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Abstract. Knowledge graphs provide machine-interpretable data that allow automatic data understanding and deduction of
new facts. However, machines are not the only consumers of such semantic data. Human users could also benefit from graph-
structured data by browsing and exploring it to detect interesting associations and draw conclusions. To achieve that, methods
that allow for search over knowledge graphs are highly sought after. Keyword search is an intuitive and common way to retrieve
relevant data (e.g., documents) and can also be leveraged to search over knowledge graphs.

In this survey paper, we derive the typical architecture of a system for keyword search over graph-shaped data, we formally
define the problem, we highlight related challenges, and we compare to existing relevant surveys to identify the gaps. We conduct
a comprehensive review of studies dealing with the topic of keyword search over graph-shaped data (e.g., knowledge graphs)
following a systematic method. Based on that, we derive and define different aspects for classifying existing works. We also give
an overview about how those systems are evaluated and highlight possible future research directions.

Keywords: Keyword Search, Knowledge Graph, Survey

1. Introduction

Knowledge Graphs (KGs) have shown their importance in many application areas (e.g., search, question answer-
ing, or recommendations). Thus, the data represented as KGs is continuously increasing - a fact also evidenced by
the continuous growth of KGs like Wikidata [1]. While their semantic data representation can be directly leveraged
by machines to accomplish a specific task (e.g., inference), end users and domain experts should also be able to
access and explore the KGs. This is a first step in allowing to go beyond simple information lookup and enable the
discovering of new facts and correlations given by the graph structure. We can distinguish between two scenarios:
(1) KG querying and search includes the usage of structured queries, interactive query builders, keyword search, or
question answering. (2) KG exploration comprises visualization and browsing, faceted search, graph analytics and
summarization.

*Corresponding author. E-mail: leila.feddoul@uni-jena.de.
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Fig. 1. Typical generic components of a system for keyword search over graph-shaped data

While structured queries allow the formulation of the information need in a precise way, the most familiar and in-
tuitive method to search over data collections is keyword search [2]. This reduces the time to learn new technologies
and does not require an intricate knowledge of the underlying domain and the data schema. This technique could
also be adapted to work over KGs.

The typical generic components of a system for keyword search over graph-shaped data are depicted in Figure 1:

– Graph preprocessing: refers to the operations applied to prepare and index the data graph for efficient query
processing (e.g., keyword-node index) and answer retrieval (e.g., shortest paths index or summary graph).

– Keyword mapping: this step consists of mapping words or group of words in the query to a graph’s nodes and
edges.

– Answer retrieval: this step consists of finding results relevant to the query (e.g., using graph traversal). The
retrieval unit varies depending on the used technique (e.g., tree or entity).

– Answer ranking: this step ranks results in the order of relevance and is also dependent on the specific results
nature.

– Answer presentation: refers to the way the results are provided to the user and the different features that are
provided to support the search experience.

Implementing these common system components poses the following main challenges:

– Finding accurate mappings between keyword terms and graph elements: this includes a correct interpretation
and disambiguation of the query keywords. This is a crucial step since it directly affects the efficiency and
effectiveness of the subsequent answer retrieval phase.

– Scaling to large graphs: this includes the development of techniques to accelerate the retrieval of answers
(e.g., suitable indexing solutions or greedy algorithms).

– Ranking retrieved answers: this includes the development of ranking functions that leverage different aspects
depending on the type of the answer.

Those challenges lead to increasing research efforts in this area. To the best of our knowledge, there exist four
surveys that give an overview about the state of the research on keyword search over graph-shaped data focusing on
different aspects. However, two of them [3, 4] are quite outdated (2010), [3] focuses only on relational databases, and
another survey [5] dating from 2019 reports only on one aspect (answer ranking). The most recent one [6] classifies
existing works based on the type of the returned answer as already proposed in an earlier survey [3]. While the latter
also includes an overview of methods depending on the schema of relational databases, [6] only concentrates on
schema-free approaches. Both works use a classification that mixes two aspects in one concept, namely the answer
type and the way the score of the final answer is calculated. The other survey [4] classifies the works in a rather
general way based on the underlying data type, namely Keyword Search on XML Data and Keyword Search over
Relational Databases, which are considered as schema-dependent, and Keyword Search on Graphs which refers
to schema-free approaches. In [5], authors concentrate on the answer ranking aspect. The proposed factors for the
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answer ranking slightly overlap with the ones we propose in Section 4, but we adjust and add other ranking types
while preserving the distinction between the important aspects. Like [6], they also mix the two factors of answer
scoring and ranking. In addition, we also notice the inconsistent use of category names (e.g., “centralized ranking
function”, to refer to the distinct-root semantics as in [6]).

In addition to the previously mentioned shortcomings, none of the existing surveys report on methodologies used
for evaluating the systems including, e.g., the used ground truth, datasets, common benchmarks, and metrics. Fur-
thermore, only one work considered the ranking. Overall, to allow a certain consistency and simplicity of definitions,
it would be of benefit to consider each classification aspect separately, as suggested and extended in our proposed
categorization (Section 4). In addition, our literature review demonstrates that this area of research is constantly
evolving, resulting in new publications that were not included in previous surveys and more works considering
KGs. The contributions of this systematic review can be summarized as follows:

– We perform a systematic literature review to identify and classify relevant research on keyword search over
graph-shaped data.

– We propose a taxonomy for classifying existing works based on different aspects: search space, answer type,
answer ranking, and answer scoring.

– We provide a comprehensive review of evaluation methodologies used in the fields.
– We identify remaining research gaps and propose potential future research directions.

The remainder of this survey is organized as follows: In Section 2, we define the task of keyword search over
graph-shaped data as used within this survey. In Section 3, we describe the methodology for the systematic literature
review and in Section 4, we outline the different aspects used for the classification of relevant works. In Section 5, we
cluster relevant works based on the search space and provide a detailed description for each one while also including
the other aspects. In Section 6, we give a summary overview of all the systems and their evaluation methods (cf.
Subsection 6.1). Section 7 concludes the review and discusses future research directions.

2. Preliminaries

We consider the task of using keywords to search over graph-shaped data where, given a graph G and a keyword
query Q, the goal is to find proper answer(s) A1, A2, ..., An that satisfy the information need expressed in Q. The
response might either be an unranked list of relevant answers, a ranked list by order of relevancy, or just the single-
best answer. The relevant inputs and outputs are formally described as follows:

Graph model. We consider the graph G = (N, E, LN , LE), where N is a finite non-empty set of nodes, E ⊆ NxN
is a finite set of edges connecting two nodes, LN and LE are finite sets of textual information (e.g., labels) describing
nodes and edges respectively. Depending on the situation, the graph can be directed or undirected and its nodes
and/or edges may have weights assigned.

Keyword query. A keyword query Q consists of a non-empty list of terms Q = k1, k2, ..., kn. The set of nodes
Ki with a textual content matching ki for i = 1, ..., n are called keyword nodes. A keyword node can be associated
to multiple keywords and the same keyword can be mapped to various nodes. This matching can be extended to
include edges as well, e.g., by also considering them as nodes in the graph [7, 8]. The mapping between keywords
and nodes can be provided externally or be included as an additional task that is either a mere string matching or an
entity linking [9] where multiple keywords could correspond to a single entity in case of KGs.

Query answer. A relevant answer Ai to the query Q is a connected subgraph S = (NS , ES ) (for every pair of
nodes n1, n2 ∈ NS there is a path that connects them [10]) that covers all the keywords (the subgraph contains for
each keyword at least one corresponding keyword node). A relaxed variant will also allow for answers covering only
a subset of keywords. This is a general description, without imposing any further restrictions on the characteristics
of the answer. In Section 4, we give a detailed overview about possible answer types mentioned in the literature.
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3. Survey Methodology

To collect relevant works in the area of keyword search over graph-shaped data, we performed a systematic
literature review inspired by the guidelines provided by [11, 12]. This allowed to summarize and classify existing
related work as well as determine remaining research gaps. The general process consists of three phases:

1. Plan review: includes the identification of the need for the review and the development of the review protocol
which describes the steps that will be followed while conducting the review.

2. Conduct review: includes the concrete steps of performing the review starting from the identification of rele-
vant publications.

3. Document review: includes writing a report about the review and publishing it.

Since the identification of the need for the review was already addressed in Section 1, the review protocol will
be clarified while describing the second phase, and the last step is addressed by this survey, we only describe the
conduct review phase in more detail in the following:

A. Identify relevant research. In this step potentially relevant candidate papers that match specific prede-
fined keywords are collected. In practice, we first searched the DBLP1 bibliographic database using the following
queries2: keyword search graph, keyword search RDF, keyword quer RDF, keyword quer graph, quer generation
graph, quer generation RDF, keyword exploration graph, and keyword exploration RDF. Then, duplicates are au-
tomatically detected and removed after saving the original search results for each query. Publication collection and
deduplication were performed using the web search functionality of the reference management software JabRef 5.73

and resulted in 206 candidates.

B. Select primary studies. In this step, a primary selection of relevant papers is performed based on predefined
inclusion and exclusion criteria and a first reading of the title and abstract. In our case, this selection resulted in 68
papers. The applied criteria were as follows:

– Inclusion criteria.

* Publication year starting from 2013 (last 10 years).
* Open/institutional access.
* English language.
* Paper type: conference, journal, or workshop paper.
* Content fits to the topic of keyword search over graph-shaped data4.

– Exclusion criteria.

* Paper type: PhD symposium, Demo/poster, or extended abstract.
* Not peer reviewed (e.g., only published on an open access archive).
* Newer paper of the same approach or system exists (keep the newest).

C. Assess study quality and extract/synthesize data. In this step a more detailed reading of the papers takes
place to allow their classification based on the criteria defined in Section 4. During this process, we may also decide
against including some specific type of works as part of the works overview (cf. Section 5)5. The data extraction
and synthesis is also done in parallel for each paper by: (1) collecting information (e.g., classification criteria and
evaluation method) which allows further analysis, and (2) drafting a short descriptive summary. At the end we
selected and classified 35 works.

1https://dblp.org/
2The keyword quer is deliberately used to include both singular and plural forms in the following queries.
3https://www.jabref.org/
4We did not include works with very specific use cases (e.g., working over multiple data sources or dealing with spatial keywords) or works

performing keyword search over XML [13] or over text documents.
5Those papers include works dealing with e.g., distributed graphs, incomplete graphs or the usage of parallel processing. They will be just

shortly mentioned as possible other special aspects in Section 4.

https://dblp.org/
https://www.jabref.org/
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Fig. 2. Classification of approaches for keyword search over graph-shaped data

We also included a subset of works that were published before 2013. This includes popular first works dealing
with the keyword search problem over relational data [14–16], in addition, to one of the very first works operating
over KGs [7], and other three works [17–19] already read before performing the systematic literature review. These
publications were added due to their impact on later works.

4. Taxonomy overview

The literature review allowed us to derive four important aspects for categorizing related works as shown in Fig-
ure 2, namely the search space, answer type, answer ranking, and answer scoring.

Search space. Represents the nature of the underlying data searched to find relevant answers. We distinguish
between four types:

– Graph-based. Search for answers over the whole graph.
– Schema-based. Operate on a provided data schema to find answers.
– Summary-based. Operate on a summarized version of the data graph without relying on a predefined schema.
– Virtual document-based. Build documents from the textual content of the graph elements and retrieve relevant

ones using information retrieval techniques.

Answer type. Represents the nature of the final answer to be returned by the system. According to the analyzed
works, we can distinguish between the following answer types:

– Subgraph. The answer is a set of connected keyword nodes. A special case is the r-clique, where the answer
is a subgraph connecting keywords and the shortest distance between any pair of keyword nodes is equal to
or lower than r [20].

– Tree. The answer is a graph that has no cycles (tree) and that connects all keyword nodes [10]. A tree can be
either directed or undirected and further characterized using the following properties:

* Rooted directed: a rooted directed tree is a tree in which a specific node is distinguished and called root,
and there exist directed paths (pointing away from the root) from the root to each keyword node [14].

* Distinct rooted: a distinct rooted tree is a tree with a distinct root with respect to a collection of top-k
answers [16].

* Minimal: the minimality is defined here with respect to the keywords and states that all the leafs of the
tree are keyword nodes (In other words, there are no leaf nodes not containing keywords [21], or the
answer has no other subtree containing the keywords).



6 N. Feddoul et al. / A systematic literature review and classification of approaches for keyword search over graph-shaped data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

– Structured query. The answer is a query equivalent to a previously found intermediate answer (subgraph
or tree). When executed, the query returns relevant concrete results (e.g., triples or entities in case of RDF
graphs).

– Other types. There are also specific cases, where relevant answers are triples or entities of an RDF graph.
Those are directly retrieved without having an intermediate step where a subgraph/tree/query are formed. This
is usually the case when a graph’s textual content is indexed (e.g., triple index), and the answers are retrieved
using traditional ranking functions as used in document retrieval. Another specific answer type, introduced
by just a single work, is the Key-core [22], which represents a subgraph that is formed by connecting two
minimal rooted directed trees containing all keywords. Furthermore, for each tree the distance between each
keyword node and the root, and the sum of keyword-node distances are smaller than two specific thresholds.

Answer ranking. In the case where more than one relevant result are retrieved, answers are ranked based on
different criteria. The ranking also depends on the answer type. In general we distinguish between six ranking
categories, that are either individually applied or combined to rank answers:

– Compactness-based. Use the size (e.g., tree height or number of nodes) of the retrieved structure as quality
criterion.

– Importance-based. Use specific criteria (e.g., node in-degree) that may reflect the popularity and importance
of the answer elements.

– Textual-based. Use matches between query keywords and the textual content of the answer as a ranking factor
(e.g., TF/IDF [23]).

– Diversity-based. Include criteria that aim at penalizing results showing a certain aspect of redundancy.
– Semantics-based. Use semantic characteristics of KGs to rank answers (e.g., semantic distance).
– Profile-based. Use user profiles to provide answers closer to the user intent.

Answer scoring. The final score of a graph-shaped answer is usually calculated by aggregating node and edge
weights. Since the usual aim is to find answers with minimum weights (or cost) (e.g., Steiner tree [24]), the score
of an answer is in general inversely proportional to its weight. Thus, answers with higher scores (lower weights) are
considered more relevant and thus ranked higher. We distinguish between three answer scoring schemes that can be
used to calculate total weights for both nodes and edges (graph elements):

– Distinct scoring. The total weight is calculated as the sum of individual weights:
∑
x∈S

weight(x), where x is a

graph element and S is either the set of edges or the set of nodes. Here each included graph element is counted
a single time.

– Root-keyword scoring. The total weight is calculated as follows:∑
keyN∈NS

∑
x∈path(r,keyN)

weight(x), where keyN is a keyword node, NS is the set of answer’s nodes, r is the root,

x is a graph element, and path(r, keyN) is the set of the specific elements between the root and a specific
keyword node. In summary, the answer weight is the sum of the graph element weights belonging to the path
between the root6 and each keyword node. In this case, graph elements could be counted multiple times, e.g.,
in the case of having keyword nodes that are not tree leafs. This considers the distribution of each keyword
node with respect to the root.

– Keyword-pair scoring. The total weight of an answer is calculated as follows
|Q|∑
i=1

|Q|∑
j=i+1

weight(keyNi, keyN j),

given a query Q. In other words, it is the sum of the weights between each pair of keyword nodes. It is worth
mentioning, that in specific cases such as in [25], the weight used in the keyword-pair scoring, is replaced
with a value reflecting the connectivity between two nodes. Thus, it is interpreted as directly proportional to
the total score.

6In the case of retrieving subgraphs, a specific node that connects all the keywords (e.g., connecting element in [7]), is considered as equivalent
to the tree root.
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In the same final score two different scoring scheme can be combined, one for edges and the other for nodes. Fur-
thermore, some of the works have restricted the nodes incorporated while calculating the edge weight and consider
only specific ones (e.g., root and leafs containing keywords).

During the literature review, we also came across several specific groups of works that deal with the following as-
pects: parallel processing [26–30], probabilistic/uncertain RDF graphs [31], temporal graphs [32, 33], distributed
graphs [34], incomplete graphs [35], or search results diversification7 [36–39]. We considered them as special use
cases, and thus decided to only shortly report them here without further analysis and refrain from including them in
the overview tables (Section 6).

5. Classification of existing works

In the following, we give a detailed description of the collected relevant works. We structure the next subsections
based on the search space aspect, since it appeared to best cluster relevant works in distinct groups. The other
aspects will be clearly mentioned for each work on the short summary together with the method of evaluation used.
In addition, a summary overview including all aspects is given in Section 6. In each subsection, the works are sorted
in ascending chronological order.

5.1. Graph-based methods

[14] presented BANKS (Browsing ANd Keyword Searching), a system enabling keyword search over relational
databases.

Method. The database is modeled as a directed graph by considering the tuples as nodes and the foreign key
relations as edges. They define the query answer as a rooted directed tree. BANKS models each relation between
two nodes using two types of edges: forward (initial edges pointing from foreign key to primary key) and backward
(additional edges in the opposite direction). This ensures finding a rooted tree directed away from the root. BANKS
aims at finding an approximate set of top-k minimum Steiner trees (hard problem: NP-complete). It starts by map-
ping query terms to nodes using an index (text contained in graph elements), then the backward expanding search
algorithm concurrently starts a shortest path finding algorithm from each keyword node with the aim of finding
a node connecting all keywords (information node). To avoid waiting for all answer trees to be generated to sort
them, an approximate solution is proposed. Generated trees are incrementally added (after duplicate detection8) to
a small fixed-size heap (ordered by relevance score). When the latter is full and there are more candidate answers,
the highest ranked tree is returned and replaced in the heap. While the proposed heuristic does not necessary ensure
the retrieval of trees in decreasing order, the authors state that it works well even using small heaps.

Ranking. An importance-based ranking was used where each node is assigned a weight based on its importance
(node prestige). The node weight is calculated as the fraction between the number of incoming edges and the
maximum node weight giving a higher score to nodes with more incoming edges. For the edges, a weighting based
on the edges importance (proximity) is proposed. Each forward edge is given a weight of 1, whereas a backward
link (v, u) is given a weight that is directly proportional to the number of links to v coming from nodes having
the same type as u. The edge weight is normalized using the minimum edge weight. The total score of an answer
is then calculated by combining both node and edge scores by addition (distinct scoring for nodes and edges) or
multiplication using a factor λ to control the effect of edge and node scores (λ = 0.2 performed best). The edge
score gives higher relevance to smaller trees. Only root and keyword nodes are considered while calculating the
total score of the nodes and a node containing multiple search terms is counted multiple times.

7This approaches aim to diversity answers at the same time when searching the graphs and thus propose algorithms that are directly geared
towards producing diverse results. This is different from the diversity-based ranking, since the latter aims at reducing redundancy of already
generated answers using an algorithm that is not necessarily tuned to take this aspect into consideration.

8Before adding a result to the heap a duplicate trees detection (e.g., trees with same undirected version) is conducted and the tree with the
highest relevance is kept. If the duplicate of the new result have already been output it is discarded even if its relevance is better.
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Evaluation. Evaluation of performance, effectiveness together with parameters effect were conducted using a part
of the DBLP dataset (paper titles, their authors and citations) and a dataset about the master/PhD dissertations in the
IIT Bombay. They used an internally created gold standard with 7 queries and their corresponding relevant answers.
The rank difference between the ground truth answers and the actual answers was used as an evaluation metric.

[15] state that the backward search in BANKS may not efficiently perform in the cases where: (1) a query keyword
has many matching nodes in the graph, or (2) some of the visited nodes have a large in-degree, since it prevents
from exploring other directions until all incoming edges are visited.

Method. To overcome the previous shortcoming, they propose a bidirectional search paradigm to retrieve rooted
directed trees which does not traverse the graph only backwards but also forwards starting from potential answer
roots in the direction of keyword nodes. For this purpose, they propose a node prioritization heuristic (spreading acti-
vation) that regulates the traversal. Keyword nodes are assigned an initial score given by an,i =

nodePrestige(u)
|Ki| ,∀n ∈ Ki

where Ki is the set of nodes matching a keyword ki. This prioritizes keyword nodes having a higher prestige and
penalizes the ones matching a large number of nodes. Each node propagates an attenuated activation to its neighbors
µ = 0.5 and keeps the remaining 1− µ. In case a node receives activation from different edges starting from a key-
word ki, the maximum activation a(u,i) is considered. The overall activation of a node is calculated as the sum of the
activation scores originating from each keyword, to prioritize nodes that are close to a larger number of keywords.

Ranking. Since the focus was on the search algorithm, and not on the ranking of answers, the same importance-
based scoring as proposed by BANKS was used with the multiplication-based relevance score. The only difference
is the used final answer scoring for edges, which is root-keyword based in contrast to BANKS.

Evaluation. The evaluation focuses on the efficiency aspect and compares the bidirectional search with BANKS
and the Sparse algorithm [40] using the following metrics and 5 manually created queries: number of the nodes
explored and the nodes touched as well as the time taken. Results show that the bidirectional search is faster than
both baseline algorithms. A very small effectiveness analysis (precision and recall (cf. Subsection 6.1)) was con-
ducted using the same queries and their corresponding results generated using an SQL query. Both backward and
bidirectional performed equally with respect to the effectiveness.

Both backward and bidirectional search algorithms performance relies more or less on the graph structure and the
position of the different keywords in the graph. This situation makes the performance unpredictable. To deal with
that, [16] proposes BLINKS (Bi-Level INdexing for Keyword Search) and aims at exploiting indexes to precompute
and store possible shortest paths.

Method. The index is filled using backward search and consists of two kinds of lists : (1) a keyword-node list
that stores for each keyword the list of nodes that can reach it ordered by distance, and (2) a node-keyword map
which stores the shortest distance between nodes and keywords, to optimize forward expansions. BLINKS does not
aim at indexing all possible paths (single-level index) since it will result in very large indexes for large scale graphs.
However, it proposes a Bi-Level index by dividing the whole graph into blocks (subgraphs): the top-level block index
maps keyword/nodes to blocks, and the intra-block index stores detailed information within each block (e.g., intra-
block keyword-node lists). They also enhance the backward search strategy using equi-distance and cost-balanced
expansions. BLINKS answers are distinct rooted directed trees to avoid answers that deliver only few additional
information compared to the rest and technically allow more effective indexing.

Ranking. Again, here the focus was not on the ranking, but on the query processing and indexing strategy. They
propose a scoring function of the answer that combines three aspects (compactness-based , importance-based, and
textual-based): sum of the shortest path distances from the root for each keyword node, sum of the matching score
for each keyword with its corresponding node (e.g., TF/IDF), and the score of the answer root (e.g., PageRank [41]).
However, for convenience they only consider the sum of the shortest path distances from the root for each keyword
node. They use the same aggregation of edge weights (root-keyword scoring).

Evaluation. Only efficiency experiments (comparison with the bidirectional algorithm [15]) were conducted in-
cluding execution time with different parameters (e.g., graph partitioning method) and index performance using 10
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queries over the DBLP XML9 and IMDb10 datasets. Results reveal that BLINKS is overall faster than the baseline.

[17] proposes different algorithms to efficiently retrieve all answers.
Method. They use threaded enumerators, that enable one enumeration algorithm to directly use elements pro-

duced by another one (or itself) instead of waiting until the latter finishes. The desired answers are minimal trees,
this means that there exist no other subtree in the answer that connects the respective keyword nodes. They consider
three types of answers: directed, undirected, and strong (undirected with all keywords as leaves). They focus on the
efficiency aspect and aim at proposing answer enumeration algorithms that solve the problem with polynomial delay
between two output answers except for the first answer were the delay is exponential. For that, they investigate al-
gorithms for each answer type, with the following different purposes with respect to how the answers are presented:
sorted, heuristically sorted, and unsorted. They consider the sorted variant as the most wanted one and propose an
algorithm with polynomial delay given an acyclic data graph and a directed answer. They also propose algorithms
for the unsorted scenario for all types of answers with polynomial delay. Furthermore, they give a proposition about
how can the latter be enhanced to output the answers in a heuristic order. Answer ranking was not addressed and
there is no practical evaluation of the proposed approaches, instead theoretical proofs are elaborated.

[19] combines the methods proposed by [14, 15] by using shortest-path iterators to find the first answer, and
includes the work done in [17] to generate the rest of not redundant answers using a more practical and faster
approach.

Method. [17] retrieves answers (minimal rooted directed trees) with a polynomial delay (ranking them by the
order of increasing weights) and is based on heuristics for generating Steiner trees. To simplify the problem, [19]
proposes the usage of two rankings, a simple one while exploring the graph, and another one after generating
candidate answers. A condition for this to work is that the primary ranking should be highly correlated with the
final one. They simplify the problem further to increase efficiency and restrict to enumeration of answers in a 2-
approximate order (“if one answer precedes another, then the first is worse than the second by at most a factor of
2”).

Ranking. In general, they combine compactness-based, importance-based, and diversity-based rankings. The
primary ranking weight used during the exploration is the height of a subtree (“maximum length of any path from
the root to a leaf”). The final ranking of generated answers is calculated as a combination of: an absolute relevance
score based on the in-degree/out-degree of the nodes belonging to an edge, and the redundancy penalty which aims
at producing diversified answers by “penalizing answers based on their degree of similarity to the ones that have
already been given a final rank”. The total score of an answer is inversely proportional to its total weight using a
distinct scoring for nodes and edges.

Evaluation. The efficiency of the algorithm was evaluated with increasing number of query keywords. The corre-
lation between the primary and final ranking together with the effect of the redundancy penalty on ranking quality
are also evaluated. No information was provided on the used evaluation dataset/queries.

[42] aims at retrieving another type of results called r-clique which is a subset of connected vertices that should
contain all keywords, and the vertices pairwise shortest distance should be at most r.

Method. The first step is the weights’ assignment to nodes and edges in the graph. After that, the search space is
narrowed down by selecting only the top-k nodes that match the keywords using the node weights. Then for each
pair of selected nodes the shortest path between them is calculated, and the top-k r-cliques are generated.

Ranking. The node weights are calculated as a function of the keyword frequency and PageRank, and the edge
weights are calculated as function of the degree of their respective nodes. The total score of an answer is a linear
combination of the sum of the node weights and edge weights (distinct scoring), multiplied by other factors (answer
size, keywords count in the query). The ranking is a combination between compactness-based, textual-based and
importance-based factors.

9https://dblp.uni-trier.de/xml/
10https://www.imdb.com/

https://dblp.uni-trier.de/xml/
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Evaluation. The evaluation was performed using 5 randomly generated queries from each of the DBLP and IMDb
datasets. Relevance judgments were carried out by 5 users that were asked to score the nodes in the results based
on the relevance to the query. Results show that the proposed approach is faster and more effective compared to the
Dup-Free algorithm [43].

[44] proposes a system that exploits indexing and semantic similarity scores to find the triples relevant to a specific
keyword (not query).

Method. The first step is the offline preparation of five indexes: predicates, subject/object, incoming/outgoing
vertices, literals, and similarity scores between two literals. The approach starts by finding the literal vertex corre-
sponding to a certain keyword, filters candidate nodes without a common predicate with the input keyword node,
traverses the graph in a depth-first manner and considers only nodes (literals) with a semantic score greater than a
specific threshold. The list of relevant triples is presented to the user.

Ranking. The ranking of target nodes (or triples) is performed based on the similarity score which is calculated
as a combination of a distance score (number of subjects relating source and target), and a semantic similarity
depending on the most specific class subsuming the classes of the pair of nodes [45], calculated over WordNet [46].
The ranking is a combination between compactness-based, and semantics-based factors.

Evaluation. Only an efficiency evaluation was performed using 10 manually created keywords over three subsets
of DBpedia [47]. The approach was compared with the RDF management system Jena [48] by retrieving the first 2
results (using SPARQL queries for Jena). Results show that the proposed system is faster.

[49] aims to find a practical algorithm to solve the hard problem of retrieving top-k r-cliques using an approxi-
mation with polynomial delay.

Method. First, needed indexes are prepared which includes keyword-node index and a shortest path index between
each pair of nodes within a certain distance. After finding keyword nodes in the graph, top-k r-cliques are calculated
by adapting Lawler’s procedure [50]. First a polynomial algorithm is called to retrieve the best one answer over
the whole search space. Then, the latter is divided into subspaces according to the best answer, and the locally best
answers in each subspace are found using the same polynomial algorithm. The subspace from which the best answer
originates is further divided to find locally best answers. This process continues until all top-k answers are retrieved.
Finally, a Steiner tree is produced over each r-clique.

Ranking. The edge weight used during the evaluation is based on the in-degree of the two edge nodes. The final
answer score is calculated using a keyword-pair scoring considering the edge weight as pairwise node weight.

Evaluation. The efficiency evaluation is done using 15 queries over 3 datasets (DBLP XML, IMDb (MovieLens11)
and Mondial12) where two approach versions (original and another one starting from nodes containing rarest key-
words) were compared with BANKS, Dynamic [51], and an algorithm that produces communities as answers [52].
In addition to the runtime also answer compactness was reported. Both proposed versions are faster than the other
systems. The effectiveness was evaluated by first calculating the percentage of produced ground truth (generated
using an naive algorithm that produces all r-cliques) answers using their approximate approach. In addition, a small
user study was conducted with 4 manually created user queries over DBLP and 8 users were asked to rate the an-
swers. The proposed system, BANKS, and Dynamic achieve better precision than the community algorithm over all
queries using the P@k with k is equal to 10 and 2. (cf. Subsection 6.1).

[53] proposes an index-based approach that decreases memory consumption while performing keyword search
over graphs.

Method. First the RDF graph is transformed to an attributed graph that consists of interlinked subject nodes with
text information (predicate, class, and predicate linking to another entity). The approach starts with an offline phase
where the index is constructed. The index stores for each keyword in the data graph the corresponding list of pair of
nodes (node1 containing the keyword, node2 reachable from node1), and the shortest distance between the pair of

11https://grouplens.org/datasets/movielens/
12https://www.dbis.informatik.uni-goettingen.de/Mondial/

https://grouplens.org/datasets/movielens/
https://www.dbis.informatik.uni-goettingen.de/Mondial/
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nodes over 2 hops. The index is leveraged in an online phase to extract the top-k minimal trees using a depth-first
search algorithm and then transform them to a corresponding SPARQL query.

Ranking. The ranking is compactness-based using the tree diameter, which is calculated as the max distance
among the shortest distances of all pair of nodes.

Evaluation. The evaluation mainly concentrated on the efficiency aspect comparing the indexing time, memory
usage, and the runtime with two other index-based approaches (Rclique [54], Gdensity [55]). Results show that the
proposed system is faster and requires less memory usage over the two datasets DBLP XML and DBLP213. The
effectiveness was manually checked and compared with Rclique. The keyword queries were manually created, by
first randomly selecting 20 subgraphs with diameter 4 over DBpedia, constructing corresponding SPARQL queries,
and formulating keyword queries by selecting one or two keywords from each node. Afterwards, they manually
check if any of the top-k SPARQL queries generated by the systems matches the ground truth.

[56] proposes an index-based approach for answering keyword queries over graphs that can be modified to also
accept answers that have more than one node corresponding to a specific keyword.

Method. Similar to [53], the approach starts by constructing an inverted index that stores for each keyword in the
graph corresponding nodes (containing the keyword or connected to other nodes containing the keyword) together
with their relevance score to the keyword. This index is used to find top-k distinct rooted trees using the Threshold
algorithm [57, 58].

Ranking. Each node is assigned a textual-based and compactness-based score that is calculated as the multipli-
cation between two elements: a matching score calculated based on the number of occurrences of the keyword in
the node, and a distance score calculated as the shortest path between the considered node and the one containing
the keyword. The total relevance score of an answer tree is the sum of the relevance scores between the root and the
keyword nodes (root-keyword scoring).

Evaluation. The system was compared (shortest distance set to 4) with BLINKS using 30 queries manually con-
structed over three datasets (Mondial, IMDb, and DBLP XML). The answer trees of the different approaches were
rated by five adjudicators, and the P@10 and P@20 were calculated. The proposed approach outperforms BLINKS
for 73% of the queries, but the latter is still faster.

[59] proposes a method that transforms the RDF graph to a bipartite graph.
Method. The method aims at optimizing the efficiency of the keyword search task by taking advantage from the

nature of the adjacency matrix of a bipartite graph. First the RDF graph is transformed to a bipartite graph that
consists of two sets represented as nodes with labels: one set with entities/classes and another one with properties.
First, the keyword query is expanded using synonyms from WordNet. The result is then matched to graph elements
and a connecting subgraph is extracted.

Ranking. The list of possible subgraphs is ranked using a textual-based score based on the number of keywords
contained in a specific subgraph.

Evaluation The evaluation is performed by comparing with 3 other systems (KREAG [60], BLINKS and EASE
[61]) using DBLP with 10 manually created queries. Both the execution time and effectiveness are reported using
P@5, Average Precision at 5 (AP@5), and the Mean Reciprocal Rank (MRR) as metrics (cf. Subsection 6.1). Re-
sults show that the proposed approach is faster and more accurate.

[62] proposes a SPARQL query generation method specific to DBpedia.
Method. The first step is query preprocessing using WordNet followed by the keyword matching of query terms

to DBpedia concepts/properties/instances. The next step is a query expansion with semantically related concepts
using some properties (e.g., rdfs:seeAlso or owl:sameAs). Afterwards, ambiguous terms are filtered by calculating
the pairwise relatedness between keywords. The latter is based on the intersection between the set of matching terms
(DBpedia IRIs text in this case) for each keyword. Then, all possible combinations are generated from the matching

13https://snap.stanford.edu/data/com-DBLP.html

https://snap.stanford.edu/data/com-DBLP.html
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elements, candidate subgraphs for each combination are constructed using predefined graph patterns, ranked, and
the top-1 result is translated to a SPARQL query.

Ranking. The subgraphs are ranked based on a compactness-based measure which is calculated as the sum of the
shortest paths between each pair of matching elements (keyword-pair scoring).

Evaluation. The effectiveness of the system is evaluated using 50 queries, and the following metrics: The fuzzy
precision which is calculated as the sum of the average correctness rate for each query divided by the queries return-
ing results. The correctness rate of an answer is calculated as the set of correct terms that match the user intention
(subject, predicate, object) divided by the set of all terms. The other used metrics are recall (queries returning results
divided by the total number of queries) and the F1-measure (cf. Subsection 6.1) as a combination between the fuzzy
precision and recall. No information was provided about the origin of the queries, the used ground truth, and the
dataset. The reached results are as follows: 0.52 (F1), 0.43 (recall) and 0.5 (fuzzy precision).

[63] proposes an efficient and accurate keyword search system over RDF data by leveraging bipartite graphs
together with translation-based graph embeddings.

Method. The method starts with a segmentation and annotation phase where the user query is first tokenized,
annotated using types (entity, class, relation), and then matched to a specific graph element. The result is a ranked
list of possible query annotations. The second step is the query graph assembly where the detected graph elements
need to be linked with each other. For that, they model the found possible matches as a bipartite graph where each
pair of entities/classes and each set of possible matching relations is represented as a node, and there is a crossing
weighted edge between the set of entities/classes and the set of edges. The algorithm tries then to find the optimal
connection (subset of crossing edges) called assembly query graph with the minimum cost and transforms is to a
SPARQL query. The constraint here, is that the query should ideally contain classes, entities and as many needed
relations, which is not always present given the nature of keyword queries and in this case the graph elements cannot
be connected. The authors point to this issue and shortly state that in this case the missing relation should be first
determined using a suitable algorithm for minimum spanning tree finding.

Ranking. Since the goal is to find just one best answer, the algorithm does not output a list of top-k possible
answers. However, to know the optimal answer a certain function should be used to score the possible subgraphs.
They use a semantics-based scoring where edge weights are calculated using TransE 14 [64], a translation-based
graph embedding model. The total cost of a candidate subgraph is the sum of its edge costs.

Evaluation. The system is compared in terms of efficiency and effectiveness with two approaches: DPBF [51],
a graph-based approach, and SUMG [7] a summary graph based approach. Two datasets were used QALD-6 (6th
Open Challenge on Question Answering over Linked Data) [65] with 100 queries, and Free917 [66] with 80 selected
queries converted to keywords. They also compared their approach using graph embeddings with two traditional link
prediction methods. The system performed better than both other approaches and had the third place in QALD-6
competing with question answering systems. The most time consuming part was the keyword-graph element map-
ping, but on average the system was faster than the two baselines.

[67] focuses on the problem where keywords cannot be mapped to the underlying graph elements because of
missing information (e.g., relation).

Method. The main idea is to leverage external knowledge defined in form of patterns which will add new missing
triples. The pattern defines an equivalence between a property and a property path (e.g., two authors are collaborators
if they have wrote the same paper). Those patterns are manually defined and are either domain specific or generic
by using standard properties (e.g., owl:sameAs). The approach starts with a fragment extraction step that extracts
matching graph elements, next the set of elements is expanded using a pattern store. Possible fragment combinations
are constructed by applying a cartesian product. For each possible combination the smallest minimal subgraph is
retrieved.

Ranking. The used ranking is both textual-based using a term-frequency based matching score, and compactness-
based using the size of the subgraph (sum of nodes and edges). Patterns are considered when computing the size of
a subgraph by reducing the size by 1 if the subgraphs contains a path from a pattern.

14https://github.com/thunlp/Fast-TransX

https://github.com/thunlp/Fast-TransX
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Evaluation. Two datasets were used: AIFB15 and a dataset about conferences. The actual approach using patterns
was compared with two other configurations without external knowledge. The effectiveness is evaluated with P@k
and the normalized Discounted Cumulative Gain at k (NDCG@k) with k is equal to 5, 10, and 20 (cf. Subsec-
tion 6.1) using 10 randomly generated queries and the ratings of 4 users. The usage of patterns outperforms the
other configurations. The effect of the query size on the execution time is also evaluated.

[68] has the same motivation as [67] and focuses on enhancing the keyword to graph element matching by using
WordNet as external knowledge base.

Method. The approach starts with keyword matching where first graph elements with exact matching labels are
retrieved. If this step fails, related terms are retrieved from WordNet using different relations (e.g., synonyms). Since
for each keyword a list of matching elements is retrieved, possible combinations are derived using the cartesian prod-
uct. For each possible combination the smallest minimal subgraph is retrieved using the Dijkstra Algorithm [69].

Ranking. The result subgraphs are ranked based on a function that depends on the number of matching elements
and the number of connecting nodes. This function favors small answers with more exact matching nodes (textual-
based and compactness-based).

Evaluation the evaluation was done using 10 queries from each of AIFB and a subset of DBpedia about movies.
They show that the approach without external knowledge usage is faster and evaluate effectiveness using a subset
of 10 queries and three users. Results reveal that P@10 and P@5 are always above 0.92 for both datasets.

[21] addresses the efficiency issue by ignoring some redundant intermediate results during graph expansion.
Method. They consider directed graphs and define a query answer as a minimal rooted undirected tree with a

fixed size (number of nodes). The rationale behind their algorithm (Canonical Form-based Search) is to consider
only intermediate result trees that have a canonical form [70] while searching the graph. Answer ranking was not
addressed.

Evaluation. Experiments are run to evaluate the efficiency of the algorithm using the TPC-H benchmark16 (deci-
sion support database) and the IMDb17 database and 10 randomly generated queries. They compared with other two
systems that generate all answers without redundancy checking [71, 72]. Results reveal that the proposed approach
is faster than the baseline for retrieving trees of size six. Furthermore, their algorithm always produces less number
of intermediate results compared to the baselines.

[25] is motivated by the fact that shortest path-based methods will assign the same score to connecting subgraphs
having the same length.

Method. They propose a function for assigning scores to nodes based on a random walk with restart. They define
attributed graphs as underlying data and aim at finding a top-1 or top-k subgraphs that cover all keywords. Since
this is a rather a hard problem, an approximation is proposed. The algorithm starts from the nodes with the so-called
rarest keyword (appearing in the fewest nodes in the whole graph) and constructs its surrounding subgraph. This is
a greedy approach that reduces the search space from the beginning and thus increases performance. Afterwards, a
random walk with restart is run which will assign a score to each neighbor node and the best node is selected until
finding the best answer. The entire process is repeated to retrieve the top-k answers. Since the random walks are
the bottleneck of the algorithm they propose to approximate it using the Monte Carlo method [73] which does not
require knowing the whole graph at each iteration. They also design a parallel version of the same algorithm since
each walk is independent from the other.

Ranking. The used ranking is importance-based and assigns scores to nodes relative to other by taking the whole
graph into consideration. In contrast to PageRank, the proposed approach is query-dependent. The total answer
score is calculated using the keyword-pair scoring considering node weights.

15http://km.aifb.uni-karlsruhe.de/ws/eon2006/ontoeval.zip
16https://www.tpc.org/tpch/
17https://relational.fit.cvut.cz/dataset/IMDb

http://km.aifb.uni-karlsruhe.de/ws/eon2006/ontoeval.zip 
https://www.tpc.org/tpch/
https://relational.fit.cvut.cz/dataset/IMDb
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Evaluation. They evaluate their method using DBLP XML and IntAct PPI18 (molecular interaction data) datasets
and compare with six systems (shortest-path-based, embedding-based, PageRank based). They evaluated the qual-
ity of the answers using different dataset-dependent metrics and the runtime of their distributed version. For IntAct
PPI, they calculate the expression level of each protein, where “a cost value is assigned to each protein; the lower
the cost, the higher the expression level” using 100 randomly generated queries with 2 to 6 genes. For the DBLP
dataset, the h-index is used as metric of quality with 100 randomly generated skill sets (2 to 6 skills). For the dis-
covered subgraph the average h-index of the members is calculated. Their approach results in answers with higher
expression level and higher average h-index compared to the others.

[20] aims at retrieving minimal r-cliques called minimal covered r-clique. The motivation behind that is to over-
come the limitations of finding Steiner trees, distinct root trees (losing results having the same root, considering the
distance to the root not between each two keyword nodes), r-cliques and r-radius Steiner graphs [49, 61, 74] (not
minimal) based on previous definitions.

Method. They use adapted versions (BKS and its improvement called BKSR) of the Bron-Kerbosch [75] and
Tomita [76] algorithms that originally aimed at finding maximal cliques (with the largest possible number of ver-
tices). They also improve the algorithms to return non-duplicate minimal covered r-cliques. Furthermore, they pro-
pose algorithm versions (BKSM, BKSRM) that are dedicated to also work on parallel configurations. This is possi-
ble since the answers are constructed independently from each other. They also propose an approximate version to
generate top-k results with a polynomial delay using an adapted version of [49].

Ranking. They use an importance-based edge weight that is a function of the in-degree of its nodes as defined
by [15]. They also test using an uniform compactness-based scoring, by assigning one to all edges. The final answer
score is calculated using a keyword-pair scoring considering the edge weight as pairwise node weight.

Evaluation. The different approximate versions of the proposed approach are evaluated against the r-clique and r-
clique-rare algorithms [49] over IMDb (MovieLens) and DBLP XML data using the same 5 queries for each dataset.
Results show that BKS and BKSR are faster that r-clique and close to r-clique-rare but still does not outperform it
for both datasets. However, the parallel setting outperforms all the other algorithms. The other evaluated aspect is
the compactness using the average percentage of cliques with the maximum r. In contrast to the proposed approach,
for r-clique and r-clique-rare not all retrieved results have a maximum distance r. To evaluate the quality of the
retrieved results, the ground-truth weight is built by selecting the top-50 minimum weight answers generated by the
non-approximate version of BKSR and calculating their average weight. Results reveal that BKS and BKSR retrieve
results with average uniform weights equal to the ground truth average, in contrast to r-clique and r-clique-rare.

[8] tackles the case where subtrees connecting all the keywords may not exist or they exist, but they are far away
from each other resulting in a non-compact answer.

Method. A more relaxed method is proposed that still ensures the compactness of the answers by not requiring
that all keywords should be connected. They formulate an optimization problem that aims at finding an optimal
answer with a trade-off between compactness (smallest answer diameter) and the degree of relaxation (covering
more keywords). For traversing the graph, they use a Best-First strategy (CORE), where the best search direction
that may yield a better answer (minimal relaxed) compared to the current one is followed. The exploration terminates
if the remaining possible answers cannot be better than the current best answer. The algorithm requires to determine
a specific desired answer diameter. Answer ranking was not addressed.

Evaluation. The evaluation was conducted over the RDF versions of Mondial (40 queries from Coffman’s bench-
mark [77]), LinkedMDB19 (200 random natural language questions transformed to keywords), and DBpedia (438
queries from DBpedia-Entity v2 [78]). The baselines used are: a previous algorithm version of the same authors
(CertQR+), and another algorithm for calculating Group Steiner Trees (GST) [79] with edge weights assigned with
one. By calculating the compactness of GST answers, they show that it fails finding answers in lot of cases and also
finds non-compact answers. In a second step, they show that their relaxed method finds complete answers in case

18https://www.ebi.ac.uk/intact/home
19https://www.cs.toronto.edu/~oktie/linkedmdb/, linkedmdb-latest-dump.zip

https://www.ebi.ac.uk/intact/home
https://www.cs.toronto.edu/~oktie/linkedmdb/
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of a number of keywords lower that 10 and 100. The runtime of their approach outperforms CertQR+. Since CORE
only computes the top-1 optimal answer, P@1 was used for calculating effectiveness over the DBpedia benchmark
(“P@1 = 1 if a computed answer contained a gold-standard answer entity, otherwise P@1 = 0”) and compare CORE
with CertQR+ and the GST algorithm. Results show that both CORE and CertQR+ have comparable results, and
the GST-based approach slightly outperforms both approach with respect to the mean P@1.

[80] proposes a different method that does not rely on traversing the graph.
Method. The very first preprocessing step is to calculate offline the so called KMV-synopses over the whole graph,

where “A KMV-synopsis of a set defines a random sample of size k”. They are calculated, because they can be used
later to estimate the Jaccard similarity of sets. First, keywords are matched to literals’ content of the RDF graph. If
for one keyword several matches are possible, the one with highest score consisting of the combination of literal and
node matching (InfoRank [81]) scores is selected. Then, a so-called initial query forest (collection of deconnected
trees) is built consisting of keywords and the list of domains and ranges of the properties represented as nodes
related to the keyword literals. The goal is to connect it to form a query tree (Steiner tree) by applying three types
of operations: node fusion, edge addition, and tree expansion, before translating it to a SPARQL query. The node
fusion step, tries to combine the forest nodes that link to basically similar set of entities. The similarity of those sets
is calculated using the Jaccard similarity. If the latter is high, the nodes are combined, which indicates that in the
next step the goal is to find entities that have both merged properties that match the initial corresponding keywords.
Next, edge addition is applied by identifying object properties that could relate two entities using an estimated set
similarity that is computed using the KMV-synopses. The last step is the tree expansion that is a relaxed version of
the edge addition, that requires to have either domain or range, not necessary both, to be similar to the other sets.
The two last steps are repeated until more connected trees are formed. A cleaning step removes unnecessary edges
so that only leaves corresponding to matching nodes are left. Only one tree having the larger score is selected and
translated into a structured query (SPARQL).

Ranking. The used ranking is both textual-based using keyword matching scores and importance-based using
InfoRank.

Evaluation.The evaluation compares the approach with: (1) a schema-based RDF keyword search tool [82] (previ-
ous work of some of the same authors), and (2) a virtual document-based approach [83]. For (1), an adapted version
of Coffman’s benchmark using Mondial and IMDb databases with a total queries of 64 is used. The ground-truth an-
swers were generated using a tool for automatic benchmark construction for keyword search [84]. The effectiveness
is measured using the following metrics: Mean Average Precision (MAP) (cf. Subsection 6.1), Top-1, and the MRR.
The reached scores are as follows for Mondial and IMDb respectively: MAP of 0.96 and 0.76, Top-1 of 0.96 and
0.76, and an MRR of 0.79 and 0.72, and thus also outperforms the baseline. The average execution time was 11.4 s
and 0.60 s for IMDb and Mondial, with no big differences compared to the baseline. For (2), the same benchmark
was used as in the virtual document-based baseline, including the following datasets: LUBM20, BSBM21, IMDb22

and DBpedia23 and also using the same metrics. The proposed approach outperforms the baseline using all metrics.

[85] aims at improving the performance of algorithms that calculate semantically cohesive minimal trees. The
latter should consist of entities with minimal pairwise semantic distance.

Method. They state that using the semantic distance as an additional factor increases the difficulty of the Steiner
tree problem and thus propose two approximation algorithms: quality-oriented and efficiency-oriented. The answer
is defined as a minimal tree following the same definitions by some of the previous works and the aim is to find
the single best answer. Each vertex is assigned with a weight and each pair of vertices is assigned with a semantic
distance function. They approximate the problem of computing an optimum answer by first computing a set of
relevant paths that lead to each keyword from a specific root node. After that, the candidate paths are transformed
into an answer by merging the paths and removing unnecessary edges and vertices to make it a minimal tree.

20http://swat.cse.lehigh.edu/projects/lubm/
21http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
22https://datasets.imdbws.com/
23http://downloads.dbpedia.org/wiki-archive/data-set-37.html

http://swat.cse.lehigh.edu/projects/lubm/
http://wbsg.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
https://datasets.imdbws.com/
http://downloads.dbpedia.org/wiki-archive/data-set-37.html
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This tree is not necessary optimal but they show that it has a guaranteed approximation ratio. The quality-oriented
algorithm finds a minimum cost path for each root, whereas the efficiency-oriented algorithm relaxes this definition
by computing the path only for roots that are keywords.

Ranking. The total cost of an answer is calculated using a weighted additive function that aggregates the total
PageRank-based vertices weights (importance-based) with the total pairwise semantic distance (semantics-based)
of vertices following a distinct scoring. A concrete implementation of the semantic distance is out of scope, but it
should be independent from the graph structure.

Evaluation. An evaluation was conducted using three synthetic knowledge graphs generated by the LUBM bench-
mark and three DBpedia subgraphs including the whole graph. For each LUBM datasets, 250 queries were generated
by varying two parameters: the number of keywords and the average number of vertices matched with each key-
word. For DBpedia, queries from DBpedia-Entity v2 where filtered by removing keywords without matches. For
the evaluation, existing metrics were reused: (1) a PageRank based vertex scoring, and (2) a semantic distance func-
tion calculated as the Jaccard distance between the sets of types of entities [86]. The latter requires entities having
multiple types, which is not available for LUBM. For that the angular distance between entity embedding vectors
using RDF2Vec [87] is calculated (structural semantics). The metrics used are: the runtime compared to BANKS-II
[15] and DPBF [51], the ratio between the cost of the approximate and optimum answers (only on small graphs,
using an exact version from their algorithm) and the cohesiveness ratio between a baseline answer (BANKS-II and
DPBF) and their answer, where cohesiveness is defined as the sum of the pairwise semantic distance. The runtime
of the efficiency-oriented algorithm was comparable to BANKS-II. The quality-oriented algorithm showed poor
performance by reaching timeouts (200 s) most of the time. The effectiveness was evaluated by conducting a user
study using 14-20 queries from the DBpedia-Entity v2 dataset with 16 participants (281 queries). Each participant
was presented with the query and corresponding answers retrieved by different methods (DPBF, efficiency-oriented
approach) and was asked to rate each answer on a scale (1-4).

[22] does not focus on finding top-k answers but aims at presenting the user with a view that better shows how
the answers are correlated and how they may overlap. Furthermore, they also aim at extending the way a user can
interact with the retrieved answers by allowing answer manipulation, e.g., intersection or union.

Method. To achieve the previous purpose, they defined a specific answer type. They represent a so called key-core
which is a subgraph containing highly related answers. Answer ranking was not addressed.

Evaluation. The evaluation is performed using two datasets, DBpedia and DBLP, using 500 randomly selected
queries from the datasets’ vocabularies. The effectiveness is manually evaluated on 5 example queries. For testing
efficiency they compare their approach based on graph traversal against a defined naive baseline (retrieve all key-
components and then compute the key-core by union of all key-components) while also varying the graph size, the
number of keywords, and other used thresholds like the distance maximal to the keywords.

5.2. Schema-based methods

[88] proposes a bidirectional approach for keyword search with defined answer types over RDF graphs with an
available ontology.

Method. The proposed system constructs two indexes: the keyword-element index, and an extended version of
the single level index by BLINKS that stores for each node the distance of the other node and the direction. The
algorithm takes as input a set of nodes corresponding to keywords and a desired answer type (root of interest). The
first step is the node merging where it is checked whether each pair of keyword nodes can be directly connected,
have same class, or one is a subclass of the other. In the latter cases, the nodes are marked as non-active. The
remaining active nodes are bidirectionally expanded to connecting nodes in a round-robin manner until finding a
connection with a root. The results are ranked and the best rooted tree is transformed to a SPARQL query.

Ranking. The results are ranked by combining compactness-based, textual-based, and importance-based factors
based on a previous version of the same authors [89]. The overall tree score is given by the multiplication of three
scores each is function of: shortest path between the root and keywords, keyword frequency, and the predicate
frequency.
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Evaluation. The effectiveness is evaluated with 20 manually created queries and five ontologies. The result of the
current approach and its previous version (not bidirectional) are compared with a manually created SPARQL query
using the MRR as metric. Results show that the new approach outperforms the old one.

[82] proposes an industry tool to simplify access to specific data from an industry use case.
Method. The overall aim is to construct one SPARQL query to answer a keyword query. The algorithm operated

on the data schema where keywords are matched to literals after removing stop words. The matched structure is
called nucleus and consists of a class, a list of properties, and property values. Each nucleus is assigned with a
matching score that is used to construct a minimal tree that covers all keywords. While a prototypical user interface
was proposed, answer ranking was not addressed.

Evaluation. The evaluation was conducted over an industrial database (hydrocarbon exploration) and using Coff-
man’s benchmark (Mondial and IMDb (IMDb-MO)24). The relational databases where first converted to triples,
then retrieved results using the proposed approach were compared with the ground truth. Results were only ana-
lyzed without using any evaluation metric, where 64% (Mondial), 75% (IMDb) of the 50 queries were correctly
answered. Using 6 queries for the industrial database, they show that the execution time is reasonable.

[81] focuses on improving the ranking of the results by proposing a new definition of node importance in RDF
graphs.

Method. The method aims at generating one structured query (SPARQL) to produce a list of ranked entities. First,
the system finds nodes (instances and classes) whose labels match the keywords. Next, for each query keyword the
node with higher accum score is selected (number of keywords that appear in the label). In the case of equal accum
scores the disambiguation is performed using another specific node scoring function (info_score). The next step is
the linking of the classes corresponding to the selected nodes over the graph schema. This consists of finding the
minimal Steiner tree, but no details are given about how this tree can be found. They only claim that this step will
give the information that e.g., two selected nodes are connected through one specific property. This connected tree
is transformed to a SPARQL query and the results are ranked based on the sum of the info_score of the tree nodes.

Ranking. They use an importance-based ranking of entities by proposing a new metric InfoRank for scoring
instances, classes, and object properties that is based on the informativeness of an instance which is defined as the
number of its data properties (literals). Each object property is assigned a score that is the maximum of the sum of
the InfoRank of the subject and object (over all triples involving the property), divided by the sum of the InfoRank
of all other existing properties. Next, the PageRank of each instance is calculated using the object property score as
edge weight. The final score assigned to an instance (info_score) is the PageRank after x iterations multiplied by the
InfoRank of the instance. No ranking of answer trees is proposed.

Evaluation. The proposed ranking score was evaluated by comparing it with the PageRank of some classes, in-
stances, and properties over two datasets25: IMDb (IMDb-MO) and MusicBrainz26 (enriched with DBpedia). This
has shown that the info_score gives higher scores to the most important classes in both considered domains com-
pared to PageRank. Other experiments were conducted using Coffman’s IMDb (50 queries adapted to RDF) and
QALD-227 MusicBrainz (25 queries) with different ranking measures (e.g., PageRank or HITS [90]). InfoRank
based ranking achieved the highest MAP.

[91] aims at generating the set of structured queries (SPARQL) that answer a keyword query.
Method. Their approach starts with an entity identification module based on the Stanford Regexner Annotator [92]

which annotates keywords with candidate classes/individuals from the underlying ontology/RDF repositories. Filter
expressions are also detected using a gazetteer. Afterwards, entity combinations are generated, since a keyword can
be associated with multiple entities. Less specific annotations (ontology hierarchy) are considered as redundant and
thus removed. The answer search algorithm operates on the ontology of the target KG extended with the detected

24https://sites.google.com/site/ontopiswc13/home/imdb-mo
25https://sites.google.com/view/quira/
26http://musicbrainz.org)
27https://github.com/ag-sc/QALD

https://sites.google.com/site/ontopiswc13/home/imdb-mo
https://sites.google.com/view/quira/
http://musicbrainz.org)
https://github.com/ag-sc/QALD
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individuals and filters. For each different candidate entity of a specific keyword, such an ontology-based graph
model will be built. The graph exploration is done by starting Breadth-First Search from a specific keyword node
and the neighbors exploration continues until all candidate keyword elements are included. No cost function is used
during the graph exploration. The result is a rooted tree that is further cleaned by removing unwanted edges and
leaves. Each keyword interpretation results in a corresponding tree. Finally, each tree is translated to a SPARQL
query. Only one representative is selected in case of redundant SPARQL queries. Answer scoring is not addressed.

Evaluation. The evaluation was conducted using the QALD-7 dataset for question answering over DBpedia,
where each question is associated with a set of keywords. Some types of questions were discarded (e.g., boolean)
and the keywords were manually reviewed and adapted. The final test set contained 136 queries. Precision, recall
and F1-score are used as metrics to evaluate the generated SPARQL queries against the provided ones. In this case
they define different cases (e.g., correct/imprecise/partial answer). The evaluation reveals a precision of 0.52 and a
recall of 0.60 considering the best answer for each query. The runtime was also reported with an average time of 57
ms over all queries (without including synonyms from WordNet in the index).

5.3. Summary-based methods

[18] proposes an approach to deal with large graphs that may not fit into memory.
Method. They represent the graph in an hybrid manner (multi-granular) and aim at retrieving minimal rooted di-

rected trees: (1) an in-memory summary graph, where nodes are clustered to create supernodes, and (2) a disk-res-
ident part that contains the nodes appertaining to each cluster, together with their adjacency information. Further-
more, they suggest two alternative algorithms that adapt existing exploration algorithms to work over multi-granular
graphs, with the goal to reduce IO calls.

Ranking. The same importance-based ranking as in [15] was used.
Evaluation. They implemented their approaches by extending BANKS. They used DBLP (8 queries) and IMDb

(4 queries) as evaluation datasets and compared different configurations of the proposed algorithm with a schema-
based approach (the Sparse algorithm [40]) with respect to the execution time, recall, and cache misses per query.

[93] concentrates on improving the efficiency for complex queries where the keywords have a lot of matching
nodes in the graph (frontier).

Method. They propose a solution to reduce the frontier that aims at performing search only on parts where actually
the candidate answers are more likely to reside. The rationale behind their approach is the fact that if we have
multiple matching nodes for each keyword, only few of the different keyword nodes will be tightly related to
each other. They use a graph index that maps keywords to a set of subgraphs from the whole graph, together with
additional indexes such as keyword-vertex and vertex-subgraph indexes. While creating the subgraph index, they set
a bound for the size of the extracted subgraphs. In this way, answering a query would mean searching only subgraphs
that actually contain all keywords. They consider the data graph as undirected and define possible answers as distinct
rooted trees. They used a so called Composed Subgraph Search that it performed over a combination of matched
subgraphs. The graph exploration algorithm is similar to the backward search.

Ranking. A compactness-based ranking is used with the distance as a ranking factor, and the total score of an
answer is defined as the sum of the shortest distances between the root and each keyword node (root-keyword
scoring) without scoring the nodes.

Evaluation. They evaluated effectiveness and efficiency and compared with BLINKS using the DBLP XML
datasets with 12 queries. As a metric for calculating effectiveness, they compare the minimum scores and average
scores of the top-10, 25, 50 answers found by the baseline and their approach, which shows comparable results. The
analysis of the execution time shows that their method is overall faster compared to the baseline.

[7] proposes another paradigm for keyword search over graphs (RDF).
Method. Instead of presenting the user with the top-k final answers that may originate from various queries, top-k

possible structured queries are returned. Furthermore, the returned answers are not trees, but subgraphs and user
keywords could also be mapped to edges. They use a backward-based search algorithm that operates on a summary
graph instead of the whole graph to improve efficiency. There is no distinction between incoming and ongoing edges
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during the exploration and when reaching a node all its neighbors are taken into consideration preventing cyclic
expansion. However, the direction of the edges is important while generating the SPARQL queries corresponding
to the subgraphs. The summary graph is derived from the data graph by representing each collection of entities by
their corresponding class and aggregating all entities without types using a class called Thing. The edges between
the summary graph nodes mirror the edges between their corresponding instances.

Ranking. The score of an answer subgraph is calculated as the sum of its path scores following the root-keyword
scoring while aggregating both edge and node weights. The cost of a path is computed as the aggregation of its
element costs. Three different ranking function are introduced: (1) a compactness-based ranking using the path
length that is defined as the number of elements in a path, (2) an importance-based ranking using the popularity
of path elements (nodes and edges), where node/edge popularity is given as a function of the number of original
instances/edges that were clustered into the corresponding class/edge divided by the number of nodes/edges in the
summary graph. The latter is defined in a way that elements with higher popularity should have lower cost and thus
contribute to answers with higher scores, and (3) textual-based ranking using the keyword matching score which
is incorporated by dividing one of the previously defined cost functions by a matching score that is either ranging
between 0 and 1 if the element is corresponding to a keyword or is set to one otherwise. This should reflect the
fact that higher matching scores reduce the path cost. They use a matching score (between keywords and labels in
the graph) that combines both syntactic and semantic similarity (e.g., WordNet) and recommend TF-IDF in case of
labels with sufficient number of terms.

Evaluation. The approach was evaluated using 30 queries together with information needs for DBLP and 9 for
TAP (knowledge graph describing sports, geography, music and other domains). Twelve participants rated the re-
turned structured queries (query is correct if it matches the information need) and the MRR was used as a metric
for the assessment of effectiveness. Results reveal that the textual-based ranking function using keyword matching
performed best compared to the other two previously proposed functions. They also perform an evaluation of the
query processing time comparing it with other approaches (e.g., [15] and other indexing-based methods) together
with an investigation of the impact (on the time) of the number of queries to retrieve, and index performance (also
using LUBM). Results show that overall, the proposed approach is faster than the other baselines.

[94] proposes a method that takes advantage of the user profile information.
Method. The proposed approach starts by extracting a structural summary graph from the data that consists of

classes, relation between them derived from the relations of corresponding entities, and the union of entity labels.
First, keywords are matched to corresponding labels in the graph and for each possible matching a minimal sub-
graph that connects corresponding classes is constructed. For each possible matching, only the smallest connecting
subgraph is considered. Subgraphs producing empty results are discarded.

Ranking. The returned subgraphs are ranked based on their similarity with available profile graphs. The latter are
either added explicitly or implicitly after a search activity. The similarity is a combination of four metrics: concept
similarity, relation similarity, entity property similarity, and entity connection similarity.

Evaluation. The evaluation was conducted using 10 queries for each of the Jamendo (music)28 and DBpedia29

datasets. The ground truth was constructed by two users that rated every pattern graph based on its relevance to the
result subgraph. The metrics used for evaluation are Kendall-Tau [95], P@k and Rank-DCG (cf. Subsection 6.1).
Results reveal a Kendall-Tau above 0.5 and a Rank-DCG above 0.6 for most queries. The average P@5 is at least
0.5 for both datasets. In addition, efficiency experiments show that the system responds in a reasonable time that
allows user interaction.

[96] proposes an index (BiG-Index) to speed up finding answers for keywords over KGs.
Method. The rational behind the approach is first to replace the labels of instances with their corresponding gener-

alized ontology labels. Afterwards, this generalized graph version is summarized by merging similar subgraphs into
one representative. The last two steps are recursively repeated to build a hierarchy of graphs (indexes). Furthermore,
they provide details on how to answer a query using the proposed index. Answer ranking was not addressed.

28http://dbtune.org/jamendo/
29http://downloads.dbpedia.org/wiki-archive/dbpedia-dataset-version-2015-10.html

http://dbtune.org/jamendo/
http://downloads.dbpedia.org/wiki-archive/dbpedia-dataset-version-2015-10.html
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Evaluation. the performance of some algorithms (BLINKS and r-clique [54]) for keyword search over graphs is
compared both with and without using the index. The evaluation is performed using both real and synthetic datasets
(YAGO330, DBpedia and IMDb with a total of 18 synthetic queries). Since the methodology requires the usage of an
ontology, both DBpedia and IMDb were used with an ontology generated from YAGO3. Results reveal a decrease
of the runtime by 50.5% and 29.5% for BLINKS and r-clique respectively.

5.4. Virtual document-based methods

[97] proposes a virtual document-based method that tries to deal with efficiency by reducing the search space and
enhance effectiveness by using a scoring function that combines both query dependent and independent scores.

Method. The method starts by preparing a virtual document representation for the whole graph. For each node
a virtual document is created by concatenating the textual information (title and attributes) of the node itself and
its neighbors in a specific distance. First, a two level node filtering is performed to reduce the search space. Nodes
whose virtual document contains every query keyword are ranked based on a specific score and the top-k are selected
(selected roots). For each keyword, the same filtering is performed over the virtual documents of the roots to end up
with a list of top-k selected keyword nodes. Next, minimal trees connecting the selected roots and keyword nodes
and constructed and duplicate trees are removed. The answer trees are then transformed to virtual documents by
grouping the textual information for each node and then ranked.

Ranking. The ranking used by the selection of nodes and ranking final answers is calculated using a Markov
random field model [98] by combining query dependent and independent features. Those features are function of
the frequency of a query term in a virtual document, the node importance which is proportional to its degree, and
the edge weights that are set to one to favor smaller answers.

Evaluation. The evaluation was performed using Coffman’s benchmark where the MAP (top-1000) was compared
with four other systems (e.g., BANKS). Their approach outperforms all the baselines, and shows a good trade-off
between effectiveness and efficiency.

[83] proposes an approach based on virtual documents, since they claim that this is a promising method in terms
of efficiency.

Method. They introduce Topological Syntactical Aggregator+BM25 (TSA+BM25 [99]) and Topological Syntac-
tical Aggregator+Virtual Documents Pruning (TSA+VDP). TSA is a very first offline phase where the virtual doc-
uments are created by clustering triples with related concepts. In practice, it first builds subgraphs having a specific
distance around single topics (classes) together with their corresponding text documents (literals, IRIs, predicate
strings). Only predicates with a frequency higher than a threshold are taken into account. In the online phase, an
initial list of ranked documents relevant to the user query is retrieved. The next step aims at merging overlapping
subgraphs corresponding to the top-k candidate documents. If the intersection of the subgraphs’ triples is greater
than a threshold they are merged. Next, virtual documents corresponding to the merged graphs are created, a second
BM25 ranking is performed, and the relevant subgraphs are returned to the user (TSA+BM25). The next step is
VDP, that considers the union of the top-k subgraphs of the last step as a new graph. Minimal trees with a defined
radius containing all keywords are produced using Breadth-First Search, and non-relevant triples (not containing
any keyword) are pruned. The last step, is a final ranking of results.

Ranking. The initial and second rankings are both textual-based using BM25. The final ranking combines
compactness-based and textual-based factors using the Markov random field model that considers unigrams and
bigrams within the virtual document and the distance of the words from the root in the graph.

Evaluation. The evaluation was conducted using real (LinkedMDB and IMDb with 100 queries, and DBpedia-
Entity v1 [100] with 50 queries) and synthetic databases (LUBM with 14 queries and BSBM [101] with 13 queries).
They consider only one best answer as ground-truth answer. The latter is the result of a manually created SPARQL
query corresponding to the keywords. They propose a new definition of precision, recall and the DCG based on a
new metric Signal-to-Noise Ratio that gives a score to a returned graph based on the intersection of its triples and

30http://www.mpi-inf.mpg.de/yago

http://www.mpi-inf.mpg.de/yago
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the ones from the ground truth. Their approach is compared with other three [97, 102, 103] virtual-document based
baselines, using average triple based-DCG (tp-DCG) (cf. Subsection 6.1), recall, P@1, P@5, and runtime over all
queries. Overall TSA-based systems outperform the baselines, but all in general have a low precision. Considering
the online runtime, the proposed approach was among the fastest systems.

Instead of traversing the underlying graph or generating structured queries, [104] aims at adapting an existing
information retrieval system (Elasticsearch31) and thereby use traditional document indexing and retrieval.

Method. The textual content of a triple is considered as a virtual document that is indexed and retrieved. Two
index versions are evaluated depending on the extent of the stored textual content: (1) a baseline index stores only
textual content of the considered triple e.g., text of the URI, and (2) an extended index considering also information
on other properties of the triple’s resources e.g., rdfs:label.

Ranking They use the textual-based ranking functions provided by Elasticsearch to rank triples and derive a
ranking for the entities involved in a triple using DCG formula.

Evaluation.The DBpedia-Entity v2 was used as a test collection using the nDCG@100 and nDCG@10 as met-
rics. Its goal is testing the influence of different configurations of Elasticsearch (e.g., query type) together with
the index content on the effectiveness of the search. Their system (Elas4RDF) was compared to the unsupervised
methods tested in the context of DBpedia-Entity v2 and reaches comparable results when used with the extended
index and the BM25 ranking. The average query time was also reported: 0.7 s and 1.6 s for the baseline and the
extended index respectively. A user interface for the same system is proposed in [105] with a focus on functionality
and usability evaluation.

[106] proposes a pipeline consisting of an offline and online stage. The key contribution is the usage of community
detection techniques to create group of entities (subgraphs) belonging to the same topic (e.g., computer security in
DBpedia). This is used as index to accelerate answer retrieval.

Method. During the offline phase the two indexes are created: (1) the entity index is built by transforming each
entity together with its data properties into a virtual document whose terms are indexed, and (2) the community
index which maps each entity to its community of entities. The online phase starts with mapping query keywords
to candidate entities using the entity index. For each entity, the common community containing all entities is con-
structed which is at the end a subgraph of the whole RDF entity graph. Finally, a ranked list of trees connecting all
keywords (Steiner tree) is computed. No further details are given on the trees construction algorithm or the specific
structural compactness-based ranking.

Evaluation. Three aspects were compared with an index-based system (EASE) using 5 queries for each dataset
(DBLP, KMap32): index building (time and storage), runtime, and the effectiveness. The latter is based on answer
completeness with respect to the relations connecting keywords using the answer of a method that directly works
over the whole graph (not index-based) as a baseline. Both systems have comparable results.

6. Summary

Table 1 and Table 2 provide an overview of all systems described in the previous sections (sorted in ascending
chronological order.). In addition to the aspects introduced in Section 4, the following criteria are also reported: The
underlying data, the goal in terms of returned results, the availability of an index, the search algorithm used, the type
of the intermediate result, and the specific ranking. Most of the approaches either work over any graph-structured
data or over KGs (RDF). Furthermore, some of the works also require the existence of an ontology to answer the
query, and only one work operates on attributed graphs. The majority of works are graph-based (22), followed by
summary-based (5), schema-based (4), and virtual document-based (4) approaches. Overall the aim is to retrieve the
top-k relevant answers mostly ranked in the order of relevance to the query. However, a fraction of works only seek
to return one relevant result, or deal with the naive scenario of retrieving all relevant answers.

31https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
32https://old.datahub.io/dataset/knowledge-map

https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
https://old.datahub.io/dataset/knowledge-map
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Even if we notice an inconsistency in the naming of the search algorithms used, works that aim at extracting tree
or subgraph-shaped results usually rely on graph traversal algorithms (e.g., backward, breadth-first, depth-first, or
random walk). The latter are either adapted to work with a specific index structure [15, 18, 93], or a specific result
[20–22] or data graph shape [59, 63]. Some works also exploit approximation algorithms that aim at computing
the top-k best solutions of a specific optimization problem [49, 56] or optimized enumeration algorithms [17, 19].
Most of the systems that aim at generating SPARQL queries, construct a graph-shaped intermediate result that is
translated to a structured query. The final answer type is in most of the cases a tree (15), followed by structured
queries (9), and subgraphs (7). Only two works returns triples and one retrieves entities in addition to triples. A
newly defined answer type (key-core) is used by a single system.

Most of the works use a compactness-based ranking (18), followed by importance-based (15), and textual-based
(12) ones. However, semantics-based (3), diversity-based (1), and profile-based (1) rankings are only rarely used.
Almost half (16) of the works combine at least two ranking methods. The distinct answer scoring is mostly used
(7), followed by the root-keyword (6) and the keyword-pair (4) scoring. Here also, we notice that two scoring types
maybe combined, when for each graph element a different scoring is used. In addition, the specific answer scoring
type may be applied only for either nodes or edges. Furthermore, for each system, we also document the type of
index used and the specific rankings (cf. Table 2). An index is usually used to support keyword to graph element
matching, or to accelerate the graph traversal by storing a specific set of shortest paths between two nodes. Almost
half of the works (14) use a keyword to graph element index (keyword-element).

Table 1
Overview of surveyed methods for keyword search over graph-shaped data. ?: not mentioned in the paper, -: does not apply, Onto: Ontology, Attr:
Attributed, E: Edge, N: Node, VD: Virtual document, COMP: Compactness, IMP: Importance, TXT: Textual, DIV: Diversity, SEM: Semantics,
PROF: Profile

System Data Search space Goal Search algorithm Intermediate result Final answer type Answer ranking Answer scoring

[14] Graph Graph-based Top-k Backward - Rooted directed tree IMP Distinct (E, N)
[15] Graph Graph-based Top-k Bidirectional - Rooted directed tree IMP Root-keyword (E), Dictinct (N)
[16] Graph Graph-based Top-k Index-based Bidirectional - Distinct rooted directed tree COMP, IMP, TXT Root-keyword (E), Dictinct (N)
[17] Graph Graph-based All Threaded enumeration - Minimal tree - -
[18] Graph Summary-based Top-k Multi-granular graph-based - Minimal rooted directed tree IMP Root-keyword (E), Distinct (N)
[19] Graph Graph-based Top-k, All Enumeration (polynomial delay) - Minimal rooted directed tree COMP, IMP, DIV Distinct (E, N)
[7] RDF Summary-based Top-k Backward Subgraph Structured query COMP, IMP, TXT Root-keyword (E, N)

[93] Graph Summary-based Top-k Composed Subgraph - Distinct rooted tree COMP Root-keyword (E)
[88] RDF + Onto Schema-based Top-1 Node merging/expansion Rooted tree Structured query COMP, IMP, TXT -
[42] Graph Graph-based Top-k Shortest path - R-clique COMP, IMP, TXT Distinct (E, N)
[44] RDF Graph-based Top-k Depth-First - Triple COMP, SEM -
[49] Graph Graph-based Top-k Lawler’s procedure R-clique Tree COMP, IMP Keyword-pair (N)
[53] RDF Graph-based Top-k Depth-First Minimal tree Structured query COMP -
[56] Graph Graph-based Top-k Threshold algorithm - Distinct rooted tree COMP, TXT Root-keyword (N)
[97] Graph VD-based Top-k ? - Minimal tree COMP, IMP, TXT -
[59] RDF Graph-based Top-k Bipartite graph-based - Subgraph TXT -
[62] RDF + Onto Graph-based Top-1 - Subgraph Structured query COMP Keyword-pair (E, N)
[63] RDF Graph-based Top-1 Best-First Subgraph Structured query SEM Distinct (E)
[67] RDF + Onto Graph-based Top-k Shortest path - Minimal subgraph COMP, TXT -
[82] RDF Schema-based Top-1 ? Minimal tree Structured query - -
[94] RDF Summary-based Top-k ? - Minimal subgraph COMP, PROF -
[68] RDF Graph-based Top-k Dijkstra - Minimal subgraph COMP, TXT -
[81] RDF Schema-based Top-1 ? Minimal Tree Structured query IMP -
[21] Graph Graph-based Top-k Canonical Form-based - Minimal rooted undirected tree - -
[83] RDF VD-based Top-k Breadth-First - Minimal tree COMP, TXT -
[25] Attr. graph Graph-based Top-k Random walk with restart - Subgraph IMP Keyword-pair (N)
[20] Graph Graph-based Top-k, All R-clique finding - Minimal covered r-clique COMP, IMP Keyword-pair (E)
[104] RDF VD-based All - - Triple, entity TXT -

[8] RDF Graph-based Top-1 Best-First - Minimal tree - -
[96] RDF + Onto Summary-based Top-k Test different algorithms - - - -
[80] RDF Graph-based Top-k - Tree Structured query IMP, TXT -
[91] RDF + Onto Schema-based Top-k Breadth-First Subgraph Structured query - -
[106] RDF VD-based Top-k ? - Tree COMP Distinct (E)
[85] RDF Graph-based Top-1 Shortest path - Minimal tree IMP, SEM Distinct (E, N)
[22] Graph Graph-based Top-1 Key-core computation - Key-core - -
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Table 2
Overview of surveyed methods for keyword search over graph-shaped data (indexing and ranking). ?: not mentioned in the paper, -: does not
apply, *: recommended but not used

System Index Ranking

[14] Keyword-element Node prestige (in-degree), Edge proximity (in-degree)
[15] Keyword-element Node prestige (PageRank), Edge proximity (in-degree)
[16] Shortest paths Distance, PageRank*, and TF/IDF*
[17] ? no
[18] Keyword-element Node prestige (PageRank), Edge proximity (in-degree)
[19] ? Tree height, Node in-degree/out-degree, Redundancy penalty
[7] Keyword-element, Summary graph Path length, Popularity, Keyword matching (TF/IDF*)

[93] Keyword-subgraph, Keyword-element, Element-subgraph Distance
[88] Shortest paths (BLINKS) with distance, Keyword-element Shortest path between root and keyword, Term frequency, Property frequency
[42] no Term frequency, PageRank, Node degree, Answer size
[44] Predicates, Subject/object, Literal, Incoming/outgoing relations, Similarity score Distance (number of subjects in the path), Semantic similarity (WordNet)
[49] Shortest paths, Keyword-element Node degree, Shortest path
[53] Keyword-element, Shortest paths Tree diameter
[56] Keyword-element, Shortest paths with node relevance Node relevance, Shortest path
[97] Graph nodes/edges, Node-text , Virtual documents Term frequency, Distance, Node degree
[59] no Term frequency
[62] ? Shortest path
[63] no Triple Assembly Cost
[67] Keyword-element Term Frequency, Answer size
[82] Keyword-element -
[94] no Distance
[68] no Distance, Keyword matching score
[81] no InfoRank
[21] no no
[83] Subgraph-text, Subject BM25, Markov random field model
[25] no Node score
[20] no Node degree, Distance
[104] Triple-text BM25, DFR, LM-Dirichlet, LM Jelinek-Mercer

[8] no no
[96] Hierarchy of summary graphs -
[80] Keyword-element Keyword matching, InfoRank
[91] Keyword-element no
[106] Keyword-element, Community Structural compactness
[85] ? Semantic distance, PageRank
[22] no no

6.1. Evaluation methods

In general, two aspects are evaluated: effectiveness and efficiency. While the latter deals with the execution time
and memory usage, effectiveness judges the ability of the system to retrieve results that are relevant to the query
and requires an underlying dataset, a set of user queries, and corresponding results together with their relevance
judgments. We also notice that some systems have used approach-specific aspects and metrics for the evaluation:
#nodes explored/touched [15], index performance [7, 16], cache misses [18], repetition rate [42], answer compact-
ness (diameter) [49], or #intermediate results [21].

Table 3 gives an overview of the data and metrics used for evaluating the effectiveness of the surveyed systems
(sorted in ascending chronological order). For all the works except [62, 88], at least one of the two aspects is
evaluated, mostly the execution time. Furthermore, for one system [17] no evaluation was conducted and the other
works with no entries did not evaluate effectiveness.

Queries and datasets. We observe that the number of queries used for evaluation varies between 5 and 467. The
number of queries is larger when they are randomly generated or an existing benchmark is used, while we notice
only dozens of queries by manual creation. Furthermore, the most used datasets are: DBLP, IMDb, and DBpedia.

Ground truth. For each query, a list of potentially relevant results is needed. This is either manually created
by result rating from users or by manually creating a corresponding structured query, or automatically generated



24 N. Feddoul et al. / A systematic literature review and classification of approaches for keyword search over graph-shaped data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(other system, structured query, or a tool for benchmark construction). In general we observe that only 10 systems
evaluated their approaches using existing test collections (Coffman, DBpedia-Entity v1/v2, QALD) that provide
both queries and relevant results.

Metrics. Most of the metrics used to measure the effectiveness are: Precision, Recall, F1-measure, P@k, DCG
and its variants, AP, MAP, and MRR. However, we notice that some single systems used other metrics that were
shortly mentioned while summarizing the works in the previous sections (e.g., Rank difference, the fraction of
queries with results, Kendall-Tau, or the mean of the user scores). In the following, we briefly define the most
popular metrics :

Precision, Recall and F-measure. In general, the precision is defined as the ratio between the number of retrieved
elements that are relevant to a specific query and the total number of retrieved elements [107]:

P =
|relevant ∩ retrieved|

|retrieved|
(1)

Recall is defined as the ratio between the number of retrieved elements that are relevant and the total number of
all existing relevant elements [107]:

R =
|relevant ∩ retrieved|

|relevant|
(2)

These definitions may be slightly adapted by some works depending on the nature of the retrieved answer. For
example, [83] defines a triple-based variant of precision and recall to compare a generated and a ground truth
subgraph, by defining recall as the ratio between the relevant triples and the total number of triples in the ground
truth. Another adaptation is given by [91] where precision and recall are calculated for each generated SPARQL
answer. Here, recall is a function of the intersection between the generated and ground truth query.

The F1-measure is calculated by combining both precision and recall as follows [108]:

F1 = 2 · P · R
P + R

(3)

The previous metrics are set-based measures. Next, we define rank-based metrics that also consider the order in
which the documents are retrieved.

Precision at k (P@k). A good fraction of works used the precision at a specific rank position k as metric [109].
This is more practical since it does not evaluate all retrieved results, but only the top-k:

P@k =
|relevant ∩ retrieved@k|

k
(4)

Average Precision (AP). The AP is based on the calculation of precision and recall at every position, and is given
by the following formula [110], where n is the number of retrieved elements and relk is the relevance of the element
at position k (1 or 0):

AP =
1

|relevant|

n∑
k=1

P@k · relk (5)

Mean Average Precision (MAP). The MAP is calculated as the ratio between the sum of average precision
scores for each query and the total number of queries (Q) [111]:
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MAP =

Q∑
q=1

AP(q)

Q
(6)

Discounted Cumulative Gain (DCG). This measure also takes into account the case where the relevance judg-
ments are given by a graded scale (instead of a binary one) and considers both the relevance and position [111, 112].
The DCG at a rank position n is defined as follows:

DCGn =

n∑
i=1

reli
log2(i + 1)

(7)

where reli is the relevance of the retrieved element at the position i.
However, the DCG is not normalized which makes it difficult to compare different queries with varying result

sizes. To deal with this, the normalized DCG is introduced. The normalization (nDCGn) is performed by dividing
the DCG with an ideal DCG (IDCGn). The latter is derived by taking the top-n relevance judgments ranked in
decreasing order of relevance and calculating the DCGn of this ideal order. The nDCGn measures could be averaged
over all queries to obtain an average nDCGn of the system.

One work [94] used an improved variant of the DCG, called Rank-DCG [111]. [83] proposes a triple-based DCG
(tp-DCG) based on a new notion of relevance (graph-based) that is calculated as the fraction of relevant triples in a
subgraph-shaped answer.

Mean Reciprocal Rank (MRR). The reciprocal rank aims at evaluating the system with respect to it capability
of rapidly finding the first relevant result. The MRR is the average of reciprocal ranks over all queries Q, where posi

is the position of the very first relevant result to the query i [113]:

MRR =
1

Q

Q∑
i=1

1

posi
(8)

7. Conclusion and future directions

In this survey, we have systematically selected, classified and provided an overview of 35 research papers. We
have derived four overall aspects for classifying related works: (1) search space, (2) answer type, (3) answer ranking,
and (4) answer scoring. Each of those aspects is further specified by defining different possible aspect types (e.g.,
compactness-based answer ranking). In the following, we highlight some potential directions for future research
using a structure that is based on the typical components of a system for keyword search over graph-shaped data.

7.1. Keyword mapping

Enhancing entity linking. Most of the works attempt to map keywords with all possible graph elements that con-
tain one of the keywords in their textual description (string matching). This approach does not only affect efficiency
by inducing a huge number of possible candidate nodes/edges (especially for big graphs) that should be connected
in the next step, but also induces a lot of non-relevant results. Future research can focus on leveraging entity linking
techniques that drastically reduces the number of candidate graph elements in an early stage.

Handling ambiguous queries. Disambiguation is considered as a subtask in a typical entity linking pipeline
[9], where a specific entity is selected based on the context. This is usually challenging, given the short nature of
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Table 3
Overview of the data and metrics used for evaluating the effectiveness of surveyed systems ?: not mentioned in the paper, *: no evaluation, -:
does not apply, M: Manual, R: Random, G: Generated

System #Queries Query creation Ground truth Dataset Metrics

[14] 7 M M DBLP, IIT Bombay dataset Rank difference
[15] 5 M G (SQL) DBLP, IMDB, US patent database Precision, Recall
[16] - - - - -

[17]* - - - - -
[18] 12 M M DBLP, IMDB Recall
[19] ? ? ? ? Ranking correlation
[7] 39 M M DBLP , TAP MRR
[93] 12 M ? DBLP Minimum/Avg. scores of top-10, 25, 50
[88] 20 M M OntoLife, RDFResume, DBLP, FOAF, Researcher MRR
[42] 10 R M DBLP, IMDb DCG
[44] - - - - -
[49] 19 M,R M DBLP, IMDb, Mondial P@10, P@2, %ground truth answers
[53] 20 M,R M DBpedia 1-match (top-10)
[56] 30 M M DBLP, IMDb, Mondial P@10, P@20
[97] 50 Coffman Coffman Mondial, Wikipedia, IMDb MAP (top-1000)
[59] 10 M ? DBLP P@5, AP@5, MRR
[62] 50 M ? ? Fuzzy precision, Fraction queries with result, F1
[63] 180 QALD-6, Free917 QALD-6, Free917 DBpedia, Freebase Precision, Recall, F1
[67] 10 R M AIFB, The Conference dataset P@k, nDCG@k (k=10,20,5)
[82] 50 Coffman Coffman Mondial, IMDb -
[94] 20 M M Jamendo, DBpedia Kendall-Tau, P@5, Rank-DCG
[68] 20 M M AIFB, DBpedia (subset) P@10, P@5
[81] 75 Coffman, QALD-2 Coffman, QALD-2 IMDb, MusicBrainz MAP
[21] - - - - -
[83] 177 M, DBpedia-Entity v1 (QALD-2) M, DBpedia-Entity v1 (QALD-2) LinkedMDB, IMDB, DBpedia, BSBM, LUBM Recall, P@1, P@5, tb-DCG
[25] 200 R - DBLP, IntAct PPI Expression level, h-index
[20] 10 [49] G (system) IMDb, DBLP Average answer weight

[104] 467 DBpedia-Entity v2 DBpedia-Entity v2 DBpedia nDCG@100, nDCG@10
[8] 438 DBpedia-Entity v2 DBpedia-Entity v2 Dbpedia P@1
[96] - - - - -
[80] 191 Coffman, [83] Coffman, [83] LUBM, BSBM, IMDb, Mondial, DBpedia MAP, MRR, Top-1
[91] 136 QALD-7 QALD-7 DBpedia Precision, Recall, F1

[106] 10 ? G (system) DBLP, KMap Relationship completeness
[85] 281 DBpedia-Entity v2 DBpedia-Entity v2 DBpedia Mean of user scores
[22] 5 R M DBPedia, DBLP -

keywords. The enhancement of entity disambiguation techniques would also help reducing the number of candidates
and thus indirectly improving efficiency and effectiveness.

Incorporating user intent. Predicting the user intent can help to better understand the query and thus provides
guidance for an accurate mapping of keywords. Keyword search systems that work over KGs can in addition lever-
age the connected nature of the graphs to support techniques for user intent prediction.

7.2. Answer retrieval

Improving efficiency. As KGs grow in size and complexity, current keyword search algorithms may not be able
to scale. To deal with that the following directions could be investigated: distributed indexing, parallel processing,
and graph summarization. To deal with that, techniques for graph summarization [114] can be used. The latter
should have the potential of reducing the size of the graph while preserving important information. However, only
few systems [7, 18, 93, 94, 96] follow a summary-based approach and this without evaluating the quality of the gen-
erated summaries. Therefore, there is still room for further investigations to deal with some common summarization
challenges e.g., information loss. Other directions are the usage of distributed indexing and parallel processing. The
latter is still also not sufficiently studied [26–30].

Leveraging large language models. With the recent emergence of large language models [115], a potential
research direction could investigate the ability to automatically generate answers such as structured queries e.g.,
SPARQL given a keyword query and a target KG.
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7.3. Answer ranking

Incorporating semantic information. Existing surveys emphasize the general need of enabling semantic search
over graph data [4], and propose to, e.g., leverage ontologies to improve efficiency and effectiveness [6]. Further-
more, most of existing techniques working over KGs still consider only structural or textual metrics to judge the
relevance of a result to a certain query. Future works can focus on leveraging the semantic information encapsu-
lated in KGs and propose ranking functions that go beyond structural properties of the graph using e.g., semantic
similarity or KG embeddings [116].

7.4. Answer presentation

Existing works usually focus on proposing functioning systems aiming at increasing efficiency and effectiveness.
However, one aspect is not sufficiently studied namely finding new and suitable ways to present the results to the
end user and improve the browsing experience.

Supporting explainability. The aim is to make the search results more transparent by explaining why a specific
relevant result was generated. This will allow a better understanding of the relation between the different pieces of
information corresponding to the different keywords. A potential future direction is to think about new functionali-
ties to enable explainable information retrieval over KGs.

Enabling exploratory search. Users are not always familiar with the domain in question and they do not always
have a specific goal in mind [117]. Therefore, they usually start with a tentative query and continue exploring to
better understand a topic or discover new interesting insights and relations. Future research can focus on providing a
range of features to support exploration and creative information-seeking behavior using simple keywords and KGs.

7.5. Evaluating search performance

As already mentioned in Subsection 6.1, only few systems were evaluated using existing test collections. On
the other hand, we also notice a lack of standardized benchmarks dedicated for keyword search over KGs (only
three). Two of them should be adapted before usage since they were originally created to serve other tasks (question
answering) or to work over other data formats (relational databases). Future research can focus on developing
established evaluation datasets for keyword search over KGs.

7.6. Other specific cases

The literature review also revealed the existence of some additional niche areas with very few contributions,
namely probabilistic/uncertain graphs, distributed graphs, incomplete graphs, or temporal graph. Future research
can investigate more the application of keyword search over the previously mentioned special graphs.
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