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Abstract. The explosion of the web and the abundance of linked data demand effective and efficient methods for storage,
management, and querying. Apache Spark is one of the most widely used engines for big data processing, with more and more
systems adopting it for efficient query answering. Existing approaches exploiting Spark for querying RDF data, adopt partitioning
techniques for reducing the data that need to be accessed in order to improve efficiency. However, simplistic data partitioning
fails, on one hand, to minimize data access and on the other hand to group data usually queried together. This is translated into
limited improvement in terms of efficiency in query answering. In this paper, we present DIAERESIS, a novel platform that
accepts as input an RDF dataset and effectively partitions it, minimizing data access and improving query answering efficiency.
To achieve this, DIAERESIS first identifies the top-k most important schema nodes, i.e., the most important classes, as centroids
and distributes the other schema nodes to the centroid they mostly depend on. Then, it allocates the corresponding instance nodes
to the schema nodes they are instantiated under. Our algorithm enables fine-tuning of data distribution, significantly reducing
data access for query answering. We experimentally evaluate our approach using both synthetic and real workloads, strictly
dominating existing state-of-the-art, showing that we improve query answering in several cases by orders of magnitude.

Keywords: RDF, data partitioning, Spark, query answering

1. Introduction

The prevalence of Linked Open Data, and the explosion of available information on the Web, have led to an
enormous amount of widely available RDF datasets [8]. To store, manage and query these ever increasing RDF data,
many RDF stores and SPARQL engines have been developed [3] whereas in many cases other non RDF specific big
data infrastructures have been leveraged for query processing on RDF knowledge graphs. Apache Spark is a big-data
management engine, with an ever increasing interest in using it for efficient query answering over RDF data [2].
The platform uses in-memory data structures that can be used to store RDF data, offering increased efficiency, and
enabling effective, distributed query answering.

The problem. The data layout plays an important role for efficient query answering in a distributed environment.
The obvious way of using Spark for RDF query answering is to store all triples as a single large file in HDFS, loaded
at query answering in the main memory search for the corresponding answers. However, using this approach, query
answering usually needs to access a large volume of data for retrieving the required information. This results in poor
query answering performance.
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The elusive solution: simplified horizontal and vertical partitioning. As this problem has already been recog-
nized by the research community, many approaches have responded, by offering solutions that partition data, trying
to minimize data access when answering SPARQL queries [2]. To achieve this, most of the Spark-based RDF query
answering approaches exploit simplistic horizontal and/or vertical partitioning of triples (e.g. hashing triples based
on their subject, creating a partition for every predicate, precomputing and storing one join step). The idea behind
all those approaches is that they try to minimize data access and to collocate data that are usually queried together.
However, although the aforementioned partitioning techniques are successful in optimizing fragments or certain
categories of SPARQL queries, they fail to have a wider impact on all query categories, resulting in poor overall
performance improvement for query answering.

Our solution. To address these problems, we introduce DIAERESIS, showing how to effectively partition data,
balancing data distribution among partitions and reducing the size of the data accessed for query answering and thus,
drastically improve query answering efficiency. The core idea is to identify important schema nodes as centroids,
then to distribute the other nodes to the centroid that they mostly depend on, and, finally, assign the instance nodes
to the corresponding schema nodes. Finally, a vertical sub-partinioning step further minimizes the accessed data
during query answering.

More specifically our contributions are the following:
– We introduce DIAERESIS, a novel platform that accepts as input an RDF dataset, and effectively partitions

data, by significantly reducing data access during query answering.
– We view an RDF dataset as two distinct and interconnected graphs, i.e. the schema and the instance graph.

Since query formulation is usually based on the schema, we primarily generate partitions based on schema.
To do so, we first select the top-k most important schema nodes as centroids and assign the rest of the schema
nodes to the centroid they mostly depend on. Then, individuals are instantiated under the corresponding
schema nodes producing the final dataset partitions.

– To identify the most important nodes, we use the notion of betweenness as it has been shown to effectively
identify the most frequently queried nodes [22], adapting it to consider the individual characteristics of the
RDF dataset as well. Then, to assign the rest of the schema nodes to a centroid, we define the notion of
dependence. Using dependence, we assign each schema node to the partition with the maximum dependence
between that node and the corresponding partition’s centroid. In addition, the algorithm tries to balance the
distribution of data in the available partitions. This method in essence tries to put together the nodes that are
usually queried together, while maintaining a balanced data distribution.

– Based on the aforementioned partitioning method, we implement a vertical sub-partitioning scheme further
splitting instances in the partition into vertical partitions - one for each predicate, further reducing data access
for query answering. An indexing scheme on top ensures quick identification of the location of the queried
data.

– Then, we provide a query execution module, that accepts a SPARQL query and exploits the generated indexes
along with data statistics for query formulation and optimization.

– Finally, we perform an extensive evaluation using both synthetic and real workloads, showing that our method
strictly outperforms existing approaches in terms of efficiency for query answering and size of data loaded
for answering these queries. In several cases, we improve query answering by orders of magnitude when
compared to competing methods.

Overall in this paper we present a new partitioning technique for SPARK, which has been designed specifically
for improving query answering efficiency by reducing data visited at query answering. We experimentally show
that indeed our approach leads to superior query answering performance. The remaining of this paper is structured
as follows: In Section 2, we elaborate on preliminaries, and in Section 3, we present related work. We define the
metrics used for partitioning in Section 4. In Section 5 we describe our methodology for partitioning and query
answering. Section 6 presents our experimental evaluation, and finally Section 7 concludes the paper.
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2. Preliminaries

2.1. RDF & RDF Schema

In this work, we focus on datasets expressed in RDF, as RDF is among the widely-used standards for publishing
and representing data on the Web. Those datasets are based on triples of the form of (s p o), which record that
sub ject s is related to ob ject o via property p. Formally, representation of RDF data is based on three disjoint and
infinite sets of resources, namely: URIs (U), literals (L) and blank nodes (B). A key concept for RDF is that of URIs
or Unique Resource Identifiers; these can be used in either of the s, p and o positions to uniquely refer to some
entity, relationship, or concept. Literals (constants) are also allowed in the o position. Blank nodes in RDF allow
representing a form of incomplete information for unknown constants or URIs. As such, a triple is a tuple (s p o)
from (U ∪ B)× U × (U ∪ L ∪ B).

In order to impose typing on resources, we consider three disjoint sets of resources: classes (C ⊆ U ∪ B),
properties (P ⊆ U), and individuals (I ⊆ U∪B). The set C includes all classes and the set P includes all properties.
The set I includes all individuals. Additionally, RDF datasets have attached semantics through RDFS. RDFS is the
accompanying W3C proposal of a schema language for RDF. It is used to describe classes and relationships between
classes (such as inheritance). Further, it allows specifying properties, and relationships that may hold between pairs
of properties, or between a class and a property. RDFS statements are also represented by triples.

An RDF graph can be represented as a labeled directed graph. Given a set A of labels, we denote by G = (V, E)
an A-edge labeled directed graph whose vertices are V , and whose edges are E ⊆ V × A × V . In the graph nodes
represent subjects or objects and labeled directed edges represent properties.

In this work, we separate between the schema and the instances of an RDF dataset, represented in separate
graphs (GS and GI , respectively). The schema graph contains all triples of the RDF Schema, which consists of all
classes and the properties the classes are associated with (via the properties domain/range specification); multiple
domains/ranges per property are allowed, by having the property URI be a label on the edge, via a labeling function
λ, rather than the edge itself. The instance graph contains all individuals, and the instantiations of schema properties;
the labeling function λ applies here as well for the same reasons. In addition, to state that a resource r is of a type τ,
a triple of the form "r rdf:type τ" is used. Since this triple is about the resource r (not about the class τ), it is viewed
as a data triple.

Formally:

Definition 1. (RDF dataset) An RDF dataset is a tuple V =< GS ,GI , λ, τc >, where:
– The schema graph GS is a labeled directed graph GS = (VS , ES ) such that VS , ES are the nodes and edges

of GS , respectively, and VS ⊆ C ∪ L.
– The instance graph GI is a labeled directed graph GI = (VI , EI) such that VI , EI are the nodes and edges of

GI , respectively, and VI ⊆ I ∪ L.
– A labeling function λ : ES ∪ EI 7→ 2P determines the property URI that each edge corresponds to (properties

with multiple domains/ranges may appear in more than one edge).
– A function τc : I 7→ 2C associating each individual with the classes that it is instantiated under.

Next, we denote as p(ν1, ν2), an edge e ∈ ES in GS (where ν1, ν2 ∈ VS ), or in GI (where ν1, ν2 ∈ VI), from node
ν1 to node ν2 such that λ(e) = p.

Definition 2. (Schema and Instance Node) Given an RDF dataset V =< GS ,GI , λ, τc >, GS = (VS , ES ), GI =
(VI , EI) we call schema node a node ν ∈ VS , and instance node a node u ∈ I ∩ VI .

Moreover, we use |ν|, where ν ∈ C ∩ VS , to denote the number of instances that belong to the class node ν in the
dataset. Next, we define a path in VS .

Definition 3. (Path) A path from ν1 ∈ VS to ν2 ∈ VS , i.e. path(ν1, ν2), is the finite sequence of edges, which
connect a sequence of nodes, starting from the node ν1 and ending in the node ν2.
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Moreover, we denote with |path(ν1, ν2)| the length of the path, i.e., the number of edges in it. In our approach,
we consider all instance triples of the RDF dataset to be fully described by the schema graph. Similarly to other
works in the area [7], if a dataset is not fully described by the schema graph, we use a schema discovery tool to
infer it. Specifically, in our case, we use Hint [17], our state-of-the-art schema discovery tool, exploiting LSH and
clustering techniques for efficiently and effectively discovering the corresponding schema graph.

2.2. Querying

For querying RDF datasets, W3C has proposed SPARQL [1]. Essentially, SPARQL is a graph-matching lan-
guage. A SPARQL query Q defines a graph pattern P that is matched against an RDF graph G. This is done by
replacing the variables in P with elements of G such that the resulting graph is contained in G. The most basic
notion in SPARQL is a triple pattern tp = (s′, p′, o′) with s′ ∈ {s, ?s}, p′ ∈ {p, ?p}, and o′ ∈ {o, ?o}, i.e., a triple
where every part is either an RDF term or a variable. A set of triple patterns forms a basic graph pattern (BGP). Two
example BGP queries are presented in the sequel, the first one asking for the persons with their advisors and persons
that those advisors teach, whereas the second one asks for the persons with their advisors and also the courses that
those persons take.

Q1: SELECT * WHERE{?x advisor ?w. ?w teacherOf ?y.}
Q2: SELECT * WHERE{?x advisor ?w. ?x takesCourse ?y.}

The result of a BGP is a bag of solution mappings where a solution mapping is a partial function from variable
names to RDF terms. On top of these basic patterns, SPARQL also provides more relational-style operators like op-
tional and filter to further process and combine the resulting mappings. Nevertheless, it is commonly acknowledged
that the most important aspect for efficienq SPARQL query answering is the efficient evaluation of the BGPs [25],
on which we focus on this paper, leaving the remaining fragments for future work.

Common types of BGP queries are star queries and chain queries. Star queries are the ones characterized by
triple patterns sharing the same variable on the subject position. Q2 of the previous example is a star query. On the
other hand, chain queries are formulated using triple patterns where the object variable in one triple pattern appears
as a subject in the other, and so on. For example, the join variable can be on the object position in one triple pattern,
and on the subject position in the other, as shown in Q1. Snowflake queries are combinations of several star shapes
connected by typically short paths, whereas as complex, we characterize queries that combine the aforementioned
query types.

2.3. Apache Spark

Apache Spark [29] is an in-memory distributed computing platform designed for large-scale data processing.
Spark proposes two higher-level data access models, GraphX and Spark SQL, for processing structured and semi-
structured data. Spark SQL [4] is Spark’s interface that enables querying data using SQL.

It also provides a naive query optimizer for improving query execution. The naive optimizer pushes down in
the execution tree the filtering conditions and additionally performs join reordering based on the statistics of the
joined tables. However, as we will explain in the sequel in many cases the optimizer was failing to return an optimal
execution plan and we implemented our own procedure.

Applying Spark SQL on RDF requires a suitable storage format for triples and a translation procedure from
SPARQL to SQL. The storage format for RDF triples is straightforward and usually refers to a three-column table
(s p o) stored in the HDFS, using HIVE or parquet format. Spark GraphX [28] is a library enabling graph processing
by using the property graph as its graph data model, i.e. a directed multigraph with user-defined objects attached to
each vertex and edge. A directed multigraph is a directed graph with potentially multiple parallel edges sharing the
same source and destination vertex.

Spark by default implements no indexing at all. It loads the entire data file in main memory splitting then the
work into multiple map-reduce tasks.
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3. Related Work

In the past, many approaches have focused on efficiently answering SPARQL queries for RDF graphs. Based on
the storage layout they adopt, a recent survey [7], classifies them to a) the ones using a large table storing all triples
(e.g., Virtuoso, DistRDF); b) the ones that use a property table (e.g., Sempala, DB2RDF) that usually contains one
column to store the subject (i.e. a resource) and a number of columns to store the corresponding properties of the
given subject; c) approaches that partition vertically the triples (e.g., CliqueSquare, Prost, WORQ) adopting two
column tables for the representation of triples; d) the ones being graph based (e.g., TRiaD, Coral); d) and the ones
adopting custom layouts for data placement (e.g. Allegrograph, SHARD, H2RDF). For a complete view on the
systems currently available in the domain the interested reader is forwarded to the relevant surveys [3, 7].

As in this work we specifically focus on moving a step forward the solutions on top of Spark, in the remainder of
this section we only focus on approaches that try to exploit Spark for efficient query answering over RDF datasets.
A preliminary survey on that area is also available in the domain [2].

Using default Spark policy. Many of the works available for Spark, adopt the naive policy of storing the entire
dataset in a big file and focusing on the query optimization step. P-Spar(k)ql [11] tries to optimize and parallelize the
query plan using GraphX, whereas Bahrami et al. [5] use GraphFrames for pruning the query-specific search space.
S2X [24] is another approach that uses GraphX, where the basic idea is that every vertex in the graph stores the
variables of a query where it is a possible candidate for and query evaluation proceeds by matching all triple patterns
of a BGP independently, and then exchange messages between adjacent vertices to validate the match candidates.
Although DIAERESIS also implements query optimization based on data statistics, our main contribution lies in
the intelligent data partitioning scheme implemented.

Implementing partitioning schemes. HAQWA [10] was the first approach that tried to process RDF data on
top of Apache Spark. Data allocation is performed based on a two-step procedure. In the first step, hash-based
partitioning is executed on the triple subjects. This fragmentation ensures that star-shaped queries can be computed
locally, but no guarantees are provided for other query types. In the second step, data are allocated according to the
analysis of frequent queries executed over the dataset. At query time, the system decomposes a query pattern into a
set of local sub-queries that can be locally evaluated.

In SPARQLGX [12], RDF datasets are vertically partitioned. As such, a triple (s p o) is stored in a file named
p whose content keeps only s and o entries. By following this approach, the memory footprint is reduced and the
response time is minimized when queries have bound predicates. As an optimization in query execution, triple
patterns are reordered based on data statistics.

S2RDF [25] presents an extended version of the classic vertical partitioning technique, called ExtVP. Each ExtVP
table is a set of sub-tables corresponding to a vertical partition (VP) table. The sub-tables are generated by using
right outer joins between VP tables. More specifically, the partitioner pre-computes semi-join reductions for subject-
subject (SS), object-subject (OS) and subject-object (SO). For query processing, S2RDF uses Jena ARQ to transform
a SPARQL query to an algebra tree and then it traverses this tree to produce a Spark SQL query. As an optimization,
an algorithm is used that reorders sub-query execution, based on the table size and the number of bound variables.

Another work that is focusing on query processing is [21] that analyzes two distributed join algorithms, partitioned
join and broadcast join offering a hybrid strategy. More specifically, the authors exploit a data partitioning scheme
that hashes triples, based on their subject, to avoid useless data transfer and use compression to reduce the data
access cost for self-join operations.

PRoST [9] stores RDF data twice, partitioned in two different ways, both as Vertical Partitioning and Property
Tables. It takes the advantage of both storage techniques with the cost of additional storage overhead. Specifically,
the advantage of the property tables, when compared to the vertical partitioning, is that some joins can be avoided
when some of the triple patterns in a query share the same subject -star queries. It does not maintain any additional
indexes. SPARQL queries are translated into Join Tree format in which every node represents the VP table or PT’s
subquery’s patterns. It makes use of a statistics-based query optimizer. The authors of PRoST report/show that
PRoST achieves similar results to S2RDF. More precisely, S2RDF outperforms in all query categories since its
average execution times are better in all categories. In most of the cases (query categories), S2RDF is three times
faster than PRoST.
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Table 1
Characteristics of the Spark-based RDF systems.

System Query Processing Partitioning

S2X [24] Graph Iterations Default

Bahrami et al. [5] Pruning Query Space Default

P-Spar(k)ql [11] Parallel Query Plan Default

HAQWA [10] RDD API Hash / Query Aware

SPARQLGX [12] RDD API Vertical

S2RDF [25] Spark SQL Extended Vertical

Naacke et. al [21] Hybrid Hash-sbj

WORQ [19] Dataset API Workload Join Keys

S3QLRDF [14, 15] Spark SQL Subset Property Table & Vertical

DIAERESIS Spark SQL Dependency Aware + Vertical

More recently, WORQ [19] presents a workload-driven partitioning of RDF triples. The approach tries to mini-
mize the network shuffling overhead based on the query workload. It is based on bloom joins using bloom filters, to
determine if an entry in one partition can be joined with an entry in a different one. Further, the bloom filters used for
the join attributes, are able to filter the rows in the involved partitions. Then, the intermediate results are materialized
as a reduction for that specific join pattern. The reductions can be computed in an online fashion and can be further
cached in order to boost query performance. However, this technique focuses on known query workloads that share
the same query patterns. As such, it partitions the data triples by the join attributes of each subquery received so far.

Finally, Hassan & Bansal [14] propose a relational partitioning scheme called subset property table that partitions
property tables into subsets of tables to minimize query input and join operations. In addition, they combine subset
property tables with vertical partitions to further reduce access to data. For query processing, an optimization step
is performed based on the number of bound values in the triple queries and the statistics of the input dataset.

Comparison with DIAERESIS. The general goal of all approaches mentioned before is to improve query per-
formance by exploiting in-memory data parallelization. To this purpose, most of the works end-up using simplistic
vertical or horizontal partitioning schemes. However, simplistic partitioning schemes do not succeed to reduce sig-
nificantly the data access on a query and to exploit the fact that usually many nodes are queried together. This has
been recognized by latest works in the area, such as S2RDF [25], WORQ[19] and S3QLRDF [14, 15]. WORQ is
based on known workloads in order to keep together nodes that are frequently accessed together, whereas DIAERE-
SIS is workload agnostic and works independently of the available workload. S2RDF keeps join reductions up to
a data size threshold, which is simple but not effective enough and can easily lead to a large storage overhead. On
the other hand, S3QLRDF approach is optimized for star queries, in essence, pre-computing large fragments of star
queries. However, the result tables are sparse containing many NULL values which can on one hand significantly
increase data size and on the other hand introduce delays in query evaluation (in many complex queries as shown in
[14] S3QLRDF falls behind S2RDF).

To the best of our knowledge, DIAERESIS is the only Spark-based system able to effectively collocate data that
are frequently accessed together, minimizing data access, keeping a balanced distribution, while boosting query
answering performance, without requiring the knowledge of the query workload. An overview of all aforementioned
approaches is shown in Table 1, showing the query processing technology and the partitioning method adopted. In
addition, we added DIAERESIS in the last line of the table, to be able to directly compare other approaches with it.

4. Identifying Centroids & Dependence (First-Level Partition)

To achieve efficient query answering, distributed systems attempt to parallelize the computation effort required.
Instead of accessing the entire dataset, targeting the specific data items required for each computational node can
further optimize query answering efficiency. Among others, recent approaches try to accomplish this by employing
data partitioning methods in order to minimize data access at querying, or precomputing intermediate results so as
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Fig. 1. Dependence aware partitioning example for LUBM subset.

to reduce the number of computational tasks. In this work we focus on the former, providing a highly effective data
partitioning technique.

Since query formulation is usually based on schema information, our idea for partitioning the data starts there.
The schema graph is split into sub-graphs, i.e., first-level partitions. Our partition strategy follows the K-Medoids
method [18], selecting the most important schema nodes as centroids of the partitions, and assigning the rest of
the schema nodes to the centroid they mainly depend on in order to construct the partitions. Then we assign the
instances in the instance graph in the partition that they are instantiated under.

To identify the most important schema nodes, we exploit the Betweenness Centrality in combination with the
number of instances allocated to a specific schema node. Then, we define dependence, which is used for assigning
the remaining schema nodes (and the corresponding instances) to the appropriate centroid in order to formulate the
partitions.

Example 4.1. As a running example, Figure 1 presents a fragment from the LUBM ontology and shows the three
partitions that are formulated (k = 3). The first step is to select the three most important schema nodes (the ones
in boldface) as centrdois and then to assign to each centroid, the schema nodes that depend on it. Based on this
partitioning of the schema graph, the individuals are assigned to the partitions that they are instantiated under. In
the sequel we present in detail the methods for identifying the most important schema nodes and for calculating
dependence.

4.1. Importance Measure for Identifying Centroids in the Schema Graph

Many measures have been produced for assessing the importance of the nodes in a knowledge graph and various
notions of importance exist. When trying to group nodes from an RDF dataset, that are frequently queried together,
according to our past exploration on centrality measures, the Betweenness Centrality (BC) has already shown an
excellent performance [22]. As the Betweenness Centrality was originally developed for generic graphs, approaches
focusing on the schema graph of RDF datasets, i.e. [27], adapted this measure by combing it with the number of
instances that belong to a schema node. Following the same idea, we initially identify the k most central schema
nodes in a schema graph, combining Betweenness Centrality with the number of their instances, calculating the
Importance Measure (IM) for each schema node.

In detail, the Betweenness Centrality of a schema node is equal to the number of the shortest paths from all
schema nodes to all others that pass through that schema node. Formally:
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Definition 4. (Betweenness Centrality) Let GS = (VS , ES ) be an RDF schema graph with VS nodes and ES edges.
The Betweenness of a node ν ∈ VS is defined as:

BC(ν) =
∑

s 6=ν 6=t

σst(ν)

σst
(1)

where σst is the total number of shortest paths from node s to node t and σst(ν) is the number of those paths that
pass through ν.

Calculating the Betweenness for all nodes in a graph requires the computation of the shortest paths between all
pairs of nodes. The complexity of the Brandes algorithm [6] for calculating it, is O(|VS |× |ES |) for an RDF schema
graph GS = (VS , ES ).

As data distribution should also play a key role in estimating the importance of a schema node [27], we combine
the value of BC, with the number of instances of the corresponding schema node in order to assess its importance.
To do so, we normalize first the BC value of each schema node ν on a scale between 0 and 1 using the following
equation:

normal(BC(ν)) =
BC(ν)−min(BC(u))

max(BC(u))−min(BC(u))
, u ∈ VS (2)

BC(ν) is the Betweenness Centrality value of a node ν ∈ VS , min(BC(u)) and max(BC(u)) are the minimum
and the maximum BC value respectively in the schema graph. Similarly, we normalize the number of instances for
each schema node ν:

normaInst(ν) =
|ν| −min(|u|)

max(|u|)−min(|u|)
, u ∈ VS (3)

As such, the importance (IM) of each schema node is defined as the sum of the normalized values of BC and the
number of instances.

Definition 5. (Importance Measure) Let V =< GS ,GI , λ, τc > be an RDF Dataset, GS = (VS , ES ). The Importance
Measure of a schema node ν ∈ VS , i.e., the IM(ν), is defined as:

IM(ν) = normal(BC(ν)) + normaInst(ν)) (4)

For calculating the number of instances of all nodes, we should visit all instances once, and as such the complexity
of this part is O(|VI |). Overall, the complexity for calculating IM for all schema nodes in an RDF dataset is O(|VI |)+
O(|VS | × |ES |).

4.2. Assigning Nodes to Centroids using Dependence

Having a way to assess the importance of the schema nodes using IM, we are next interested in identifying to
which partition, the remaining schema nodes should be assigned. In order to define how dependent two schema
nodes are, we introduce the Dependence measure.

Our first idea in this direction comes from the classical information theory, where infrequent words are more
informative than frequent ones. The idea is also widely used in the field of instance matching [26]. The basic
hypothesis here is that the greater the influence of a property on identifying a corresponding node, the fewer times
the range of the property is repeated. According to this idea, we define Cardinality Closeness (CC) as follows:
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Definition 6. (Cardinality Closeness of two adjacent schema nodes) Let V =< GS ,GI , λ, τc > be an RDF dataset,
GS = (VS , ES ) and GI = (VI , EI). Let νk, νm ∈ VS be two adjacent schema nodes connected through an edge e
where λ(e) = p. The Cardinality Closeness of p(νk, νm), namely the CC(p(νk, νm)), is defined as:

CC(p(νk, νm)) =

{
1+|VS |
|VS | , when |vk| = 0

1+|VS |
|VS | + DistinctOb jects(p(vk ,vm))

|vk| , when |vk| 6= 0
(5)

where |VS | is the total number of nodes in the schema graph, and DistinctOb jects(p(vk, vm)) is the number of
distinct instances of vm connected with the instances of vk through p.

The constant 1+|VS |
|VS | is added in order to have a minimum value for CC in case of no available instances.

Example 4.2. Assume for example the schema nodes Person, Pro f essor connected through the property
advisor. Moreover, there are instances of the theses two schema nodes connected through the same prop-
erty. Assume that there are ten instances of Person that are connected through the property advisor with
only two distinct instances of Pro f essor. In essence, only two professors advise 10 persons. We would like
to calculate CC(advisor(Pro f essor, Person)) knowing that the total number of schema nodes is |VS | = 20,
DistinctOb jects(advisor(Pro f essor, Person)) = 2 that are connected with the ten instances of Person. As such
CC(advisor(Pro f essor, Person)) = ((1 + 20)/20) + 2/10 = 1.05 + 0.2 = 1.25.

Having defined the Cardinality Closeness of two adjacent schema nodes, we proceed further to identify the depen-
dence. As such, we calculate the Dependence between two schema nodes, combining their Cardinality closeness,
the IM of the schema nodes and the number of edges between them. Formally:

Definition 7. (Dependence between two schema nodes ) Let V =< GS ,GI , λ, τc > be an RDF dataset with
GS = (VS , ES ) be the RDF schema graph with VS schema nodes. The dependence between two schema nodes νs,
νe ∈ VS , i.e. Dependence(νs, νe), is defined as:

Dependence(νs, νe) =
1

|path(νs, νe)|2
∗

(
IM(νs)−

e∑
i=s+1

IM(νi)

CC(p(νi−1, νi))

)
(6)

Intuitively, as we move away from a node, the dependence becomes smaller by calculating the differences of
IM across the path with the minimum distance in the graph. We further penalize dependence, by dividing using
the length of the path of the two nodes. The highest the dependence of a path, the more appropriate the first node
characterizes the final node of the path, i.e., the final node of the path highly depends on the first one.

Example 4.3. Note also, that Dependence(νs, νe) is different than Dependence(νe, νs). For example, Depen-
dence(Publication, Book) > Dependence(Book, Publication). This is reasonable, as the dependence of a more im-
portant node toward a less important one is higher than the other way around, although they share the same cardi-
nality closeness.

5. DIAERESIS Partitioning and Query Answering

Figure 2 presents an overview of the DIAERESIS architecture, along with its internal components. Starting from
the left side of the figure, the input RDF dataset is fed to the DIAERESIS Partitioner in order to partition it. For
each one of the generated first-level partitions, vertical partitions are created and stored in the HDFS. Along with
the partitions and vertical partitions, the necessary indexes are produced as well. Based on the available partitioning
scheme, the DIAERESIS Query Processor receives and executes input SPARQL queries exploiting the available
indexes. We have to note that although schema information is used to generate the first-level partitions, in the sequel
the entire graph is stored in the system including both the instance and the schema graph. In the sequel, we will
analyze in detail the building blocks of the system.
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Fig. 2. DIAERESIS overview.

5.1. The DIAERESIS Partitioner

This component undertakes the task of partitioning the input RDF dataset, initially into first-level partitions,
then into vertical partitions, and finally to construct the corresponding indexes to be used for query answering.
Specifically, the Partitioner uses the Dependency Aware Partitioning (DAP) algorithm in order to construct the first-
level partitions of data focusing on the structure of the RDF dataset and the dependence between the schema nodes.
In the sequel, based on this first-level partitioning, instances are assigned to the various partitions, and the vertical
partitions and the corresponding indexes are created.

5.1.1. Dependency Aware Partitioning Algorithm
The Dependency Aware Partitioning (DAP) algorithm, given an RDF dataset V and a number of partitions k,

splits the input dataset into k first-level partitions. The partitioning starts from the schema and then the instances
follow. The algorithm splits the schema graph into sub-graphs, called first-level partitions, and then assigns the
individuals in the partitions that they are instantiated under. Specifically, it uses the Importance Measure (IM) for
identifying the partition’s centroids, and the Dependence for assigning nodes to the centroids where they belong.
Depending on the characteristics of the individual dataset (e.g. it might be the case that most of the instances fall
under just a few schema nodes), data might be accumulated into one partition, leading to data access overhead at
query answering, as large fragments of data should be examined. DAP tries to achieve a balanced data distribution
by reducing data access and maintaining a low replication factor.

The algorithm is shown in Algorithm 1 and starts by calculating the importance of all schema nodes (lines 1-3)
based on the importance measure (IM) defined in Section 4.1, combining the betweenness centrality and the number
of instances for the various schema nodes. Then, the k most important schema nodes are selected, to be used as
centroids in the formulated partitions (line 4). The selected nodes are assigned to the corresponding partitions (lines
5-7). Next, the algorithm examines the remaining schema nodes in order to determine to which partition they should
be placed based on their dependency on the partitions’ central nodes.

Initially, for each schema node, the dependence between the selected node and all centroids is calculated by
the selectPartionBalanced procedure (line 9). However, in order to achieve a more balanced data distribution, the
selectPartionBalanced procedure calculates a space-bound for all partitions based on the number of triples in the
dataset and the number of partitions k. Until this bound is reached each partition is filled with the most dependent
schema nodes. Afterward, as this space bound is reached for a partition, the procedure selects the next partition with
enough space that maximizes the dependence to allocate the selected schema node. Note that for calculating the
space available, the schema nodes along with the number of instances available for that nodes are assessed.

However, we are not only interested in placing the selected schema node to the identified partition, but we also
assign to that partition, all schema nodes contained in the path which connects the schema node with the selected
centroid (line 10).
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Algorithm 1 DAP(V , k)
Input: An RDF dataset V =< GS ,GI , λ, τc >, the number of partitions k
Output: A set of partitions V1, ..., Vk.

1: for each schema node νi ∈ GS do
2: IMνi = caclulateImportance(GS , νi)
3: end for
4: topk = selectTopKNodes(IM, k)
5: for each schema node νi ∈ topk do
6: Vi = Vi ∪ νi

7: end for
8: for each schema node νi ∈ GS , νi /∈ topk do
9: j = selectPartitionBalanced(νi, topk,GS )

10: V j = VJ∪ schemaNodesInPathWithMaxDependence(νi, ν j)
11: end for
12: for each schema node νi ∈ V j, 1 6 j 6 k do
13: V j = V j ∪ getNeighborsAndProperties(νi)
14: V j = V j ∪ instances(νi)
15: end for
16: return V1, ..., Vk

Then, we add the direct neighbors of all schema nodes in each partition along with the properties that connect
them (line 13). Finally, instances are added to the schema nodes they are instantiated under (line 14). The algorithm
terminates by returning the generated list of first-level partitions (line 16) containing the corresponding triples that
their subject and object are located in the specific partitions.

Note that the aforementioned algorithm introduces replication (lines 12-15) that comes from the edges/properties
that connect the nodes located in the different partitions. Specifically, besides allocating a schema node and the
corresponding instances to a specific partition, it also includes its direct neighbors that might originally belong to a
different partition. This step reduces access to different partitions for joins on the specific node.

Complexity. To identify the complexity of the algorithm, we should first identify the complexity of the various
components involved. Assume |VS | is the number of schema nodes, |ES | is the number of edges of the schema
graph, |VI | is the number of instances, and |EI | are their connections. For identifying the cardinality closeness of the
edges, we should visit all instances’ edges once, hence the complexity of this step is O(|EI |). Then, for calculating
the betweenness centrality for all schema nodes, we use a Spark implementation [16] with complexity O(VS ). Next,
we have to sort all nodes according to their IM and select the topk ones with cost O(|VS |× log|VS |). To calculate the
dependence of each node, we should visit each node once per selected node (O(k × |VS |)), whereas to identify the
path maximizing the dependence, we use the weighted Dijkstra algorithm with cost O(|VS |2). Finally, we should
check once all instances for identifying the partitions to be assigned with cost O(|EI |). Overall, the time complexity
of the algorithm is polynomial O(|EI |+ |ES |+ |VS |) + O(|VS | × log|VS |) + O(k× |VS |) + O(|VS |2) + O(|EI |) 6
O(|VS |2 + |ES |+ |EI |).

5.1.2. Vertical Partitioning
Besides first-level partitioning, the DIAERESIS Partitioner also implements vertical sub-partitioning to further

reduce the size of the data touched. Thus, it splits the triples of each partition produced by the DAP algorithm, into
multiple vertical partitions, one per predicate, generating one file per predicate. Each vertical partition contains the
subjects and the objects for a single predicate, enabling at query time a more fine-grained selection of data that are
usually queried together. The vertical partitions are stored as parquet files in HDFS (see Figure 2). A direct effect
of this choice is that when looking for a specific predicate, we do not need to access the entire data of the first-level
partition storing this predicate, but only the specific vertical partition with the related predicate. As we shall see in
the sequel, this technique minimizes data access, leading to faster query execution times.
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5.1.3. Number of First-Level Partitions
As already presented in Section 5.1.1, the DAP algorithm receives as an input the number of first-level parti-

tions (k). This determines data placement and has a direct impact on the data access for query evaluation and the
replication factor.

According to the DAP algorithm, as the number of first-level partitions increases, the average data located in
each partition is reduced or at least stays the same since there are more partitions for data to be distributed in.
Further, the data in the vertical sub-partitions decreases as well.

Theorem 1. Let V =< GS ,GI , λ, τc > be an RDF dataset and GS = (VS , ES ). Let also DAP(V, k) = V1, ...,Vk, and
triples(Vi) be the number of triples in the partition i, 1 6 i 6 k. Then it holds that:

k∑
i=1

triples(Vi) 6
k+1∑
j=1

triples(V j) (7)

where Vi ∈ DAP(V, k), V j ∈ DAP(V, k + 1), and k 6 |VS |.

Proof. The theorem is immediately proved by construction (Lines 12-15 of the algorithm) as increasing the k will
result in more schema nodes being split between the increased number of partitions, replicating all instances that
span across the partitions.

The above theorem tells us that as the number of partitions increases, the triples in the dataset might increase as
well due to the replication of the triples that have domain/range in different partitions. Interestingly:

Theorem 2. Let V =< GS ,GI , λ, τc > be an RDF dataset and GS = (VS , ES ). Let also DAP(V, k) = V1, ...,Vk, and
Bm be a vertical sub-partition, Bm ∈ Vi, 1 6 i 6 k. Then it holds that:

AVGBm∈Vi(triples(Bm)) > AVGBn∈V j(triples(Bn)) (8)

where Vi ∈ DAP(V, k), V j ∈ DAP(V, k + 1), and k 6 |VS |.

Proof. (sketch) In order to prove this theorem, assume a partitioning for an RDF dataset V =< GS ,GI , λ, τc >,
produced by DAP(V, k) splitting V into V1, ...,Vk and let Bm be the vertical sub-partitions distributed in the various
partitions. For the vertical sub-partitions we don’t know a priori their exact number, however, we know that for
every predicate of the schema nodes in a first-level partition, we have one vertical sub-partition. In this layout for
example we have |VS | schema nodes distributed in the k partitions and we can assume that there are p non-distinct
predicates in the k partitions. As such we can safely assume that for Bm it holds that 1 6 j 6 p. Assume now a
random schema node S C in the partition Vi, 1 6 i 6 k. S C is the domain of z properties which leads into z vertical
sub-partitions for S C. Note that other schema nodes might exist sharing the same predicates as S C. As such, in the
vertical sub-partitions of SC, instances of other schema nodes might also exist. Next assume that we run the DAP
algorithm for k + 1, increasing by one the number of the partitions to be produced. Now DAP(V, k + 1) splits V
into V1, ...,Vk+1 first-level partitions. In the new configuration, the centroids of the V1, ...,Vk partitions are exactly
the same as in the DAP(V, k), however now we select the k+1 schema node with the highest IM to be placed as the
centroid of the Vk+1 partition. Now we distinguish the following two cases:

1. SC is placed in a partition where more schema nodes have one or more of the same predicates as SC. In
this case, the number of triples of the vertical sub-partitions increases as more triples are added by the other
schema nodes which have the same properties. However, although this happens locally, the schema node that
is now in the same partition as SC is removed from the partition it was in the DAP(V, k) configuration. So
when compared to the DAP(V, k) configuration, in total the overall number of triples for the sub-partitions of
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Fig. 3. Instance, Class and VP indexes for our running example.

the same properties is not increased. On the contrary, as the partitioning is refined, and schema nodes are split
into different partitions the number of triples appearing in the sub-partitions is gradually reduced. Specific
attention should be paid here on cut-edges as they will introduce replication in the vertical sub-partitions.
Still, in that case, the number of instances is at most doubled for each cut-edge; however, the average number
of instances in the two vertical sub-partitions generated because of that is reduced in half, which shows why
our theorem still holds.

2. SC is placed in a partition where fewer or the same schema nodes have one or more of the same predicates
as SC. In this case, the number of triples of the vertical sub-partitions for SC is reduced or at least stays the
same as in the DAP(V, k).

The aforementioned theorem has a direct impact on query evaluation as it actually tells us that if we increase k,
the average data stored in the vertical sub-partitions, will be reduced or at least stay the same. Thus, as k increases
the data access for a query decreases or at least stays the same. This is verified also in the experimental evaluation
(Section 6.2.3) showing the direct impact of k on both data replication and data access and as a result in query
efficiency.

5.1.4. Indexing
Next, in order to speed up the query evaluation process, we generate appropriate indexes, so that the necessary

sub-partitions are directly located during query execution. Specifically, as our partitioning approach is based on the
schema of the dataset and data is partitioned based on the schema nodes, initially, we index for each schema node
the first-level partitions (Class Index) it is primarily assigned to and also the vertical partitions (VP Index) it belongs.
For each instance, we index also the schema nodes under which it is instantiated (Instance Index). The VP Index
is used in case of a query with unbound predicates, in order to identify which vertical partitions should be loaded,
avoiding searching all of them in a first-level partition.

The aforementioned indexes are loaded in the main memory of Spark as soon as the query processor is initialized.
Specifically, the Instance Index, and the VP Index are stored in the HDFS as parquet files and loaded in the main
memory. The Class Index is stored locally (txt file) since the size of the index/file is usually small and is also loaded
in main memory at query processor initialization.

Example 5.1. Figure 3 presents example indexes for our running example. Assuming that we have five instances
in our dataset, the Instance Index, shown in the figure (left), indexes for each instance the schema node to which it
belongs. Further, the Class Index records for each schema node the first-level partitions it belongs, as besides the
one that is primarily assigned, it might also be allocated to other partitions as well. Finally, the VP Index contains
the vertical partitions that the schema nodes are stored into (for each first-level partition). For example, the schema
node Organization (along with its instances) is located in Partition-2 and specifically its instances are located in
the vertical partitions affiliatedOf, orgPublication and rdfs:subClassOf.



14 G.T. Troullinou et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Algorithm 2 PartitionDiscovery(query, classIndex, instanceIndex, VPIndex, stats)
Input: The input query, the classIndex, the instanceIndex, the VPIndex, Statistics stats about each partition
Output: queryIndex

1: queryIndex.Partitions = queryIndex.VP = variablesTypes = ∅
2: triplePatterns = extractTriplePatterns(query)
3: for each tpi : p(vi.1, vi.2) ∈ triplePatterns do
4: nodeClasses = partitions = f Partartition = ∅
5: nodeURIs = f indURI(vi.1, vi.2) //Extracts available URIs

6: vars = f indVariable(vi.1, vi.2) //Extracts available variables

7: if p == rdf:type & vi.2 ∈ nodeURIs then
8: nodeClasses = {vi.2}
9: if vi.1 ∈ vars then

10: variablesTypes = variablesTypes ∪ {vi.1 → nodeClasses}
11: end if
12: else
13: nodeClasses = getS chemaNodes(nodeURIs, variablesTypes, instanceIndex)
14: end if
15: for each class ∈ nodeClasses do
16: partitions = partitions ∪ classIndex[class]
17: end for
18: f inalPart = smallestPartition(partitions, stats)
19: queryIndex.Partitions = queryIndex.Partitions ∪ {tpi → f Partartition}
20: if isVariable(p) then
21: queryIndex.VP = queryIndex.VP ∪ {tpi → VPIndex[nodeClasses]} //Unbound Predicate

22: else
23: queryIndex.VP = queryIndex.VP ∪ {tpi → p}
24: end if
25: end for
26: return queryIndex

5.2. Query Processor

In this section, we focus on the query processor module, implemented on top of Spark. An input SPARQL
query is parsed and then translated into an SQL query automatically. To achieve this, first, the Query Processor
detects the first-level and vertical partitions that should be accessed for each triple pattern in the query, creating a
Query Partitioning Information Structure. This procedure is called partition discovery. Then, this Query Partitioning
Information Structure is used by the Query Translation procedure, to construct the final SQL query. Our approach
translates the SPARQL query into SQL in order to benefit from the Spark SQL interface and its native optimizer
which is enhanced to offer better results.

5.2.1. Partition Discovery
In the partition discovery module, we create automatically an index of the partitions that should be accessed

for answering the input query, called Query Partitioning Information Structure. Specifically, we detect the fist-level
partitions and the corresponding vertical partitions that include information to be used for processing each triple
pattern of the query, exploiting the available indexes.

The corresponding algorithm, shown in Algorithm 2, takes as input a query, the indexes (presented in Section
5.1.4), and statistics on the size of the first-level partitions estimated during the partitioning procedure and returns
an index of the partitions (first-level and vertical partitions) that should be used for each triple pattern.

The algorithm starts by initializing the variables queryIndex.Partitions, queryIndex.VP used for storing the first-
level and the vertical partitions and the variablesTypes which keeps track of the types (rdf:type) of the variables in
the various triple patterns (line 1).Then it extracts from the input query all triple patterns in a list (line 2).

For each triple pattern the following variables are initialized (line 4): nodeClasses stores the schema nodes
identified for the specific triple pattern since they lead to the first-level partitions, partitions stores the list of the
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first-level partitions that could be associated to a triple patter and f inalPart is the first-level partition finally selected
for that triple pattern.

While parsing each triple pattern, the node URIs (nodeURIs) and the variables (var) are extracted from the subject
or object positions of the triple (lines 5-6). If the predicate of the current triple pattern is rdf:type and its object is
an URI, then the nodeClasses of this triple pattern is that URI (line 8) since the object is a schema node. Moreover,
if the subject of this triple pattern is a variable, we should remember that this variable refers to specific schema
nodes and as such the association between the variable and the schema nodes is added to the variablesTypes (line
10). This is happening as every triple pattern that shares this variable should be mapped to the same partition, as
it refers to the same schema node. Overall, for each triple pattern we identify a list of schema nodes based on the
available URIs and the variables in it. We exploit variablesTypes for keeping track the variables with known types
already. When the URIs (uri) do not correspond to schema nodes, the Instance Index is used to obtain the schema
nodes that the instances are instantiated under (line 13). Then, by using the Class Index, we obtain the corresponding
partitions (partitions) that can be used for that triple pattern (lines 15-17). Based on statistics stored during the
partitioning procedure, the smallest partition is selected for the specific triple pattern (line 18) and is added in the
queryIndex.Partitions structure (line 19).

A step further, the triple pattern is located in the vertical partition identified by the predicate of the triple pattern
(lines 20-24). Specifically, in the case that the predicate of the triple pattern is a variable (we have an unbound
predicate), the VP Index is used to obtain the set of vertical partitions based on the schema nodes (nodeClasses) that
we have already identified for that triple pattern (line 21). Otherwise, the predicate is added in the queryIndex.VP
since it specifies the vertical partition in which the triple pattern is located (line 23). Finally, Query Partitioning
Information Structure is returned (line 26) consisting of the structures queryIndex.Partitions and queryIndex.VP
that include information about the fist-level and vertical partitions that each triple pattern can be located at.

Fig. 4. Constructing Query Partitioning Information Structure.

Example 5.2. The creation of Query Partitioning Information Structure for a query is a three-step process depicted
in Figure 4. On the left side of the Figure, we can see the four triple patterns of the query. The first step is to map
every triple pattern to its corresponding schema nodes. If a triple pattern contains an instance then the Instance
Index is used to identify the corresponding schema nodes. Next by using the Class Index (Figure 3), we find for each
schema node the partitions where it is located in (Partitions IDs in Figure 4). Finally we select the smallest partition
in terms of size, for each schema node based on statistics collected for the various partitions. For example, for the
second triple pattern (FORTH orgPublication ?y) we only keep the partition 2 since it is smaller than partition 3.
For each one of the selected partitions, we finally identify the vertical partitions that should be accessed, based
on the predicates of the corresponding triple patterns. In case of an unbound predicate, such as in the third triple
pattern of the query (FORTH ?p ?x) in Figure 4, the VP Index is used to identify the vertical partitions in which
this triple pattern could be located based on its first-level partition (Partition ID:2). The result Query Partitioning
Information Structure for our running example is depicted on the right of Figure 4.

5.2.2. Query Translation & Optimization
In order to produce the final SQL query, each triple pattern is translated into one SQL sub-query. Each one of

those sub-queries specifically involves a vertical sub-partitioning table based on the predicate name - the table name
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in the "FROM" clause of the SQL query. For locating this table the Query Partitioning Information Structure is
used. Afterward, all sub-queries are joined using their common variables.

Finally, in order to optimize query execution we disabled default query optimization by Spark as in many cases
the returned query plans were not efficient and we implemented our own optimizer. Our optimizer exploits statistics
recorded during the partitioning phase, to push joins on the smallest tables - in terms of rows - to be executed first,
further boosting the performance of our engine. The query translation and optimization procedures are automatic
procedures performed at query execution.

Fig. 5. Query Translation.

Example 5.3. In Figure 5, an example is shown of the query processor module in action. The input of the translation
procedure is the Query Partitioning Information Structure of Figure 4. Each triple pattern is translated into an
SQL query, based on the corresponding information for the first-level and vertical partitions (SQL Sub-Queries in
Figure 5) that should be accessed. The name of the table of each SQL query is the concatenation of the first-level
and the vertical partitions. In case of an unbound predicate, such as the third triple pattern, the sub-query asks for
more than one table based on the vertical partitions that exist in the Query Partitioning Information Structure for
the specific triple pattern. Finally, sub-queries are reordered by the DIAERESIS optimizer that pushes joins on the
smallest tables to be executed first - in our example the p3_type is first joined with p2_orgPublication.

6. Evaluation

In this section, we present the evaluation of our system. We evaluate our approach in comparison to three query
processing systems based on Spark, i.e., SPARQLGX [12], S2RDF [25], and WORQ [19], using two real-world
RDF datasets and four versions of a synthetic dataset, scaling up to 1 billion triples.

6.1. System Setup

LUBM. The Lehigh University Benchmark (LUBM) [13] is a widely used synthetic benchmark for evaluating
semantic web repositories. For our tests, we utilized the LUBM synthetic data generator to create four datasets of
100, 1300, 2300, and 10240 universities (LUBM100, LUBM1300, LUBM2300, LUBM10240) occupying 2.28GB,
30.1GB, 46.4GB, 223.2GB, and consisting of 13.4M triples, 173.5M triples, 266.8M triples, and 1.35B triples
respectively. LUBM includes 14 classes and 18 predicates. We used the 13 queries provided by the benchmark for
our evaluation, each one ranging between one to six triple patterns. We classify them into three categories, namely,
star, chain, snowflake, and complex queries.

SWDF. The Semantic Web Dog Food (SWDF) [20] is a real-world dataset containing Semantic Web conference
metadata about people, papers, and talks. It contains 126 classes, 185 predicates, and 304,583 triples. The dataset
occupies 50MB of storage. To evaluate our approach, we use a set of 278 BGP queries generated by the FEASI-
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BLE benchmark generator [23] based on real query logs. In the benchmark workload, all queries include unbound
predicates. Although our system is able to process them, no other system was able to execute them. As such, be-
sides the workload with the unbound predicates (noted as SWDB(u)), we also replaced the unbound predicates with
predicates from the dataset (noted as SWDF(b)) to be able to compare our system with the other systems, using the
aforementioned workload.

DBpedia. Version 3.8 of DBpedia, contains 361 classes, 42,403 predicates, and 182,781,038 triples. The dataset
occupies 29.1GB of storage. To identify the quality of our approach, we use a set of 112 BGP queries generated
again by the FEASIBLE benchmark generator based on real query logs. As it is based on real query logs the query
workload here is closer to the queries of real users instead of focusing on the system’s choke points - usually the
focus in synthetic benchmarks.

All information about the datasets is summarized in Table 2. Further, all workloads along with the code of the
system are available in our GitHub repository1.

Table 2
Dataset Statistics

Dataset #Triples Size (.nt) #Classes #Predicates
LUBM 100 13,405,381 2.28 GB 14 18

LUBM 1300 173,546,369 30.1 GB 14 18

LUBM 2300 266,814,882 46.4 GB 14 18

LUBM 10240 1,340,300,979 223.2 GB 14 18

SWDF 304,583 49.2 MB 126 185

DBpedia 182,781,038 29.1 GB 361 42,403

6.1.1. Setup.
Our experiments were conducted using a cluster of 4 physical machines that were running Apache Spark (3.0.0)

using Spark Standalone mode. Each machine has 400GB of SSD storage, and 38 cores, running Ubuntu 20.04.2
LTS, connected via Gigabit Ethernet. In each machine, 10GB of memory was assigned to the memory driver, and
15GB was assigned to the Spark worker for querying. For DIAERESIS, we configured Spark with 12 cores per
worker (to achieve a total of 48 cores), whereas we left the default configuration for other systems.

6.1.2. Competitors
Next, we compare our approach with three state-of-the-art query processing systems based on Spark, i.e., the

SPARQLGX [12], S2RDF [25], and WORQ[19]. In their respective papers, these systems have been shown to
greatly outperform SHARD, PigSPARQL, Sempala and Virtuoso Open Source Edition v7 [25]. We also made a
consistent effort to get S3QLRDF [14, 15] in order to include it in our experiments, however access to the system
was not provided.

SPARQLGX implements a vertical partitioning scheme, creating a partition in HDFS for every predicate in the
dataset. In the experiments we use the latest version of SPARQLGX 1.1 that relies on a translation of SPARQL
queries into executable Spark code that adopts evaluation strategies to the storage method used and statistics on data.
S2RDF, on the other hand, uses Extended Vertical Partitioning (ExtVP), which aims at table size reduction,when
joining triple patterns as semijoins are already precomputed. In order to manage the additional storage overhead
of ExtVP, there is a selectivity factor (SF) of a table in ExtVP, i.e. its relative size compared to the corresponding
VP table. In our experiments, the selectivity factor (SF) for ExtVP tables is 0.25 which the authors propose as an
optimal threshold to achieve the best performance benefit while causing only a little overhead. Moroever, the latest
version of S2RDF 1.1 is used that supports the use of statistics about the tables (VP and ExtVP)) for the query
generation/evaluation. Finally, WORQ [19] (version 0.1.0) reduces sets of intermediate results that are common for
certain join patterns, in an online fashion, using Bloom filters, to boost query performance.

1https://github.com/isl/DIAERESIS

https://github.com/isl/DIAERESIS
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Regarding compression, all systems use parquet files to store VP (ExtVP) tables that enable better compression,
and also WORQ uses dictionary compression.

DIAERESIS, S2RDF, and WORQ exploit the caching functionality of Spark SQL. As such, we do not include
caching times in our reported query runtimes as it is a one-time operation not required for subsequent queries
accessing the same table. SPARQLGX, on the other hand, loads the necessary data for each query from scratch so
the reported times include both load time and query execution times. Further, we experimentally determined the
number of partitions k that achieves an optimal trade-off between storage replication and query answering time.
More details about the number of first-level partitions and how it affects the efficiency of query answering and the
storage overhead can be found in Section 6.2.3. As such LUBM 100, LUBM 1300, LUBM 2300, and SWDF were
split into 4 first-level partitions, LUBM 10240 into 10 partitions, and DBpedia into 8 partitions. Finally, note that
a time-out of one week was selected for all the experiments, meaning that after one week without finishing the
execution, each individual experiment was stopped.

Table 3
Preprocessing Dimensions.

System Preprocessing Time Output Storage Replication Factor
LUBM 100 (13.4M triples)

SPARQLGX 0.73 min 101.52 MB 0.33

S2RDF 8.21 min 332.3 MB 1.10

WORQ 2.16 min 73.19 MB 0.24

DIAERESIS 8.12 min 336.07 MB 1.12

LUBM 1300 (173.5M triples)

SPARQLGX 4.91 min 1.48 GB 0.35

S2RDF 25.76 min 4.39 GB 1.05

WORQ 21.71 min 0.86 GB 0.21

DIAERESIS 124.31 min 4.74 GB 1.14

LUBM 2300 (266.8M triples)

SPARQLGX 7.55 min 2.30 GB 0.35

S2RDF 36.63 min 6.84 GB 1.06

WORQ 33.96 min 1.32 GB 0.21

DIAERESIS 130.07 min 6.89 GB 1.06

LUBM 10240 (1.35 billion triples)

SPARQLGX 64.6 min 12.42 GB 0.38

S2RDF 175.61 min 33.99 GB 1.04

WORQ 275.49 min 9.54 GB 0.29

DIAERESIS 187.44 min 44.32 GB 1.36

SWDF (304K triples)

SPARQLGX 0.45 min 5.38 MB 0.40

S2RDF 15 min 44.58 MB 3.31

WORQ 2.3 min 6.05 MB 0.45

DIAERESIS 2.5 min 11.59 MB 0.86

DBpedia (182M triples)

SPARQLGX 3.7 min 3.7 GB 0.41

S2RDF Timeout - -

WORQ Timeout - -

DIAERESIS 273.56 min 16.7 GB 2.41

6.1.3. Preprocessing
In the preprocessing phase, the main dimensions for evaluation are the time needed to partition the given dataset

and the storage overhead that every system introduces in terms of the Replication Factor (RF). Specifically, RF is
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the number of copies of the input dataset each system outputs in terms of raw compressed parquet file sizes. Table
3 presents the results for the various datasets and systems.

Preprocessing time. Focusing, initially, on the time needed for each system to partition the dataset, we can ob-
serve that SPARQLGX has almost in all cases the fastest preprocessing time. This is due to the fact that it imple-
ments the most naive preprocessing procedure, as it aggregates data by predicates and then creates a compressed
folder for every one of these predicates. However, exactly due to this simplistic policy, large fragments of data are
required for query answering as we will show in Section 6.2.1. S2RDF partitions 13.4M triples (LUMB 100) faster
than 304K (SWDF) ones. This happens as LUBM, being a synthetic dataset, has only 18 predicates, compared to
SWDF which has 185. Regarding preprocessing time for the other LUBM datasets, S2RDF shows an almost linear
increase. In the case of DBpedia, which has 42,403 predicates and is relatively big, both S2RDF and WORQ fail
to preprocess it. More precisely, S2RDF was returning an error failing to process the complex structure of DBpe-
dia, whereas the WORQ preprocessing stage was running for more than a week without returning results. Besides
DBpedia, WORQ has relatively good preprocessing time for the remaining datasets showing also an almost linear
increase in preprocessing time as the data grow. DIAERESIS requires more preprocessing time to finish, since it
employs a more sophisticated algorithm. However, it is not stalled by complex datasets, such as WORQ and S2RDF.
Nevertheless preprocessing is a task that is only executed once and offline for all systems before starting to answer
queries.

Replication. By further examining the results shown in Table 3, SPARQLGX has no replication overhead since,
as already explained, it is implementing a naive vertical partitioning schema. In fact, as information is omitted from
the generated vertical partitions (i.e. the predicates), the result dataset is even smaller than the input. S2RDF, on the
other hand, precomputes both the VP tables and every other possible semi-join combination of the dataset (up to a
limit). This results in storage overhead. Regarding WORQ, again the result of preprocessed data is smaller than the
initial dataset since it uses dictionary compression.

Looking at Table 3, for the LUBM datasets, the replication factor of SPARQLGX is around 0.35, for WORQ
ranges between 0.21 and 0.29, for S2RDF is around 1.05, whereas for our approach it ranges between 1.05 and 1.36.

For the SWDF dataset, we see that SPARQLGX and WORQ have a replication factor of around 0.4, S2RDF
has a replication factor of 3.31 due to the big amount of predicates contained in the dataset, whereas our approach
has 0.86, achieving a better replication factor than S2RDF in this dataset, however falling behind the simplistic
partitioning methods of SPARQLGX. That is, placing dependent nodes together, sacrifices storage overhead, for
drastically improving query performance.

Overall, SPARQLGX wins in terms of storage overhead and preprocessing time in most of the cases due to its
simplistic partitioning policy, however with a drastic overhead in query execution as we shall see in Section 6.2.1.
On the other hand, S2RDF and WORQ fail to finish partitioning on a complex real dataset.

Nevertheless, we argue that preprocessing is something that can be implemented offline without affecting overall
system performance and that a small space overhead is acceptable for improving query performance.

6.2. Query Execution

Next, we evaluate the query execution performance for the various systems. The times reported are the average
of 10 executions of each set of queries.

6.2.1. LUBM
In this experiment, we show how the performance of the systems changes as we increase the dataset size using

the four LUBM datasets - ranging from 13 million to 1.35 billion triples.
Figure 6 compares the average query execution time of different systems for the LUBM datasets. We can observe

that in all cases, our system strictly dominates the other systems. More importantly, as the size of the dataset in-
creases, the difference in the performance between DIAERESIS and the other systems increases as well. Specifically,
our system is one order of magnitude faster than all competitors for LUBM100 and LUBM10240. For LUBM1300,
DIAERESIS is two times faster than the most efficient competitor, whereas for LUBM2300, DIAERESIS is 40%
faster than the most efficient competitor.

DIAERESIS continues to perform better than the other systems in terms of average query execution time across
all versions, enjoying the smallest increase in execution times, compared to the other systems, as the dataset grows.
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Fig. 6. Query execution for LUBM datasets and systems.

Fig. 7. Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d) LUBM 10240

For the largest dataset, i.e., LUBM10240, our system outperforms the other systems, being almost three times faster
than the most efficient competitor. This demonstrates the superiority of DIAERESIS in big datasets. We conclude
that as expected, the size of the dataset affects the query execution performance. Generally, SPARQLGX has the
worst performance since it employs a really naive partitioning scheme, followed by S2RDF and WORQ - only in
LUBM1024, WORQ is better than S2RDF. In contrast, the increase in the dataset size has the smallest impact for
DIAERESIS, which dominates competitors.
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Fig. 8. Query execution for (a) LUBM 100, (b) LUBM 1300, (c) LUBM 2300, (d) LUBM 10240

Query Categories. Next, we study separately the four types of queries available, i.e., star, chain, snowflake,
and complex queries. Their execution times are presented in Figure 7. Regarding star queries, we notice that for all
LUBM datasets, DIAERESIS has the best performance followed by S2RDF, WORQ, and in the end SPARQLGX
with a major difference. S2RDF performs better than WORQ due to the materialized join reduction tables since
it uses fewer data to answer most of the queries than WORQ, as we will see in Section . Since our system places
together dependent fragments of data that are usually queried together, it is able to reduce data access for query
answering, performing significantly better than competitors.

For chain queries (Figure 7), the competitors perform quite well except for SPARQLGX which performs remark-
ably worse. More precisely, S2RDF performs slightly better than WORQ except for the LUBM100, the smallest
LUBM dataset, where the difference is negligible. Still, DIAERESIS delivers a better performance than the others
systems in this category for all LUBM datasets.

The biggest difference between DIAERESIS and the competitors is observed in complex queries for all LUBM
datasets (Figure 7). Our system is able to lead to significantly better performance, despite the fact that this category
contains the most time-demanding queries, with the bigger number of query triple patterns, and so joins. The dif-
ference in the execution times between our system and the rest becomes larger as the size of the dataset increases.
S2RDF has the second better performance followed by WORQ and SPARQLGX in LUBM100, LUBM1300 and
LUBM2300. However in LUBM10240 S2RDF comes third since WORQ is quite faster and SPAQGLGX is the last
one. S2RDF performs better than WORQ due to the materialized join reduction tables since S2RDF uses fewer data
to answer the queries than WORQ in all cases However, as the data grow, i.e., in LUBM10240, the complex queries
with many joins, perform better in WORQ than S2RDF due to the increased benefit of the bloom filters.

Finally, in snowflake queries, again we dominate all competitors, whereas S2RDF in most cases comes second,
followed by WORQ and SPAQLGX. Only in the smallest dataset, i.e. LUBM100, WORQ has a better performance.
Again SPARQLGX has the worst performance in all cases.

The value of our system is that it reduces substantially the accessed data in most of the cases as it is able to retain
the same partition dependent schema nodes that are queried together along with their corresponding instances. This
will be subsequently presented in the section related to the data access reduction.

Individual Queries. Examining closely the individual queries and their execution times (Figure 8), for the star
queries, DIAERESIS dominates other systems in all star queries for all LUBM datases. On the other hand, S2RDF
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wins WORQ in all LUBM datesets, except LUBM100 that it performs worse in five queries out of the total six star
queries - except Q4 which is the only one in this category that has three joins while the others have one join.

Regarding chain queries, DIAERESIS outperforms the competitors on all individual chain queries, except Q13
in LUBM1300, LUBM2300 and LUBM 10240 where S2RDF is slightly better. This happens as S2RDF has al-
ready precomputed the two joins required for query answering and as such despite the fact that DIAERESIS loads
fewer data (according to Fig. 9) the time spent in joining those data is higher than just accessing a bigger num-
ber of data. For Q6, WORQ performs better than S2RDF in all LUBM datasets. However, for Q14, S2RDF wins
WORQ in LUBM1300, LUBM230, and slightly in LUBM10240, while WORQ is significantly faster than S2RDF
in LUBM100.

Complex and snowflake queries put a heavy load on all systems since they consist of many joins (3-5 joins).
DIAERESIS continues to demonstrate its superior performance and scalability since it is faster than competitors to
all individual queries for all LUBM datasets. Competitors on the other hand do not show stability in their results.
S2RDF comes second followed by WORQ and then SPARQLGX, in terms of execution time for most of the queries
of the complex category, except LUBM10240. Specifically, for the biggest LUBM dataset, WORQ wins S2RDF in
all complex queries apart from one. In the snowflake category, WORQ is better in LUBM100 and in LUBM10340
but not in the rest.

Data Access Reduction. Moving to explain the large performance improvement of our system, we present next
the reduction in the size of the data accessed for query answering for all systems when compared to DIAERESIS for
each individual query for LUBM10240 (refer to Figure 9). We only present LUBM10240 as the graphs for the other
versions are similar. As shown, our system consistently outperforms all competitors, and in many cases to a great
extent. DIAERESIS accesses 99% less data than WORQ for answering Q4, whereas for many queries the reduction
is over 90%. For S2RDF on the other hand, the reduction in most of the cases is more than 60%. In only one case
(Q12), our system loads 8.12% more data than S2RF, as the reduction tables used by S2RDF are smaller than the
subpartitions loaded by DIAERESIS. However, even at that case, DIAERESIS performs better in terms of query
execution time due to the most effective query optimization procedures we adopt, as shown already in Figure 8.
Note that although in five cases the data access reduction of S2RDF, WORQ and SPARQLGX when compared to
DIAERESIS seems to be the same (Q1, Q3, Q10, Q6, Q14) as shown in Figure 9, S2RDF performs better that

Fig. 9. Reduction of Data Access for LUBM10240
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WORQ and SPARQLGX due to the query optimization it performs. Regrading SPARQLGX, in the most of the
cases, the percentage of the reduction is over 80%, and in many cases over 90%.

Overall we can conclude that DIAERESIS boosts query performance, while effectively reducing the data accessed
for query answering.

6.2.2. Real-World Datasets

Fig. 10. Query execution for Real-World Datasets and systems

Apart from the synthetic LUBM benchmark datasets, we evaluate our system against the competitors over two
real-world datasets, i.e., SWDF (unbound and bound) and DBpedia (Figure 10).

As already mentioned, no other system is able to execute queries with unbound predicates (i.e., SWDF(u)) in
Figure 10), whereas for the SWDF workload with bound predicates (277 queries) (i.e., SWDF(b) in Figure 10) our
system is one order of magnitude faster than competitors. WORQ was not able to execute star queries (147 queries)
in this dataset, since the triples of star queries for this specific dataset should be joined through constants instead
of variables as usual. Regarding DBpedia (Figure 10), both S2RDF and WORQ failed to finish the partitioning
procedure due to the large number of predicates contained in the dataset and the way that the algorithms of the
systems use this part.

Query Categories. Examining each query category in Figure 11, we can verify again that DIAERESIS strictly
dominates other systems in all query categories as well. More specifically, DIAERESIS is one order of magnitude
faster in star and complex queries than the fastest competitor able to process these datasets. The SWDF workload
did not contain complex queries, whereas for the DBpedia dataset for complex queries, DIAERESIS is again one
order of magnitude faster than SPARQLGX.

Overall, the evaluation clearly demonstrates the superior performance of DIAERESIS in real datasets as well,
when compared to the other state-of-the-art partitioning systems, for all query types. DIAERESIS does not favour
any specific query type, achieves consistent performance, dominating all competitors in all datasets.

6.2.3. Impact of the number of the first-level partitions
In this subsection, we experimentally investigate the influence of the number of first-level partitions on storage

overhead, data access for query evaluation, and query efficiency verifying the theoretical results presented in Section
5.1.3.

For this experiment, we focus on the largest synthetic and real-world datasets, i.e. LUBM10240 and DBpedia,
since their large size enables us to better understand the impact of the number of first-level partitions on the data



24 G.T. Troullinou et al. /

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Fig. 11. Query execution for (a) SWDF(p), (b) DBpedia

layout and the query evaluation. We compare the replication factor, the total amount of data accessed for answering
all queries in the workload in terms of number of rows, and the total query execution time varying the number of
first-level partitions between four and ten for the two datasets.

The results are presented in Table 4 for the various DIAERESIS configurations and we also include the competi-
tors able to run in these datasets. For both datasets, we notice that as the number of first-level partitions increases,
the replication factor increases as well, which is in line with Theorem 1 (Section 4). The rate of the increase in
terms of storage is larger in DBpedia than in LUBM10240 since the number of properties in DBpedia is quite larger
compared to LUBM10240 (42.403 vs 18). The larger number of properties in DBpedia result in more properties
spanning between the various partitions and as such increasing the replication factor more.

Further, looking at the total data access for query answering, we observe as well that the larger the number of
partitions the smaller the data required to be accessed for answering all queries. Again this is in line with Theorem
2. The reduced data access has also a direct effect on query execution which is reduced as k increases.

Compering DIAERESIS performance with the other competitors, we can also observe that they access a larger
fragment of data for answering queries in all cases, which is translated into a significantly larger execution time.

6.2.4. Overall comparison
Summing up, DIAERESIS strictly outperforms state-of-the-art systems in terms of query execution, for both syn-

thetic and real-world datasets. SPARQLGX aggregates data by predicates and then creates a compressed folder for
every one of those predicates, failing to effectively reduce data access. High volumes of data need to be touched at
query time, with significant overhead in query answering. S2RDF implements a more advanced query processor, by
pre-computing joins and performing query optimization using table statistics. WORQ, on the other hand, focuses
on caching join patterns which can effectively reduce query execution time. However, in both systems, the data re-
quired to answer the various queries are not effectively collocated leading to missed optimization opportunities. Our
approach, as we have experimentally shown, achieves significantly better performance by effectively, reducing data
access, which is a major advantage of our system. Finally, certain flaws have been identified for other systems: no
other system actually supports queries with unbounded predicates, S2RDF and WORQ fail to preprocess DBpedia,
and WORQ fails to execute the star queries in the SWDF workload.

Overall our system is better than competitors in both small and large datasets across all query types. This is
achieved by the hybrid partitioning of the triples as they are split by both the domain type and the name of the
property leading to more fine-grained sub-partitions. As the number of partitions is increased the sub-partitions
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Table 4
Comparing DIAERESIS and competitors for different number of first-level partitions (k).

System Partitions Replication Factor Data Access
(M rows) Execution Time

LUBM 10240

DIAERESIS 4 1.32 2,531 179,357 ms

DIAERESIS 6 1.35 2,509 160,189 ms

DIAERESIS 8 1.35 1,460 147,203 ms

DIAERESIS 10 1.36 1,406 116,908 ms

SPARQLGX 0.38 7,510 758,218 ms

S2RDF 1.04 4,348 318,668 ms

WORQ 0.29 7,510 318,299 ms

DBpedia

DIAERESIS 4 1.83 353 37,731 ms

DIAERESIS 6 2.20 242 32,635 ms

DIAERESIS 8 2.41 184 20,777 ms

DIAERESIS 10 2.50 145 18,650 ms

SPARQLGX 0.41 925 599,134 ms

become even smaller as the partitioning scheme also decomposes the corresponding instances, however with an
impact on the overall replication factor which is a trade-off of our solution.

7. Conclusions

In this paper, we focus on effective data partitioning for RDF datasets, expoiting schema information and the
notion of importance and dependence, enabling efficient query answering, strictly dominating existing partitioning
schemes of other Spark-based solutions. We experimentally show that DIAERESIS strictly outperforms, in terms
of query execution, state of the art systems, for both synthetic and real-world workloads, and in several cases by
orders of magnitude. This is achieved due to the significant reduction of data access required for query answering.
Our results are completely in line with findings from other papers in the area [25].

Limitations. We have to note that our approach assumes that datasets are static and do not evolve over time,
an assumption that might not always be true. In such a scenario, the pre-processing cost is something you only pay
once at the configuration phase in order to enjoy the benefits at querying time.

Future work.As future work, an interesting direction would be to apply our techniques to schema-less datasets
and to explore how to update partitioning as the RDF/S KB evolves.Another interesting direction would be to
explore further query optimization techniques based on additional statistics (e.g based on selectivities).
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