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Abstract. Knowledge graph embeddings represent a group of machine
learning techniques which project entities and relations of a knowledge

graph to continuous vector spaces. RDF2vec is a scalable embedding

approach rooted in the combination of random walks with a language
model. It has been successfully used in various applications. Recently,

multiple variants to the RDF2vec approach have been proposed, intro-
ducing variations both on the walk generation and on the language mod-

eling side. The combination of those different approaches has lead to an

increasing family of RDF2vec variants.
In this paper, we evaluate a total of twelve RDF2vec variants on a

comprehensive set of benchmark models, and compare them to seven ex-

isting knowledge graph embedding methods from the family of link pre-
diction approaches. Besides the established GEval benchmark introduc-

ing various downstream machine learning tasks on the DBpedia knowl-

edge graph, we also use the new DLCC (Description Logic Class Con-
structors) benchmark consisting of two gold standards, one based on

DBpedia, and one based on synthetically generated graphs. The latter

allows for analyzing which ontological patterns in a knowledge graph
can actually be learned by different embedding.

With this evaluation, we observe that certain tailored RDF2vec vari-
ants can lead to improved performance on different downstream tasks,

given the nature of the underlying problem, and that they, in partic-

ular, have a different behavior in modeling similarity and relatedness.
The findings can be used to provide guidance in selecting a particular

RDF2vec method for a given task.

Keywords.RDF2vec, knowledge graph embedding, representation learning,

embedding evaluation

1. Introduction

RDF2vec [1] is an approach for embedding entities of a knowledge graph in a
continuous vector space. It extracts sequences of entities from knowledge graphs
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which are then fed into a word2vec encoder [2,3]. Such embeddings have been
shown to be useful in downstream tasks which require numeric representations of
entities and rely on a distance metric between entities that captures entity sim-
ilarity and/or relatedness [4]. Examples of RDF2vec applications include knowl-
edge graph matching [5,6,7], general machine learning involving named enti-
ties [8], entity type prediction [9,10], relation prediction [4], named entity clas-
sification [11,12], or information retrieval [13,14]. Since its inception, multiple
extensions have been proposed for RDF2vec. In this paper, two recent exten-
sions are further scrutinized: RDF2vec walk variations (named e-RDF2vec and p-
RDF2vec) and order-aware RDF2vec (named RDF2vecoa). These extensions have
been evaluated on their own on task-based datasets before [15,16]. Preliminary
evaluations revealed that the flavor that is chosen influences the weight which is
put on different (semantic) features – for example, e-RDF2vec spaces are consid-
ered to be more focused on relatedness while there is indication that p-RDF2vec
spaces cover fine-grained similarity better. This paper presents the first compre-
hensive evaluation of all combinations of classic, e-RDF2vec, and p-RDF2vec, in
their order aware and non-order aware variants.

Moreover, not all of the evaluations in previous papers have been fully conclu-
sive. This poses the question: “What is actually learned?” It is not easy to answer
this question since task-based evaluation are subjective in nature and blend dif-
ferent semantic requirements. This paper strives to achieve a deeper understand-
ing of what knowledge graph embedding methods, such as RDF2vec, are actually
capable of representing. To that end, we perform an in-depth comparison of the
different variants, as well as a comparison of RDF2vec-based approaches to non
RDF2vec-based ones.

While we also perform task-based evaluations with multiple variants of
RDF2vec, the evaluation goes beyond single task-based discussions and tries to
tackle the question more fundamentally. We use multiple description logic (DL)
class constructors [17], which are used to create two benchmarks: One bench-
mark is based on DBpedia and one benchmark is synthetic in nature. We fur-
thermore formulate hypotheses which of classes can be learned using which em-
bedding method. The two benchmarks – and particularly the comparison of re-
sults between them – allow us to evaluate our hypotheses and to determine which
DL class constructors are learned by which approach. Furthermore, we analyze
whether the DL class constructor is actually learned or whether the approach is
merely exploiting cross signals which can be found in the knowledge graphs. In
our evaluation, we include not only twelve different RDF2vec configurations but
also seven different state of the art embedding models.

This paper makes two main contributions: (1) An in-depth evaluation of mul-
tiple RDF2vec configurations including their combinations is performed. (2) In
addition, an in-depth evaluation of existing state of the art models on completely
novel tasks is run to expose their strengths and weaknesses. To our knowledge,
our work is the first attempt to understand what knowledge graph embedding
methods can actually represent, both with respect to RDF2vec variants as well
as to other embedding methods, and, at the same time, the most comprehensive
evaluation for knowledge graph embeddings in general and RDF2vec variants in
particular.



While some results of this paper have already been published [15,16,17], the
following contributions are novel:

1. We discuss theoretical hypotheses about the representational power of dif-
ferent RDF2vec based variants and test them with systematic benchmarks.

2. We demonstrate that information on the nature of the task for which
embeddings are to be used can help to make an informed decision on an
embedding model.

3. We provide a full comparison of twelve RDF2vec variants and seven addi-
tional baseline models.

The rest of this article is structured as follows: The following section intro-
duces related work in the field of knowledge graph embeddings and embedding
evaluation gold standards. We then discuss RDF2vec extensions in section 3. Sub-
sequently, we introduce a frequently used gold standard for evaluating knowledge
graph embeddings through machine learning applications section 4. In section 5,
we introduce a broad set of description logic class constructors whereby we are
interested in how far each constructor can be learned by an embedding approach.
Together with the constructors, we hypothesize which RDF2vec variant may be
able to cover which constructor and why. After constructors and hypotheses are
introduced, a set of test cases is required to evaluate the embeddings and to
validate our assumptions. Therefore, section 6 introduces a framework which we
developed to derive two gold standards, named DLCC (Description Logic Class
Constructors). In section 7 we present the obtained results, discuss them, and
check the previously posed hypotheses. Lastly, this paper is concluded in section 8
by a summary together with an outlook on future work.

All relevant artifacts (embedding models, gold standards, developed frame-
works) are publicly available.2

2. Related Work

Knowledge Graph Embeddings A knowledge graph G is a labeled directed graph
G = (V, E), where E ⊆ V×R×V for a set of relations R. Vertices are subsequently
also referred to as entities and edges as predicates. Such a graph is also referred
to as directed heterogeneous graph [18,19]. A knowledge graph embedding (KGE)
is a projection Π for all vertices v ∈ V and optionally r ∈ R into a multi-
dimensional space of dimension ∆. Hence Π = {ei ∈ R∆} where i ∈ {1, 2, ..., |V|}
or i ∈ {1, 2, ..., |V|+ |R|}.3

Numerous approaches for knowledge graph embeddings were presented in the
past and multiple surveys on knowledge graph embeddings were published [4,18,
19,22,23]. Cai et al. [18] distinguish five different techniques for graph embedding:

2Instructions on how to reproduce the results in this paper are available online at http:

//rdf2vec.org/swj_paper/
3In this paper, the focus lies on deterministic point vector embedding approaches. The nota-

tion assumes a real vector space, this is not the case for ComplEx [20] and RotatE [21].

http://rdf2vec.org/swj_paper/
http://rdf2vec.org/swj_paper/


(1) matrix factorization, (2) deep learning, (3) edge reconstruction, (4) graph
kernel, and (5) generative model.4

A well-known matrix factorization approach is RESCAL [24]. The approach
models a graph as a three-way tensor and subsequently applies tensor decom-
position. DistMult [20] is a scalability improvement over RESCAL at the cost
that relationships are assumed to be symmetric. ComplEx [20] extends DistMult
by using complex vector spaces rather than real ones.5 In this paper, we use all
models of the above as benchmark models.

RDF2vec [8] (and all its variants [16,15]) fall into the category of random
walk-based deep learning: Multiple walks are performed within a graph, typi-
cally for each node, and the set of walks is then interpreted as sentences by the
word2vec language embedding algorithm [2,3]. Conceptually, RDF2vec is similar
to node2vec [25] and DeepWalk [26], with the difference that the latter approaches
were presented in the context of homogeneous graphs, i.e., graphs with merely
one edge type.

TransE [27] is a well-known edge-reconstruction approach which minimizes
the margin-based ranking loss. Given a triple in the form (head, relation, tail),
TransE trains embeddings h, r, t, such that h+r ≈ t. As an extension, TransR [28]
learns two embedding spaces, one for entities and one for relations, so that it better
captures compositional rules and non-one-to-one cardinalities of relationships.
RotatE [21] regards relations as rotations of vertices in complex space.6 All edge-
reconstruction approaches discussed above are used as benchmark models in this
paper.

Since graph kernels are designed for embedding a whole graph, this category
is not relevant for the article at hand. An example of generative models would be
the Latent Dirichlet Allocation applied on graphs. Embedding approaches from
this category, however, are not commonly used for knowledge graph embedding
applications and are not further discussed in this article.

Knowledge Graph Embedding Evaluation In the area of link prediction (or
knowledge base completion), the two well-known evaluation datasets FB15k and
WN18 [27] are both based on real datasets: FB15k is based on the Freebase
dataset, and WN18 is based on WordNet [29]. They were presented in the context
of link prediction: Given a triple in the form (head, relation, tail), two predic-
tion tasks (head, relation, ?) and (?, relation, tail) are created. The evaluation is
performed by calculating the mean rank/HITS@10 for a list of proposals. Since it
has been remarked that those datasets contain too many simple inferences due to
inverse relations, the more challenging variants FB15k-237 [30] and WN18RR [31]
have been proposed. More recently, evaluation sets based on larger knowledge

4Within these categories, even finer categories are presented. In this paper, we will only discuss
the main classes and point to subclasses if relevant. For a complete overview of the classification

system, we refer the reader to the original publication [18]. While the paper is about graph
embedding in general, not knowledge graph embedding in particular, the authors list knowledge

graphs as one kind of graphs under consideration for their categorization. Moreover, they do
not restrict any category to a particular kind of graph. Therefore, we use this categorization as
a categorization for KGE approaches.

5Hence, for ComplEx: Π = {ei ∈ C∆} where i = 1, 2, ...|V|+ |R|
6Hence, for RotatE: Π = {ei ∈ C∆} where i = 1, 2, ...|V|+ |R|



graphs, such as YAGO3-10 [31] and DBpedia50k/DBpedia500k [32] have been
introduced.

Alshagari et al. [33] present a framework for ontological concepts covering
three aspects: (i) categorization, (ii) hierarchy, and (iii) logic validation. The
framework can be used for language models and for knowledge graph embeddings.
The work presented in this paper differs in that it goes beyond explicit DBpedia
types. The evaluation of this paper is, therefore, of analytical rather than descrip-
tive nature. Moreover, the task sets of DLCC are significantly larger and more
comprehensive.

Ristoski et al. [34] provide a collection of benchmarking datasets for machine
learning including classification, clustering, and regression tasks. Later, the GEval
framework [35,36] was introduced to provide a standardized evaluation protocol
for this dataset. The evaluation datasets are based on DBpedia. Internally, the
embeddings are processed by different downstream classification, regression, or
clustering algorithms. The evaluation framework presented in this paper is similar
to GEval in that it also evaluates multiple classifiers given a concept vector input.

Melo and Paulheim [37] provide a method for synthesizing benchmark
datasets for link and entity type prediction, which are used in conjunction with
a fixed ontology. Their goal is to mimic the characteristic of existing knowledge
graphs in terms of distributions and patterns. However, it does not come with
any specific prediction objective.

Bloem et al. [38] introduce kgbench, a node classification benchmark for knowl-
edge graphs, which is based on real-world datasets and comes with tasks in dif-
ferent sizes and predefined train/test splits. Unlike DLCC, kgbench is based on
real-world datasets. Therefore, it is suitable to evaluate and compare the quality
of different embedding approaches on real-world tasks but does not provide any
insights into what these embedding approaches are capable of representing.

In this paper, we introduce a new benchmark for node classification, i.e., De-
scription Logic Class Constructors (DLCC), first introduced in [17], which allows
for an isolated consideration of different types of node classification problems in
knowledge graphs and therefore can provide insights in which problems can be
tackled by a particular embedding method and which cannot.

For the experiments in this paper, we use both the established GEval bench-
mark as well as the rather new DLCC benchmark, in order to have an encom-
passing comparison of RDF2vec variants and benchmark models, with respect to
both realistic problems using the widely used DBpedia knowledge graph, as well
as on synthetic problems allowing to analyze the representational capabilities of
the RDF2vec variants in detail.

3. RDF2vec and its Variants

RDF2vec has two main steps (see Fig. 1): First, sequences are extracted from
a knowledge graph using random walks. In a second step, these sequences are
processed by the word embedding algorithm RDF2vec. The algorithm considers
entities and predicates from the graph as “words”, so that it produces embedding
vectors for entities and predicates.
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Figure 1. Overall workflow of RDF2vec [39]

(a) CBOW (b) SG

Figure 2. The two basic architectures of word2vec [8]

Word2vec itself has two principle variants (see Fig. 2: context bag of words
(CBOW) tries to predict a word from its context, while skip-gram (SG) tries to
predict the context from a word. In both cases, a hidden projection layer is used
to produce word embeddings [2].

Over time, RDF2vec was extended multiple times. Generally, three kinds of
extensions can be distinguished: (1) Changes in the walk generation algorithm,
(2) changes in the embedding algorithm, and (3) other changes. The extensions
are presented in the following paragraphs. Out of those extensions, we picked the
most promising and interesting candidates and present them in more detail in the
subsequent subsections 3.1 and 3.2.

Walk Generation Extensions One of the first extensions to the random walk
generation algorithm was biased graph walks [40]. In this extension, multiple
edge weighting mechanisms are proposed and evaluated to influence the walk
generation. Using the predicate frequency strategy, for instance, increases the
likelihood that the random walks will include predicates that are very common.
While improvements in some test cases with some configurations are observable
compared to the classic strategy, the overall results are inconclusive in that there
is not a single best configuration for all tasks and that it is hard to determine
which configuration should be used in which situation. It is also important to note
that biasing walks increases the overall runtime of the RDF2vec approach since
a large number of weights has to be calculated and considered during the walk
configuration. While those experiments use graph-internal metrics for weighting
edges, later experiments indicate that graph-external metrics for edge importance
(in that case: derived from user clickstreams in Wikipedia) can be advantegeous
for the resulting embeddings [41]. Other variants of walk generation include the



incorporation of community hops or walklets [13], but the evidence here is mixed
as well.

Most recently, entity walks and property walks were presented [15]. Those
change the walk generation algorithm in terms of what graph elements are in-
cluded. They are described in more depth in subsection 3.1. The approaches are
neutral in terms of additional embedding runtime, entity walks are even signifi-
cantly faster since the vocabulary is smaller during training.

Embedding Algorithm Extensions The classic RDF2vec configuration is based
on word2vec. RDF2vecoa [16] uses an order-aware variant [42] of the original
word2vec algorithm. That approach has shown to be consistently better than the
classic RDF2vec configuration in various publications [4,16].

Other Extensions RDF2vec always generates embedding vectors for an entire
knowledge graph. This process can be very expensive for large knowledge graphs
and may be even unfeasible for very large knowledge graphs. At the same time,
most tasks do not require an embedding for every concept in a knowledge graph.
In many cases, the set of required embeddings can be determined ex ante – e.g.
entities of type city when the task is to regress the score for the quality of living.
In such instances, RDF2vec Light [43] can be used. The approach applies the
walk generation algorithm only to the predefined entities and thereby reduces the
required time for walk generation and training significantly. Experiments showed
that the performance is comparable to the more expensive classic variant – par-
ticularly in instances where the set of entities is homogeneous and their degree is
not too large.

3.1. Walk Generation Methods

In this paper, three different walk algorithms are evaluated: Classic walks, en-
tity walks (e-walks), and predicate walks (p-walks). These configurations have
been picked since they have previously been shown to be able to separate the
paradigmatic relations of similarity and relatedness [15].7

Classic Walks The originally presented RDF2vec variant generates multiple ran-
dom walks for each node in the graph. A random walk of length n (where n is an
even number)8 is of the form

w = (w0, w1, ..., wn−1, wn) (1)

7Similarity describes in how far two concepts are similar to each other “by virtue of their

similarity” [44]. Similarity and relatedness are often not clearly separated from each other (for
instance in [45]). Nevertheless, there are significant differences. Dissimilar entities can even be

semantically related by antonomy relationships [44]. Hill et al. distinguish the two relations by
giving examples: While the concepts coffee and cup are certainly related, they are not similar;
however, a mug and a cup can – in language as in the real world – almost be used interchangeably

and are, therefore, similar [46].
8It is important to point out that not all implementations of RDF2vec share the same termi-

nology. The two-hop sequence above would be referred to as a “walk of length 2” (i.e., counting

only nodes) by some implementations, while others would consider it a “walk of length 4” (i.e.,

counting nodes and edges). In this paper, we follow the latter terminology.



Figure 3. Different walk types visualized, showing walks starting from node C.

where wi ∈ V if i is even, and wi ∈ R if i is odd. For better readability, we stylize
wi ∈ V as ei and wi ∈ R as pi:

w = (e0, p1, ..., pn−1, en) (2)

Entity Walks (e-RDF2vec) An entity walk contains only entities without any
other properties. Such an approach is also known as e-RDF2vec. It has the form:

we = (e0, e1, ..., en−1, en) (3)

For an entity walk, all elements are entities, i.e., wni
∈ V.9

Predicate Walks (p-RDF2vec) A predicate walk contains only one entity together
with object properties. Such an approach is also known as p-RDF2vec. It has the
form:

wp = (e0, p1, p2, ..., pn−1, pn) (4)

For a predicate walk, all elements but e0 are properties, i.e., e0 ∈ V, pi ∈ R for
all i. The entity does not necessarily need to appear in the beginning of the walk,
but can occur in any position.

All three walk strategies are visualized in Figure 3.

3.2. Embedding Models of this Publication

In this paper, the two original configurations (SG and CBOW) are evaluated.
In addition, the order-aware variants are evaluated which are in the following
denoted with the suffix “OA”. This yields four language model configurations: (1)
SG, (2) CBOW, (3) SGoa, and (4) CBOWoa.

9Note that in the above example, a walk of length n would comprise n entities. In the graph,
the entity en would be twice as far away from e0 as the entity en in a classic walk. In other
words: when transforming a classic walk of length n into an entity walk by removing all uneven

nodes, the corresponding entity walk would be of length n
2
.



3.3. RDF2vec Configurations of this Publication

The walk generation processes and the embedding models are independent com-
ponents of RDF2vec which can be freely combined. In this paper, we evaluate the
following walk generation algorithms:

1. classic walks
2. entity walks
3. predicate walks

We combine these with the following language models:

1. classic word2vec (CBOW and SG)
2. order-aware word2vec (CBOWoa and SGoa)

This leads to the following combinations:

1. RDF2vec (original: classic word2vec with classic walks)
2. RDF2vecoa (order aware word2vec with classic walks)
3. p-RDF2vec (predicate walks with word2vec)
4. p-RDF2vecoa (predicate walks with order-aware word2vec)
5. e-RDF2vec (entity walks with classic word2vec)
6. e-RDF2vecoa (entity walks with order-aware word2vec)

Since all of the above combinations can be used with the SG and the CBOW
flavor of word2vec, this paper evaluates 12 variants of RDF2vec in total.

While section 2 lists more extensions of RDF2vec, we restricted ourselves to
those models listed above. In the scope of this paper, we are mainly investigating
the question of which RDF2vec variant is suitable for which problem at hand. In
contrast, some of the other extensions mentioned above, like RDF2vec light, rather
target computational performance improvement. On the other hand, experiments
in [43] suggest that the representational power of RDF2vec and RDF2vec light
are comparable.

For other extensions, like the use of graph external edge or node weights as
in [41], external signals are required, which may be created for specific graphs like
DBpedia, but not for others. Moreover, we expect that introducing weighted walks
may change the quantitative results by putting more emphasis on certain parts of
the graph than on others, but not the representational power of RDF2vec, since,
with a large enough number of walks, the embedding algorithm will eventually
observe all graph structures, regardless of the weights.

4. Machine Learning Gold Standard

For a comprehensive understanding of the configurations presented in subsec-
tion 3.3, an evaluation is performed using the machine learning task set for knowl-
edge graph embeddings published by Ristoski et al. [34]. It is comprised of six
tasks using 20 datasets in total:

• Five classification tasks, evaluated by accuracy (ACC). Those tasks use the
same ground truth as the regression tasks (see below). The numeric pre-



diction target is discretized into high/medium/low (for the Cities, AAUP,

and Forbes dataset) or high/low (for the Albums and Movies datasets). All

five tasks are single-label classification tasks.

• Five regression tasks, evaluated by root mean squared error (RMSE). Those

datasets are constructed by acquiring an external target variable for in-

stances in knowledge graphs which is not contained in the knowledge graph

per se. Specifically, the ground truth variables for the datasets are: a qual-

ity of living indicator for the Cities dataset, obtained from Mercer; aver-

age salary of university professors per university, obtained from the AAUP;

profitability of companies, obtained from Forbes; average ratings of albums

and movies, obtained from Facebook.

• Four clustering tasks (with ground truth clusters), evaluated by accuracy

(ACC). The clusters are obtained by retrieving entities of different ontol-

ogy classes from the knowledge graph. The clustering problems range from

distinguishing coarser clusters (e.g., cities vs. countries) to finer ones (e.g.,

basketball teams vs. football teams).

• A document similarity task (where the similarity is assessed by computing

the similarity between entities identified in the documents), evaluated by

the harmonic mean of Pearson and Spearman correlation coefficients. The

dataset is based on the LP50 dataset [47]. It consists of 50 documents, each

of which has been annotated with DBpedia entities using DBpedia spot-

light [48]. The task is to predict the similarity of each pair of documents.

• An entity relatedness task (where semantic similarity is used as a proxy for

semantic relatedness), evaluated by Kendall’s Tau. The dataset is based

on the KORE dataset [49]. The dataset consists of 20 seed entities from

the YAGO knowledge graph, and 20 related entities each. Those 20 related

entities per seed entity have been ranked by humans to capture the strength

of relatedness. The task is to rank the entities per seed by relatedness.

• Four semantic analogy tasks (e.g., Athens is to Greece as Oslo is to X ),

which are based on the original datasets on which word2vec was evalu-

ated [3]. The original datasets were created by manual annotation. In our

evaluation, we aim at predicting the fourth element (D) in an analogy

A : B = C : D by considering the closest n vectors to B − A + C. If the

element is contained the top n predictions, we consider the answer to be

correct, i.e., the evaluation metric is top-n accuracy. In the default setting

of the evaluation framework used, n is set to 2.

Table 1 shows a summary of the characteristics of the datasets used in the

evaluation. It can be observed that they cover a wide range of tasks, topics, sizes,

and other characteristics (e.g., balance). In this paper, the evaluation protocol as

proposed in [34,36] is followed: All entities are linked to a knowledge graph. Dif-

ferent feature extraction methods – in this case pure knowledge graph embedding

approaches – can then be compared using a fixed set of learning methods. The

evaluation is performed using the GEval framework10.

10https://github.com/mariaangelapellegrino/Evaluation-Framework

https://github.com/mariaangelapellegrino/Evaluation-Framework


Task Dataset # entities Target variable

Classification Cities 212 3 classes (67/106/39)

AAUP 960 3 classes (236/527/197)

Forbes 1,585 3 classes (738/781/66)

Albums 1,600 2 classes (800/800)

Movies 2,000 2 classes (1,000/1,000)

Regression Cities 212 numeric [23, 106]

AAUP 960 numeric [277, 1009]

Forbes 1,585 numeric [0.0, 416.6]

Albums 1,600 numeric [15, 97]

Movies 2,000 numeric [1, 100]

Clustering Cities and Countries (2k) 4,344 2 clusters (2,000/2,344)

Cities and Countries 11,182 2 clusters (8,838/2,344)

Cities, Countries, Albums,

Movies, AAUP, Forbes
6,357 5 clusters (2,000/960/1,600/212/1,585)

Teams 4,206 2 clusters (4,185/21)

Document

Similarity

Pairs of 50 documents

with entities
1,225 numeric similarity score [1.0,5.0]

Entity

Relatedness
20x20 entity pairs 400 ranking of entities

Semantic

Analogies
(All) capitals and countries 4,523 entity prediction

Capitals and countries 505 entity prediction

Cities and States 2,467 entity prediction

Countries and Currencies 866 entity prediction

Table 1. Overview of the Evaluation Datasets

5. DL Class Constructors and Hypotheses

In section 4, a gold standard was introduced. That gold standard is task-oriented,
i.e., it gives an indication of which embedding configuration is suitable for a
specific task – however, the gold standard is not suitable to perform a deeper
analysis such as what is or can be learned.

The DLCC gold standard aims to close that gap by focusing on specific onto-
logical constructs as targets for entity classification. The underlying idea is that
if a classifier is able to separate classes created by specific ontological constructs,
with entities represented by means of an embedding E, then this embedding can
represent the respective ontological construct. The aim of DLCC thus is to provide
a benchmark for analyzing which kinds of constructs in a knowledge graph can be
recognized by different embedding methods. The construction of that benchmark
is described in section 6.

In order to analyze the representational capabilities of embedding methods,
we define class labels using different DL class constructors and argue which vari-
ants of RDF2vec are capable of learning them. For each constructor, we formulate
hypotheses of which variants of RDF2vec can learn the classes. More precisely,
we reject the hypothesis that an embedding can learn a class if a classifier trained
on positive examples (members of a class) and negative examples (non-members
of a class) does not perform significantly better than random guessing.



The selection of constructors has been mainly motivated by earlier works
on propositionalization of RDF for processing in data mining pipelines [50,51],
which was a common approach before the emergence of knowledge graph embed-
dings. [52]

Ingoing and Outgoing Relations All entities that have a particular outgoing
or ingoing relation (e.g., everything that has a location or everything that is a
location of something).

∃r.⊤ (5)

∃r−1.⊤ (6)

∃r.⊤ ⊔ ∃r−1.⊤ (7)

where r is bound to a particular relation.11

Hypothesis 1a (5) and (6) can be learned by RDF2vecoa and p-RDF2vecoa. Non-
oa variants cannot properly learn them because they cannot distinguish the two.
e-RDF2vec variants cannot properly learn them because they cannot distinguish
particular properties.

Hypothesis 1b (7) can be learned by RDF2vec, RDF2vecoa, p-RDF2vec, and
p-RDF2vecoa.

Use case An exemplary use case would be entity classification. If a relation has
a particular domain or range, an embedding vector capturing that information
could be used to infer the corresponding class. Using such structural information
for entity classification is quite common [9,53,54].

Relations to Particular Individuals All entities that have a relation (in any
direction) to a particular individual (e.g., everything that is related to Mannheim).

∃R. {e} ⊔ ∃R−1. {e} (8)

where R is not bound to a particular relation. Those relations can also span two
(or more12) hops:

∃R1.(∃R2. {e}) ⊔ ∃R−1
1 .(∃R−1

2 . {e}) (9)

Hypothesis 2a (8) can be learned by RDF2vec, RDF2vecoa, e−RDF2vec, and
e − RDF2vecoa. Sub-hypothesis: It is possible that the non-oa variants learn it
a bit better. However, the non-oa variants will not be able to tell closely related
entities (one hop away) from less related ones (more than two hops away).13

Hypothesis 2b (9) can be learned by RDF2vec, RDF2vecoa, e−RDF2vec, and
e − RDF2vecoa, as long as the walk length allows for capturing those relations.
Sub-hypothesis: It is possible that the non-oa variants learn it a bit better.

11We use r to denote a particular relation, whereas R denotes any relation.
12For reasons of scalability, we restrict the provided gold standard to two hops.
13Depending on the entity at hand, the second set might grow very large. For example, in

DBpedia, half of the entities are reachable from New York City within two hops.



Use case An exemplary use case would be capturing entity relatedness. Two
entities sharing many connections to a third entity are typically related. This can
also be useful in query expansion for information retrieval [55]. The distinction
between closely and vaguely related entities (sharing an entity one or two hops
away) may be crucial if queries should not be expanded too much. Also in collec-
tive entity disambiguation in texts [56], this notion of relatedness can be useful:
one would assume that co-mentioned entities are related, but not necessarily want
to restrict the kinds of relation among them.

Particular Relations to Particular Individuals All entities that have a
particular relation to a particular individual (e.g., movies directed by Steven Spiel-
berg).

∃r. {e} (10)

Hypothesis 3 (10) can only be learned properly by RDF2vecoa. Non-oa variants
cannot distinguish between the two.14

Use case An exemplary use case would be capturing entity similarity. For exam-
ple, two movies which have the same director and some overlapping cast can be
considered similar. This can be used, e.g., in recommender systems [57] or other
predictive modeling tasks.

Qualified Restrictions All entities that have a particular relation to an indi-
vidual of a given type (e.g., all people married to soccer players).

∃r.T (11)

∃r−1.T (12)

If types are included in the graph, then rdf:type becomes yet another restriction,
and we can reformulate (11) to

∃r.(∃rdf:type.T ) (13)

Therefore, it behaves equally to a chained variant of (10), and, given a long enough
walk length, should have similar constraints. However, if the related entity has
strong domain and range signals, it may be learned just by observing the ingoing
and outgoing relations of that entity. In that case, p−RDF2vecoa could also be
capable of learning that class to a certain extent.

Hypothesis 4a (11) can only be learned properly byRDF2vecoa, and, to a certain
extent, by p−RDF2vecoa.

The second case (12) is trickier. Here, the relation to the entity at hand and the
type information of the related entity can only appear in two different walks, but
never together (at least if the inverse relation is not explicitly contained in the
graph). Hence, we assume:

Hypothesis 4b (12) cannot be learned by any RDF2vec variant.

14For example: distinguishing people influenced by Leibniz vs. people who influenced Leibniz.



Use case Qualified restrictions are often useful for fine-grained entity classifi-
cation and thereby capture some aspects of entity similarity. For example, for
distinguishing a basketball and a baseball team, it is not sufficient that both
have a coach and players, but that those are of the class BasketballPlayer or
BaseballPlayer. If the similarity aspects become rather fine-grained, they may
also be used in predictive modeling tasks.

Cardinality Restrictions of Relations All entities that have at least or at
most n relations of a particular kind (e.g., people who have at least two citizen-
ships). Here we depict only the at least variant because the corresponding classi-
fication problem is the same the at most variant (classifying ≥ 2r.⊤ vs. ¬ ≥ 2.r⊤
is identical to classifying ≤ 1r.⊤ vs. ¬ ≤ 1r.⊤).15

≥ 2r.⊤ (14)

≥ 2r−1.⊤ (15)

Since RDF2vec is based on single walks, it cannot directly learn cardinalities.
However, if a relation appears with a higher cardinality, it is occurring in the walks
including the corresponding instance more often, making it a stronger signal for
the word2vec algorithm.

Hypothesis 5 (14) and (15) can be learned to a certain extent by RDF2vecoa
and p−RDF2vecoa. Non-oa variants cannot distinguish the two cases.16

Use case Cardinalities often capture entity similarity aspects not expressed in
other restrictions. For example, when comparing two authors in a knowledge
graph of publications, both will have published papers (which makes them in-
distinguishable when only looking at qualified restrictions), but there is still a
difference if one has published two and the other has published two hundred pa-
pers. Therefore, this distinction is useful in cases where strengths of relations,
measured in their cardinality, play a role. One example are recommender engines
for scientific papers [58], where highly ranked papers would be given preference
over lowly ranked ones.

Qualified Cardinality Restrictions Qualified cardinality restrictions com-
bine qualified restrictions with cardinalities (for example, all people who have
published at least three bestsellers).

≥ 2r.T (16)

≥ 2r−1.T (17)

Since this is a combination of qualified restrictions and cardinality restrictions, we
hypothesize that it can be captured by RDF2vec variants that can handle both
of them:

Hypothesis 6a (16) can be learned to a certain extent by RDF2vecoa.

15The fact that most knowledge graphs follow the open-world assumption is ignored here.
16For example: distinguishing someone who has been influenced by more than two people vs.

someone who has influenced more than two people.



Hypothesis Test Case DL Expression

H1a tc01 r.⊤
H1a’ tc02 r−1.⊤
H1b tc03 ∃r.⊤ ⊔ ∃r−1.⊤
H2a tc04 ∃R. {e} ⊔ ∃R−1. {e}
H2b tc05 ∃R1.(∃R2. {e}) ⊔ ∃R−1

1 .(∃R−1
2 {e})

H3 tc06 r. {e}
H4a tc07 ∃r.T
H4b tc08 ∃r−1.T

H5 tc09 ≥ 2r.⊤
H5’ tc10 ≥ 2r−1.⊤
H6a tc11 ≥ 2r.T

H6b tc12 ≥ 2r−1.T

Table 2. Overview of Hypotheses and Test Cases

Hypothesis 6b (17) cannot be learned by any variant of RDF2vec.

Use case Just like qualified restrictions and cardinality restrictions, these re-
strictions capture finer-grained aspects of entity similarity and are thus useable
both for fine-grained entity classification and for predictive modeling tasks. A few
examples of classification patterns were given in [59], where explanations on the
cities classification task in the GEval benchmark were analyzed, and explanations
like Cities which are the hometown of many bands have a high quality of living
were observed, which would full into this category.

Table 2 summarizes the test cases that we have discussed above. While for
most of them, we can formulate a hypothesis on whether or not they can be
represented with a particular RDF2vec variant, we have no particular hypothesis
for CBOW vs. SG.

6. DLCC Gold Standard

For the twelve test cases in Table 2, we create positive examples (i.e., those
which fall into the respective class) and those which do not (under closed-world
semantics). For example, for tc01, we would generate a set of positive instances
for which ∃r.⊤ holds and a set of negative instances for which ∄r.⊤ holds. We
then evaluate how well these two classes can be separated, given the embedding
vectors of the positive and negative instances. For that, we split the examples
into a training and testing partition, we train binary classifiers on the training
subset of the examples and evaluate their performance on the test subset.

The approach is visualized in Figure 4: A gold standard generator generates
a set of positive and negative URIs, as well as a fixed train/test split. The ap-
proach presented allows for generating custom gold standards – however, a pre-
calculated gold standard is also provided. This pre-calculated gold standard can
be used to guarantee reproducibility. We publish pre-calculated gold standards at
Zenodo which are versioned to allow for future improvements while allowing for
comparable experiments. In this paper, we use version v1 of the gold standard.
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Figure 4. Overview of the DLCC Approach [17]

A user provides embeddings in a simple textual format, together with the
ground truth labels for the training and the testing partition as input to the eval-
uator. The evaluator trains multiple classifiers and evaluates them on the selected
gold standard using the provided vectors as classification input. The program then
calculates multiple statistics in the form of CSV files that can be further analyzed
in a spreadsheet program or through data analysis frameworks such as pandas17.
These analyses help the user to understand how well the provided vectors are
performing on a particular DL class constructor.

There are two benchmarks: A DBpedia benchmark (see subsection 6.3) and a
synthetic benchmark (see subsection 6.4). The benchmarks are publicly available
and significant efforts were made to comply with the FAIR [60] principles.18 Before
discussing the two benchmarks in detail, we will quickly introduce the two software
components, namely the gold standard generator (see subsection 6.1) and the
evaluation component (see subsection 6.2).

6.1. Gold Standard Generator

The gold standard generator is publicly available19. It is implemented as a Java
maven project. The generator can generate either a DBpedia benchmark (see
subsection 6.3) or a synthetic one (see subsection 6.4). Any DBpedia version can
be used, the user merely needs to provide a SPARQL endpoint. A comprehensive
set of unit tests ensures a high code quality. The generator automatically generates
a fixed train-test split for the evaluation framework or any other downstream

17https://pandas.pydata.org/
18Dataset DOI: 10.5281/zenodo.6509715; uploaded and indexed via zenodo; published with

a permissive license; re-usable; metadata is provided.
19https://github.com/janothan/DL-TC-Generator

https://pandas.pydata.org/
https://github.com/janothan/DL-TC-Generator


application. The split is configurable; for the pre-generated gold standards, an
80-20 split is used. The resulting gold standard is balanced – i.e. the number
of positives equals the number of negatives – and the train and test partitions
are stratified. Hence, any classifier which achieves an accuracy significantly above
50% is capable of learning the test case’s problem type from the vectors to some
extent.

It is important to note that the generator only needs to be run by users who
want to build their own gold standards. For analyzing the capabilities of a particu-
lar knowledge graph embedding approach, it is sufficient to merely download20 the
pre-calculated gold standard files online. We recommend using the pre-calculated
and versioned gold standards to ensure comparability across publications.

6.2. Evaluation Framework

The evaluator is publicly available21 together with usage examples. It is imple-
mented in Python and can be easily used in a Jupyter notebook. A comprehensive
set of unit tests ensures a high code quality.

The standard user can directly download the gold standard and use the eval-
uation framework. To test class separability, the evaluation framework currently
runs six machine learning classifiers which are commonly used together with em-
bedding methods for node classification22 (1) decision trees, (2) näıve Bayes, (3)
KNN, (4) SVM, (5) random forest, and (6) a multilayer perceptron network. The
framework uses the default configurations of the sklearn library23.

After training and evaluation, the framework persists multiple CSV files per
test case as well as higher-level aggregate CSV files. Examples of such CSV files
are a file listing the accuracy per classifier and per test case or a file listing the
accuracy of the best classifier per test case. In the case of DBpedia test cases
where multiple domains are available per test case, the results can be analyzed
on the level of each domain separately, or in an aggregated manner on the level
of the test case.

6.3. DBpedia Benchmark

We use the DBpedia knowledge graph to create test cases.24 We created SPARQL
queries for each test case (see Table 2) to generate positives, negatives, and hard
negatives. While an ordinary negative example is simply any entity that does not
fulfill the necessary conditions for a positive example25, a hard negative is an
entity that fulfills some, but not all those conditions. For example, for qualified

20DOI: 10.5281/zenodo.6509715; GitHub link for the latest version. https://github.com/j

anothan/DL-TC-Generator/tree/master/results
21https://github.com/janothan/dl-evaluation-framework
22The evaluation framework is not restricted to the set of classifiers listed here. New classifiers

can be easily added if desired.
23https://scikit-learn.org/stable/index.html
24We used DBpedia version 2021-09. The generator can be configured to use any DBpedia

SPARQL endpoint if desired.
25Since negative examples are generated at random, they are very likely not to fulfill any of

those conditions.

https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/DL-TC-Generator/tree/master/results
https://github.com/janothan/dl-evaluation-framework
https://scikit-learn.org/stable/index.html


relations, a positive example would be a person playing in a team which is a
basketball team. A simple negative example would be any person not playing in
a basketball team, whereas a hard negative example would be any person playing
in a team which is not a basketball team.

Query examples for every test case in the people domain are provided in
Tables 8, 9 and 10 in the appendix. The framework uses slightly more involved
queries to vary the size of the result set and to better randomize results.

In total, we used six different domains: people (P), books (B), cities (C),
music albums (A), movies (M), and species (S). This setup yields more than 200
hand-written SPARQL queries which are used to obtain positives, negatives, and
hard negatives; they are available online26 and can be easily extended e.g. to add
an additional domain. For each test case, we created differently sized (50, 500,
5000) balanced test sets.27

6.4. Synthetic Benchmark

The previous benchmark is realistic and well suited to compare approaches on
differently typed DL class constructors.

However, the following aspects have to be considered: (1) DBpedia is a large
knowledge graph, not every embedding approach can be used to learn an embed-
ding for it (or not every researcher has the computational means to do so, respec-
tively). (2) Depending on the DL class constructor and the domain, not enough
examples can be found on DBpedia. (3) It cannot be precluded that patterns cor-
relate, therefore, the fact that an embedding approach can learn a particular class
can only be an indicator that it might learn the underlying constructor pattern,
but the results are not conclusive, since the performance may also hint at the
approach learning a cooccurring pattern. Correlating properties, type biases for
entities, etc. may lead to surprising results in some domains.

Therefore, we complement the DBpedia-based gold standard with a synthetic
benchmark. The idea is to generate a graph that contains the DL class construc-
tors (positive and negative) of interest. The graph can be constructed to resemble
the DBpedia graph statistically but can be significantly smaller (and contain a
sufficient number of positives and negatives), and, by construction, side effects and
correlations which exist in DBpedia can be mitigated to a large extent. However,
the generator also allows for using other schema characteristics as well, which
paves the way to broadly investigate the behavior of knowledge graph embed-
ding methods for other cases as well. Unlike other synthetic data generators, like
LUBM [61], we create both a schema (T-Box) and instances (an A-Box), while
LUBM merely creates instances given a fixed schema.

The configurable parameters are numClasses, numProperties, numInstances,
branchingFactor, maxTriplesPerNode, and numNodesInterest (all parameters
are integers). The overall process is depicted in Algorithm 1: First, a class tree
with numClasses classes is constructed in a way that each class has at most
branchingFactor children. Then, numProperties properties are generated. Each

26https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/que

ries
27The desired size classes can be configured in the framework.

https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries
https://github.com/janothan/DL-TC-Generator/tree/master/src/main/resources/queries


p1
r

e2

e1

e3

e5

e4

e6

s

q

r

t

s

X

Figure 5. Illustration of the instance generation, using the class constructor ∃r.T . First, the
pattern is instantiated for the positive example p1 with the edge (p1, r, e5). Then, random edges

are inserted (dashed lines). The edge (e1, r, p1) is removed, because it would turn e1 into an
additional positive example. [17]

property is assigned to a range and domain from the class tree whereby the first
property has the root node as domain and range type so that every node can
be involved in at least one triple statement. A skew can be introduced so that
domain and range refer with a higher probability to a more general class than to
a specific one. Lastly, we generate instances and assign them to a class as type
which is depicted in Algorithm 1.

Once the ontology is created, numNodesInterest positives and negatives are
generated (adhering to domain/range restrictions). Each class constructor is first
initialized explicitly for the positive examples. Then, for each entity e in the graph
(i.e., positive and negative examples), rand(n) ∈ [1,maxTriplesPerNode] ran-
dom triples are generated which have e as a subject and adhere to the domain and
range definitions, whereby it is checked that no additional positives are created
and no negatives are turned into positives accidentally (see Figure 5).

For version v1 of the gold standard, numClasses=760, numProperties=1,355,
numInstances=10,000, branchingFactor=5, maxTriplesPerNode=11, and num-

NodesInterest=1,000 were chosen. The parameters were chosen to form graphs
which are smaller than DBpedia but resemble the DBpedia graph statistically, so
that the results can be meaningfully compared to those on the non-synthetic part
of DLCC. Therefore, the statistical properties of the DBpedia ontology calculated
by Heist et al. [62] were used. It is important to point out, however, that this
choice of parameters is not at all obligatory, and other parameters can be chosen
to resemble other ontologies and/or build synthetic test cases with particular
characteristics of interest.

7. Evaluation

7.1. Training Details

RDF2vec We trained 12 RDF2vec embeddings using the configurations listed in
subsection 3.3. For the DBpedia benchmarks, we use version 2021-09. We gener-
ated 500 walks per entity, with a depth of 4, a window size of 5, 5 epochs, and
a dimension of 200. We used the same parameters for the synthetic gold stan-
dard with the exception of dimension = 100 and walks = 100 to account for the
smaller gold standard size. The embeddings were trained using the jRDF2vec28

28https://github.com/dwslab/jRDF2Vec

https://github.com/dwslab/jRDF2Vec


Algorithm 1 Ontology Creation

procedure generateClassTree(numClasses, branchingFactor)
clsURIs← generateURIs(numClasses)
root← randomDraw(clsURIs)
i← 0
workList← newList( )
result← newTree( )
currentURI ← root
for clsURI in clsURIs do

if clsURI = root then
continue

end if
if i = branchingFactor then

currentURI ← workList.removeF irst()
i← 0

end if
result.addLeaf(currentURI, clsURI)
i← i+ 1
workList.add(clsURI)

end for
return result

end procedure

procedure generateProperties(numProperties, classTree)
properties← generateURIs(numProperties)
for property in properties do

property.addDomain( drawDomainRange(classTree, 0.25) )
property.addRange( drawDomainRange(classTree, 0.25) )

end for
return properties

end procedure

procedure drawDomainRange(classTree, p)
result← classTree.randomClass()
while Random.nextDouble > p ∧ ¬(classTree.getChildren(result) == ∅)

do
result← randomDraw(classTree.getChildren(result))

end while
end procedure

procedure generateInstances(numInstances, classTree)
instances← generateURIs(numInstances)
for instance in instances do

instance.type(classTree.randomClass())
end for
return instances

end procedure



framework [43]. The embedding files are publicly available29 via KGvec2go [63]
and can also be used for other downstream tasks.

Benchmark Models We trained DBpedia embeddings using seven benchmark
models:

• TransE [27] with L1 norm
• TransE [27] with L2 norm
• TransR [28]
• ComplEx [20]
• DistMult [20]
• RESCAL [24]
• RotatE [21]

The above-mentioned benchmark models were trained using the DGL-KE
framework30 [64], using the respective default parameters, with 200 dimensions
for DBpedia and 100 for the synthetic datasets, as for RDF2vec. The models are
publicly available and can also be used for other downstream tasks.31

7.2. Results on the ML Gold Standard

The results for the ML gold standard introduced in section 4 are provided in Ta-
bles 3 (classification and clustering), 4 (regression and semantic analogies), and 5
(entity relatedness and document similarity). For each task with multiple test sets
(i.e., classification, regression, clustering, and semantic analogies), we performed
a Friedman test to test whether the results achieved with the different embed-
ding methods are signficantly different. The test showed significance for the tasks
of classification (Q=61.38, p=0.000001), regression (Q=46.18, p=0.000279), and
semantic analogy (Q=56.84, p=0.000007), but not for clustering. For those cases
where the Friedman test shows significance, we report signficance on individual
comparisons of approaches according to a one-sided t-test.

Classification On the classification task, it can be observed that the order-aware
RDF2vec variants lead – with few exceptions – to generally better or the same re-
sults32. It is further observable that the SG configuration outperforms the CBOW
configuration.33 Within the RDF2vec family, the classic and the e-walks variant
achieve the best results.34 Concerning the benchmark models, the overall best re-
sults are achieved using TransE with L235; RDF2vec SG configurations are close
to the best scores.

29http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/
30https://github.com/awslabs/dgl-ke
31http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-

rdf2vec/
32The order-aware variant significantly (p < 0.05) outperforms the non-order-aware variant

for p-RDF2vec SG and p-RDF2vec CBOW
33The SG variant significantly (p < 0.05) outperforms the corresponding CBOW variant for:

RDF2vec, RDF2vecoa, p-RDF2vec, and e-RDF2vecoa.
34RDF2vec SG significantly (p < 0.05) outperforms, RDF2vec CBOWoa, p-RDF2vec CBOW,

and e-RDF2vec e-RDF2vec CBOW. e-RDF2vec SGoa significantly (p < 0.05) outperforms
RDF2vec CBOW, RDF2vec CBOWoa, p-RDF2vec SG, and p-RDF2vec CBOW.

35TransE-L2 significantly (p < 0.05) outperforms all RDF2vec variants but RDF2vec SG and
RDF2vec SGoa, and all other benchmark models.

http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/
https://github.com/awslabs/dgl-ke
http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/
http://data.dws.informatik.uni-mannheim.de/kgvec2go/dbpedia/2021-09/non-rdf2vec/


Clustering Concerning the benchmark models, the overall best results are
achieved using TransE with L2. Concerning the RDF2vec configurations, the re-
sults are rather inconclusive. As mentioned above, the results for clustering are
not significant according to the Friedman test.

Regression Again, on the regression tasks, improvements can be observed for
the order-aware variants which outperform non-order-aware variants, although
not significant. Again, TransE with L2 regularization achieves the best results in
most cases36 with RDF2vec SGoa being the runner-up.37

Semantic Analogies On the semantic analogies task, the classic RDF2vec variant
with SG configuration performs best38. Improvements by the order-aware variants
cannot be observed on this task39. Among the baseline models, RESCAL40 and
RotatE41 perform comparatively badly on this task.

Entity Relatedness and Document Similarity On the entity relatedness task, the
e-RDF2vec variants perform comparatively well with e-RDF2vec SG being the
best model. This is intuitive since the e-RDF2vec variant can be expected to
pick up the notion of entity relatedness best. On the document similarity task,
it can be observed that the p-RDF2vec variant outperforms the other RDF2vec
configurations. Again, this finding is intuitive since the configuration is expected
to pick up fine-grained entity similarity best – for example, for distinguishing
politics from sports texts, it is not sufficient to know that both mention persons,
but it is required to distinguish athletes from politicians.

7.3. Results on DLCC

As outlined in subsection 6.1, the DLCC benchmarks are balanced. That means
that a performance significantly above 50% indicates that the model learns the
constructor to some extent. It is important to highlight that Tables 6 and 7 state
the best results out of six classifiers (see subsection 6.2). In order to determine
whether the stated result for an embedding configuration for a particular test
case is significant, we performed an approximated one-sided binomial significance
test with α = 0.05. Since multiple classifiers were trained for each test case, we
applied the conservative Bonferroni correction [65] of α to account for the multiple
testing problem. The hypothesis underlying each significance test is that in the

36TransE-L2 significantly (p < 0.05) outperforms all variants of RDF2vec except
RDF2vec SGoa, p-RDF2vec SG, p-RDF2vec CBOW, as well as RotatE and RESCAL

37RDF2vec SGoa significantly (p < 0.05) outperforms RDF2vec CBOW, RDF2vec CBOWoa,

p-RDF2vec CBOWoa, e-RDF2vec SG, and e-RDF2vec CBOW.
38RDF2vec SG significantly (p < 0.05 outperforms all other RDF2vec variants, as well as all

baseline models except TransE-L1 and TransR.
39Only the differences for the order-aware and non-order-aware variants of p-RDF2vec SG

and p-RDF2vec CBOW are significant (p < 0.05), but the absolute scores are very low compared

to other approaches.
40RESCAL is significantly (p < 0.05) outperformed by RDF2vec SG, RDF2vec SGoa,

RDF2vec CBOW, RDF2vec CBOWoa, e-RDF2vec SG, e-RDF2vec SGoa, e-RDF2vec CBOWoa,
as well TransE-L1, TransE-L2, and TransR.

41RotatE is significantly (p < 0.05) outperformed by RDF2vec SG, RDF2vec SGoa,

RDF2vec CBOW, RDF2vec CBOWoa, e-RDF2vec SG, e-RDF2vec SGoa, as well TransE-L1,

TransE-L2, and TransR.
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Table 5. ML Results for Entity Relatedness and Document Similarity

Approach

Entity Relatedness
(Kendall Tau)

Document Similarity
(Harmonic Mean)

RDF2vec SG 0.747 0.237

RDF2vec SGoa 0.716 0.23

RDF2vec CBOW 0.611 0.283

RDF2vec CBOWoa 0.547 0.209

p-RDF2vec SG 0.432 0.193

p-RDF2vec SGoa 0.768 0.382

p-RDF2vec CBOW 0.568 0.296

p-RDF2vec CBOWoa 0.737 0.256

e-RDF2vec SG 0.832 0.275

e-RDF2vec SGoa 0.8 0.25

e-RDF2vec CBOW 0.726 0.17

e-RDF2vec CBOWoa 0.779 0.111

TransE-L1 0.632 0.388

TransE-L2 0.537 0.398

TransR 0.589 0.484

RotatE 0.432 0.467

RESCAL 0.558 0.358

DistMult 0.432 0.406

ComplEx 0.589 0.387

embedding space spanned by a given approach, positive and negative examples
can be separated by a classifier. Therefore, we test whether the classification
results yield an accuracy significantly greater than 0.5, since all classification
problems are fully balanced. The null hypothesis is that the classes cannot be
separated, i.e., the classification accuracy does not significantly exceed 0.5.

DBpedia Benchmark The results on the DLCC DBpedia benchmark (class size
5,000) are reported in Table 6. For each model, six classifiers were trained resulting
in more than 2,000 classification results. At first sight, it is quickly observable
that all models can learn all tasks comparatively well; all results are statistically
significant. It is, furthermore, visible that the hard test cases are indeed harder.

On the DBpedia gold standard, it can be seen that s-RDF2vec is rather
suitable for similarity-based constructors (tc1, tc2, tc3, tc6) while e-RDF2vec is
doing better on relatedness-oriented constructors (tc04, tc05).

Moreover, we can observe that it seems easier to predict patterns involving
outgoing edges than those involving ingoing edges (cf. tc02 vs. tc01, tc08 vs. tc07,
tc10 vs. tc09, tc12 vs. tc11). Even though the tasks are very related, this can be
explained by the learning process which often emphasizes outgoing directions: In
RDF2vec, random walks are performed in forward direction; similarly, TransE is
directed in its training process. On the DBpedia benchmark, it is observable that
the TransE-L2 configuration performs, overall, best scoring first place in 9 out of
20 instances.
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Figure 6. Simplicity of the DBpedia Gold Standard (Size Class 5000)

Figure 6 depicts the simplicity per domain of the DBpedia gold standard in
a box-and-whisker plot. The simplicity was determined by using the accuracy of
the best classifier of each embedding model without hard test cases (since not
every domain has an equal amount of hard test cases), i.e., the difficulty for a test
case t and an embedding model e is

simplicity(t, e) = max
c∈classifiers

acc(c, e, t), (18)

where acc(c, e, t) is the accuracy of classifier c on test case t using the embedding
e as a feature representation. The distribution of the simplicity values across all
tasks and embedding models can be used to quantify the simplicity of the task –
the closer the values are to 1, the easier the task. If a single metric is sought, the
median across all simplicity values can be used. We observe that all domain test
cases are similarly hard to solve whereby the albums, people, and species domain
are a bit simpler to solve than the books and cities domain. Overall, however, we
observe that the majority of problems in the DBpedia gold standard is not too
hard to solve, since almost all median simplicity values are above 0.9.

Synthetic Benchmark The results on the synthetic benchmark (class size 1,000)
are reported in Table 7. Again, for each model, six classifiers were trained whereby
only the best performing classifiers’ results are discussed. RDF2vec configurations
are performing very well on this gold standard being the best performing embed-
ding model in 10 out of 12 cases. In terms of the best RDF2vec configuration, the
classic CBOW variant achieves the best results in five cases.

The intuition that s-RDF2vec is doing better on similarity-based constructors
while e-RDF2vec is doing better on relatedness-oriented constructors can again
be observed: This time e-RDF2vec is not able to learn tc02 and tc03 which is
intuitive since the approach does not learn the notion of predicate types. On tc04
and tc05, on the other hand, the e-RDF2vec approach performs very well (much
better than s-RDF2vec).



The best benchmark model is RESCAL. RotatE produces more often insignif-
icant results than significant results – the model outperforms pure guessing in
only a third of the cases.

The overall most complicating test case is tc07. Similarly, more than half
of the models are not significantly able to learn tc08. This is remarkable since
the constructors can be almost perfectly predicted on the corresponding DBpedia
gold standards. Hence, we can reason that handling qualified restrictions is a very
intricate task. The second hardest group of tasks is those involving cardinalities
(tc10-tc12).

DBpedia Benchmark vs. Synthetic Benchmark The comparison of the DBpedia
and the synthetic benchmark is particularly intriguing. We can see that the syn-
thetic benchmark is much harder to solve since the results are drastically lower in
most cases. While there are no insignificant results on the DBpedia gold standard,
there are many for the synthetic one – particularly when it comes to the bench-
mark models. Any class constructors that are easily learnable on the DBpedia
gold standard are hard on the synthetic one. Moreover, the previously reported
superiority of RDF2vecoa over standard RDF2vec [4,16] cannot be observed on
the synthetic data.

dbr:LeBron_James

dbr:Small_Forward

dbr:Los_Angeles_Lakers

dbr:Cleveland_Cavaliers

dbr:LeBron_James_
CareerStation_4

dbr:LeBron_James_
CareerStation_3

dbo:team

dbo:teamdbo:careerStation

dbo:teamdbo:position
dbo:BasketballTeam

rdf:type

rdf:type

Figure 7. Excerpt of DBpedia

Figure 7 shows an excerpt of DBpedia, which we will use to illustrate these
deviations. The instance dbr:LeBron James is a positive example for task tc07 in
Table 9. At the same time, 95.6% of all entities in DBpedia fulfilling the positive
query for positive examples also fall in the class ∃dbo:position.⊤ (which is a tc01
problem), but only 13.6% of all entities fulfilling the query for trivial negatives.
Hence, on a balanced dataset, this class can be learned with an accuracy of 0.91 by
any approach than can learn classes of type tc01. As a comparison to the synthetic
dataset shows, the results on the DBpedia test set for tc07 actually overestimate
the capability of many embedding approaches to learn classes constructed with a
tc07 class constructor. Such correlations are quite frequent in DBpedia but vastly
absent in the synthetic dataset.

The example can also explain the advantage of RDF2vecoa on DBpedia.
Unlike standard RDF2vec, this approach would distinguish the appearance of
dbo:team as a direct edge of dbr:LeBron James as well as an indirect edge con-
nected to dbr:LeBron James CareerStation N , where the former denotes the
current team, whereas the latter also denote all previous teams. Those subtle se-
mantic differences of different usages of the same property in different contexts
also do not exist in the synthetic gold standard. Hence, the order-aware variant
of RDF2vec does not have an advantage here. In the cases where a DLCC can
be learned on the DBpedia dataset, but not on the synthetic dataset, we have
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Figure 8. Best DLCC Classifiers on DBpedia and Synthetic. It is important to note that the

total number of test cases varies between the two gold standards – therefore, two separate plots
were drawn.

to assume that the downstream learning algorithm cannot learn the DLCC per
se, but some other pattern which appears in correlation with the DLCC at hand,
since such correlations exist in the DBpedia dataset, but not in the synthetic
dataset.

Figure 8 shows the aggregated number of the best classifiers for each embed-
ding on each test case. It is visible that on DBpedia, MLPs work best followed
by random forests and SVMs. On the synthetic gold standard, SVMs work best
most of the time followed by näıve Bayes and MLPs. The differences can partly
be explained by the different size classes of the training sets (MLPs and random
forests typically work better on more data).

7.4. Discussion of the Hypotheses

In this section, the hypotheses stated in section 5 are verified and discussed. We
treat the hypotheses as non-exclusive. That is, we accept the hypotheses if there
is significance that the stated configurations can indeed learn the description logic
constructor; in cases where we hypothesize that the constructor can be learned by
neither configuration, we reject the hypothesis if a single approach can learn the
constructor. However, we do not want to mislead the reader: We underestimated
which other configurations are also capable of learning constructors. We, therefore,
encourage the reader to not just check which hypotheses are accepted but to also
follow the reasoning. Hence, we use the hypotheses as structured discussion points
for a deeper analysis.

Hypothesis 1 The hypothesis can be accepted. It has to be acknowledged
though that – with the exception of e-RDF2vec – all RDF2vec configurations
perform rather well.

Hypothesis 1a/1a’ In fact, out of all RDF2vec configurations, RDF2vecoa and
p-RDF2vecoa are performing best on tc01 and tc02 for DBpedia. On the synthetic
gold standard, this can similarly be observed albeit the improvement of OA does
not account for all RDF2vec variants. The previously discussed directionality bias
in the training likely leads to better results on tc01 compared to tc02.



Hypothesis 1b Particularly on tc03 (synthetic), it is visible that e-RDF2vec can-
not really learn the constructor: None of the configurations performs significantly
better than random guessing. As expected, once the directionality restriction is
lifted, the results generally improve.

Hypothesis 2 The hypothesis can be accepted. Again, however, it has to be
noted that even the p-RDF2vec configuration performs well on tc04 and tc05.
While performing worse than the other configurations, p-RDF2vec is still able to
a small extent to learn the constructor as witnessed by the results on the synthetic
gold standard. The sub-hypotheses, stating that non-order-aware variants per-
form better than order-aware variants, can be rejected. On DBpedia, significant
increases can be observed when using the order-aware variant. Although there are
multiple cases of non-oa variants slightly outperforming order-aware variants on
the synthetic gold standard, there is, overall, also not enough evidence to accept
this hypothesis.

Hypothesis 3 The hypothesis can be accepted. Particularly on the hard tc06
test case, the classic RDF2vec configuration with the order-aware training com-
ponent performs best. It has to be admitted though, that on the synthetic gold
standard the e-RDF2vec variant performs very well. A reason for this may be
the fact that domain/range restrictions can also be found in the synthetic gold
standard which allows to reason on a likely predicate given an object entity.

Hypothesis 4 The hypothesis can only be partially accepted.

Hypothesis 4a The RDF2vecoa configuration is indeed the best performing con-
figuration on tc07 for both gold standards. A look at the synthetic gold standard
reveals that p-RDF2vec cannot learn this constructor.

Hypothesis 4b While we assumed that this constructor cannot be learned by any
configuration, there is indication that at least to a small extent, classic and p-
RDF2vec can learn to recognize the constructor. In both cases, the p-RDF2vecoa
configuration achieves the overall best result. The improvement of the order aware
component can be explained since only this component can detect the inverse
usage of the relationship.

Hypothesis 5 The hypothesis can be accepted. On DBpedia, p-RDF2vec and
classic RDF2vec can learn cardinality restrictions. On the synthetic gold standard,
this is only true for RDF2vec classic and CBOW p-RDF2vec configurations. From
the rather low score (in the 60ies in terms of accuracy), it can be seen that learning
cardinality is rather hard.

Hypothesis 6 This hypothesis can only partially be accepted since multiple
configurations are capable of learning tc12. What can be concluded when compar-
ing hypothesis 6 to hypothesis 5 is that the addition of the type restriction makes
the test cases harder to solve: This can be seen when comparing the scores for tc09
versus tc11 and tc10 versus tc12. e-RDF2vec can surprisingly learn the construc-
tors on DBpedia (even well) – but a look at the synthetic gold standard reveals
that it can neither learn tc11 nor tc12 when correlations are mostly removed. This
finding is intuitive since e-RDF2vec is unaware of the actual predicates within a
graph (it is merely aware of their existence).
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8. Conclusion

In this paper, we presented an extensive evaluation of 12 RDF2vec variants and

benchmark models using default benchmarks and DLCC, a newly introduced

benchmark for description logic constructors.

The resource is used to analyze embedding approaches in terms of which kinds

of classes they are able to represent. DLCC comes with an evaluation framework to

easily evaluate embeddings using a reproducible protocol. All DLCC components,

i.e. the gold standard, the generation framework, and the evaluation framework,

are publicly available. Significant efforts were made to comply with the FAIR [60]

principles.42

By analyzing the performance of different RDF2vec variants on a pattern-by-

pattern-basis, the findings of this paper can provide some guidance on which em-

bedding method to use for which downstream task. For example, for identifying

related items (e.g., for knowledge-based recommender systems [57] or collective

entity disambiguation [56]), approaches performing well on tc04 and tc05, like

e-RDF2vec, are preferable, while for entity classification based on structural fea-

tures [66], approaches performing well on tc01-tc03, tc07, and tc08, i.e., mostly the

p-RDF2vec variants, are preferable. With such considerations, users of RDF2vec

can make more informed decisions on which variant to choose, as an alternative

to blindly trying all available variants.

We have shown that many patterns using DL class constructors on DBpedia

are actually learned by recognizing patterns with other constructors correlating

with the pattern to be learned, thus yielding misleading results. This effect is

less prominent in the synthetic gold standard. We showed that certain DL class

constructors, particularly qualified restrictions and cardinality constraints, are

particularly hard to learn. Such insights open an interesting way to new develop-

ments in knowledge graph embeddings, since they point to conceptual shortcom-

ings of methods instead of using pure leaderboard-based methods for assessing

embedding methods.

In the future, we plan to extend the systematic evaluation by adding more

gold standard datasets. The synthetic dataset generator also allows for more in-

teresting experiments: We can systematically analyze the scalability of existing

approaches, or study how variations in the synthetic gold standard (e.g., larger

and smaller ontologies) influence the outcome.
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A. Creation of DBpedia based Gold Standard

Tables 8, 9 and 10 show the queries which are used to create the gold standard
for the class Person from DBpedia.
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