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Abstract- A knowledge graph is a data model representing real-world entities and relationships in a machine-readable format providing a 

comprehensive view of a specific domain or multiple domains. Dynamic ontology is a concept that refers to the idea that the fundamental nature 

of reality changes over time. Dynamic ontology generation using a knowledge graph automatically creates a new ontology or updates an existing 

ontology. This process keeps the ontology up-to-date with the changing real-world information. The most important part of dynamic ontology 

generation is integrating the domain ontology into the knowledge graph and updating the knowledge graph accordingly. The primary purpose 

of the research is to develop a dynamic environment that integrates the domain ontology with the knowledge graph. The main problem here is 

the dynamic integration of new data and concepts with changes in real-world information. To achieve this task graph-based ontology mapping 

framework is developed with matrix-based graph merging, graph clustering, cluster label propagation and matrix-based ontology mapping. 

The new mapping algorithm was tested with real-time dynamic data and compared with existing systems. The proposed approach outperforms 

the existing system in accuracy, relevancy and introducing new concepts to the ontology. 

1.Introduction  

Ontologies are a crucial element of the semantic web. 

Ontologies are used in the Semantic Web, Artificial Intelligence, 

Systems Engineering, Biomedical Informatics, Software 

Engineering, Enterprise Bookmarking, Library Science, and 

Information Architecture to represent knowledge about or a part 

of the domain. They aim to capture basic knowledge by providing 

appropriate terms and formal relationships between them. 

Ontologies are an integral approach mainly used to represent 

acquired knowledge and ensure data and knowledge integration. 

However, most of them are generated manually by domain experts 

and ontology engineers familiar with the theory and practice of 

ontology construction [1]. Automatic ontology generation aims to 

convert new knowledge into ontological form by enabling related 

processing techniques, such as semantic search, recommendation 

and retrieval.  

Moreover, automatic ontology generation will significantly 

reduce the expert involvement and time required to build 

ontologies [2]. There are two groups of ontologies: static and 

dynamic. A static ontology elaborates on items in existence, their 

attributes and their relationship with them. Dynamic ontology 

explains the domain as states and their transitions, including 

processes according to changes in information. Dynamic ontology 

generation has become an essential topic in semantic engineering 

in every field, with massive amounts of data emerging. Most 

dynamic ontologies are generated using structured data  [3], such 

as relational schema and web-based XML data. Approaches to 

converting unstructured text into dynamic ontological format have 

yet to develop fully. Most approaches for ontology learning 

convert text to ontology format and need expert involvement [4] 

[5]. A few studies have been carried out in dynamic ontology 

generation using unstructured text corpus[6]  

The knowledge graph is one of the emerging fields of 

knowledge representation. Many studies [5] have been done on 

knowledge representation using a knowledge graph because it is 

presented in graph format. Knowledge graphs aim to construct 

large structured knowledge repositories that machines can 

understand [7]. Knowledge graphs have gained much attention in 

natural language processing as a new type of knowledge 

representation. Knowledge graphs can efficiently organise and 

represent knowledge in advanced applications [8]. Knowledge 

Graphs (KGs) such as Freebase [9]and YAGO [10]have been 

widely adopted in a variety of natural language processing. The 

knowledge graph consists of a set of triplets {(h, r,t)} where h,t 

and r are the head and tail entities and the relationship, 

respectively. Ontologies are stored in various forms like RDF, 

RDFS, XML, OWL etc.   

Building ontologies using learning techniques and knowledge 

graph representation of unstructured text are familiar problems. 

But, building a framework for lightweight log generation through 

the knowledge graph must overcome many issues. It should 

facilitate the system to integrate any knowledge graph anytime 

without problem for domain-independent ontology. The graph 

clustering-based approach to ontology introduced in [11]generates 

dynamic ontology. It ensures dynamicity even in the presence of 

the new device in the Internet of Things domain. This method is 

improved to generate dynamic ontology using a knowledge graph, 

preserving the dynamic nature of a new concept or source of text.   

This paper aims to develop a domain-independent dynamic 

ontology generation framework that generates ontological forms 

from unstructured text data. The study is motivated by the need for 

more fully-automated domain-independent dynamic ontology 

generation systems. The framework utilises a knowledge graph to 

be mapped and tailored to suit target domain ontologies. This 

framework facilitates continuous integration of unstructured text 

data to maintain dynamicity. Further, this dynamic ontology 

ensures lightweight representation and speedy access to 

information through the index for future development in querying 

and recommendation.   

The rest of the paper is organised as follows: the next section 

reviews the relevant literature. Then, the Proposed approach 



section provides for knowledge graph integration of unstructured 

text data to the dynamic ontology process. Next, the 

implementation section describes all aspects of the techniques 

used in the dynamic ontology generation process. Then the result 

and discussion describe the implementation and evaluation of the 

proposed system. Finally, the conclusion of the proposed approach 

and future works are discussed.  

2.literature review  

The dynamic ontology generation approach is based on 

ontology generation, which enables it to update itself based on the 

changes in data. Studies regarding dynamic ontology generation 

can be divided into two types according to the input data source. 

They are Dynamic ontology generation using structured data and 

dynamic ontology generation using unstructured data. Although 

many studies were carried out on dynamic ontology generation 

using structured data sources, a few studies were conducted on the 

dynamicity of unstructured text data. But there are a massive 

amount of ontology learning approaches that generate ontologies 

from text data automatically. The dynamic ontology generation is 

an extension of ontology learning in a sustainable environment 

that enables the evolving and versioning. 

2.1 Dynamic ontology generation using structured data   

Most dynamic ontology generation studies are based on 

structured data transformation [12] using structured databases. 

Evolution changes are defined in [13]as a succession of operations 

the user wants to apply to the schema or the ontology data. This 

evolution aims at adapting the ontology to the changed domain. 

According to [14], these tasks usually occur during the use phase 

of the ontology. Ontology Dynamics clearly define the evolution 

criteria. [15]qualify the maintenance of ontology as the most 

crucial criterion. Evolution has to maintain whatever relies on 

ontology. [16] presents a new way to manage the lifecycle of an 

ontology incorporating both versioning tools and the evolution 

process.   

2.2 Ontology Learning   

The research [6]aims to develop a domain-independent 

automatic ontology generation framework that converts 

unstructured text into a domain-consistent ontological form. The 

framework generates knowledge graphs from an unstructured text 

corpus and refines and corrects them to be consistent with domain 

ontologies. Moreover, the knowledge graph can automatically 

update the knowledge without expert involvement, comparing the 

ontology learning algorithms discussed in [17]. The study in [18] 

has been carried out to automatically transfer the relationships to 

the ontology using semantic graphs and convolutional neural 

networks. They have used semantic and thematic graphs are used 

for knowledge extraction.   

Further [18] have produced a hierarchical structure with in-

depth integration of data for reducing the matching time and 

dynamic labelling to remove domain dependencies. According to 

the survey in[17], ontology learning from text methods has been 

presented to convert text data to ontology components in 22 

studies. But no work was only found on dynamic ontology 

generation using text in the survey. Although the automatic 

generation of the ontology using text based on ontology learning 

is vital, rare work was found for dynamic ontology construction.  

The summary of ontology learning approaches in Table I 

represents a mixture of natural langue processing, machine 

learning and network-based technologies used in each 

approach. Expert involvement is needed for all approaches 

and does not address dynamic evolution.  

2.3 Dynamic ontology generation from text   

  Knowledge graph-based automatic ontology 

development for consistent dynamic features was ensured 

using knowledge graph embedding techniques [6]. The 

framework utilises refined KGs mapped and tailored to fit 

into target domain ontologies. However, generating 

ontologies from refined KGs will not only overcome the 

limitations of ontologies, such as data integration. 

Therefore, evaluation or performance analysis has yet to 

present in this research.   

Recent research has addressed the problems of complex, 

heavyweight static ontology on the Internet of Things 

systems. To address this concern, [11] proposed a 

lightweight ontology using only the most essential concepts 

and clustering techniques. It provides dynamic semantics 

automatically to include additional concepts using machine 

learning techniques. The proposed model somewhat 

reduces the query response time and memory consumption 

compared to the existing ontology. The dynamicity of the 

ontology is addressed in the presence of new device or 

sensor data in the system using clustering. However, 

considering the literature, such a lightweight log for 

unstructured text data still needs to be addressed.  

2.4. Cluster label propagation  

Cluster label propagation is a method for cluster labelling, 

which assigns a label or description to a group of similar data 

points that have been grouped in a cluster. This technique can be 

applied to different data types and used for tasks such as image 

classification, text mining, and bioinformatics. Label propagation 

is an iterative technique for assigning labels to unlabeled data 

points based on the labels of their nearest neighbours. The idea is 

that data points close to each other are likely to have similar 

labels. The algorithm starts with a small set of labelled data points. 

Then, it propagates the labels to the unlabeled data points by 

iteratively updating them based on the labels of their nearest 

neighbours[20]  

Several methods for graph cluster labelling, including 

Keyword-Based Labeling, identify the most frequent words or 

phrases in the data associated with each cluster and use them to 

generate a label. Centrality-Based Labeling labels clusters based 

on the centrality measures of the vertices in the cluster, such as 

degree centrality, betweenness centrality, or eigenvector 

centrality[21].

 

 



 

Attribute-Based Labeling: labels clusters based on the 

attributes of the vertices in the cluster, such as labels or categorical 

variables [22]. Community Detection-Based Labeling labels 

clusters based on the community structure of the graph, where 

communities are defined as groups of vertices that are more 

densely connected than vertices in other groups[23]. Centroid-

Based Labeling labels clusters based on their centroid or 

representative vertex properties.[24]   

In network-based clustering, the most influenced node in the 

cluster is elected as the cluster label. According to[25], this cluster 

labelling algorithm can easily embed into the new class name 

suggestion in the ontology generation process. Therefore, this is 

one of the best-suiting algorithms for labelling knowledge graph-

based clusters.  

The proposed study aims to develop a fully automatic, domain-

independent lightweight dynamic ontology generation framework 

using various types of unstructured text and enabling the 

integrating of one or many ontologies at any stage to fill this gap 

in the literature. 

3. The Proposed Approach  

The main focus of the proposed approach is to develop a 

platform to generate dynamic ontology using a knowledge graph, 

which enables to accommodate the ontology through knowledge 

behind unstructured data. The proposed approach for the dynamic 

ontology generator is described in Figure 1.  

Initially, the dynamic ontology is generated by the steps 

introduced in the overview. Inputs of the dynamic ontology 

generator are static domain ontology and knowledge graph of 

unstructured data. The dynamic ontology generation process is 

briefly discussed in the following sub-sections. First, the dynamic 

ontology generation is based on the knowledge graph integration 

to the ontology using an RDF alignment method. The RDF 

alignment merges two graphs using semantic similarity and self-

tunning spectral clustering using graph matrices. Then the 

connected graph matrix is transferred to the ontology iteratively 

with the presence of new text content. The framework updates the 

ontology every time new data is added to the knowledge graph.  

Fig. 1 The proposed approach for the dynamic ontology 

generator  

3.1 Identified  Inputs   

The Domain ontology and the knowledge graph for the 

unstructured data are the primary inputs of the proposed 

framework. The graph representation consists of two parts. 

Firstly the graphs are stored in Adjacency matrices, and 

then the hashing index is defined for the references of 

matrix elements and graph data. All vertices and edges of 

the graph are transferred to the hashing index while storing 

graphs in the adjacency matrix, as both graphs are large. 

The RDF data and Knowledge graph are stored in the 

Adjacency Matrix [26]. The Adjacency Matrix is an nxn 

matrix (where n is the number of nodes), with rows and 

columns labelled by graph vertices. Adjacency Matrix 

describes a graph by representing which vertices are 

adjacent to which other vertices; the cell of the Adjacency 

Matrix is filled with the label of the edge.   

After working with the adjacency matrix, referring to the 

ontology again for querying or recommendation is 

necessary. If the graph is large, then this will take more time 

to search for the relevant node. For this task, hashing can be 

applied, giving an index of the desired node in constant 

time. The Minimal Perfect Hash Function is used for 

minimising collisions. Hence, this will save storage and 

decrease the Time Complexity[27].  

Table 1 

Summaries of ontology learning approaches 

Approach  Aim  Main technique  Source  Main goal  Assessment of 

acquired knowledge  

Aussenac- 
Gilles  and  
colleagues” 

approach [19]  

To create a domain model 

by using NLP tools; To 
create a domain model by 

using  
linguistics technique  

Knowledge extraction 

with syntactic patterns with 
a concordancer; Relation 

extraction based on 

linguistic patterns; Term 

extraction based on  
distributional analysis  

Text; Existing ontologies; 

Terminological databases  
To learn 

concepts, To 
learn new  

relations  

User; Domain expert; 

Human intervention  

Faatz  and  
Steinmetz 

approach [5]  

To enrich the concepts by 
extracting meaning from the  

WWW  

Statistical  approach;  
Semantic relativeness  

Corpus from WWW  To enrich 
the ontology 

with new 

concepts  

Domain expert  

Khan 

andLuo'ss 
method [4]   

To create a domain 

ontology using clustering 
techniques and WordNet  

Clustering  Text  To learn 

new Concepts  
Domain expert  

 



3.2 Merging graph using the semantic similarity measuring 

method  

After storing graphs in adjacency matrices, semantic 

similarities between each vertex and each edge were stored 

in a list of vectors. Then those similarities can be used when 

comparing matrix points for vertices and edges of the graph. 

The merging steps of the two adjacency matrices are 

described in Algorithm 1. Here Q is the adjacency matrix of 

the RDF graph,  G is the adjacency matrix, and the final 

merged graph is defined as Z. Two matrices are merged by 

comparing the similar points between two matrices. Next, 

non-matching elements are appended to the matrix where 

there is no matching column, and a new column is added. 

Similarly, new rows are added when a non-matching row 

element arrives. Finally, the relations among nodes are 

defined by the matrix body referring to column names and 

row names when new relationships are introduced and 

updated in the matrix’s jth position.   

 3.3 Graph clustering using the self-tunning Spectral Clustering 

method   

Clustering is a widely used technique for unsupervised data 

analysis, with applications in statistics, computer science, 

biology, social sciences, and psychology. In clustering, the goal is 

to assign unlabelled data to groups; similar data points are 

assigned to the same group.  

After merging two graphs using the matrix, it is necessary to 

integrate the graph elements to identify the semantic connectivity 

with existing graphs. Graph clustering was used to gather proper 

integrating elements. Clustering is one of the best methods for 

finding similar nodes. The spectral clustering algorithm was 

introduced [28]for clustering graphs with high noise. This method 

is reasonably fast, especially for sparse datasets.  

Moreover, spectral clustering treats data clustering as a graph-

partitioning problem without assuming the form of the data 

clusters. Spectral clustering is a technique in graph theory used to 

identify a group of nodes in a graph on the edges connecting them. 

This method is flexible and allows the clustering of non-graph 

data. It uses information from the eigenvalue spectrum of special 

matrices built from a graph or dataset. The following sections 

discuss the construction of matrices, the interpretation of their 

spectra, and the use of eigenvectors to assign data to clusters.  

Then, clusters in this subspace are obtained using various 

clustering algorithms such as k-means. The adjacency matrix is 

an affinity matrix determining how close or similar any pair of 

points are in space. Spectral clustering performs well with 

standard clustering algorithms such as K-means [29]. However, 

since K-means clustering requires knowledge of the number of 

clusters, the expected number of clusters and a parameter for the 

similarity threshold need to be given. Therefore the optimal 

number of clusters for spectral clustering was derived in the self-

tunning spectral clustering. Under spectral clustering, the 

elements should be gathered in the design space to estimate the 

number of clusters. Then an optimal number of clusters is 

determined based on the perturbation theory and the proposed 

spectral graph theory [30]. An improvement of the self-tunning 

clustering method that overcomes three problems of spectral 

clustering, i.e., cluster initialisation, cluster specification, and 

noise-robustness.[31] was used.  

3.4  Dynamic ontology generation  

  Integrating relevant elements to a static ontology 

requires little effort as it is connected to existing matching 

classes. But dynamic ontology has to connect relevant 

elements to existing classes and generate new classes and 

relations. Therefore, all the clustered elements should be 

closely analysed, leading to dynamic ontology integration. 

Furthermore, elements should have a close relationship 

when a set of elements are gathered into a cluster.   

After clustering all elements, there are three types of 

nodes in clusters according to their behaviour, closeness 

and alignment. There are two types of clusters: connected 

graph clusters and non-connected graph clusters. The 

connected graphs have two main parts: fully connected-

graph clusters and partially-connected clusters. This cluster 

is defined as elements not connected to any class branch 

and integrated using the matrix-based graph mapping 

method.   

Then non-connected graph cluster consists of unrelated 

elements that can be considered a new concept. In such 

cases, many nodes cannot connect as individuals of an 

existing class, mainly belonging to a cluster. Therefore, 

generating a new class of unconnected nodes is necessary, 

 

Algorithm 1. The matrix-based graph merging algorithm  

Q= RDF graph matrix    

 G= knowledge graph matrix  

Subjects of Q & G,   

Qs= { q1,q2………qms)  

Gs= {g1,g2,………..gns),  

Objects of Q & G,   

Qo= { q1,q2………qmo),  

Go={g1,g2,………..gno),   

Initialise   

Zs= Qs, Zo= Qo, Zr = Qr, p= ms, s= mo   

Check the cosine similarity index for Gs and Qs, Zo  and 

Go, Zr and Gr  

For all i  

If Gsi not equal to Osi   

(where the similarity index< threshold)  

Add a column to Zs   

p= p+1  

Append the whole column of the matrix to the Z matrix 

For all j  

If Zoj not equal to Goj  

( where cosine similarity index< threshold)  

  Add node to rows of Z  

 s=s+1  

   Append the whole row of the G matrix to the   

Z matrix  

Else   

For all j  

  If Zoj not equal to Goj  

 Add node to rows of Z  

    s=s+1  

Append the whole row of the G matrix to the Z matrix   

Else if Zrj is equal to Grj  

Increase the number of relations at Zrij (update its position 



considering the cluster closeness and node names. The 

output of the spectral clustering is a vector of elements. 

First, a set of adjacency matrices were derived from the set 

of vectors for clusters. Then these matrices were used to 

integrate the dynamic ontology.  

Algorithm2 Dynamic ontology transformation using 

integrated graph cluster   

Let us consider the dynamic ontology matrix as D and 

the integrated matrix as R:  Here, R is partitioned into 

clusters,  

 then R is defined as R= ( R1,R2,……..Rk) for k  

number of clusters  

Columns of matrix D ,Ds= (d1,d2,..,di,…,dn),  

Columns of  matrix Rk’,Rk’s=(r1,r2,…,ri,…,rm),   

Rows of matrix D DO= (d1,d2,..,dj,…,dp),   

Rows of matrix R Rk’O= (r1,r2,…,rj,…,rq),   

For all clusters RK’ 

If DS=Rk’S if 

DO==Rk’O NO 

ACTION   

   else   

       create individuals of rj  

        if dij == rij                 

no action  

        else   

   introduce an object property (trem in ijth  

position)  

   domain= ri  

   range= rj  

else   

    create individuals of ri  

           if dij== rij (relation mapping)   

   no action  

          else  

introduce an object property (trem in ijth position)  

domain= ri  range= rj  

 
  

3.5 Connected graph cluster mapping using matrix-based graph 

mapping   

In dynamic ontology, classes and properties are defined that 

can gather individuals and their individuals. Therefore, it is 

necessary to connect knowledge graph elements to dynamic 

ontology with the changes according to the data or concept 

changes. This section addresses data changes and updated 

individuals and new relations. Here an algorithm was built to 

compare the adjacency matrix of dynamic ontology with the 

adjacency matrix of each cluster of the above-integrated graph.  

3.6 Non-connected graph cluster mapping   

 The elements of this cluster are not directly connected to the 

ontology classes. Instead, they are connected or show similar 

characteristics within the cluster and are integrated as a new 

concept. As per the example in Figure 2, if a new concept is 

introduced in the domain. In such cases, ontology does not know 

about this update or change. Therefore those concepts adding to 

the ontology should be done carefully.  

The cluster analysis with the ontology and knowledge graph 

does not contain a cluster name that can be transferred as a class 

name. Therefore these elements belong to one class in ontology, 

and it is needed to define a new class. For this task, class names 

are derived using dynamic cluster labelling. Then dynamic 

ontology was generated automatically by integrating a newly 

generated graph into an appropriate class. Next, the integrated 

graph matrix was mapped with a domain-graph matrix 

representing the existing classes and their connections. Finally, 

existing individuals in the domain ontology were updated with 

their connected relations.   

 

 
 

Fig. 2. Example of non-connected graph clusters and 

generation of new classes  

3.7 New class generation using dynamic labelling   

For the knowledge graph, clusters do not connect to the 

ontology classes, and subclasses tend to generate new 

classes. A Lable propagation  Algorithm (LPA)  is used to 

derive the new class labels for the unconnected graph 

clusters. According to the study in [32], they influence the 

structure and attributed dimensions to identify clusters in 

the attributed graph. Influencing the structure and attributed 

dimensions to identify clusters in the attributed graph. Here 

two new Concepts have been introduced and used by t the 

high-precision Algorithm LPA to solve the problem of 

attribute clustering. First, the proposed algorithm in [32], a 

weighted graph, is developed, every single edge of which 

combines the similarity of structures and attributes of two 

nodes with an edge. In the weighted graph, the influence of 

nodes will be calculated using Laplacian centrality. 

Afterwards, the updating stage is performed, in which the 

node of a two-member set will have a label and label 

influence. Each node that is supposed to be updated will 

select a label based on the more decisive influence of the 

label among the adjacent nodes. Also, it will cause nodes 

with more decisive influence in structure and attributes to 

update many tags. After a few steps, it is expected that the 

homogeneous nodes in terms of structure density will have 

the same tags, similar to tags of the same cluster of the 

graph. The algorithm is named in [32] the SAS-LP 

algorithm.   



The SAS-LP algorithm is defined to find the most 

influencing node of the graph’s adjacency matrix. Then the most 

influencing node is elected as the label of the cluster. Then this 

label is used to build the class in ontology, and all other elements 

in the cluster become the individuals of the cluster.   Finally, the 

ontology is updated using the new class and its connected classes. 

Here it needs to check whether the cluster elements are mapped 

with ontology elements. If elements do not match, it introduces a 

new class in ontology with the name of cluster label. Finally, it 

calls algorithm 2 to establish relations among nodes and create 

object properties in the ontology. Algorithm 3 is called whenever 

a new text is integrated. 
 

Algorithm 3:- New class introduction to the ontology using 

cluster labelling   

 
Generate Adjacency matrix A for RDF graph ontology  

Compare the clusters   

For all clusters in P=(p1,p2……pj…….N)  

J=(1,2……j,…N)  

  

For cluster j  

Generate Adjacency matrix Pj of cluster elements   

Compare Pj and A  

If at least one element of  Pj is mapped with A  

Algorithm 2  

Else   

Call SAS-LP cluster labelling algorithm   

  

New Class name = label of the cluster  (output of  

SAS-LP algorithm)  

New individuals=, all nodes carrying the class name  

Update A with new nodes   

   Update relations using algorithm 2  

  

 

4. Implementation  

This research is focused on generating a dynamic ontology 

using a knowledge graph. First, a travel domain ontology and a 

knowledge graph were used to implement the dynamic ontology 

generation. Here the knowledge graph was built using some 

articles, comments and reviews. Then the graph-based dynamic 

ontology generator was implemented by dynamically integrating 

the knowledge graph into a static domain ontology.   

The implementation is focused on Graph-based dynamic 

ontology generation. The Graph-based dynamic ontology 

generator consists of three main modules 1) Matrix representation 

and merging, 2) Graph clustering, and 3) Dynamic ontology 

mapping. 

4.1 The Graph-based dynamic ontology generator  

The domain ontology and the knowledge graph are the input 

of the graph-based dynamic ontology generator. It consists of 

three modules which fulfil three dedicated tasks for the dynamic 

ontology generation process. Each task and its implementation 

of 1) Matrix representation and merging, 2) Graph clustering 

and 3) Dynamic ontology mapping are summarised in Fig. 3   

4.2. Matrix representation and merging  

After building the knowledge graph, it was integrated 

into the domain ontology in the RDF format. Then, both 

graphs were represented in separate adjacency matrices, 

and a Laplacian matrix was constructed to find the 

eigenvector. Next, the NumPy Python package calculated 

the clustering and graph projection eigenvalues. Finally, an 

eigenvector was found using the Laplacian equation in 

Python.  

In this module, both the RDF graph and the knowledge graphs 

were converted to adjacency matrices to easier to implement 

merging algorithms. Then each graph node and edge reference 

was transferred to an index for further usage. An example is to 

show the functioning of the technique that transfers the RDF 

graph to the matrix using a small RDF graph, as illustrated in 

Fig.4.   

This small RDF Graph is stored in Adjacency Matrix in 

the exact figure. As there are nine nodes in the graph, hence 

Adjacency Matrix creates against it is a 9×9 square matrix. 

The name of nodes was considered as names of rows and 

columns. If nodes were connected, the label of the edge was 

added in the corresponding matrix’s sell. Then the 

corresponding adjacency matrix rows, column labels, and 

matrix cell addresses were listed as an index for 

representing nodes and edges with their types (class names) 

and superclass hierarchy. Finally, the referencing index was 

introduced to make connecting with the original RDF graph 

and the ontology easier, as shown in Fig 5. 

4.3  Merging graph using semantic similarity methods  

After the graphs are represented in adjacency matrices and the 

referencing index, algorithm1 was applied for merging. Here both 

adjacency matrices of the RDF graph and knowledge graph are 

integrated. Algorithm 1 was implemented in a Python 

environment. First, semantic similarities were calculated for each 

pair of nodes and edges of comparing graphs. Next, cosine 

similarity, Jaccard similarity, and Euclidian distances were 

calculated to find the best matching techniques for semantic 

similarity calculation. The mean of all three similarity values was 

used for the similarity checking. Then, the integration algorithm 

was implemented, considering calculated semantic similarities. 

Finally, the merged matrix was transferred to module 2 as an 

adjacency matrix of the merged graph.  

 

 

 



 
Fig. 3. Overview of  Implementation. Modules 

 

 
Fig. 4. RDF graph to the Adjacency matrix 

 

 
Fig.5. Referencing index storage from the adjacency 

matrix 

4.3 Merging graph using semantic similarity methods 

After the graphs are represented in adjacency matrices and the 

referencing index, algorithm1 was applied for merging. Here both 

adjacency matrices of the RDF graph and knowledge graph are 

integrated. Algorithm 1 was implemented in a Python 

environment. First, semantic similarities were calculated for each 

pair of nodes and edges of comparing graphs. Next, cosine 

similarity, Jaccard similarity, and Euclidian distances were 

calculated to find the best matching techniques for semantic 

similarity calculation. The mean of all three similarity values was 

used for the similarity checking. Then, the integration algorithm 

was implemented, considering calculated semantic similarities. 

Finally, the merged matrix was transferred to module 2 as an 

adjacency matrix of the merged graph. 

  

 

4.4 Cluster the graph using self-tunning spectral clustering   

The self-tuning spectral clustering algorithm was applied to the 

merged graph to split the graph into clusters. Here, the algorithm 

decides the number of clusters, and similar or nearby elements are 

gathered in clusters. Clustering best matching elements from the 

knowledge graph and the ontology are gathered. All similar 

elements are connected in each cluster. Those clusters should be 

sent to the ontology mapping for dynamic ontology generation. 

The behaviour of the cluster should be identified for this task, and 

then the corresponding mapping algorithm should be applied.   

4.5  Cluster examination 

The elements inside the cluster should be examined before 

applying an ontology mapping algorithm. For the dynamic 

ontology generation, It should be identified how the nodes are 

connected within the cluster. The implantation was extended to 

find connected and not connected graphs with the Python 

environment. Then the clusters can be categorised into two main 

categories, connected graph clusters and non-connected graph 

clusters sent to module 3 as inputs.  

4.6 Dynamic ontology mapping 

There are two types of clusters. All nodes are connected within 

the cluster, and clusters are not connected to ontology nodes. In 

module 3, suitable ontology mapping algorithms are applied to 

each category of clusters, as illustrated in Fig 6. Nodes of all 

connected clusters have connectivity to the ontology elements. 

Therefore, they can be mapped with existing components and 

relations in the cluster. But only connected nodes cluster with a 

connection to the ontology can be considered new concepts. Then 

they are introduced to the existing ontology with new classes. The 

following sub-sections will discuss both types of clusters treated 

with separate ontology mapping algorithms. 

4.7 Connected graph clusters ontology mapping 

The outcomes of the cluster examination in module 2, the 

connected graph clusters, are filtered. Then they are mapped with 



the ontology using algorithm 2. Here the adjacency matrix of the 

current ontology is compared with the integrated matrix, and the 

graph is mapped with the ontology.  

4.8  Not-connected graph cluster ontology mapping  

 This sub-module is designed to incorporate new concepts or 

topics introduced to the domain. For example, a not-connected 

graph cluster is considered a new topic with no class related to 

ontology. Therefore, it needs to introduce a new class and build 

connections.  

Firstly, a label propagation algorithm was implemented for the 

cluster then a class in ontology was defined using the new label as 

the class name. Here the cluster with the most influencing node is 

found using the following equations discussed in (Berahmand et 

al., 2022). Then the most influencing node is elected as the label 

of the cluster. Then this label is used to build the class in ontology, 

and all other elements in the cluster become the individuals of the 

cluster. Finally, the ontology is updated using the new class and its 

connected classes. 

 

4.9 Matrix-based ontology mapping  

Here, the nodes were mapped with the domain ontology nodes, 

so the object nodes were checked where the subject nodes were 

mapped. When both subjects and objects were mapped, the 

matching relations remained or were recreated. New relations 

were introduced after matching existing relations in the domain 

ontology was verified. New nodes were added as class individuals, 

considering existing relations, and other connected nodes 

connected to a domain ontology were exited. Algorithm 2 was 

introduced to expand the ontology system. 

The merged matrix of the RDF and knowledge graph was 

converted into a new ontology. Additionally, all the triple patterns 

and properties were transferred to the ontology. Finally, the final 

graph pattern was converted into an ontology with the initial class 

structure of the domain ontology. All the relationships and 

properties were converted accordingly, and all the individuals 

were stored in a new ontology. The new relations and nodes 

connected in the merged graph were converted to the ontology, 

and the equivalent, similarity, and subclasses were derived in the 

new ontology. For example, in graph merging, some relations 

coincided with existing relations; they were considered equivalent 

relations with reasoning. Finally, the output-connected graph 

ontology mapping and the non-connected graph ontology mapping 

were merged. 

5. Results  

This experiment focuses on dynamic ontology generation 

using a knowledge graph constructed using unstructured text data. 

Onto-Travel is a domain ontology initially defined as a travel 

ontology consisting of 27 classes, 19 subclasses, 81 datatype 

properties, 48 object properties, and 365 individuals in the first 

part of the research. All data and concepts related to structural 

data, such as destinations, hotel details, tour details, weather, and 

user details, are updated. This paper focuses on generating a 

dynamic ontology generator integrating a knowledge graph of 

unstructured text data into the Onto-Travel with dynamic updates.  

Therefore, this experiment was designed to check whether 

the dynamic ontology generation and maintenance are done 

correctly in the presence of unstructured text such as social media 

comments, articles and descriptions.  

 In this experiment, the framework, from building the 

knowledge graph to integrating the ontology, was built with the 

domain ontology, social media comments extracted from 

Tripadvisor, and descriptions extracted from 

www.srilankatravel.com. Fifty sentences in ten social media 

comments about travelling and 100 sentences from ten 

descriptions were selected from the travel site 

www.srilanktravel.com. The framework comprises several 

components at different stages. Each key component, such as 

knowledge graph building and graph integration for dynamic 

ontology generation of the framework, was tested using real-time 

data; the results are recorded in the following subsections. First, 

the experiment was done on knowledge graph generation using 

real-time unstructured text related to tourism. The knowledge 

graph integration process is decomposed into three main modules 

in the implementation. The outputs of each module were reported 

in this section.  

5.1 Knowledge graph generation  

For the experiment task, a knowledge graph was built for the 

50 sentences from comments, and 100 sentences from descriptions 

were selected. At the preprocessing stage, 13 incomplete 

sentences were removed, and others were transferred to the 

knowledge graph generation process. Then, the remaining 

sentences were transferred to the triplets. Finally, there were the 

remaining 137 sentences after preprocessing, which were 

decomposed into one predicate sentence. One hundred seventy-

eight sentences were identified as one predicate sentence and 

transferred to the triplets. Here 167 sentences were transferred to 

the triple. A part of the knowledge graph is visualised in Fig 6. 

5.2  RDF graph representation  

The domain ontology is initially defined as a travel ontology 

consisting of 27 classes, 19 subclasses, 81 datatype properties, 48 

object properties, and 365 individuals. The ontology is represented 

in RDF format, and the graph was drawn using resources and 

literals. Figure 7 shows a part of the graph of domain ontology.  

 

 

Fig 6: A part of the knowledge graph 



 

 
Fig. 7 RDF graph of Onto-Travel 

5.3. Calculation of semantic similarity between text 

components 

The adjacency matrices for the knowledge and the RDF 

graphs are in the graph merging process. Initially, the adjacency 

matrix of the knowledge graph is a 321X321 matrix, and the RDF 

graph matrix is a 365X365 matrix. Calculating the semantic 

similarity between elements of each matrix was stored in a 

corresponding matrix. The semantic similarity matrix between 

two adjacency matrices generates a 321X365 matrix, and each 

matrix point is filed with a decimal value between -1 and 1. The 

semantic similarity between each component is used in the 

matching process. In this experiment, semantic similarities were 

calculated using three techniques. First, cosine similarity, 

Euclidean distance, and Jaccard similarities were calculated 

within the nodes of each graph. All three gave same-size matrices; 

the mean value matrix was stored as the semantic similarity 

matrix.  

Two adjacency matrices were merged using semantic 

similarities and algorithm 1. The output was a 384 X384 matrix 

that connected all relevant nodes and expanded the matrix.  

5.4Graph Clustering and ontology expansion  

 The merged matrix was used as the adjacency matrix for 

Spectral clustering in module 3, and after applying self-tuning 

spectral clustering generated 17 clusters. But six clusters had only 

one element. So these six clusters were removed, considering them 

outliers. Then all other 11 clusters were compared further with the 

dynamic ontology.  

The merged matrix of the RDF and knowledge graph was 

converted into an ontology. Additionally, all the triple patterns and 

properties were transferred to the ontology. Finally, the final graph 

pattern was converted into an ontology with the initial class 

structure of the domain ontology. All the relationships and 

properties were converted accordingly, and the individuals were 

stored in a new ontology.  

The conversion rate was calculated to check whether all 

nodes were converted to ontology. Here, the number of converted 

nodes over all available nodes was taken as the conversion rate. 

Then it showed that 95% of all the nodes and relations were 

converted into a new ontology. Further, the correctness of data 

conversion was tested, showing 89% correctness of the nodes. In 

the selected example, 65% of the relations were directly 

transferred. 

5.5Overall system testing with real-time data example 

In real situations, new comments and reviews are added 

rapidly. When a new comment or a review is added to the system, 

it must be dynamically embedded. The system dynamically 

identifies the upcoming knowledge and is automatically added to 

the system. For the collection of comments, the system is 

identified into two types. They are comments with existing 

contents in the ontology and the new contents to the ontology. 

These two types are examined by the system automatically. 

 Such a situation is tested with real-time data. A set of 

comments were added to the ontology at a given time. The first set 

of comments and articles about places considered in the ontology 

was added to the system for testing purposes. The second test data 

was selected from articles that are unrelated to ontology. Both 

datasets were added to the dynamic ontology generator and tested 

all components in the dynamic ontology. 

6. Evaluation  

The evaluation of dynamic ontology generation using 

knowledge for creating and updating consists of four main parts. 

It typically involves measuring its effectiveness in accuracy, 

completeness, efficiency, and scalability. The accuracy of 

dynamic ontology generation was evaluated by comparing the 

generated ontology with a manually curated ontology. The 

completeness of the generated ontology was evaluated by 

comparing it with existing ontologies in the travel domain. The 

number of concepts, relations, and axioms in the ontology was 

used to measure completeness. 

The efficiency of dynamic ontology generation was evaluated 

by measuring the time and computational resources required to 

generate and update the ontology. In addition, the scalability of the 

approach was evaluated by measuring its performance on large-

scale knowledge graphs and ontologies. 

 Here the system-generated dynamic travel ontology and a 

manually curated ontology were used to evaluate the dynamic 

ontology generation process. Initially, the domain ontology is 

developed to implement the ontology generation process. Then the 

dynamicity is generated and maintained using a knowledge graph 

based on social media comments, newspaper articles and 

descriptions on the web. Finally, the manually curated ontology is 

updated using expert knowledge by reading unstructured texts and 

integrating the relevant data.  

6.1 Accuracy of the generated ontology 

The accuracy of the generated ontology was tested with gold 

standards with a set of manually curated concepts, relations and 

axioms. First, Precision and Recall were used to evaluate the 

accuracy of the generated ontology. As equation (5) mentioned, 

Precision is the fraction of retrieved concepts, relations, and 

relevant axioms. At the same time, Recall is the fraction of 

relevant concepts, relations, and axioms retrieved, as mentioned in 



equation 6. Then the F-measure was calculated as a weighted 

harmonic mean of Precision and Recall, as shown in equation 7.  

The F-measure is a valuable measure for evaluating the 

overall accuracy of the generated ontology.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
    (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 

 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

     (6) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                            (7) 

 

Table 2 

Accuracy evaluation measures 

Ontology 

component 
Precision Recall F-measure 

Entities 0.87 0.83 0.85 

Datatype 

Properties 
0.82 0.78 0.80 

Relationships 0.67 0.56 0.61 

Axioms 0.78 0.65 0.71 

 

The evaluation results show that Precision and Recall give 

more than 85% level in developed entities.  Automatically, the f-

measure shows an 85% accuracy level. Data type properties show 

80% of the average accuracy level. But the relationship mapping 

shows 60% of accurate mapping levels because some relations 

needed to be included in the integration.  

 

6.2 Completeness of the generated dynamic ontology 

For completeness checking, a well-curated benchmark 

domain ontology was developed. The knowledge graph-based 

ontology (onto-travel) was tested with travel ontology. Therefore, 

the manually curated benchmark ontology(onto-travel-manual) 

was developed in the same domain. The system-generated 

dynamic ontology was compared with the benchmark ontology by 

comparing the number of concepts, relations, and axioms in both 

ontologies, as shown in TABLE 3. In addition, the coverage of the 

ontology was evaluated by measuring the number of instances that 

the ontology could classify. 

The differences between the generated and benchmark 

ontologies were analysed to identify the missing concepts 

(entities), relations, and axioms. Furthermore, this analysis can 

identify areas where the dynamic ontology generation approach 

needs improvement. Here the system-generated automatic 

ontology is called Dynamic Onto- travel, and manually curated 

ontology is called onto Travel-manual. Comparing the 

completeness of the generated dynamic ontology with the 

manually curated ontology, some entities, properties and axioms 

were missed because of the need for proper relationship 

definitions. But all individuals were integrated into the dynamic 

ontology than the manual ontology. 
Table  3 

Comparison of completeness of generated dynamic ontology 

and manual ontology 

 

 

Table 4 

Comparison of the  efficiency for generation and 

updation 

 
Knowled

ge graph-based 

ontology generation 

Manual 

ontology 

generation 

Knowl

edge graph-based 

ontology 

updation 

Manual 

ontology 

 updation 

Time is 

taken to generate the 

ontology 

Less than 

one hour 

More 

than a week 

Less 

than ten minutes 
Impossible 

Measure 

memory and CPU 

usage 

High Low Low Low 

 

6.3 The efficiency of the ontology generation process  

 The efficiency of the generated ontology is measured in 

terms of time required to generate the ontology, memory usage, 

and CPU usage. First, the efficiency was checked for ontology 

generation and updation, as shown in TABLE 4. Then each test 

was done on three types of ontologies manual ontology and 

knowledge graph-based ontology. Scalability of the dynamic 

ontology  

Dynamic ontologies are designed to be flexible and 

adaptable, allowing them to evolve and expand over time to meet 

changing requirements. However, as the size and complexity of 

the ontology increase, issues related to scalability can arise. 

Scalability is the ability of a system to handle increasing amounts 

of data or users without experiencing a significant decrease in 

performance.  

 

Table 5 

 scalability test for three knowledge graphs with 

different sizes 

Knowledge 

graph 

number 

Number 

of nodes 

Number 

of 

relations 

Time is 

taken to 

Time is 

taken to 

update 

Comparing 

component 

Dynamic 

Onto-

travel 

Onto-

Travel-

manual 

Percentage 

of completeness 

Number of 

entities 
32 35 0.91 

Number of 

Data 
Properties 

28 32 0.87 

Number of 

object 

properties 

54 58 0.93 

Number of 

Axioms 
32 33 0.97 

Number of 

individuals 
398 368 1.08 



generate 

ontology 

(seconds) 

the 

ontology 

1 (for 

newspaper 

articles) 

132 38 125 48 

2 ( for 

description) 

 

97 43 68 46 

3 (social 

media 

comments) 

243 74 180 58 

 

In the case of dynamic ontologies, scalability is an essential 

consideration because as the ontology grows, the computational 

resources required to manage the ontology query can increase 

significantly. Here the scalability of the dynamic ontology 

generation process was tested for three knowledge graphs with 

different sizes. The first knowledge graph was made of newspaper 

articles. The second one is from descriptions of tourist websites. 

Finally, the third knowledge graph was created using social media 

comments. The number of nodes and the number of relations were 

used to measure the size of the knowledge graph. First, the time 

taken to generate the dynamic ontology and the time taken to 

update the ontology was checked for the scalability of the 

ontology. Then the size of the ontologies was tested for each 

knowledge graph by considering entities, datatype properties, 

object properties and the number of axioms. Considering the time 

taken to generate the ontology and the update, the ontology is 

shown in seconds. The ontology generation process is scalable and 

develops all components in dynamic ontology correctly and in a 

shorter period.  

6.5 The evaluation of the approach 

The fundamental techniques used in developing the dynamic 

ontology using knowledge were evaluated to measure whether the 

selected technique suits the situation. In addition, the graph 

merging and ontology mapping techniques were evaluated. 

6.6 Ontology mapping evaluation  

The final ontology was evaluated using Precision, Recall, 

and the F-measure [33] for relevancy checking for ontology 

generation. All the steps of the integration process were evaluated 

for relevance and accuracy. The final resultant ontology was also 

verified based on the Precision, Recall, and F-measure values. 

Precision is defined as the relevant number of integrated 

components, as shown in Eq. (5). Recall is the number of 

integrated relevant components of all the possible relevant 

components, as shown in Eq. (6). Finally, the F-measure is derived 

from the Recall and Precision, as shown in Eq. (7). The Precision 

of the developed final ontology was 0.787, meaning it had a 79% 

relevancy level for all the integrated components. The Recall 

measured the number of relevant integrated components over the 

possible relevant components, which was 0.92. During the 

evaluation, the F-measure of the nodes and related integration and 

conversion to the final ontology was 0.84. The evaluation of the 

final ontology revealed that after connecting the knowledge graph, 

the final ontology was 84% relevant to the expected results.  

Furthermore, the novel method was compared with the 

keyword (string)-based matching based on their performance with 

ontology instances or the same set of comments with the same 

ontology. Finally, the relevance of the results was measured using 

Precision, Recall, and F-measure. Then, both methods were 

compared, as presented in Table 7. 

Table 7 

.  Comparison of the proposed graph-based method with the 

keyword-based matching method.  
Introduced 

Graph-

based 

method 

Keyword-based 

matching 

method 

Rate of 

integration of 

components 

75% 60% 

Precision 0.787 0.659 

Recall 0.902 0.731 

F-measure 0.84 0.693 

 

 

Table 6 

Scalability test for three knowledge graphs to ontology components 

 Knowledge graph Dynamic ontology 

 Number of 

nodes 

Number of 

relations 

Number 

of 

entities 

Number of 

datatype 

properties 

Number of 

object 

properties 

Number of 

axioms 

1 ( for newspaper 

articles) 

132 38 22 69 18 21 

2  (for descriptions) 97 43 13 34 12 17 

3(for social media 

comments) 

243 74 34 56 24 28 

 

 

 

 



The rate of integration using the keyword-based matching 

method was lower than that of the novel integration method. In 

addition, no other relations were found since keyword-based 

matching could not address unmatched elements matching 

methods based on relevancy. However, the novel approach 

addressed graph and keyword matching and graph clustering, 

leading to a better alignment of unmatched elements.  

 

 
Fig 8: Comparison of the novel and keyword-based  

 

According to the accuracy results, the Precision, recall, and F-

measure values were 78, 90, and 84%, respectively. Furthermore, 

Fig. 8 illustrates that the novel method provides higher relevancy 

than the keyword-based matching method.  In the case of dynamic 

ontologies, scalability is an essential consideration because as the ontology grows, 

the computational resources required to manage the ontology query can increase 
significantly. 

 

7. Conclusions 

This study is focused on dynamic ontology generation using 

a knowledge graph in the presence of continuously updating new 

data in different connected sources. This task was achieved using 

knowledge graph-based semantic integration for updating the 

unstructured text data for dynamic ontology. First, the novel 

graph-based integration and ontology transformation method was 

introduced and evaluated for real-time data. In addition, graph-

based clustering was enriched with self-tuning spectral clustering, 

reducing the computational cost of semantic mapping using graph 

clustering. Finally, in the implementation, an index was 

maintained for the easy reference of the graph after merging the 

matrices. The continuous updating of the ontology in the presence 

of new text data self-tuning spectral clustering and adjacency 

matrix mapping enhanced the performances of the integration 

process. 

The proposed approach was applied to the travel domain to 

demonstrate its applicability. Dynamically updated data extracted 

from sources in the travel domain were converted into knowledge 

graphs after resolving semantic heterogeneity and were integrated 

into the ontology later. The performance of the proposed method 

was compared to that of the keyword-based approach. According 

to the results, the proposed method outperformed the keyword-

based approach, with an accuracy level of 84%. 
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