
Knowledge Graph-Based Approach For Dynamic

Ontology Generation

Hansika Gunasekara1, Thushari Silva2
1Department of Computational Mathematics, University of Moratuwa, Moratuwa, Sri Lanka.;198077l@uom.lk
2Department of Computational MathematicsUniversity of MoratuwMoratuwa, Sri Lanka.thusharip@uom.lk

Abstract- A knowledge graph is a data model representing real-world entities and relationships in a machine-readable format providing a

comprehensive view of a specific domain or multiple domains. Dynamic ontology is a concept that refers to the idea that the fundamental nature

of reality changes over time. Dynamic ontology generation using a knowledge graph automatically creates a new ontology or updates an existing

ontology. This process keeps the ontology up-to-date with the changing real-world information. The most important part of dynamic ontology

generation is integrating the domain ontology into the knowledge graph and updating the knowledge graph accordingly. The primary purpose

of the research is to develop a dynamic environment that integrates the domain ontology with the knowledge graph. The main problem here is

the dynamic integration of new data and concepts with changes in real-world information. To achieve this task graph-based ontology mapping

framework is developed with matrix-based graph merging, graph clustering, cluster label propagation and matrix-based ontology mapping.

The new mapping algorithm was tested with real-time dynamic data and compared with existing systems. The proposed approach outperforms

the existing system in accuracy, relevancy and introducing new concepts to the ontology.

1.Introduction

Ontologies are a crucial element of the semantic web.

Ontologies are used in the Semantic Web, Artificial Intelligence,

Systems Engineering, Biomedical Informatics, Software

Engineering, Enterprise Bookmarking, Library Science, and

Information Architecture to represent knowledge about or a part

of the domain. They aim to capture basic knowledge by providing

appropriate terms and formal relationships between them.

Ontologies are an integral approach mainly used to represent

acquired knowledge and ensure data and knowledge integration.

However, most of them are generated manually by domain experts

and ontology engineers familiar with the theory and practice of

ontology construction [1]. Automatic ontology generation aims to

convert new knowledge into ontological form by enabling related

processing techniques, such as semantic search, recommendation

and retrieval.

Moreover, automatic ontology generation will significantly

reduce the expert involvement and time required to build

ontologies [2]. There are two groups of ontologies: static and

dynamic. A static ontology elaborates on items in existence, their

attributes and their relationship with them. Dynamic ontology

explains the domain as states and their transitions, including

processes according to changes in information. Dynamic ontology

generation has become an essential topic in semantic engineering

in every field, with massive amounts of data emerging. Most

dynamic ontologies are generated using structured data [3], such

as relational schema and web-based XML data. Approaches to

converting unstructured text into dynamic ontological format have

yet to develop fully. Most approaches for ontology learning

convert text to ontology format and need expert involvement [4]

[5]. A few studies have been carried out in dynamic ontology

generation using unstructured text corpus[6]

The knowledge graph is one of the emerging fields of

knowledge representation. Many studies [5] have been done on

knowledge representation using a knowledge graph because it is

presented in graph format. Knowledge graphs aim to construct

large structured knowledge repositories that machines can

understand [7]. Knowledge graphs have gained much attention in

natural language processing as a new type of knowledge

representation. Knowledge graphs can efficiently organise and

represent knowledge in advanced applications [8]. Knowledge

Graphs (KGs) such as Freebase [9]and YAGO [10]have been

widely adopted in a variety of natural language processing. The

knowledge graph consists of a set of triplets {(h, r,t)} where h,t

and r are the head and tail entities and the relationship,

respectively. Ontologies are stored in various forms like RDF,

RDFS, XML, OWL etc.

Building ontologies using learning techniques and knowledge

graph representation of unstructured text are familiar problems.

But, building a framework for lightweight log generation through

the knowledge graph must overcome many issues. It should

facilitate the system to integrate any knowledge graph anytime

without problem for domain-independent ontology. The graph

clustering-based approach to ontology introduced in [11]generates

dynamic ontology. It ensures dynamicity even in the presence of

the new device in the Internet of Things domain. This method is

improved to generate dynamic ontology using a knowledge graph,

preserving the dynamic nature of a new concept or source of text.

This paper aims to develop a domain-independent dynamic

ontology generation framework that generates ontological forms

from unstructured text data. The study is motivated by the need for

more fully-automated domain-independent dynamic ontology

generation systems. The framework utilises a knowledge graph to

be mapped and tailored to suit target domain ontologies. This

framework facilitates continuous integration of unstructured text

data to maintain dynamicity. Further, this dynamic ontology

ensures lightweight representation and speedy access to

information through the index for future development in querying

and recommendation.

The rest of the paper is organised as follows: the next section

reviews the relevant literature. Then, the Proposed approach

section provides for knowledge graph integration of unstructured

text data to the dynamic ontology process. Next, the

implementation section describes all aspects of the techniques

used in the dynamic ontology generation process. Then the result

and discussion describe the implementation and evaluation of the

proposed system. Finally, the conclusion of the proposed approach

and future works are discussed.

2.literature review

The dynamic ontology generation approach is based on

ontology generation, which enables it to update itself based on the

changes in data. Studies regarding dynamic ontology generation

can be divided into two types according to the input data source.

They are Dynamic ontology generation using structured data and

dynamic ontology generation using unstructured data. Although

many studies were carried out on dynamic ontology generation

using structured data sources, a few studies were conducted on the

dynamicity of unstructured text data. But there are a massive

amount of ontology learning approaches that generate ontologies

from text data automatically. The dynamic ontology generation is

an extension of ontology learning in a sustainable environment

that enables the evolving and versioning.

2.1 Dynamic ontology generation using structured data

Most dynamic ontology generation studies are based on

structured data transformation [12] using structured databases.

Evolution changes are defined in [13]as a succession of operations

the user wants to apply to the schema or the ontology data. This

evolution aims at adapting the ontology to the changed domain.

According to [14], these tasks usually occur during the use phase

of the ontology. Ontology Dynamics clearly define the evolution

criteria. [15]qualify the maintenance of ontology as the most

crucial criterion. Evolution has to maintain whatever relies on

ontology. [16] presents a new way to manage the lifecycle of an

ontology incorporating both versioning tools and the evolution

process.

2.2 Ontology Learning

The research [6]aims to develop a domain-independent

automatic ontology generation framework that converts

unstructured text into a domain-consistent ontological form. The

framework generates knowledge graphs from an unstructured text

corpus and refines and corrects them to be consistent with domain

ontologies. Moreover, the knowledge graph can automatically

update the knowledge without expert involvement, comparing the

ontology learning algorithms discussed in [17]. The study in [18]

has been carried out to automatically transfer the relationships to

the ontology using semantic graphs and convolutional neural

networks. They have used semantic and thematic graphs are used

for knowledge extraction.

Further [18] have produced a hierarchical structure with in-

depth integration of data for reducing the matching time and

dynamic labelling to remove domain dependencies. According to

the survey in[17], ontology learning from text methods has been

presented to convert text data to ontology components in 22

studies. But no work was only found on dynamic ontology

generation using text in the survey. Although the automatic

generation of the ontology using text based on ontology learning

is vital, rare work was found for dynamic ontology construction.

The summary of ontology learning approaches in Table I

represents a mixture of natural langue processing, machine

learning and network-based technologies used in each

approach. Expert involvement is needed for all approaches

and does not address dynamic evolution.

2.3 Dynamic ontology generation from text

 Knowledge graph-based automatic ontology

development for consistent dynamic features was ensured

using knowledge graph embedding techniques [6]. The

framework utilises refined KGs mapped and tailored to fit

into target domain ontologies. However, generating

ontologies from refined KGs will not only overcome the

limitations of ontologies, such as data integration.

Therefore, evaluation or performance analysis has yet to

present in this research.

Recent research has addressed the problems of complex,

heavyweight static ontology on the Internet of Things

systems. To address this concern, [11] proposed a

lightweight ontology using only the most essential concepts

and clustering techniques. It provides dynamic semantics

automatically to include additional concepts using machine

learning techniques. The proposed model somewhat

reduces the query response time and memory consumption

compared to the existing ontology. The dynamicity of the

ontology is addressed in the presence of new device or

sensor data in the system using clustering. However,

considering the literature, such a lightweight log for

unstructured text data still needs to be addressed.

2.4. Cluster label propagation

Cluster label propagation is a method for cluster labelling,

which assigns a label or description to a group of similar data

points that have been grouped in a cluster. This technique can be

applied to different data types and used for tasks such as image

classification, text mining, and bioinformatics. Label propagation

is an iterative technique for assigning labels to unlabeled data

points based on the labels of their nearest neighbours. The idea is

that data points close to each other are likely to have similar

labels. The algorithm starts with a small set of labelled data points.

Then, it propagates the labels to the unlabeled data points by

iteratively updating them based on the labels of their nearest

neighbours[20]

Several methods for graph cluster labelling, including

Keyword-Based Labeling, identify the most frequent words or

phrases in the data associated with each cluster and use them to

generate a label. Centrality-Based Labeling labels clusters based

on the centrality measures of the vertices in the cluster, such as

degree centrality, betweenness centrality, or eigenvector

centrality[21].

Attribute-Based Labeling: labels clusters based on the

attributes of the vertices in the cluster, such as labels or categorical

variables [22]. Community Detection-Based Labeling labels

clusters based on the community structure of the graph, where

communities are defined as groups of vertices that are more

densely connected than vertices in other groups[23]. Centroid-

Based Labeling labels clusters based on their centroid or

representative vertex properties.[24]

In network-based clustering, the most influenced node in the

cluster is elected as the cluster label. According to[25], this cluster

labelling algorithm can easily embed into the new class name

suggestion in the ontology generation process. Therefore, this is

one of the best-suiting algorithms for labelling knowledge graph-

based clusters.

The proposed study aims to develop a fully automatic, domain-

independent lightweight dynamic ontology generation framework

using various types of unstructured text and enabling the

integrating of one or many ontologies at any stage to fill this gap

in the literature.

3. The Proposed Approach

The main focus of the proposed approach is to develop a

platform to generate dynamic ontology using a knowledge graph,

which enables to accommodate the ontology through knowledge

behind unstructured data. The proposed approach for the dynamic

ontology generator is described in Figure 1.

Initially, the dynamic ontology is generated by the steps

introduced in the overview. Inputs of the dynamic ontology

generator are static domain ontology and knowledge graph of

unstructured data. The dynamic ontology generation process is

briefly discussed in the following sub-sections. First, the dynamic

ontology generation is based on the knowledge graph integration

to the ontology using an RDF alignment method. The RDF

alignment merges two graphs using semantic similarity and self-

tunning spectral clustering using graph matrices. Then the

connected graph matrix is transferred to the ontology iteratively

with the presence of new text content. The framework updates the

ontology every time new data is added to the knowledge graph.

Fig. 1 The proposed approach for the dynamic ontology

generator

3.1 Identified Inputs

The Domain ontology and the knowledge graph for the

unstructured data are the primary inputs of the proposed

framework. The graph representation consists of two parts.

Firstly the graphs are stored in Adjacency matrices, and

then the hashing index is defined for the references of

matrix elements and graph data. All vertices and edges of

the graph are transferred to the hashing index while storing

graphs in the adjacency matrix, as both graphs are large.

The RDF data and Knowledge graph are stored in the

Adjacency Matrix [26]. The Adjacency Matrix is an nxn

matrix (where n is the number of nodes), with rows and

columns labelled by graph vertices. Adjacency Matrix

describes a graph by representing which vertices are

adjacent to which other vertices; the cell of the Adjacency

Matrix is filled with the label of the edge.

After working with the adjacency matrix, referring to the

ontology again for querying or recommendation is

necessary. If the graph is large, then this will take more time

to search for the relevant node. For this task, hashing can be

applied, giving an index of the desired node in constant

time. The Minimal Perfect Hash Function is used for

minimising collisions. Hence, this will save storage and

decrease the Time Complexity[27].

Table 1

Summaries of ontology learning approaches

Approach Aim Main technique Source Main goal Assessment of

acquired knowledge

Aussenac-
Gilles and
colleagues”

approach [19]

To create a domain model

by using NLP tools; To
create a domain model by

using
linguistics technique

Knowledge extraction

with syntactic patterns with
a concordancer; Relation

extraction based on

linguistic patterns; Term

extraction based on
distributional analysis

Text; Existing ontologies;

Terminological databases
To learn

concepts, To
learn new

relations

User; Domain expert;

Human intervention

Faatz and
Steinmetz

approach [5]

To enrich the concepts by
extracting meaning from the

WWW

Statistical approach;
Semantic relativeness

Corpus from WWW To enrich
the ontology

with new

concepts

Domain expert

Khan

andLuo'ss
method [4]

To create a domain

ontology using clustering
techniques and WordNet

Clustering Text To learn

new Concepts
Domain expert

3.2 Merging graph using the semantic similarity measuring

method

After storing graphs in adjacency matrices, semantic

similarities between each vertex and each edge were stored

in a list of vectors. Then those similarities can be used when

comparing matrix points for vertices and edges of the graph.

The merging steps of the two adjacency matrices are

described in Algorithm 1. Here Q is the adjacency matrix of

the RDF graph, G is the adjacency matrix, and the final

merged graph is defined as Z. Two matrices are merged by

comparing the similar points between two matrices. Next,

non-matching elements are appended to the matrix where

there is no matching column, and a new column is added.

Similarly, new rows are added when a non-matching row

element arrives. Finally, the relations among nodes are

defined by the matrix body referring to column names and

row names when new relationships are introduced and

updated in the matrix’s jth position.

 3.3 Graph clustering using the self-tunning Spectral Clustering

method

Clustering is a widely used technique for unsupervised data

analysis, with applications in statistics, computer science,

biology, social sciences, and psychology. In clustering, the goal is

to assign unlabelled data to groups; similar data points are

assigned to the same group.

After merging two graphs using the matrix, it is necessary to

integrate the graph elements to identify the semantic connectivity

with existing graphs. Graph clustering was used to gather proper

integrating elements. Clustering is one of the best methods for

finding similar nodes. The spectral clustering algorithm was

introduced [28]for clustering graphs with high noise. This method

is reasonably fast, especially for sparse datasets.

Moreover, spectral clustering treats data clustering as a graph-

partitioning problem without assuming the form of the data

clusters. Spectral clustering is a technique in graph theory used to

identify a group of nodes in a graph on the edges connecting them.

This method is flexible and allows the clustering of non-graph

data. It uses information from the eigenvalue spectrum of special

matrices built from a graph or dataset. The following sections

discuss the construction of matrices, the interpretation of their

spectra, and the use of eigenvectors to assign data to clusters.

Then, clusters in this subspace are obtained using various

clustering algorithms such as k-means. The adjacency matrix is

an affinity matrix determining how close or similar any pair of

points are in space. Spectral clustering performs well with

standard clustering algorithms such as K-means [29]. However,

since K-means clustering requires knowledge of the number of

clusters, the expected number of clusters and a parameter for the

similarity threshold need to be given. Therefore the optimal

number of clusters for spectral clustering was derived in the self-

tunning spectral clustering. Under spectral clustering, the

elements should be gathered in the design space to estimate the

number of clusters. Then an optimal number of clusters is

determined based on the perturbation theory and the proposed

spectral graph theory [30]. An improvement of the self-tunning

clustering method that overcomes three problems of spectral

clustering, i.e., cluster initialisation, cluster specification, and

noise-robustness.[31] was used.

3.4 Dynamic ontology generation

 Integrating relevant elements to a static ontology

requires little effort as it is connected to existing matching

classes. But dynamic ontology has to connect relevant

elements to existing classes and generate new classes and

relations. Therefore, all the clustered elements should be

closely analysed, leading to dynamic ontology integration.

Furthermore, elements should have a close relationship

when a set of elements are gathered into a cluster.

After clustering all elements, there are three types of

nodes in clusters according to their behaviour, closeness

and alignment. There are two types of clusters: connected

graph clusters and non-connected graph clusters. The

connected graphs have two main parts: fully connected-

graph clusters and partially-connected clusters. This cluster

is defined as elements not connected to any class branch

and integrated using the matrix-based graph mapping

method.

Then non-connected graph cluster consists of unrelated

elements that can be considered a new concept. In such

cases, many nodes cannot connect as individuals of an

existing class, mainly belonging to a cluster. Therefore,

generating a new class of unconnected nodes is necessary,

Algorithm 1. The matrix-based graph merging algorithm

Q= RDF graph matrix

 G= knowledge graph matrix

Subjects of Q & G,

Qs= { q1,q2………qms)

Gs= {g1,g2,………..gns),

Objects of Q & G,

Qo= { q1,q2………qmo),

Go={g1,g2,………..gno),

Initialise

Zs= Qs, Zo= Qo, Zr = Qr, p= ms, s= mo

Check the cosine similarity index for Gs and Qs, Zo and

Go, Zr and Gr

For all i

If Gsi not equal to Osi

(where the similarity index< threshold)

Add a column to Zs

p= p+1

Append the whole column of the matrix to the Z matrix

For all j

If Zoj not equal to Goj

(where cosine similarity index< threshold)

 Add node to rows of Z

 s=s+1

 Append the whole row of the G matrix to the

Z matrix

Else

For all j

 If Zoj not equal to Goj

 Add node to rows of Z

 s=s+1

Append the whole row of the G matrix to the Z matrix

Else if Zrj is equal to Grj

Increase the number of relations at Zrij (update its position

considering the cluster closeness and node names. The

output of the spectral clustering is a vector of elements.

First, a set of adjacency matrices were derived from the set

of vectors for clusters. Then these matrices were used to

integrate the dynamic ontology.

Algorithm2 Dynamic ontology transformation using

integrated graph cluster

Let us consider the dynamic ontology matrix as D and

the integrated matrix as R: Here, R is partitioned into

clusters,

 then R is defined as R= (R1,R2,……..Rk) for k

number of clusters

Columns of matrix D ,Ds= (d1,d2,..,di,…,dn),

Columns of matrix Rk’,Rk’s=(r1,r2,…,ri,…,rm),

Rows of matrix D DO= (d1,d2,..,dj,…,dp),

Rows of matrix R Rk’O= (r1,r2,…,rj,…,rq),

For all clusters RK’

If DS=Rk’S if

DO==Rk’O NO

ACTION

 else

 create individuals of rj

 if dij == rij

no action

 else

 introduce an object property (trem in ijth

position)

 domain= ri

 range= rj

else

 create individuals of ri

 if dij== rij (relation mapping)

 no action

 else

introduce an object property (trem in ijth position)

domain= ri range= rj

3.5 Connected graph cluster mapping using matrix-based graph

mapping

In dynamic ontology, classes and properties are defined that

can gather individuals and their individuals. Therefore, it is

necessary to connect knowledge graph elements to dynamic

ontology with the changes according to the data or concept

changes. This section addresses data changes and updated

individuals and new relations. Here an algorithm was built to

compare the adjacency matrix of dynamic ontology with the

adjacency matrix of each cluster of the above-integrated graph.

3.6 Non-connected graph cluster mapping

 The elements of this cluster are not directly connected to the

ontology classes. Instead, they are connected or show similar

characteristics within the cluster and are integrated as a new

concept. As per the example in Figure 2, if a new concept is

introduced in the domain. In such cases, ontology does not know

about this update or change. Therefore those concepts adding to

the ontology should be done carefully.

The cluster analysis with the ontology and knowledge graph

does not contain a cluster name that can be transferred as a class

name. Therefore these elements belong to one class in ontology,

and it is needed to define a new class. For this task, class names

are derived using dynamic cluster labelling. Then dynamic

ontology was generated automatically by integrating a newly

generated graph into an appropriate class. Next, the integrated

graph matrix was mapped with a domain-graph matrix

representing the existing classes and their connections. Finally,

existing individuals in the domain ontology were updated with

their connected relations.

Fig. 2. Example of non-connected graph clusters and

generation of new classes

3.7 New class generation using dynamic labelling

For the knowledge graph, clusters do not connect to the

ontology classes, and subclasses tend to generate new

classes. A Lable propagation Algorithm (LPA) is used to

derive the new class labels for the unconnected graph

clusters. According to the study in [32], they influence the

structure and attributed dimensions to identify clusters in

the attributed graph. Influencing the structure and attributed

dimensions to identify clusters in the attributed graph. Here

two new Concepts have been introduced and used by t the

high-precision Algorithm LPA to solve the problem of

attribute clustering. First, the proposed algorithm in [32], a

weighted graph, is developed, every single edge of which

combines the similarity of structures and attributes of two

nodes with an edge. In the weighted graph, the influence of

nodes will be calculated using Laplacian centrality.

Afterwards, the updating stage is performed, in which the

node of a two-member set will have a label and label

influence. Each node that is supposed to be updated will

select a label based on the more decisive influence of the

label among the adjacent nodes. Also, it will cause nodes

with more decisive influence in structure and attributes to

update many tags. After a few steps, it is expected that the

homogeneous nodes in terms of structure density will have

the same tags, similar to tags of the same cluster of the

graph. The algorithm is named in [32] the SAS-LP

algorithm.

The SAS-LP algorithm is defined to find the most

influencing node of the graph’s adjacency matrix. Then the most

influencing node is elected as the label of the cluster. Then this

label is used to build the class in ontology, and all other elements

in the cluster become the individuals of the cluster. Finally, the

ontology is updated using the new class and its connected classes.

Here it needs to check whether the cluster elements are mapped

with ontology elements. If elements do not match, it introduces a

new class in ontology with the name of cluster label. Finally, it

calls algorithm 2 to establish relations among nodes and create

object properties in the ontology. Algorithm 3 is called whenever

a new text is integrated.

Algorithm 3:- New class introduction to the ontology using

cluster labelling

Generate Adjacency matrix A for RDF graph ontology

Compare the clusters

For all clusters in P=(p1,p2……pj…….N)

J=(1,2……j,…N)

For cluster j

Generate Adjacency matrix Pj of cluster elements

Compare Pj and A

If at least one element of Pj is mapped with A

Algorithm 2

Else

Call SAS-LP cluster labelling algorithm

New Class name = label of the cluster (output of

SAS-LP algorithm)

New individuals=, all nodes carrying the class name

Update A with new nodes

 Update relations using algorithm 2

4. Implementation

This research is focused on generating a dynamic ontology

using a knowledge graph. First, a travel domain ontology and a

knowledge graph were used to implement the dynamic ontology

generation. Here the knowledge graph was built using some

articles, comments and reviews. Then the graph-based dynamic

ontology generator was implemented by dynamically integrating

the knowledge graph into a static domain ontology.

The implementation is focused on Graph-based dynamic

ontology generation. The Graph-based dynamic ontology

generator consists of three main modules 1) Matrix representation

and merging, 2) Graph clustering, and 3) Dynamic ontology

mapping.

4.1 The Graph-based dynamic ontology generator

The domain ontology and the knowledge graph are the input

of the graph-based dynamic ontology generator. It consists of

three modules which fulfil three dedicated tasks for the dynamic

ontology generation process. Each task and its implementation

of 1) Matrix representation and merging, 2) Graph clustering

and 3) Dynamic ontology mapping are summarised in Fig. 3

4.2. Matrix representation and merging

After building the knowledge graph, it was integrated

into the domain ontology in the RDF format. Then, both

graphs were represented in separate adjacency matrices,

and a Laplacian matrix was constructed to find the

eigenvector. Next, the NumPy Python package calculated

the clustering and graph projection eigenvalues. Finally, an

eigenvector was found using the Laplacian equation in

Python.

In this module, both the RDF graph and the knowledge graphs

were converted to adjacency matrices to easier to implement

merging algorithms. Then each graph node and edge reference

was transferred to an index for further usage. An example is to

show the functioning of the technique that transfers the RDF

graph to the matrix using a small RDF graph, as illustrated in

Fig.4.

This small RDF Graph is stored in Adjacency Matrix in

the exact figure. As there are nine nodes in the graph, hence

Adjacency Matrix creates against it is a 9×9 square matrix.

The name of nodes was considered as names of rows and

columns. If nodes were connected, the label of the edge was

added in the corresponding matrix’s sell. Then the

corresponding adjacency matrix rows, column labels, and

matrix cell addresses were listed as an index for

representing nodes and edges with their types (class names)

and superclass hierarchy. Finally, the referencing index was

introduced to make connecting with the original RDF graph

and the ontology easier, as shown in Fig 5.

4.3 Merging graph using semantic similarity methods

After the graphs are represented in adjacency matrices and the

referencing index, algorithm1 was applied for merging. Here both

adjacency matrices of the RDF graph and knowledge graph are

integrated. Algorithm 1 was implemented in a Python

environment. First, semantic similarities were calculated for each

pair of nodes and edges of comparing graphs. Next, cosine

similarity, Jaccard similarity, and Euclidian distances were

calculated to find the best matching techniques for semantic

similarity calculation. The mean of all three similarity values was

used for the similarity checking. Then, the integration algorithm

was implemented, considering calculated semantic similarities.

Finally, the merged matrix was transferred to module 2 as an

adjacency matrix of the merged graph.

Fig. 3. Overview of Implementation. Modules

Fig. 4. RDF graph to the Adjacency matrix

Fig.5. Referencing index storage from the adjacency

matrix

4.3 Merging graph using semantic similarity methods

After the graphs are represented in adjacency matrices and the

referencing index, algorithm1 was applied for merging. Here both

adjacency matrices of the RDF graph and knowledge graph are

integrated. Algorithm 1 was implemented in a Python

environment. First, semantic similarities were calculated for each

pair of nodes and edges of comparing graphs. Next, cosine

similarity, Jaccard similarity, and Euclidian distances were

calculated to find the best matching techniques for semantic

similarity calculation. The mean of all three similarity values was

used for the similarity checking. Then, the integration algorithm

was implemented, considering calculated semantic similarities.

Finally, the merged matrix was transferred to module 2 as an

adjacency matrix of the merged graph.

4.4 Cluster the graph using self-tunning spectral clustering

The self-tuning spectral clustering algorithm was applied to the

merged graph to split the graph into clusters. Here, the algorithm

decides the number of clusters, and similar or nearby elements are

gathered in clusters. Clustering best matching elements from the

knowledge graph and the ontology are gathered. All similar

elements are connected in each cluster. Those clusters should be

sent to the ontology mapping for dynamic ontology generation.

The behaviour of the cluster should be identified for this task, and

then the corresponding mapping algorithm should be applied.

4.5 Cluster examination

The elements inside the cluster should be examined before

applying an ontology mapping algorithm. For the dynamic

ontology generation, It should be identified how the nodes are

connected within the cluster. The implantation was extended to

find connected and not connected graphs with the Python

environment. Then the clusters can be categorised into two main

categories, connected graph clusters and non-connected graph

clusters sent to module 3 as inputs.

4.6 Dynamic ontology mapping

There are two types of clusters. All nodes are connected within

the cluster, and clusters are not connected to ontology nodes. In

module 3, suitable ontology mapping algorithms are applied to

each category of clusters, as illustrated in Fig 6. Nodes of all

connected clusters have connectivity to the ontology elements.

Therefore, they can be mapped with existing components and

relations in the cluster. But only connected nodes cluster with a

connection to the ontology can be considered new concepts. Then

they are introduced to the existing ontology with new classes. The

following sub-sections will discuss both types of clusters treated

with separate ontology mapping algorithms.

4.7 Connected graph clusters ontology mapping

The outcomes of the cluster examination in module 2, the

connected graph clusters, are filtered. Then they are mapped with

the ontology using algorithm 2. Here the adjacency matrix of the

current ontology is compared with the integrated matrix, and the

graph is mapped with the ontology.

4.8 Not-connected graph cluster ontology mapping

 This sub-module is designed to incorporate new concepts or

topics introduced to the domain. For example, a not-connected

graph cluster is considered a new topic with no class related to

ontology. Therefore, it needs to introduce a new class and build

connections.

Firstly, a label propagation algorithm was implemented for the

cluster then a class in ontology was defined using the new label as

the class name. Here the cluster with the most influencing node is

found using the following equations discussed in (Berahmand et

al., 2022). Then the most influencing node is elected as the label

of the cluster. Then this label is used to build the class in ontology,

and all other elements in the cluster become the individuals of the

cluster. Finally, the ontology is updated using the new class and its

connected classes.

4.9 Matrix-based ontology mapping

Here, the nodes were mapped with the domain ontology nodes,

so the object nodes were checked where the subject nodes were

mapped. When both subjects and objects were mapped, the

matching relations remained or were recreated. New relations

were introduced after matching existing relations in the domain

ontology was verified. New nodes were added as class individuals,

considering existing relations, and other connected nodes

connected to a domain ontology were exited. Algorithm 2 was

introduced to expand the ontology system.

The merged matrix of the RDF and knowledge graph was

converted into a new ontology. Additionally, all the triple patterns

and properties were transferred to the ontology. Finally, the final

graph pattern was converted into an ontology with the initial class

structure of the domain ontology. All the relationships and

properties were converted accordingly, and all the individuals

were stored in a new ontology. The new relations and nodes

connected in the merged graph were converted to the ontology,

and the equivalent, similarity, and subclasses were derived in the

new ontology. For example, in graph merging, some relations

coincided with existing relations; they were considered equivalent

relations with reasoning. Finally, the output-connected graph

ontology mapping and the non-connected graph ontology mapping

were merged.

5. Results

This experiment focuses on dynamic ontology generation

using a knowledge graph constructed using unstructured text data.

Onto-Travel is a domain ontology initially defined as a travel

ontology consisting of 27 classes, 19 subclasses, 81 datatype

properties, 48 object properties, and 365 individuals in the first

part of the research. All data and concepts related to structural

data, such as destinations, hotel details, tour details, weather, and

user details, are updated. This paper focuses on generating a

dynamic ontology generator integrating a knowledge graph of

unstructured text data into the Onto-Travel with dynamic updates.

Therefore, this experiment was designed to check whether

the dynamic ontology generation and maintenance are done

correctly in the presence of unstructured text such as social media

comments, articles and descriptions.

 In this experiment, the framework, from building the

knowledge graph to integrating the ontology, was built with the

domain ontology, social media comments extracted from

Tripadvisor, and descriptions extracted from

www.srilankatravel.com. Fifty sentences in ten social media

comments about travelling and 100 sentences from ten

descriptions were selected from the travel site

www.srilanktravel.com. The framework comprises several

components at different stages. Each key component, such as

knowledge graph building and graph integration for dynamic

ontology generation of the framework, was tested using real-time

data; the results are recorded in the following subsections. First,

the experiment was done on knowledge graph generation using

real-time unstructured text related to tourism. The knowledge

graph integration process is decomposed into three main modules

in the implementation. The outputs of each module were reported

in this section.

5.1 Knowledge graph generation

For the experiment task, a knowledge graph was built for the

50 sentences from comments, and 100 sentences from descriptions

were selected. At the preprocessing stage, 13 incomplete

sentences were removed, and others were transferred to the

knowledge graph generation process. Then, the remaining

sentences were transferred to the triplets. Finally, there were the

remaining 137 sentences after preprocessing, which were

decomposed into one predicate sentence. One hundred seventy-

eight sentences were identified as one predicate sentence and

transferred to the triplets. Here 167 sentences were transferred to

the triple. A part of the knowledge graph is visualised in Fig 6.

5.2 RDF graph representation

The domain ontology is initially defined as a travel ontology

consisting of 27 classes, 19 subclasses, 81 datatype properties, 48

object properties, and 365 individuals. The ontology is represented

in RDF format, and the graph was drawn using resources and

literals. Figure 7 shows a part of the graph of domain ontology.

Fig 6: A part of the knowledge graph

Fig. 7 RDF graph of Onto-Travel

5.3. Calculation of semantic similarity between text

components

The adjacency matrices for the knowledge and the RDF

graphs are in the graph merging process. Initially, the adjacency

matrix of the knowledge graph is a 321X321 matrix, and the RDF

graph matrix is a 365X365 matrix. Calculating the semantic

similarity between elements of each matrix was stored in a

corresponding matrix. The semantic similarity matrix between

two adjacency matrices generates a 321X365 matrix, and each

matrix point is filed with a decimal value between -1 and 1. The

semantic similarity between each component is used in the

matching process. In this experiment, semantic similarities were

calculated using three techniques. First, cosine similarity,

Euclidean distance, and Jaccard similarities were calculated

within the nodes of each graph. All three gave same-size matrices;

the mean value matrix was stored as the semantic similarity

matrix.

Two adjacency matrices were merged using semantic

similarities and algorithm 1. The output was a 384 X384 matrix

that connected all relevant nodes and expanded the matrix.

5.4Graph Clustering and ontology expansion

 The merged matrix was used as the adjacency matrix for

Spectral clustering in module 3, and after applying self-tuning

spectral clustering generated 17 clusters. But six clusters had only

one element. So these six clusters were removed, considering them

outliers. Then all other 11 clusters were compared further with the

dynamic ontology.

The merged matrix of the RDF and knowledge graph was

converted into an ontology. Additionally, all the triple patterns and

properties were transferred to the ontology. Finally, the final graph

pattern was converted into an ontology with the initial class

structure of the domain ontology. All the relationships and

properties were converted accordingly, and the individuals were

stored in a new ontology.

The conversion rate was calculated to check whether all

nodes were converted to ontology. Here, the number of converted

nodes over all available nodes was taken as the conversion rate.

Then it showed that 95% of all the nodes and relations were

converted into a new ontology. Further, the correctness of data

conversion was tested, showing 89% correctness of the nodes. In

the selected example, 65% of the relations were directly

transferred.

5.5Overall system testing with real-time data example

In real situations, new comments and reviews are added

rapidly. When a new comment or a review is added to the system,

it must be dynamically embedded. The system dynamically

identifies the upcoming knowledge and is automatically added to

the system. For the collection of comments, the system is

identified into two types. They are comments with existing

contents in the ontology and the new contents to the ontology.

These two types are examined by the system automatically.

 Such a situation is tested with real-time data. A set of

comments were added to the ontology at a given time. The first set

of comments and articles about places considered in the ontology

was added to the system for testing purposes. The second test data

was selected from articles that are unrelated to ontology. Both

datasets were added to the dynamic ontology generator and tested

all components in the dynamic ontology.

6. Evaluation

The evaluation of dynamic ontology generation using

knowledge for creating and updating consists of four main parts.

It typically involves measuring its effectiveness in accuracy,

completeness, efficiency, and scalability. The accuracy of

dynamic ontology generation was evaluated by comparing the

generated ontology with a manually curated ontology. The

completeness of the generated ontology was evaluated by

comparing it with existing ontologies in the travel domain. The

number of concepts, relations, and axioms in the ontology was

used to measure completeness.

The efficiency of dynamic ontology generation was evaluated

by measuring the time and computational resources required to

generate and update the ontology. In addition, the scalability of the

approach was evaluated by measuring its performance on large-

scale knowledge graphs and ontologies.

 Here the system-generated dynamic travel ontology and a

manually curated ontology were used to evaluate the dynamic

ontology generation process. Initially, the domain ontology is

developed to implement the ontology generation process. Then the

dynamicity is generated and maintained using a knowledge graph

based on social media comments, newspaper articles and

descriptions on the web. Finally, the manually curated ontology is

updated using expert knowledge by reading unstructured texts and

integrating the relevant data.

6.1 Accuracy of the generated ontology

The accuracy of the generated ontology was tested with gold

standards with a set of manually curated concepts, relations and

axioms. First, Precision and Recall were used to evaluate the

accuracy of the generated ontology. As equation (5) mentioned,

Precision is the fraction of retrieved concepts, relations, and

relevant axioms. At the same time, Recall is the fraction of

relevant concepts, relations, and axioms retrieved, as mentioned in

equation 6. Then the F-measure was calculated as a weighted

harmonic mean of Precision and Recall, as shown in equation 7.

The F-measure is a valuable measure for evaluating the

overall accuracy of the generated ontology.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
 (5)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

 (6)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (7)

Table 2

Accuracy evaluation measures

Ontology

component
Precision Recall F-measure

Entities 0.87 0.83 0.85

Datatype

Properties
0.82 0.78 0.80

Relationships 0.67 0.56 0.61

Axioms 0.78 0.65 0.71

The evaluation results show that Precision and Recall give

more than 85% level in developed entities. Automatically, the f-

measure shows an 85% accuracy level. Data type properties show

80% of the average accuracy level. But the relationship mapping

shows 60% of accurate mapping levels because some relations

needed to be included in the integration.

6.2 Completeness of the generated dynamic ontology

For completeness checking, a well-curated benchmark

domain ontology was developed. The knowledge graph-based

ontology (onto-travel) was tested with travel ontology. Therefore,

the manually curated benchmark ontology(onto-travel-manual)

was developed in the same domain. The system-generated

dynamic ontology was compared with the benchmark ontology by

comparing the number of concepts, relations, and axioms in both

ontologies, as shown in TABLE 3. In addition, the coverage of the

ontology was evaluated by measuring the number of instances that

the ontology could classify.

The differences between the generated and benchmark

ontologies were analysed to identify the missing concepts

(entities), relations, and axioms. Furthermore, this analysis can

identify areas where the dynamic ontology generation approach

needs improvement. Here the system-generated automatic

ontology is called Dynamic Onto- travel, and manually curated

ontology is called onto Travel-manual. Comparing the

completeness of the generated dynamic ontology with the

manually curated ontology, some entities, properties and axioms

were missed because of the need for proper relationship

definitions. But all individuals were integrated into the dynamic

ontology than the manual ontology.
Table 3

Comparison of completeness of generated dynamic ontology

and manual ontology

Table 4

Comparison of the efficiency for generation and

updation

Knowled

ge graph-based

ontology generation

Manual

ontology

generation

Knowl

edge graph-based

ontology

updation

Manual

ontology

 updation

Time is

taken to generate the

ontology

Less than

one hour

More

than a week

Less

than ten minutes
Impossible

Measure

memory and CPU

usage

High Low Low Low

6.3 The efficiency of the ontology generation process

 The efficiency of the generated ontology is measured in

terms of time required to generate the ontology, memory usage,

and CPU usage. First, the efficiency was checked for ontology

generation and updation, as shown in TABLE 4. Then each test

was done on three types of ontologies manual ontology and

knowledge graph-based ontology. Scalability of the dynamic

ontology

Dynamic ontologies are designed to be flexible and

adaptable, allowing them to evolve and expand over time to meet

changing requirements. However, as the size and complexity of

the ontology increase, issues related to scalability can arise.

Scalability is the ability of a system to handle increasing amounts

of data or users without experiencing a significant decrease in

performance.

Table 5

 scalability test for three knowledge graphs with

different sizes

Knowledge

graph

number

Number

of nodes

Number

of

relations

Time is

taken to

Time is

taken to

update

Comparing

component

Dynamic

Onto-

travel

Onto-

Travel-

manual

Percentage

of completeness

Number of

entities
32 35 0.91

Number of

Data
Properties

28 32 0.87

Number of

object

properties

54 58 0.93

Number of

Axioms
32 33 0.97

Number of

individuals
398 368 1.08

generate

ontology

(seconds)

the

ontology

1 (for

newspaper

articles)

132 38 125 48

2 (for

description)

97 43 68 46

3 (social

media

comments)

243 74 180 58

In the case of dynamic ontologies, scalability is an essential

consideration because as the ontology grows, the computational

resources required to manage the ontology query can increase

significantly. Here the scalability of the dynamic ontology

generation process was tested for three knowledge graphs with

different sizes. The first knowledge graph was made of newspaper

articles. The second one is from descriptions of tourist websites.

Finally, the third knowledge graph was created using social media

comments. The number of nodes and the number of relations were

used to measure the size of the knowledge graph. First, the time

taken to generate the dynamic ontology and the time taken to

update the ontology was checked for the scalability of the

ontology. Then the size of the ontologies was tested for each

knowledge graph by considering entities, datatype properties,

object properties and the number of axioms. Considering the time

taken to generate the ontology and the update, the ontology is

shown in seconds. The ontology generation process is scalable and

develops all components in dynamic ontology correctly and in a

shorter period.

6.5 The evaluation of the approach

The fundamental techniques used in developing the dynamic

ontology using knowledge were evaluated to measure whether the

selected technique suits the situation. In addition, the graph

merging and ontology mapping techniques were evaluated.

6.6 Ontology mapping evaluation

The final ontology was evaluated using Precision, Recall,

and the F-measure [33] for relevancy checking for ontology

generation. All the steps of the integration process were evaluated

for relevance and accuracy. The final resultant ontology was also

verified based on the Precision, Recall, and F-measure values.

Precision is defined as the relevant number of integrated

components, as shown in Eq. (5). Recall is the number of

integrated relevant components of all the possible relevant

components, as shown in Eq. (6). Finally, the F-measure is derived

from the Recall and Precision, as shown in Eq. (7). The Precision

of the developed final ontology was 0.787, meaning it had a 79%

relevancy level for all the integrated components. The Recall

measured the number of relevant integrated components over the

possible relevant components, which was 0.92. During the

evaluation, the F-measure of the nodes and related integration and

conversion to the final ontology was 0.84. The evaluation of the

final ontology revealed that after connecting the knowledge graph,

the final ontology was 84% relevant to the expected results.

Furthermore, the novel method was compared with the

keyword (string)-based matching based on their performance with

ontology instances or the same set of comments with the same

ontology. Finally, the relevance of the results was measured using

Precision, Recall, and F-measure. Then, both methods were

compared, as presented in Table 7.

Table 7

. Comparison of the proposed graph-based method with the

keyword-based matching method.
Introduced

Graph-

based

method

Keyword-based

matching

method

Rate of

integration of

components

75% 60%

Precision 0.787 0.659

Recall 0.902 0.731

F-measure 0.84 0.693

Table 6

Scalability test for three knowledge graphs to ontology components

 Knowledge graph Dynamic ontology

 Number of

nodes

Number of

relations

Number

of

entities

Number of

datatype

properties

Number of

object

properties

Number of

axioms

1 (for newspaper

articles)

132 38 22 69 18 21

2 (for descriptions) 97 43 13 34 12 17

3(for social media

comments)

243 74 34 56 24 28

The rate of integration using the keyword-based matching

method was lower than that of the novel integration method. In

addition, no other relations were found since keyword-based

matching could not address unmatched elements matching

methods based on relevancy. However, the novel approach

addressed graph and keyword matching and graph clustering,

leading to a better alignment of unmatched elements.

Fig 8: Comparison of the novel and keyword-based

According to the accuracy results, the Precision, recall, and F-

measure values were 78, 90, and 84%, respectively. Furthermore,

Fig. 8 illustrates that the novel method provides higher relevancy

than the keyword-based matching method. In the case of dynamic

ontologies, scalability is an essential consideration because as the ontology grows,

the computational resources required to manage the ontology query can increase
significantly.

7. Conclusions

This study is focused on dynamic ontology generation using

a knowledge graph in the presence of continuously updating new

data in different connected sources. This task was achieved using

knowledge graph-based semantic integration for updating the

unstructured text data for dynamic ontology. First, the novel

graph-based integration and ontology transformation method was

introduced and evaluated for real-time data. In addition, graph-

based clustering was enriched with self-tuning spectral clustering,

reducing the computational cost of semantic mapping using graph

clustering. Finally, in the implementation, an index was

maintained for the easy reference of the graph after merging the

matrices. The continuous updating of the ontology in the presence

of new text data self-tuning spectral clustering and adjacency

matrix mapping enhanced the performances of the integration

process.

The proposed approach was applied to the travel domain to

demonstrate its applicability. Dynamically updated data extracted

from sources in the travel domain were converted into knowledge

graphs after resolving semantic heterogeneity and were integrated

into the ontology later. The performance of the proposed method

was compared to that of the keyword-based approach. According

to the results, the proposed method outperformed the keyword-

based approach, with an accuracy level of 84%.

References
[

[1] K. I. Kotis, G. A. Vouros, and D. Spiliotopoulos, “Ontology engineering

methodologies for the evolution of living and reused ontologies: Status,

trends, findings and recommendations,” Knowledge Engineering Review,

vol. 35, 2020, doi: 10.1017/S0269888920000065.

[2] Z. Ma, H. Cheng, and L. Yan, “Automatic construction of OWL ontologies

from petri nets,” Int J Semant Web Inf Syst, vol. 15, no. 1, 2019, doi:

10.4018/IJSWIS.2019010102.

[3] J. An and Y. B. Park, “Methodology for Automatic Ontology Generation

Using Database Schema Information,” Mobile Information Systems, vol.

2018, 2018, doi: 10.1155/2018/1359174.

[4] L. Khan and F. Luo, “Ontology construction for information selection,” in

Proceedings of the International Conference on Tools with Artificial

Intelligence, 2002. doi: 10.1109/tai.2002.1180796.

[5] A. Faatz and R. Steinmetz, “Ontology Enrichment with Texts from the WWW,”

Aug. 2002.

[6] S. Elnagar, V. Yoon, and M. A. Thomas, “An automatic ontology generation

framework with an organisational perspective,” in Proceedings of the

Annual Hawaii International Conference on System Sciences, 2020. doi:

10.24251/hicss.2020.597.

[7] K. Kumar and A. Mukherjee, “Constructing knowledge graph from

unstructured text,” Siddhant Manocha, no. 12375, 1237, [Online].

Available: http://home.iitk.ac.in/~kundan/report_365.pdf

[8] X. Chen, S. Jia, and Y. Xiang, “A review: Knowledge reasoning over

knowledge graph,” Expert Systems with Applications, vol. 141. 2020. doi:

10.1016/j.eswa.2019.112948.

[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A

collaboratively created graph database for structuring human knowledge,”

in Proceedings of the ACM SIGMOD International Conference on

Management of Data, 2008. doi: 10.1145/1376616.1376746.

[10] M. Fabian, K. Gjergji, and W. Gerhard, “YAGO: A core of semantic

knowledge unifying wordnet and wikipedia,” 16th International World Wide

Web Conference, …, 2007, doi: 10.1145/1242572.1242667.

[11] H. Rahman and M. I. Hussain, “A lightweight dynamic ontology for Internet

of Things using machine learning technique,” ICT Express, vol. 7, no. 3,

2021, doi: 10.1016/j.icte.2020.12.002.

[12] B. Bachimont, A. Isaac, and R. Troncy, “Semantic commitment for

designing ontologies: A proposal,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Bioinformatics), 2002. doi: 10.1007/3-540-45810-7_14.

[13] N. F. Noy and M. Klein, “Ontology Evolution: Not the Same as Schema

Evolution,” Knowl Inf Syst, vol. 6, no. 4, 2004, doi: 10.1007/s10115-003-

0137-2.

[14] E. Tovar and M.-E. Vidal, “REACTIVE: A rule-based framework to process

reactivity,” CEUR Workshop Proc, vol. 519, Jan. 2009.

[15] R. Dividino, M. Romanelli, and D. Sonntag, “Semiotic-based ontology

evaluation tool S-OntoEval,” in Proceedings of the 6th International

Conference on Language Resources and Evaluation, LREC 2008, 2008.

[16] P. Pittet, C. Cruz, and C. Nicolle, “Guidelines for a dynamic ontology:

Integrating tools of evolution and versioning in ontology,” in KMIS 2011 -

Proceedings of the International Conference on Knowledge Management

and Information Sharing, 2011. doi: 10.5220/0003653201730179.

[17] J. Watróbski, “Ontology learning methods from the text -an extensive

knowledge-based approach,” in Procedia Computer Science, 2020. doi:

10.1016/j.procs.2020.09.061.

[18] S. R. Guruvayur and R. Suchithra, “Automatic relationship construction in

domain ontology engineering using semantic and thematic graph generation

process and convolution neural network,” International Journal of Recent

Technology and Engineering, vol. 8, no. 3, 2019, doi:

10.35940/ijrte.C6832.098319.

[19] N. Aussenac-Gilles, B. Biebow, and S. Szulman, “Corpus analysis for

conceptual modelling,” Citeseer, 2000.

[20] A. Turel and F. Can, “A new approach to search result clustering and

labelling,” in Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Bioinformatics), 2011. doi:

10.1007/978-3-642-25631-8_26.

[21] M. Alam and K. Sadaf, “Labeling of web search result clusters using

heuristic search and frequent itemset,” in Procedia Computer Science, 2015.

doi: 10.1016/j.procs.2015.02.014.

[22] H. Poostchi and M. Piccardi, “Cluster Labeling by Word Embeddings and

WordNet’s Hypernymy,” Proceedings of the Australasian Language

Technology Association Workshop 2018, 2018.

[23] B. Laassem, A. Idarrou, L. Boujlaleb, and M. Iggane, “Label propagation

algorithm for community detection based on Coulomb’s law,” Physica A:

Statistical Mechanics and its Applications, vol. 593, 2022, doi:

10.1016/j.physa.2022.126881.

[24] C. Jebari, “An improved centroid-based approach for multi-label

classification of web pages by genre,” in Proceedings - International

Conference on Tools with Artificial Intelligence, ICTAI, 2011. doi:

10.1109/ICTAI.2011.142.

[25] H. Sun et al., “CenLP: A centrality-based label propagation algorithm for

community detection in networks,” Physica A: Statistical Mechanics and its

Applications, vol. 436, 2015, doi: 10.1016/j.physa.2015.05.080.

[26] Pat Morin, Open Data Structures: An Introduction. 2013.

[27] Atta-Ur-Rahman and F. A. Alhaidari, “Querying RDF data,” J Theor Appl

Inf Technol, vol. 96, no. 22, 2018, doi: 10.4018/978-1-61350-053-8.ch015.

[28] R. Tous and J. Delgado, “A vector space model for semantic similarity

calculation and OWL Ontology Alignment,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2006. doi: 10.1007/11827405_30.

[29] S. Kosinov and T. Caelli, “Inexact multi subgraph matching using graph

eigenspace and clustering models,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2002. doi: 10.1007/3-540-70659-3_13.

[30] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in

Advances in Neural Information Processing Systems, 2005.

[31] G. Wen, “Robust self-tuning spectral clustering,” Neurocomputing, vol. 391,

2020, doi: 10.1016/j.neucom.2018.11.105.

[32] K. Berahmand, S. Haghani, M. Rostami, and Y. Li, “A new attributed graph

clustering by using label propagation in complex networks,” Journal of King

Saud University - Computer and Information Sciences, vol. 34, no. 5, 2022,

doi: 10.1016/j.jksuci.2020.08.013.

	1. Introduction
	2. literature review
	2.2 Ontology Learning
	2.3 Dynamic ontology generation from text
	2.4. Cluster label propagation
	3.1 Identified Inputs
	3.2 Merging graph using the semantic similarity measuring method
	3.4 Dynamic ontology generation
	3.5 Connected graph cluster mapping using matrix-based graph mapping
	3.6 Non-connected graph cluster mapping
	3.7 New class generation using dynamic labelling

	4. Implementation
	4.1 The Graph-based dynamic ontology generator
	4.2. Matrix representation and merging

