 10]. Moreover, other recent
extensive studies [12, 13] did not apply accuracy and completeness measurements in their experiments.

An alternative to the comparison with a gold standard is the comparison of multiple knowledge graphs with each
other [5]. Nevertheless, only a few tools have recently been developed to make use of the comparison of knowledge
graphs to address this issue. All of these tools are dedicated to specific knowledge graphs: The library authority
data initiatives International Standard Name Identifier (ISNI)3 and Virtual International Authority File (VIAF)4

regularly run processes for integration and consolidation of the data of their providers and among each other [17].
Subsequent manual reviews of the results reveal errors in the source data that get communicated to the providers to
enable error correction. Bianchini et al. compared data from Wikidata5 and VIAF regarding the contained data about
persons [18]. Among others, they measured the reciprocal coverage to assess the suitability for entity identification
purposes. Further, they provide several exemplary cases in which the interlinking reveals errors in both datasets.
They conclude that “VIAF and Wikidata can be constantly improved through reciprocal comparison, which allows
discovery of errors in both”. The machine learning based tool soweego6 enables the supervised linking of Wikidata
items to items from some other catalogs. The linked items can get compared to propose changes for Wikidata. The
web service Wikidata Mismatch Finder7 provides a platform for reporting deviations between Wikidata and other
data sources. The goal is to provide a convenient way to report and collaboratively handle possible errors in Wikidata
and interlinked data sources.

Rashid et al. describe another alternative approach for the assessment of completeness based on the comparison of
knowledge graph versions [14]. Among others, they propose measures for persistency (the continuous presence of
instances) and completeness (the continuous presence of instance properties) per class. These measures are derived
from the elementary measures instances per class, property frequency per class and property, and number of used
properties per class measured on two consecutive knowledge graph versions. The elementary measures can be
measured independently and efficiently on each knowledge graph versions. That way, their measures allows an
efficient monitoring of a knowledge graph regarding the unintended removal of information. In case of the detection
of a potential quality problem, further manual investigations are required to identify the actual cause of the problem.
However, the absence of information that were nether present in the knowledge graph can not be detected.

Approaches without need of a basis for comparison use heuristics for the approximation of completeness or
constraints on statements to detect missing or wrong statements. State-of-the-art constraints based approaches are
SHACL [2] for A-Box statements or OOPS! [3] for T-Box statements. However, these approaches can only detect
outliers out of the range of plausible values or completely missing properties. Radulovic et al., for example, propose
to approximate interlinking completeness based on the ratio of interlinked and total subjects [12]. An overview of
more completeness assessment approaches is provided by Issa et al. [15].

2.2. Relation of Knowledge Graph Comparison to Link Discovery

Closely related to the comparison of knowledge graph is the work in the field of Link Discovery. It aims to enrich
knowledge graph with links to other knowledge graphs, to apply the Linked Data paradigms8. Silk [19], an early
work in this field applied hierarchically numerically aggregated similarity measures between resources from differ-
ent knowledge graphs to identify resources to interlink up to a certain similarity threshold. The state-of-the-art Link
Discovery framework LIMES [20] applies link specifications defined by boolean filters that consist of similarity or
distance measures and a threshold, and that get aggregated by boolean operators. These are complemented by an
execution engine for optimized execution and several supervised and unsupervised machine learning approaches
that return link specifications for specific knowledge graph pairs.

3https://isni.org
4https://viaf.org
5https://www.wikidata.org
6https://github.com/Wikidata/soweego
7https://www.wikidata.org/wiki/Wikidata:Mismatch_Finder
8https://www.w3.org/DesignIssues/LinkedData

https://isni.org
https://viaf.org
https://www.wikidata.org
https://github.com/Wikidata/soweego
https://www.wikidata.org/wiki/Wikidata:Mismatch_Finder
https://www.w3.org/DesignIssues/LinkedData


The comparison of knowledge graphs differs from Link Discovery in that knowledge graphs comparison analyses
property values of interlinked resources, whereas Link Discovery produces an interlinking based on property values.
That way, their relation in a knowledge graph construction process is ambiguous. Knowledge graph comparison
could be considered as (a) a preceding step of Link Discovery, to enable an more extensive interlinking, or (b)
a follow up step of Link Discovery, to use an extended interlinking for more extensive comparison results. The
Link Discovery approach COLIBRI [21], which is based on an earlier version of LIMES, addressed this with
an entanglement of both steps: For two or more knowledge graphs, it alternately attempted (a) to generate an
interlinking based on the previous repair step, and (b) to repair property values based on the previous interlinking
step using a voting mechanism. However, the work had its main emphasis in Link Discovery, and it was only
applicable for properties with an 1:1 correspondence between the knowledge graphs.

3. Requirements

During an earlier comparison of unit ontologies [1] we identified challenges that led to the following requirements
for a generic knowledge graph comparison tool, which we considered during the development of ABECTO:

R1. Handling of Schema Heterogeneity: Different knowledge graphs might use heterogeneous modeling ap-
proaches for the same aspect of a domain. For example, (a) properties might correspond to chains of properties,
(b) IRIs might correspond to blank nodes, (c) OWL data properties might correspond to OWL annotation properties,
or (d) corresponding resources might have different types like RDFS class, OWL individual, SKOS concepts, or
Wikidata instance. Therefore, it is necessary to enable a comparison beyond a simple one-to-one mapping between
resources and properties and without restriction to specific RDF vocabularies. This aligns with general requirements
on knowledge graph construction tools [22].

R2. Result Provenance: The comparison might require the transformation of data from heterogeneous
schemata. To be able to trace revealed issues back to the root cause, it is necessary to provide the provenance of all
(intermediate) results. This aligns with general requirements on knowledge graph construction tools [22].

R3. No Repeated Review of Deviations: The re-evaluation of a knowledge graph will reveal the same devi-
ations, if issues in the affected knowledge graph, which might be out of control of the use, did not get fixed. As
the manual review of deviations is time consuming, it is necessary to enable the optional exclusion of reviewed
deviations from future results, to increase the visibility of new deviations.

R4. Integration into Ontology Quality Models: An comprehensive quality assessment of a knowledge graph
would likely consider several different quality measures that have been measured by multiple tools. Therefore, it
is necessary to enable the integration of the comparison results into ontology quality models for aggregation with
measurements of other quality measures by other tools, as also outlined by Radulovic et al. [12].

R5. Suitable Result Representation: To ease the manual review of the results or enable an result review with
other tools, it is necessary to provide a suitable representation of the results.

In an early version of ABECTO [6] we used ––in difference to the current version–– a HTTP based client-server-
architecture for the configuration and result presentation result. Trials revealed that this is cumbersome to use,
especially in automated quality assurance processes. That led to the following additional requirement:

R6. Integration into Quality Assurance Environments: As known from the field of software engineering,
automation is key factor for successful quality assurance. Therefore, it is necessary to enable the easy integration of
a comparison tool into standard quality assurance environments.

Further, the following general requirement is also relevant for ABECTO:

R7. Scalability: “It should be possible to integrate a large number of data sources as well as a high amount of
data (data scalability).” ([22])



ReportSource MappingTransformation

Evaluation

Comparison

Fig. 1. Schematic of the comparison framework implemented in ABECTO. (Revised visualization from [5].)

4. The ABox Evaluation and Comparison Tool for Ontologies (ABECTO)

ABECTO is a tool for the comparison and evaluation of two or more knowledge graphs to assess their accuracy
and completeness. It is a Java command line tool based on the RDF framework Apache Jena9. The source code is
publicly available on GitHub1 and Zenodo [7] under the permissive open source software license Apache 2.02. In
addition, ABECTO is available as a Docker image on GitHub. Parameters may enable a failure exit status code in
case of detected issues in a specific knowledge graph to signal a failure to the calling environment. This enables the
use in Continuous Integration (CI) environments complying to R6.

The comparison of several knowledge graphs in ABECTO is described by a plan of interdependent steps. This
plan is configured in the default graph [23] of an RDF dataset [23] document using the ABECTO vocabulary, which
will be introduced in Section 4.1. The vocabulary diagram in Figure 2 provides an overview of the components of
ABECTO. A step describes the execution of one processor with the named graphs [23] returned by its direct and
indirect predecessors as input. The processors can be configured with parameters defined per step. Each step gener-
ates up to (a) one primary data graph, a named graph containing original or transformed data from one associated
knowledge graph, (b) per knowledge graph one associated metadata graph, a named graph for quality annotations
and quality measurements, and (c) one general metadata graph, a named graph for mapping data. Further, named
graphs called predefined metadata graphs can be added in the plan RDF dataset document as input of a step and
its successor to provide manual annotations or mappings. Execution metadata, like the provenance of the result
graphs, will be stored in the default graph to comply with R2. For example, this enables to retrace the step that
generated the mapping of two resources. We assume a "graph name denotes the named graph" dataset semantic [24].
That way, the possible wrong or inconsistent data in the primary data graphs do not participate in the truth of the
dataset, but the graph name can be used to identify the named graph to describe its provenance. A processor has
one of four types: source processor, transformation processor, mapping processor, or comparison (and evaluation)
processor. Each type is designated to one phase in the comparison framework depicted in Figure 1. However, the
strict compliance of the plan to these phases is not enforced by ABECTO. Available processors will be introduced
in Section 4.2.

ABECTO does not automatically match the schemas of the knowledge graphs. An aspect describes resources
that must be compared. A user must provide one SPARQL query per knowledge graph and aspect that specifies the
resources to compare. The resource is represented by a key variable, which is a query variable with a certain name
that is specified per aspect. Property values related to the resource are represented by further query variables and
can be used by the processors. This enables the comparison of data modeled in different ways, complying to R1.
Figure 3 shows an example of the SPARQL queries specifying an aspect for two knowledge graphs with the key
variable person and the related values name and birthdate. The aspect SPARQL queries can also be used to
align the scope of the compared knowledge graphs to get meaningful comparison results. For example, a knowledge
graph about space flight might not contain data about persons except of astronauts. To compare them with a general
purpose knowledge graph, persons from that knowledge graphs must be restricted to astronauts.

By now ABECTO manages all input and output data in the main memory. Therefore, the scalability (R7) of the
tool with regards to the knowledge graph size is limited. This might be improved by implementing the optional use
of Apache Jenas disk storage component TDB210.

9https://jena.apache.org/
10https://jena.apache.org/documentation/tdb2/

https://jena.apache.org/
https://jena.apache.org/documentation/tdb2/


p-plan:isStepOfPlan (1..n)

av:associatedDataset (0..1)

av:hasParameter (0..n)av:predefinedMetaDataGraph (0..n)

av:associatedDataset (0..1)

av:ofAspect

av:hasVariablePath

av:associatedDataset (1..n)

p-plan:correspondsToStep (1..1)

av:associatedDataset (1..1)

prov:wasGeneratedBy (1..1)

av:VariablePath

av:variableName (1..1) :: xsd:string

av:propertyPath (1..1) :: xsd:string

av:Aspect

av:keyVariableName (1..1) :: xsd:string

av:AspectPattern

av:definingQuery (1..1) :: xsd:string

dcat:Dataset

av:Plan

av:Step

av:processorClass (1..1) :: rdfs:Resource (java:<qualified class name>)

av:Parameter

av:key (1..1) :: xsd:string

av:value (1..n) :: rdfs:Resource (including rdfs:Literal)

av:StepExecution

prov:startedAtTime (1..1) :: xsd:dateTime

prov:endedAtTime (1..1) :: xsd:dateTime

rdfg:Graphdqv:QualityMetadata

p-plan:isPrecededBy (0..n)

prov:used (0..n)

p-plan:Plan

p-plan:Step

p-plan:Activity

prov:Entityav:MetaDataGraph av:PrimaryDataGraph

prov:used (0..n)

prov:wasGeneratedBy (0..1)

Fig. 2. The ABECTO vocabulary for the description of the plan and the result provenance.

1 PREFIX exo: <http://example.org/>
2 SELECT ?person ?name ?birthdate
3 WHERE {
4 ?person exo:name ?name .
5 OPTIONAL {
6 ?person exo:birthday ?birthdate .
7 }
8 }

1 PREFIX exc: <http://example.com/>
2 SELECT ?person ?name ?birthdate
3 WHERE {
4 ?person exc:givenname ?firstname ;
5 exc:surname ?surname ;
6 exc:birthdate ?birthdate .
7 BIND(CONCAT(?firstname, " ", ?surname) AS

↰?name)
8 }

Fig. 3. Two SPARQL queries specifying an aspect with the key variable person for two knowledge graphs with different schemas.

The results of an ABECTO plan execution can be stored in an RDF dataset document for processing by further
tools, like a quality data dashboard, comply with R5. To enable an easy integration into automated processes,
complying to R6, we decided to optimize ABECTO for the use via command line interface instead of providing an
graphical user interface. To nevertheless provide human readable presentations of the results, complying with R5,
the results can be exported into several reports. Reports are defined by one SPARQL query on the result dataset and
one Apache FreeMarker11 template. ABECTO provides the following built-in reports: (a) The Deviations Report
contrast the property value of one resource with the deviating value of a corresponding resource in CSV format. In
addition, it provides the aspect and the knowledge graphs of the resources, the step that mapped the resources, and
an annotation snippet to mark the second value as wrong. (b) The Mapping Review Report provides an overview of
all mappings as well as all missing resources in CSV format. The aim of this report is to enable manual revision and
adjustment of the mapping. (c) The Measurements Markdown Report provides a tabular display of measurements
on the knowledge graphs in Markdown12 format. (d) The Resource Omission Report lists all missed resources per
knowledge graph together with the labels and the source knowledge graph of the missing resource in CSV format.
(e) The Wikidata Mismatch Finder Report provides encountered deviations in the Mismatch Finder CSV import file
format13, as far as it is possible to represent them in the format.

11https://freemarker.apache.org/
12https://daringfireball.net/projects/markdown/
13https://github.com/wmde/wikidata-mismatch-finder/blob/main/docs/UserGuide.md#creating-a-mismatches-import-file

https://freemarker.apache.org/
https://daringfireball.net/projects/markdown/
https://github.com/wmde/wikidata-mismatch-finder/blob/main/docs/UserGuide.md#creating-a-mismatches-import-file


4.1. The ABECTO Vocabulary

The ABECTO Vocabulary14 enables the description of the plan with aspects and steps, the execution results,
and the results provenance. To enable easy integration with other systems and thereby comply with R4, the
ABECTO Vocabulary reuses the vocabularies DQV15, and LDQD16 for the representation of quality data, as well
as P-Plan17, and PROV-O18 for the representation of workflows and result provenance. The vocabulary consists
of two parts. The first part, which is visualized in Figure 2, enables the description of the ABECTO concepts:
av:Plan for plans, av:Step together with av:Parameter for steps, av:PrimaryDataGraph for primary
data graphs, av:MetaDataGraph for meta data graphs, av:Aspect together with av:AspectPattern and
av:VariablePath for aspect. Processors are represented by an IRI of the unofficial scheme java and a path
equal to the canonical name of the processors class, an approach also used in Apache Jena. This permits the use of
a prefix for processor IRIs19. dcat:Dataset is reused for the representation of knowledge graphs and the actual
execution of a step is represented with av:StepExecution. The property av:associatedDataset is used
to connect steps, aspect patterns and graphs to a knowledge graph, av:predefinedMetaDataGraph assigns
predefined metadata graphs to steps.

The second part serves to describe the gained quality data and mappings and should be used inside of meta-
data graphs. The properties av:correspondsToResource, and av:correspondsNotToResource are
available for the representation of mapping results. We could not reuse the similar properties owl:sameAs,
owl:equivalentClass and owl:equivalentProperty from OWl according to R1, as these im-
ply a certain type of resource, which might differ between knowledge graphs. Further, we could not reuse
skos:exactMatch, as it must not link resources from the same scheme. To annotate the compared knowledge
graphs and contained resources, several classes of quality annotation bodies (av:QualityAnnotationBody)
are provided: av:Deviation annotates corresponding resources with deviation of variable values,
av:ValueOmission annotates resources without an equivalent variable values found at a corresponding
resource, av:ResourceOmission annotates knowledge graphs without a corresponding resource of a re-
source found in another knowledge graph, av:WrongValue, which is intended for use in predefined metadata
graphs, annotates resources with a value known to be wrong, and av:Issue annotates resources or knowledge
graphs with further issues like corresponding resources in the same knowledge graph, i.e. duplicates. Further,
av:QualityMeasurement together with the provided dqv:Metric instances is used to represent measure-
ments in an interoperable way (R4) by reusing DQV. For the instances of av:QualityAnnotationBody or
av:QualityMeasurement the following properties are provides: av:affectedAspect to link the aspect
of the investigated resource, av:affectedVariableName to link the name of the investigated variable, and
av:comparedToDataset to link the knowledge graph that has been used for comparison during the investi-
gation. Further, for the instance of av:QualityAnnotationBody the following additional properties are pro-
vided: av:affectedValue to link the property value that has been investigated, av:comparedToResource
to link the resource that has been used for comparison during the investigation, and av:comparedToValue to
link the property value that has been used for comparison during the investigation.

4.2. Processors in ABECTO

ABECTO has a couple of built-in processors. In the following sections, we give an overview of the available
processors. A more detailed descriptions of the processors and their mandatory and optional parameters is provided
in the ReadMe file1.

14av: <http://w3id.org/abecto/vocabulary#>
15dqv: <http://www.w3.org/ns/dqv#>
16ldqd: <http://www.w3.org/2016/05/ldqd#>
17p-plan: <http://purl.org/net/p-plan#>
18prov: <http://www.w3.org/ns/prov#>
19abecto: <java:de.uni_jena.cs.fusion.abecto.processor.>

http://w3id.org/abecto/vocabulary#Plan
http://w3id.org/abecto/vocabulary#Step
http://w3id.org/abecto/vocabulary#Parameter
http://w3id.org/abecto/vocabulary#PrimaryDataGraph
http://w3id.org/abecto/vocabulary#MetaDataGraph
http://w3id.org/abecto/vocabulary#Aspect
http://w3id.org/abecto/vocabulary#AspectPattern
http://w3id.org/abecto/vocabulary#VariablePath
http://www.w3.org/ns/dcat#Dataset
http://w3id.org/abecto/vocabulary#StepExecution
http://w3id.org/abecto/vocabulary#associatedDataset
http://w3id.org/abecto/vocabulary#predefinedMetaDataGraph
http://w3id.org/abecto/vocabulary#correspondsToResource
http://w3id.org/abecto/vocabulary#correspondsNotToResource
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#equivalentClass
http://www.w3.org/2002/07/owl#equivalentProperty
http://www.w3.org/2004/02/skos/core#exactMatch
http://w3id.org/abecto/vocabulary#QualityAnnotationBody
http://w3id.org/abecto/vocabulary#Deviation
http://w3id.org/abecto/vocabulary#ValueOmission
http://w3id.org/abecto/vocabulary#ResourceOmission
http://w3id.org/abecto/vocabulary#WrongValue
http://w3id.org/abecto/vocabulary#Issue
http://w3id.org/abecto/vocabulary#QualityMeasurement
http://www.w3.org/ns/dqv#Metric
http://w3id.org/abecto/vocabulary#QualityAnnotationBody
http://w3id.org/abecto/vocabulary#QualityMeasurement
http://w3id.org/abecto/vocabulary#affectedAspect
http://w3id.org/abecto/vocabulary#affectedVariableName
http://w3id.org/abecto/vocabulary#comparedToDataset
http://w3id.org/abecto/vocabulary#QualityAnnotationBody
http://w3id.org/abecto/vocabulary#affectedValue
http://w3id.org/abecto/vocabulary#comparedToResource
http://w3id.org/abecto/vocabulary#comparedToValue
http://w3id.org/abecto/vocabulary
http://www.w3.org/ns/dqv
http://www.w3.org/2016/05/ldqd
http://purl.org/net/p-plan
http://www.w3.org/ns/prov


av:QualityAnnotationBody

av:Deviation

av:affectedAspect (1..1) :: av:Aspect

av:affectedVariableName (1..1) :: xsd:string

av:affectedValue (1..1) :: rdfs:Resource
av:affectedValue (1..1) :: (⊃ rdfs:Literal)

av:comparedToDataset (1..1) :: dcat:Dataset

av:comparedToResource (1..1) :: rdfs:Resource

av:comparedToValue (1..1) :: rdfs:Resource
av:comparedToValue (1..1) :: (⊃ rdfs:Literal)

oa:hasBody (1..1)

dqv:QualityAnnotation

oa:hasTarget (1..1) :: rdfs:Resource

av:ValueOmission

av:affectedAspect (1..1) :: av:Aspect

av:affectedVariableName (1..1) :: xsd:string

av:comparedToDataset (1..1) :: dcat:Dataset

av:comparedToResource (1..1) :: rdfs:Resource

av:comparedToValue (1..1) :: rdfs:Resource
av:comparedToValue (1..1) :: (⊃ rdfs:Literal)

oa:hasBody (1..1)

av:ResourceOmission

av:affectedAspect (1..1) :: av:Aspect

av:comparedToDataset (1..1) :: dcat:Dataset

av:comparedToResource (1..1) :: rdfs:Resource

oa:hasBody (1..1)

dqv:QualityAnnotation

oa:hasTarget (1..1) :: dcat:Dataset

dqv:QualityAnnotation

oa:hasTarget (1..1) :: rdfs:Resource

av:Issue

av:affectedAspect (1..1) :: av:Aspect

av:affectedVariableName (0..1) :: xsd:string

av:affectedValue (0..1) :: rdfs:Resource
av:affectedValue (0..1) :: (⊃ rdfs:Literal)

av:issueType (1..1) :: xsd:String

rdfs:comment (1..1) :: rdfs:Literal

oa:hasBody (1..1)

dqv:QualityAnnotation

oa:hasTarget (1..1) :: rdfs:Resource

av:WrongValue

av:affectedAspect (1..1) :: av:Aspect

av:affectedVariableName (1..1) :: xsd:string

av:affectedValue (1..1) :: rdfs:Resource
av:affectedValue (1..1) :: (⊃ rdfs:Literal)

oa:hasBody (1..1)

dqv:QualityAnnotation

oa:hasTarget (1..1) :: rdfs:Resource

av:QualityMeasurement

dqv:computedOn (1..1) :: dcat:Dataset

av:affectedAspect (1..1) :: av:Aspect

av:affectedVariableName (0..1) :: xsd:string

av:comparedToDataset (1..n) :: dcat:Dataset

sdmx-attribute:unitMeasure (1..1) :: om:Unit

dqv:value (1..1) :: rdfs:Literal
dqv:isMeasurementOf (1..1)

dqv:QualityMeasurement

dqv:Metric

ldqd:completeness

av:correspondsToResource av:correspondsNotToResource

rdfs:Resource

av:marCompletenessThomas08

av:deduplicatedCount

av:count

av:absoluteCoverage

av:relativeCoverage

rdf:type

dqv:inDimension

Fig. 4. The ABECTO vocabulary for gained quality data and mappings.

4.2.1. Source Processors
Source Processors load RDF data from different sources and store them in the internal triple store for processing.

The File Source Processor (abecto:FileSourceProcessor) loads RDF data from one or multiple locale
files, the URL Source Processor (abecto:UrlSourceProcessor) does the same for remote files. They sup-
port the formats RDF/XML, TriG, N-Quads, Turtle, N-Triples, JSON-LD, SHACL Compact Syntax, TriX, and RDF
Thrift. The format is automatically detected.

The SPARQL Source Processor (abecto:SparqlSourceProcessor) loads RDF data from a SPARQL
endpoint. This makes ABECTO independent of the availability of knowledge graph RDF dumps and may avoid the
handling of large dump files, if only a small part of the data is needed. The resources of interest are defined by a
SPARQL query, a list, or both. The processor partitions the requested resources into chunks and loads all statements
containing resources of the chunk as subject or object. Depending on the given parameters, the other non-predicate
resources of loaded statements will also be loaded until a certain distance. Further parameters enable fine-grained
control of statements to load and for the handling of errors like endpoint time-outs.

4.2.2. Transformation Processors
Transformation processors derive additional primary data from the existing primary data. For example, this en-

ables the derivation of implicit statements or the adjustment of value formatting for the mapping or comparison.
The Forward Rule Reasoning Processor (abecto:ForwardRuleReasoningProcessor) applies forward
rules to derive additional primary data.



The SPARQL Construct Processor (abecto:SparqlConstructProcessor) applies a SPARQL con-
struct query on the primary data of a knowledge graph to derive additional primary data. The query execution will
be repeated until no new statements are produced or a configured maximum number of executions.

4.2.3. Mapping Processors
Mapping Processors provide correspondences and correspondence exclusions between resources of the same as-

pect in the knowledge graphs. In case of contradicting results of consecutively executed mapping processors, the
first takes precedence and contradicting correspondences or correspondence exclusions will be ignored. That way, it
is also possible to provide manual adjustments to the mapping in the ABECTO plan by providing correspondences
or correspondence exclusions in a predefined metadata graph in the configuration. A rule reasoner is used to derive
further implicit correspondences and correspondence exclusions. However, ABECTO is not supposed to be a com-
prehensive mapping tool. It provides a couple of mapping processors to enable simple mapping strategies. For more
sophisticated mapping strategies, dedicated tools for ontology matching or link discovery should be used.

The results of external mapping tools and mappings provided by the investigated knowledge graphs can be
used with the Use Present Mapping Processor (abecto:UsePresentMappingProcessor). Beside that, the
Equivalent Value Mapping Processor (abecto:EquivalentValueMappingProcessor) provides corre-
spondences between resources of one aspect in different knowledge graphs, if they have equivalent values for a
given set of variables, similar to the inferences of an OWL reasoner on inverse functional properties. The Func-
tional Mapping Processor (abecto:FunctionalMappingProcessor) provides correspondences based on
incoming links from resources of another aspect, similar to the inferences of an OWL reasoner on functional prop-
erties. The Jaro-Winkler Mapping Processor (abecto:JaroWinklerMappingProcessor) provides cor-
respondences using the Jaro-Winkler Similarity [25], which is a common choice for label based mappings [20]. For
scalability (R7), we apply our implementation for efficient bounded Jaro-Winkler similarity based search [26].

4.2.4. Comparison Processors
Comparison processors compare the primary data of the knowledge graphs using the correspondences provided by

the mapping processors. They provide annotations on specific values, resources, and knowledge graphs or determine
measurements on the knowledge graphs.

The Population Comparison Processor (abecto:PopulationComparisonProcessor) provides on the
one hand av:ResourceOmission annotations and av:Issue annotations for resource duplicates. On the other
hand, it provides per knowledge graph kx measurements of (a) the count n′x (av:count) and (b) the duplicate-free
count nx (av:deduplicatedCount) of resources of an aspect, (c) the estimated population completeness Ĉx =
nx

N̂
of resources of an aspect determined by a mark and recapture method (av:marCompletenessThomas08)

as proposed by Razniewski et al. [27], (d) the absolute coverage mx,y (av:absoluteCoverage) and (e) the
relative coverage mx,y

ny
(av:relativeCoverage) of resources of an aspect in another knowledge graph ky. For the

estimated population completeness we use the mark and recapture method defined by Thomas [28], which permits
multiple samples of different sample sizes: With T samples of sizes n1, . . . ,nT , and the sum of pairwise overlaps
M = ∑T−1

x=1 ∑T
y=x+1 mx,y, the estimated population size is N̂ = (∑T−1

x=1 ∑T
y=x+1 nxny) 1

M .
In contrast to the original application of mark and recapture methods on animals, duplicates might occur in a

sample during the assessment of knowledge graphs. The population comparison algorithm with duplicate handling
is shown in Figure 5. It starts in line 4 to 9 with the initialization of the pairwise overlaps mx,y for all knowledge
graph pairs, and for each knowledge graph the set of unmatched resources Ux of the aspect a, the resources counts
with duplicates n′x and without duplicates nx. The unmatched resources and the count without duplicates are ini-
tialized with all resources of the aspect in the knowledge graph, including duplicates, and will be reduces during
the following iteration trough all sets of corresponding resources of the aspects in line 10 to 28. For these sets Rc,
the subset per knowledge graph Cx is retrieved and removed from Ux. Based on the size of Cx, it is determined, if
the entity represented by the resources in the set Rc is in a knowledge graph missing (line 15) or present (line 19)
and whether the entity is present multiple times (line 23). Based on that, mx,y and nx are updated accordingly and
duplicates are annotated. Finally, in line 29 to 44, the total pairwise overlap M, the estimated population size N̂,
the estimated completeness measurements Ĉx and the relative coverage measurements mx,y

ny
are calculated and all

measurements, as well as the resource omission annotations are stored.

http://w3id.org/abecto/vocabulary#ResourceOmission
http://w3id.org/abecto/vocabulary#Issue
http://w3id.org/abecto/vocabulary#count
http://w3id.org/abecto/vocabulary#deduplicatedCount
http://w3id.org/abecto/vocabulary#marCompletenessThomas08
http://w3id.org/abecto/vocabulary#absoluteCoverage
http://w3id.org/abecto/vocabulary#relativeCoverage


1 FUNCTION comparePopulation(a, // aspect
2 K = {k1, . . . , kT}, // knowledge graphs
3 C) // sets of corresponding resources
4 FOR x = 1 TO T
5 � FOR y = 1 TO T
6 � � mx,y = 0 // initialise pairwise overlaps
7 � Ux = getResources(a, kx) // init. unmatched resources
8 � n′x = ∣Ux∣ // count with duplicates
9 � nx = ∣Ux∣ // initialise count without duplicates

10 FOREACH Rc IN C // corresponding resources set
11 � FOR x = 1 TO T
12 � � Cx = Ux ∩ Rc // corresponding resources of kx
13 � � Ux = Ux ∖Cx
14 � FOR x = 1 TO T
15 � � IF ∣Cx∣ = 0 // entity not covered by kx
16 � � � FOR y = 1 TO T
17 � � � � FOREACH r IN Cy
18 � � � � � store(av:ResourceOmission, kx, a, ky, r)
19 � � IF ∣Cx∣ > 0 // entity covered by kx
20 � � � FOR y = 1 TO T
21 � � � � IF ∣Cy∣ > 0 // entity covered by ky
22 � � � � � mx,y = mx,y + 1
23 � � IF ∣Cx∣ > 1 // duplicates contained in kx

24 � � � nx = nx − ∣Cx∣ + 1
25 � � � FOREACH r1 IN Cx
26 � � � � FOREACH r2 IN Cx
27 � � � � � IF r1 ≠ r2
28 � � � � � � store(av:Issue, r1, kx, a, , , ky,"Duplicate", r2)
29 M = ∑T−1

x=1 ∑
T
y=x+1 mx,y

30 IF M ≠ 0

31 � N̂ = (∑T−1
x=1 ∑

T
y=x+1 nxny)

1
M // est. population size

32 � FOR x = 1 TO T
33 � � Ĉx =

nx
N̂

// estimated population completeness

34 � � store(av:marCompletenessThomas08, kx, a, ,K ∖ {kx}, Ĉx)
35 FOR x = 1 TO T
36 � store(av:count, kx, a, ,∅, n′x)
37 � store(av:deduplicatedCount, kx, a, ,∅, nx)
38 � FOR y = 1 TO T
39 � � IF x ≠ y
40 � � � store(av:absoluteCoverage, kx, a, ,{ky},mx,y)
41 � � � IF ny ≠ 0

42 � � � � store(av:relativeCoverage, kx, a, ,{ky},
mx,y
ny

)

43 � � � FOREACH r IN Uy
44 � � � � store(av:ResourceOmission, kx, a, ky, r)

Fig. 5. Pseudo code of the population comparison algorithm.

The Property Comparison Processor (abecto:PropertyComparisonProcessor) investigates the
property values of corresponding resources for aspect variables v and provides av:Deviation, av:Issue,
and av:ValuesOmission annotations on them. A property deviation is a case of a pair of corresponding re-
sources with each having a value not present in the other resource. A property omission is a case of a pair of cor-
responding resources with one having a value not present in the other, but not vice versa. Further it measures per
knowledge graph kx (a) the count n′x (av:count), (b) the duplicate-free count nx (av:deduplicatedCount)
and (c) the estimated property completeness Ĉx (av:marCompletenessThomas08) of property values of an
aspect variable, (d) the absolute coverage mx,y (av:absoluteCoverage) and (e) the relative coverage mx,y

ny

(av:relativeCoverage) of property values of an aspect variable in another knowledge graph ky, based on
deduplicated resources and property values. The considered xsd:string and rdf:langString literals can be
restricted to specific languages with a processor parameter. The estimated property completeness measure is based
on the same mark and recapture method [27, 28] as the estimated population completeness measure. However, the
measurement is a bit more complicated due to two additional problems.

In addition to the equivalence of entities, the equivalence of property values must be considered too. The entity
mapping is reused to determine the equivalence of object property values. Data property values are considered equiv-
alent, if they are semantically equivalent, but with the following exceptions to comply with R1: (a) Numeric literals
are additionally considered as equivalent even if they have incompatible datatypes, i.e. pairs out of the three groups
xsd:float, xsd:double and (datatypes derived from) xsd:decimal, if both literals either represent the
same special value (INF, -INF, NaN) or represent equal numbers in the value space, but not necessarily if they have
equal lexical representations [29]. For example, "0.5"ˆˆxsd:decimal and "0.5"ˆˆxsd:float are addi-
tionally considered as equivalent. However, "0.1"ˆˆxsd:decimal and "0.1"ˆˆxsd:float, which actually
represents the number 0.1000000014. . . , are not considered as equivalent. (b) Depending on processor parameters,
temporal values of the types xsd:date and xsd:dateTime might be considered equivalent, if they have equiv-
alent date parts. (c) Depending on the parameters, string values of the type xsd:string or rdf:langString
might be considered equivalent, even if they have equal lexical representations but different language tags.

The pseudo code of the property comparison algorithm for one aspect variable is shown in Figure 6. It starts
in line 5 to 15 with the initialization of the pairwise overlaps mx,y for all knowledge graph pairs, and for each
knowledge graph with the retrieval of resources Rx and property values per resource Vx,r, as well as the measurement
of the resources counts with duplicates n′x and the initialization of the counts without duplicated nx. The values
are deduplicated based on the equivalency of property values described above. Strings with excluded languages are
filtered from the values Vx,r. In an actual implementation, it might be beneficial to not keep all Rx and Vx,r sets in the
memory, but to retrieve them on demand to substantially reduce the memory consumption, which is necessary for

http://w3id.org/abecto/vocabulary#ResourceOmission
http://w3id.org/abecto/vocabulary#Issue
http://w3id.org/abecto/vocabulary#marCompletenessThomas08
http://w3id.org/abecto/vocabulary#count
http://w3id.org/abecto/vocabulary#deduplicatedCount
http://w3id.org/abecto/vocabulary#absoluteCoverage
http://w3id.org/abecto/vocabulary#relativeCoverage
http://w3id.org/abecto/vocabulary#ResourceOmission
http://w3id.org/abecto/vocabulary#Deviation
http://w3id.org/abecto/vocabulary#Issue
http://w3id.org/abecto/vocabulary#ValuesOmission
http://w3id.org/abecto/vocabulary#count
http://w3id.org/abecto/vocabulary#deduplicatedCount
http://w3id.org/abecto/vocabulary#marCompletenessThomas08
http://w3id.org/abecto/vocabulary#absoluteCoverage
http://w3id.org/abecto/vocabulary#relativeCoverage
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#double
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#decimal
http://www.w3.org/2001/XMLSchema#float
http://www.w3.org/2001/XMLSchema#date
http://www.w3.org/2001/XMLSchema#dateTime
http://www.w3.org/2001/XMLSchema#string
http://www.w3.org/1999/02/22-rdf-syntax-ns#langString


1 FUNCTION compareProperties(a, // aspect
2 v, // variable
3 K = {k1, . . . , kT}, // knowledge graphs
4 C) // sets of corresponding resources
5 FOR x = 1 TO T
6 � n′x = 0 // initialise count with duplicates
7 � nx = 0 // initialise count without duplicates
8 � FOR y = x + 1 TO T // only once per pair
9 � � mx,y = 0 // initialise pairwise overlaps

10 � FOREACH r IN getResources(a, kx)
11 � � Rx = getResources(a, kx)

12 � � Vx,r = getValues(a, v, kx, r)
13 � � removeExcluded(Vx,r)

14 � � n′x = n′x + ∣Vx,r ∣

15 � � nx = nx + ∣deduplicated(Vx,r)∣

16 FOREACH Rc IN C
17 � FOR x = 1 TO T
18 � � V+ = [] // init. values list (with duplicates)
19 � � FOREACH r IN Rc

20 � � � V+ = V+ + deduplicated(Vx,r) // append to list
21 � � � removeKnownWrongValues(a, v, kx, r,Vx,r)

22 � � nx = nx − (∣V+∣ − ∣deduplicated(V+)∣)
23 � // compare values
24 � FOR x = 1 TO T − 1
25 � � FOR y = x + 1 TO T // only once per pair
26 � � � // create common value-resource look-up
27 � � � Vunique = ∅

28 � � � FOREACH r IN Rc

29 � � � � FOREACH vnext IN Vx,r ∪ Vy,r // next value to map
30 � � � � � FOREACH vmapped IN Vunique

31 � � � � � � IF equivalentValue(vmapped, vnext)
32 � � � � � � � Rvmapped = Rvmapped ∪ {r}
33 � � � � � � � // equiv. values point to one set
34 � � � � � � � Rvnext ↦ Rvmapped
35 � � � � � � � BREAK // continue with next value
36 � � � � � Rvnext = {r}
37 � � � � � Vunique = Vunique ∪ {vnext}
38 � � � FOREACH vunique IN Vunique

39 � � � � IF Rvunique ∪ Rx ≠ ∅ AND Rvunique ∪ Ry ≠ ∅

40 � � � � � mx,y = mx,y + 1
41 � � � FOREACH rx IN Rc

∩ Rx // resources from kx
42 � � � � FOREACH ry IN Rc

∩ Ry // resources from ky
43 � � � � � Ux = ∅ // init. unmateched values from rx
44 � � � � � Uy = ∅ // init. unmateched values from ry
45 � � � � � FOREACH vx IN Vx,rx
46 � � � � � � IF ry ∉ Rvx
47 � � � � � � � Ux = Ux ∪ {vx}

48 � � � � � FOREACH vy IN Vy,ry

49 � � � � � � IF rx ∉ Rvy

50 � � � � � � � Uy = Uy ∪ {vy}

51 � � � � � IF Ux = ∅
52 � � � � � � FOREACH uy IN Uy
53 � � � � � � � store(av:ValueOmission, kx, rx, a, v, ky, ry, uy)
54 � � � � � ELSE IF Uy = ∅
55 � � � � � � FOREACH ux IN Ux
56 � � � � � � � store(av:ValueOmission, ky, ry, a, v, kx, rx, ux)
57 � � � � � ELSE
58 � � � � � � FOREACH ux IN Ux
59 � � � � � � � FOREACH uy IN Uy
60 � � � � � � � � store(av:Deviation, kx, rx, ux, a, v, ky, ry, uy)
61 � � � � � � � � store(av:Deviation, ky, ry, uy, a, v, kx, rx, ux)

62 M = ∑T−1
x=1 ∑

T
y=x+1 mx,y

63 IF M ≠ 0

64 � N̂ = (∑T−1
x=1 ∑

T
y=x+1 nxny)

1
M // est. population size

65 � FOR x = 1 TO T
66 � � Ĉx =

nx
N̂

// estimated property completeness

67 � � store(av:marCompletenessThomas08, kx, a, v,K ∖ {kx}, Ĉx)
68 FOR x = 1 TO T
69 � store(av:count, kx, a, v,∅, n′x)
70 � store(av:deduplicatedCount, kx, a, v,∅, nx)
71 � FOR y = x + 1 TO T // only once per pair
72 � � store(av:absoluteCoverage, kx, a, v,{ky},mx,y)
73 � � store(av:absoluteCoverage, ky, a, v,{kx},mx,y)
74 � � IF ny ≠ 0

75 � � � store(av:relativeCoverage, kx, a, v,{ky},
mx,y
ny

)

76 � � IF nx ≠ 0

77 � � � store(av:relativeCoverage, ky, a, v,{kx},
mx,y
nx

)

Fig. 6. Pseudo code of the property comparison algorithm.

the algorithms scalability (R7). The actual comparison is done during an iteration trough all sets of corresponding
resources of the aspects in line 16 to 61. First, the algorithm adjusts the deduplicated count nx by subtracting
duplicated property values across duplicated resources in one knowledge graph (line 22). Simultaneously, it skips
values already annotated with a av:WrongValue annotation, complying to R3 (line 21). Next, it iterates over all
pairs of knowledge graphs to (1) create a common value-resource look-up and a common set of non-equal property
values of resources in the property set Vunique in line 27 to 37, and then (2) update in line 40 the pairwise overlap mx,y

based on the value-resource look-up and Vunique. After that, (3) the algorithm iterates over all pairs of corresponding
resources of both knowledge graphs to determine unmatched property values Ux,Uy, and (4) determine omissions
and deviations based on Ux,Uy: If no value remains for only one resource (line 51 or 54), a av:ValuesOmission
is stored for this resource and each remaining value of the other resource. If at least one value remained for each
resource (line 57), a av:Deviation annotate is stored for each pair of the remaining values. Finally, in line 62
to 77, the total pairwise overlap M, the estimated population size N̂, the estimated completeness measurements Ĉx

and the relative coverage measurements mx,y

ny
are calculated and all measurements are stored.

5. Workflow

To monitor the quality of a knowledge graph, ABECTO should be used in an incremental workflow, because the
re-execution of ABECTO after an improvement of the monitored knowledge graph or the ABECTO plan might
reveal new problems that have been hidden by the fixed problem. This workflow can be aligned to different iterative
development processes and consists of four steps:

http://w3id.org/abecto/vocabulary#ValueOmission
http://w3id.org/abecto/vocabulary#ValueOmission
http://w3id.org/abecto/vocabulary#Deviation
http://w3id.org/abecto/vocabulary#Deviation
http://w3id.org/abecto/vocabulary#marCompletenessThomas08
http://w3id.org/abecto/vocabulary#count
http://w3id.org/abecto/vocabulary#deduplicatedCount
http://w3id.org/abecto/vocabulary#absoluteCoverage
http://w3id.org/abecto/vocabulary#absoluteCoverage
http://w3id.org/abecto/vocabulary#relativeCoverage
http://w3id.org/abecto/vocabulary#relativeCoverage
http://w3id.org/abecto/vocabulary#WrongValue
http://w3id.org/abecto/vocabulary#ValuesOmission
http://w3id.org/abecto/vocabulary#Deviation


Load Wikidata
SparqlSourceProcessor

Load QUDT2
UrlSourceProcessor

OM2 Conversions Closure
SparqlConstructProcessor

Present Correspondences
UsePresentMappingProcessor

Assess Completeness
PopulationComparisonProcessor

Unit Comparison
PropertyComparisonProcessor

Unit Mapping using UCUM
EquivalentValueMappingProcessor

Quantity Kind Mapping Using Labels
JaroWinklerMappingProcessor

Load OM2
UrlSourceProcessor

Load SWEET3
UrlSourceProcessor

SWEET3 Conversions
Closure

SparqlConstructProcessor

Manual Correspondences
Graph

Quantity Kind Comparison
PropertyComparisonProcessor

Fig. 7. The ABECTO pipeline for the comparison of measurement units data.

The Plan Execution step executes ABECTO and provides the necessary data for the next steps. Ideally, this step
is triggered automatically, e.g. as part of a continuous integration pipeline that is executed after each commit into a
version control repository, to provide reports based on each version of an RDF file and immediately warn on new
problem. After this step, all reports are available for analysis.

During the Result Analysis a maintainer of the monitored knowledge graph uses the reports to check whether it
is necessary to correct or add values in the monitored knowledge graph or to adapt the ABECTO plan. A deviation
makes it necessary to perform at least on of the following actions: (a) change a wrong value or add a missing value in
the monitored knowledge graph to resolve the deviation, (b) add a wrong value annotation for a compared knowledge
graph into the ABECTO plan to suppress the future appearance of the deviation in the reports, (c) propose to change
a wrong value or to add a missing value in a compared knowledge graph to resolve the deviation, (d) manually
adjust the mapping in the ABECTO plan to avoid the future appearance of a deviation between not corresponding
resources, or (e) correct values that are relevant for the mapping in the monitored knowledge graph to correct it and
to avoid the future appearance of a deviation between not corresponding resources.

In the Knowledge Graph Refinement phase and the Plan Refinements phase, necessary changes identified in
the Result Analysis step on the monitored knowledge graph and the ABECTO plan have to be performed.

6. Use Case Applications

To demonstrate the usefulness of ABECTO, we present two comparison projects that use ABECTO:

6.1. Comparison of Units of Measurement Data from Four Knowledge Graphs

In the first comparison project [30], we compared units of measurement related data from four knowledge graphs,
which are indispensable for FAIR and digital data in science, engineering and beyond. Ongoing activities in the
meteorological community, as the CODATA Task Group on Digital Representation of Units of Measurement20, a
CGPM 2022 resolution “On the global digital transformation and the International System of Units”21, and the re-
sulting CIPM Task Group on the SI Digital Framework22, which all aim for an FAIR compliant and machine action-
able encoding of units, documents the demand for high-quality representations of units. We investigate the state-
of-the-art measurement units representations OM 223, QUDT 224, as well as the according subsets of SWEET 325

and Wikidata, loaded via RDF files or SPARQL endpoint. The comparison covers the aspects units of measurement
and quantity kind including conversion factors and dimension vectors. We used the UCUM26 code, as well as cor-

20https://codata.org/initiatives/task-groups/drum/
21https://www.bipm.org/en/cgpm-2022/resolution-2
22https://www.bipm.org/en/committees/ci/cipm/wg/cipm-tg-dsi
23https://github.com/HajoRijgersberg/OM
24https://qudt.org
25https://github.com/ESIPFed/sweet
26https://ucum.org

https://codata.org/initiatives/task-groups/drum/
https://www.bipm.org/en/cgpm-2022/resolution-2
https://www.bipm.org/en/committees/ci/cipm/wg/cipm-tg-dsi
https://github.com/HajoRijgersberg/OM
https://qudt.org
https://github.com/ESIPFed/sweet
https://ucum.org


Table 1
The count and deduplicated count of unit resources, their coverage of resources in other knowledge graphs and the estimated completeness per
knowledge graph compared to all other knowledge graphs, as well as the count, deduplicated count and completeness of quantity kind resources.

Units Quantity Kinds
Knowledge Count Dedup. Covered in est. Com- Count Dedup. est. Com-

Graph Count OM QUDT SWEET Wikidata pleteness Count pleteness

OM 1444 1429 - 432 (27%) 87 (64%) 916 (15%) 14% 116 108 5%

QUDT 1619 1578 432 ( 3%) - 96 (71%) 483 ( 8%) 15% 424 397 19%

SWEET 140 136 87 ( 6%) 96 ( 6%) - 74 ( 1%) 1% - - -
Wikidata 6014 6009 916 (64%) 483 (31%) 74 (54%) - 58% 1897 1831 87%

Load DBpedia
SparqlSourceProcessor

Load Wikidata
SparqlSourceProcessor

Wikidata Wikipedia URLs
HTTPS -> HTTP

SparqlConstructProcessor

Mapping Astronaut by
Wikipedia URL

EquivalentValueMappingProcessor

Astronaut Population Comparison
PopulationComparisonProcessor

Astronaut Property Comparison
PropertyComparisonProcessor

Mapping Space Missions by
Wikipedia URL

EquivalentValueMappingProcessor

Space Mission Population
Comparison

PopulationComparisonProcessor

Space Mission Property Comparison
PropertyComparisonProcessor

Mapping Spacecrafts by
Wikipedia URL

EquivalentValueMappingProcessor

Spacecraft Population Comparison
PopulationComparisonProcessor

Spacecraft Property Comparison
PropertyComparisonProcessor

Fig. 8. The ABECTO pipeline for the comparison of space travel data in Wikidata and DBpedia.

respondences stated in the knowledge graphs to map the units. The quantity kinds were mapped using Jaro-Winkler
Similarity of the labels. The mappings were supplemented by several manual adjustments. We compared the units
regarding their symbol, associated quantity kind, and conversion values and the quantity kinds regarding their sym-
bol and dimension vector. Further, we computed completeness measures for both aspects. The measurement results
for resource count and completeness are shown in Table 1. It is important to note that Wikidata also features a large
amount of historical units of measurement, which are out of scope of the other knowledge graphs.

The comparison revealed more then 600 deviations, which point to potential errors in the knowledge graphs,
including more then 300 deviations related to conversion factors and offsets. The maintainers of OM, QUDT and
SWEET were notified about the comparison results and for a portion of the deviations, we have proposed changes
to the knowledge graphs. In Wikidata, we directly corrected a couple of errors revealed by the deviations. That way,
the comparison already caused several improvements27 of the knowledge graphs and enables further improvements.
The comparison project has been taken over as continuous integration task in the OM repository.

6.2. Comparison of Space Travel Data in Wikidata and DBpedia

In the second comparison project [31], we compared the data about space travel related resources. With this
project, we aim to support the development end establishment of the Wikidata Mismatch Finder in the Wikidata
community. The comparison covers the aspects astronauts, spacecrafts and space missions. The data origin from
Wikidata and DBpedia and are loaded in both cases from the respective SPARQL endpoint. We used the URLs of
the related Wikipedia articles to map the resources of all aspects. The mapped astronauts were compared regarding
their birth date, death date, labels, and time in space. For spacecrafts, we compared the COSPAR ID (an identifier
for artificial objects in space), crew members, labels, landing date, launch date, and the “Satellite Catalog Number”
(another identifier for artificial objects in space). Space missions were compared regarding their duration, inclina-
tion, labels, landing date, landing site, launch date, launch site, launch vehicle, mass, members, next mission, num-
ber of orbits, previous mission, and vehicle. Further, we also computed the population of for all aspects to get the
number of resources per aspect and their coverage, as shown in Table 2. Every Wikipedia article is associated with

27OM: https://github.com/HajoRijgersberg/OM/issues?q=abecto, QUDT: https://github.com/qudt/qudt-public-repo/issues?q=abecto,
SWEET: https://github.com/ESIPFed/sweet/issues?q=abecto, Wikidata: https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_
Edits#Based_on_the_Comparison_of_Unit_Ontologies

https://github.com/HajoRijgersberg/OM/issues?q=abecto
https://github.com/qudt/qudt-public-repo/issues?q=abecto
https://github.com/ESIPFed/sweet/issues?q=abecto
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies
https://www.wikidata.org/wiki/User:Jmkeil/ABECTO_Provoked_Edits#Based_on_the_Comparison_of_Unit_Ontologies


Table 2
The count of astronaut, spacecraft and space mission resources per knowledge graph and the coverage of resources in the other knowledge graph.

Astronauts Spacecraft Space Missions
Knowledge Count Covered in Count Covered in Count Covered in

Graph other KG other KG other KG

DBpedia 738 629 (77%) 4716 1361 (18%) 3436 610 (68%)
Wikidata 819 629 (85%) 7601 1361 (29%) 901 610 (18%)

one Wikidata resource (but not vice versa) and every DBpedia resource is based on at least one Wikipedia article.
Therefore, the completeness measure is not meaningful and is skipped from the table. The deduplicated count is
skipped, as duplicates can not be identified due to the mapping strategy.

The comparison revealed more then 800 deviations between Wikidata and DBpedia resources regarding their birth
and death date, COSPAR IDs, crew members, duration, label, launch and landing date, Satellite Catalog Number and
time in space properties. In particular, it revealed many errors in dates. As values in DBpedia origin from Wikipedia,
this also points to errors in the English Wikipedia. As far as they were already representable in the according format,
the results are regularly28 provided to the Wikidata Mismatch Finder.

7. Conclusion

We presented ABECTO, the first generic tool for the comparison of knowledge graphs to assess their accuracy and
completeness. It provides a pipeline based framework for the comparison of multiple knowledge graphs. ABECTO
does not depend on the existence of a gold standard. Thereby, we overcome a more then 20 years old problem
in the field of ontology engineering. Design decisions were led by requirements identified in earlier knowledge
graph comparison projects. Thus, ABECTO is suited for the comparison of a wide range of knowledge graphs, the
integration into automated processes, and is interoperable with other tools.

In two comparison projects, we demonstrated the usefulness of ABECTO for improving real world knowledge
graphs. ABECTO can be used by knowledge graph curators to keep track on the accuracy and completeness of facts.
The capability to use ABECTO in continuous integration processes allows knowledge graph curators to regularly
and automatically compare their knowledge graph with other knowledge graphs. That way, it provides a novel
opportunity to strengthen the reliability of a knowledge graph. Further, ABECTO empowers users of knowledge
graphs to easily compare available knowledge graphs. They will no longer have to blindly trust the represented facts
or to perform a tedious manual review of axioms: The framework highlights questionable facts. Thus, users will be
able to take a better educated decision on the selection of knowledge graphs.

Acknowledgements

Many thanks to Alsayed Algergawy, Franziska Zander, Samira Babalou and the author’s supervisor Birgitta
König-Ries, as well as the reviewer Edgard Marx and two anonymous reviewers for very helpful comments on
earlier drafts of this manuscript.

References

[1] J.M. Keil and S. Schindler, Comparison and evaluation of ontologies for units of measurement, Semantic Web 10(1) (2019), 33–51. doi:10.
3233/SW-180310.

[2] RDF Data Shapes Working Group, Shapes Constraint Language (SHACL), H. Knublauch and D. Kontokostas, eds, 2017. https://www.w3.
org/TR/2017/REC-shacl-20170720/.

28https://mismatch-finder.toolforge.org/store/imports

https://doi.org/10.3233/SW-180310
https://doi.org/10.3233/SW-180310
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://mismatch-finder.toolforge.org/store/imports


[3] M. Poveda-Villalón, A. Gómez-Pérez and M.C. Suárez-Figueroa, OOPS! (OntOlogy Pitfall Scanner!): An On-line Tool for Ontology
Evaluation, International Journal on Semantic Web and Information Systems 10(2) (2014), 7–34. doi:10.4018/ijswis.2014040102.

[4] M. Färber, F. Bartscherer, C. Menne and A. Rettinger, Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO, Semantic
Web 9(1) (2018), 77–129. doi:10.3233/SW-170275.

[5] J.M. Keil, Ontology ABox Comparison, in: The Semantic Web: ESWC 2018 Satellite Events, A. Gangemi, A.L. Gentile, A.G. Nuzzolese,
S. Rudolph, M. Maleshkova, H. Paulheim, J.Z. Pan and M. Alam, eds, Lecture Notes in Computer Science, Vol. 11155, Springer, 2018,
pp. 240–250. ISBN 978-3-319-98191-8. doi:10.1007/978-3-319-98192-5_43.

[6] J.M. Keil, ABECTO: An ABox Evaluation and Comparison Tool for Ontologies, in: The Semantic Web: ESWC 2020 Satellite Events,
A. Harth, V. Presutti, R. Troncy, M. Acosta, A. Polleres, J.D. Fernández, J.X. Parreira, O. Hartig, K. Hose and M. Cochez, eds, Lecture
Notes in Computer Science, Vol. 12124, Springer, 2020. ISBN 978-3-030-62326-5. doi:10.1007/978-3-030-62327-2_24.

[7] J.M. Keil, ABox Evaluation and Comparison Tool for Ontologies (ABECTO) v2.1.0, Zenodo, 2023. doi:10.5281/zenodo.7840767.
[8] R.Y. Wang and D.M. Strong, Beyond Accuracy: What Data Quality Means to Data Consumers, J. Manag. Inf. Syst. 12(4) (1996), 5–33.

doi:10.1080/07421222.1996.11518099.
[9] I.J.S.. Software and systems engineering, ISO/IEC 25012:2008 Software engineering — Software product Quality Requirements and Eval-

uation (SQuaRE) — Data quality model, Technical Report, ISO/IEC, 2008. https://www.iso.org/standard/35736.html.
[10] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer, Quality assessment for Linked Data: A Survey, Semantic Web 7(1)

(2016), 63–93. doi:10.3233/SW-150175.
[11] D. on the Web Best Practices Working Group, Data on the Web Best Practices: Data Quality Vocabulary, A.I. Riccardo Albertoni, ed.,

2016. https://www.w3.org/TR/2016/NOTE-vocab-dqv-20161215/.
[12] F. Radulovic, N. Mihindukulasooriya, R. García-Castro and A. Gómez-Pérez, A comprehensive quality model for Linked Data, Semantic

Web 9(1) (2018), 3–24. doi:10.3233/SW-170267.
[13] J. Debattista, C. Lange, S. Auer and D. Cortis, Evaluating the quality of the LOD cloud: An empirical investigation, Semantic Web 9(6)

(2018), 859–901. doi:10.3233/sw-180306.
[14] M. Rashid, M. Torchiano, G. Rizzo, N. Mihindukulasooriya and O. Corcho, A quality assessment approach for evolving knowledge bases,

Semantic Web 10(2) (2019), 349–383. doi:10.3233/sw-180324.
[15] S. Issa, O. Adekunle, F. Hamdi, S.S. Cherfi, M. Dumontier and A. Zaveri, Knowledge Graph Completeness: A Systematic Literature

Review, IEEE Access 9 (2021), 31322–31339. doi:10.1109/ACCESS.2021.3056622.
[16] P.R.S. Visser and T.J.M. Bench-Capon, A Comparison of Four Ontologies for the Design of Legal Knowledge Systems, Artif. Intell. Law

6(1) (1998), 27–57. doi:10.1023/A:1008251913710.
[17] A. Angjeli, A.M. Ewan and V. Boulet, ISNI and VIAF – Transforming ways of trustfully consolidating identities, 2014. http://library.ifla.

org/id/eprint/985/.
[18] C. Bianchini, S. Bargioni and C.C. Pellizzari di San Girolamo, Beyond VIAF, Information Technology and Libraries 40(2) (2021). doi:10.

6017/ital.v40i2.12959.
[19] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov, Silk - A Link Discovery Framework for the Web of Data, in: LDOW, 2009. http://ceur-ws.

org/Vol-538/ldow2009_paper13.pdf.
[20] A.-C.N. Ngomo, M.A. Sherif, K. Georgala, M.M. Hassan, K. Dreßler, K. Lyko, D. Obraczka and T. Soru, LIMES: A Framework for Link

Discovery on the Semantic Web, KI - Künstliche Intelligenz 35(3–4) (2021), 413–423. doi:10.1007/s13218-021-00713-x.
[21] A.-C.N. Ngomo, M.A. Sherif and K. Lyko, Unsupervised Link Discovery through Knowledge Base Repair, in: Lecture Notes in Computer

Science, Springer International Publishing, 2014, pp. 380–394. doi:10.1007/978-3-319-07443-6_26.
[22] M. Hofer, D. Obraczka, A. Saeedi, H. Köpcke and E. Rahm, Construction of Knowledge Graphs: State and Challenges, arXiv, 2023.

doi:10.48550/ARXIV.2302.11509.
[23] R. Cyganiak, D. Wood and M. Lanthaler (eds), RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/2014/

REC-rdf11-concepts-20140225/.
[24] RDF 1.1 Working Group, RDF 1.1: On Semantics of RDF Datasets, A. Zimmermann, ed., 2014. https://www.w3.org/TR/2014/

NOTE-rdf11-datasets-20140225/.
[25] W.E. Winkler, String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage, in: Proceedings

of the Section on Survey Research, American Statistical Association, 1990, pp. 354–359. http://eric.ed.gov/?id=ED325505.
[26] J.M. Keil, Efficient Bounded Jaro-Winkler Similarity Based Search, in: BTW 2019, T. Grust, F. Naumann, A. Böhm, W. Lehner, T. Härder,

E. Rahm, A. Heuer, M. Klettke and H. Meyer, eds, Gesellschaft für Informatik, Bonn, 2019, pp. 205–214. doi:10.18420/btw2019-13.
[27] S. Razniewski, F.M. Suchanek and W. Nutt, But What Do We Actually Know?, in: Proceedings of the 5th Workshop on Automated Knowl-

edge Base Construction, AKBC@NAACL-HLT 2016, J. Pujara, T. Rocktäschel, D. Chen and S. Singh, eds, The Association for Computer
Linguistics, 2016, pp. 40–44. ISBN 978-1-941643-53-2. doi:10.18653/v1/W16-1308.

[28] P. Thomas, Generalising multiple capture-recapture to non-uniform sample sizes, in: Proceedings of the 31st Annual International ACM SI-
GIR Conference on Research and Development in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, S. Myaeng, D.W. Oard,
F. Sebastiani, T. Chua and M. Leong, eds, ACM, 2008, pp. 839–840. ISBN 978-1-60558-164-4. doi:10.1145/1390334.1390531.

[29] J.M. Keil and M. Gänßinger, The Problem with XSD Binary Floating Point Datatypes in RDF, in: The Semantic Web: ESWC 2022, P. Groth,
M. Vidal, F.M. Suchanek, P.A. Szekely, P. Kapanipathi, C. Pesquita, H. Skaf-Molli and M. Tamper, eds, Lecture Notes in Computer Science,
Vol. 13261, Springer, 2022, pp. 165–182. doi:10.1007/978-3-031-06981-9_10.

[30] J.M. Keil, Units of Measurement Data Comparison with ABECTO, Zenodo, 2023. doi:10.5281/zenodo.7843835.
[31] J.M. Keil, Wikidata and DBpedia Space Travel Data Comparison with ABECTO, Zenodo, 2023. doi:10.5281/zenodo.7843823.

https://doi.org/10.4018/ijswis.2014040102
https://doi.org/10.3233/SW-170275
https://doi.org/10.1007/978-3-319-98192-5_43
https://doi.org/10.1007/978-3-030-62327-2_24
https://doi.org/10.5281/zenodo.7840767
https://doi.org/10.1080/07421222.1996.11518099
https://www.iso.org/standard/35736.html
https://doi.org/10.3233/SW-150175
https://www.w3.org/TR/2016/NOTE-vocab-dqv-20161215/
https://doi.org/10.3233/SW-170267
https://doi.org/10.3233/sw-180306
https://doi.org/10.3233/sw-180324
https://doi.org/10.1109/ACCESS.2021.3056622
https://doi.org/10.1023/A:1008251913710
http://library.ifla.org/id/eprint/985/
http://library.ifla.org/id/eprint/985/
https://doi.org/10.6017/ital.v40i2.12959
https://doi.org/10.6017/ital.v40i2.12959
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
https://doi.org/10.1007/s13218-021-00713-x
https://doi.org/10.1007/978-3-319-07443-6_26
https://doi.org/10.48550/ARXIV.2302.11509
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-datasets-20140225/
http://eric.ed.gov/?id=ED325505
https://doi.org/10.18420/btw2019-13
https://doi.org/10.18653/v1/W16-1308
https://doi.org/10.1145/1390334.1390531
https://doi.org/10.1007/978-3-031-06981-9_10
https://doi.org/10.5281/zenodo.7843835
https://doi.org/10.5281/zenodo.7843823

	Introduction
	Related Work
	Assessment of Accuracy and Completeness
	Relation of Knowledge Graph Comparison to Link Discovery

	Requirements
	The ABox Evaluation and Comparison Tool for Ontologies (ABECTO)
	The ABECTO Vocabulary
	Processors in ABECTO
	Source Processors
	Transformation Processors
	Mapping Processors
	Comparison Processors


	Workflow
	Use Case Applications
	Comparison of Units of Measurement Data from Four Knowledge Graphs
	Comparison of Space Travel Data in Wikidata and DBpedia

	Conclusion
	Acknowledgements
	References

