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Abstract. Representation learning for link prediction is one of the leading approaches to deal with incompleteness problem of
real world knowledge graphs. Such methods are often called knowledge graph embedding models which represent entities and
relationships in knowledge graphs in continuous vector spaces. By doing this, semantic relationships and patterns can be cap-
tured in the form of compact vectors. In temporal knowledge graphs, the connection of temporal and relational information is
crucial for representing facts accurately. Relations provide the semantic context for facts, while timestamps indicate their tem-
poral validity. However, existing embedding models often overlook the intricate interplay between relational and temporal parts
of the facts in temporal knowledge graphs. These models tend to focus on effectively representing individual components, con-
sequently capturing only a fraction of the overall knowledge. Additionally, some relations in temporal facts are time-insensitive,
while others are highly time-dependent. This complexity reduces the ability of temporal knowledge graph embedding models in
accurately capturing these characteristics. To address these challenges, we propose a novel embedding model based on temporal
relevance. This model operates within a complex space with real and imaginary parts to effectively embed temporal knowledge
graphs. Specifically, the real part of the embeddings of our proposed model captures the semantic characteristics of facts by
considering the importance of temporal information and relational information associated with each fact. Simultaneously, the
imaginary part of the embeddings learns the connections between diverse elements, without predefined weights. Our approach is
evaluated through extensive experiments on the link prediction task, where it majorly outperforms state-of-the-art models. The
proposed model also demonstrates remarkable effectiveness in capturing the complexities of temporal knowledge graphs.

Keywords: Temporal knowledge graph, Representation learning, Knowledge graph embedding, Link prediction

1. Introduction

Knowledge graphs (KGs) as a formalism for knowledge representation and management, have emerged as un-
derlying technology of many downstream AI tasks, including recommendation systems and question-answering
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systems, and so on [1]. Example of such KGs are DBPedia[2], YAGO [3], and NELL [4]. Generally, knowledge
graphs consist of a collection of triples representing real world facts, in the form of (s, r, o), where s and o are subject
and object entities respectively, r is the relation between them. Despite the large quantities of triples in KGs, they
often suffer from incompleteness problem. One of the most popular methods to deal with this problem is by Knowl-
edge Graph Embedding (KGE) models that are based on technique for predicting missing links between existing
entities. KGEs operate by representing entities and relations from the symbolic KG into a low-dimensional vector
space [5, 6], and then measure the plausibility of possible links. Performing link prediction is mainly to complete
queries in the form of (s, r, ?) or (?, r, o) according to the score of the potential entity in the object position.

Facts in the real world, often involve time, for which the representation in KGs need to be extended beyond
triples (e.g., quadruples, quintuples), to include the temporal knowledge. These type of KGS are called temporal
knowledge graphs (TKGs) such as ICEWS [7], GDELT [8] and Wikidata [9]. In TKGs designed with quadruples,
the facts are represented with one timestamp in the form (s, r, o, τ). In this representation, τ refers to the timestamp
for the (s, r, o) fact. Similar to the static KGs, TKGs also have incompleteness problem which could be found by
embedding models design to represent TKGs in vector space. These models are called Temporal Knowledge Graph
Embedding (TKGE) and perform link prediction by posing queries (s, r, ?, τ) or (?, r, o, τ). These cases belong to
the facts in real world such that potential subject or object entities are changing with time.

Among different types of TKGEs, Tensor-based models which employ tensor decomposition techniques, have
demonstrated remarkable efficacy in representing temporal facts [10, 11]. As a remark, relations in TKGs serve
as the connectors linking entities to form a fact, and time constitutes the temporal validity attribute of the fact.
By decomposing the facts into tensors, quadruples are transformed into lower-dimensional embeddings, effectively
mitigating complexity, and information from diverse attributes can be integrated to achieve comprehensive represen-
tations. Different tensor decomposition methods, such as Canonical Polyadic (CP) decomposition [12] and Tucker
decomposition [13], are leveraged in KGEs such as [10, 13, 14]. In these models, associations between entities,
relations and timestamps are established through multiplication operations directly. However, generally in temporal
facts, the connection between relations and semantics fundamentally diverges from the connection between time and
semantics imposed by relations. Therefore, when learning over temporal facts, it is important to not only account
for the semantic aspects of these facts but also recognize the importance of the temporal attribute for each individual
fact. Additionally, some relations in temporal facts are time-insensitive, while others are highly time-dependent.
However, such tensor-based models often prioritize considerations regarding how to accurately represent times-
tamps or the entirety of quadruples. The methods to derive connections among these three components through
straightforward multiplication fail to align with the authentic meaning of some temporal facts. Consequently, they
tend to overlook the intricate interplay between time and semantics inherent in real-world facts.

We introduce a novel model dubbed TRKGE, considering temporal relevance in temporal knowledge graph,
which leverages the tensor decomposition method but facilitated to be aware of time importance. Temporal relevance
is used to judge the importance of time in facts when learning their representation. For example, the semantics
of facts formed by "visit" and "daughter of" have different temporal attributes, one is temporary and the other
is permanent. Similar to other tensor decomposition models, our model is also built in the complex space. The
real part focuses on capturing temporal relevance within the facts. It comprehensively incorporates embeddings of
entities, relations, and timestamps. To ensure consistency between the transformation in the real part and complex
multiplication, we employ rotation matrices in this part. These matrices effectively adjust entities based on their
relationships, facilitating a specific understanding of the interplay between time and semantics. Furthermore, we
introduce attention mechanisms in the real part to learn the temporal relevance within the facts. This attention
mechanism enhances the model capacity to realize the significance of different elements in temporal facts. On the
other hand, the imaginary part of our model utilizes half of the embeddings to learn the connections among diverse
elements through direct multiplication. Then the imaginary part complements the real part in capturing complex
relationships within temporal knowledge graphs. Experimental results underscore its performance in comparison
to state-of-the-art baselines, thereby illustrating the ability of the proposed method in learning temporal relevance
when representing temporal facts.
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2. Related Work

2.1. Static Knowledge Graph Embedding

In the last decade, various KGE models have been proposed for static knowledge graph completion. These mod-
els can generally be categorized into translation-based models, tensor decomposition models and neural models.
Translation-based models treat a relation as a translation from the subject entity to the object entity. The scores in
these models are typically calculated based on the distance or angle between the translated subject entity embed-
dings and object embeddings. TransE [15] treats relations as translations from subject entities to object entities,
then calculates the distance between translated subject and object entities. RotatE [16] represents each entity and
relation as an embedding in complex space, with a real part and an imaginary part. Relations are represented as
angles, and subject entities are rotated by relations, the angles between them is the score of the model. Addition-
ally, some researchers proposed models that embed entities and relations in non-Euclidean spaces. MURP [17] first
use hyperbolic space to model hierarchical structures in KGs, which brought a big improvement. Later, AttH [18]
bring both rotation and reflection into hyperbolic spaces to model various relational patterns. These models focus
on capturing the translation relationship between entities and relations and perform well in capturing one-to-one
and one-to-many relationships. Tensor decomposition models assume entities as vectors and relations as matrices,
such as RESCAL [19], whose scores are calculated based on the product between these embeddings. But RESCAL
cannot model complex structures, so ComplEx [12] was proposed, it represents entities and relations as complex
embeddings consisting of both real and imaginary parts. The use of complex embeddings can capture both sym-
metric and asymmetric relationships in KGs. Compared with translation-based models, these models can capture
more complex relationships. Besides, neural models employ neural architectures to train embeddings for entities
and relationships for KG modeling, such as ConvKB [20], ConvE [21], and KBGAT [22]. While static knowledge
graph embedding models have received significant attention over the years, they do not fully correspond to real-life
situations. In real life, many facts are often time-dependent and static KGE models can not perform well in TKGs,
therefore, there is a need for research on the temporal knowledge graph embedding model.

2.2. Temporal Knowledge Graph Embedding

Similar to the static KGs, temporal knowledge graphs are also modeled by the embeddings of entities, relations
and timestamps. Many TKGE models are built following existing static KGE models. For example, TTransE [23],
is an extension of TransE model, which translates entities by both relations and timestamps. HyTE [24] also bor-
rowed the idea from TransH [25], but it projects entities and relations to different time-dependent planes rather
than relation-dependent planes. Based on the static KGE model BoxE [26], BoxTE [27] extends the box embed-
ding model to temporal knowledge graph. RotateQVS [28] models the temporal changes with rotation in quaternion
vector space and uses a score function that is similar to TransE. Inspired by RotatE, TeRo [29] defines the tem-
poral evolution of entity embedding as a rotation from the initial time to the current time in the complex space.
TComplEx and TNTComplEx [14] are both developed based on the static KGE model ComplEx, which use addi-
tional tensors to represent timestamps, and then the score is obtained by complex multiplication of embeddings of
entities, relations and timestamps. In addition, many new temporal knowledge graph embedding models have been
proposed. ChronoR [10] treat relations and timestamps as rotation and scale. Rich information between temporal
and multi-relational features in TKGs are captured by using high-dimensional rotations as transformation operators.
TeLM [30] uses multivector representation and the geometric product to model entities, relations and timestamps.
TLT-KGE [11] treats semantic and temporal information as different axes in complex or quaternion spaces, and a
shared time window as well as a temporal-relational binding module are designed to establish the connection be-
tween different parts and timestamps. However, most of these works only focus on how to represent the flow of time
or how to model timestamps, they ignore the real relationships between time and real facts. In our work, we propose
the temporal relevance of entities and relations in facts. Temporal facts are represented by a method that is closer to
the actual semantics, thereby improving the ability to learn features in temporal facts.
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3. The TRKGE Model: Time Relevance in Temporal Knowledge Graph Embedding

Let us consider a temporal knowledge graph in which the facts are represented as quadruples (s, r, o, τ), where
s and o represent subject and object entities respectively, r represents the relation, and τ represents the timestamp.
We define E , R and T as the sets of entities, relations and timestamps, then s, o ∈ E , r ∈ R and τ ∈ T . Temporal
knowledge graph embedding models aim at completing such TKGs by learning embeddings of entities, relations,
and timestamps. The score function of a TKGE model measures the likelihoods of quadruples, hence, new quadru-
ples can be inferred, and their plausibility can be judged to complete the TKG. For temporal facts, relations have
different time sensitivities. Therefore, when learning temporal information, the proportion of time information ver-
sus relational information in different facts is also needed to be considered. The proposed TRKGE model is capable
of capturing these complexities of time relevance with rereads to relations. The rest of this section focuses on the
mathematical concepts required to understand, details theories and development of our model TRKGE.

3.1. Preliminaries and Background

As all geometric TKGE models, our model embeds entities in a continuous vector space and uses geometric
transformation to preserve information between subject and object entities.

A vector space V over a field K is a set endowed with two operations, namely addition and scalar product, de-
noted by + and · respectively. These two operations must satisfy some axioms such as associativity, commutativity,
existence identity and inverse elements, compatibility, and distributivity. In this work, we consider the 2 dimension
complex vector space C2 over the field of real numbers R. Vectors s ∈ C2 are in the form s = (s1, s2) where
s j = x j + iy j ∈ C, for j = 1, 2, and i2 = −1. We define and denote by Re(s) = (x1, x2) the real part of s and by
Im(s) = (y1, y2) its imaginary part. Embeddings in high dimensional vector space are obtained by considering the
Cartesian product of C2. We use ⟨s, s′⟩ to denote the Hermitian inner product of two vectors s and s′. Its real part
Re (⟨s, s′⟩) , denoted by sim (s, s′) , is a positive real vector.

Interaction between subject and object entities is done via a variety of geometric transformations. In the literature,
many KGE models are built upon the rotation transformation. Similarly, our model uses rotation. However, there is a
systematic difference between how the rotation transformation was used by other models. In fact a two-dimensional
representation of a rotation of angle θ is defined by the two matrix

R(θ) =
(
cos θ − sin θ
sin θ cos θ

)
or the unit complex number eiθ. In the previous models, a vector s ∈ C2 is rotated through the product eiθ j s j

or R(θ j)

(
x j

y j

)
, j = 1, 2. In our model, the rotation is achieved through R(θ1)

(
x1
x2

)
and R(θ2)

(
y1
y2

)
. In other

words, rotation transformations act on the real or imaginary parts (Re(s), Im(s)) of vectors in C2 instead of acting
on its projections (s1, s2) onto the complex plane C. We extend this formalism into d dimensional vector space
V = (C2)d by considering the Cartesian product of C2. The matrices R(θ j) are combined to form block diagonal
matrices R(Θ) = diag(R(θ1), . . . ,R(θd)) which represent rotation transformations in high dimension. In this case,
Θ is the set of rotation angles θ j.

3.2. Entity, Relation, and Timestamp Embeddings: Temporal Relevance

We embed subject and object entities, relations, and timestamps in the TKG by d-dimensional vectors s, o, r, τ ∈
V, respectively. More explicitly, any embedding has two embeddings Re(z) and Im(z) in (R2)d, and so can be
expressed as z = Re(z) ⊕ iIm(z). By z, we refer to the embeddings s, o, r, τ, and by ⊕, we refer to the element
wise addition. Similarly, we will use ⊙ to refer to element wise complex multiplication. We transform the real part
of relations, r, and Timestamps, τ, connecting two entities, into high dimensional block diagonal rotation matrices
R(Θr) and R(Θτ) where Θr,Θτ ∈ Rd ⊂ V. Thus, relations and timestamps are firstly embedded in V, and their real
parts are projected into block diagonal real matrix vector space.
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To allow the model to selectively learn relational and temporal information based on temporal relevance, we
transform subject entities according to relation and time embeddings, respectively. The real part of subject entity
embeddings is used to learn the temporal relevance, and the imaginary part is used to learn the original relationships
between different elements in facts. We transform real part of subject entity embeddings simultaneously by time and
relation embeddings to yield sτ = R(Θτ)Re(s), and sr = R(Θr)Re(s). We thereafter use the attention mechanism
to quantify the proportion of temporal information and relational information in facts.

The attention mechanism is proven to have a very significant role in deep learning models [18, 31]. Since the
semantics of facts is intrinsically related to relations, the temporal relevance of the facts is also determined by the
relations. The attention mechanism allows TRKGE to use relation-specific attention vector, defined as α, to compute
two (positive real) attention coefficients, αr and ατ. The former is dedicated to capture relational information and
the latter is focused on learning temporal information. Higher is ατ associated to a relation, more relevant is the
temporal information that relation conveys. The attention vector and coefficients are related by the equation below:

(αr, ατ) = softmax
(
(αTsr, α

Tsτ)√
d

)
. (1)

We recall that d is the dimension of the embedding vector space V. Then, the transformed embedding, aware of
temporal relevance, can be obtained by

sTR = αr sr ⊕ ατsτ. (2)

3.3. TRKGE Model

The embeddings with temporal relevance, defined in the previous subsection, constitute the real part of the trans-
formed subject entity embeddings, s f . Due to the biased learning of the attention mechanism, some relational or
temporal information in the original facts may be lost. Thus, we select the imaginary part of the original subject
embedding as the imaginary part of s f . The transformed subject entity embeddings are then defined as follows:

s f = sTR ⊕ iIm(s). (3)

The score function of the TRKGE model is defined as the real part of the Hermitian inner product of embeddings
of transformed subject entities, relations, timestamps, and object entities. This is obtained as follows

f (s, r, τ, o) = sim((r ⊙ τ)⊙ s f , o). (4)

In Eq 4, the real part of embeddings focus on the temporal relevance, and the imaginary part is used to learn the
relationships between different elements in quadruples. As semantics of facts is of great importance in representation
learning that is mainly formed by relations, only learning the associations between four elements may lead to the loss
of semantic information. So an additional relation embedding is designed to enhance the learning of the semantics
of facts. Therefore the final score function is

f (s, r, τ, o) = sim((r ⊙ τ⊕ rsem)⊙ s f , o). (5)

where rsem ∈ V is the additional relation embeddings.

3.4. Loss Function

In our work, cross entropy loss is used to train the model with uniform negative sampling, where negative exam-
ples for (s, r, o, τ) are sampled from all possible quadruples generated by replacing subject or object entities. The
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loss function to be minimized is

loss(G; Φ) =
∑

(s,r,τ,o,τ)∈G

− log

 f (s, r, τ, o)∑
o′∈ε

f (s, r, τ, o′)

− log

 f (s, r, τ, o)∑
s′∈ε

f (s′, r, τ, o)

 (6)

where Φ is the set of all the model parameters. o′ is the object entity of the negative quadruple(s, r, o′, τ), and s′

is the subject entity of the negative quadruple(s′, r, o, τ).
Besides, a regularization term is added to the loss function to limit the complexity of the model, thus reducing the

overfitting of the model. It can also improve the generalization ability of the model, so that the model can be better
generalized to unknown data. Regularization is used separately for all embeddings . Because the relational part in
the model is divided into two parts, and scores of two relation embeddings are calculated separately, we propose the
following regularization.

Ω4 (s, r, o) =
1

4

(
∥s∥44 + ∥r∥44 + ∥rsem∥44 + ∥o∥44

)
(7)

During training, timestamp embeddings should behave smoothly over time to facilitate a better representation,
and the embeddings of adjacent timestamps should be close together. For this, a temporal smoothness objective is
used in the loss function.

Λτ =
1

|T |−1

|T |−1∑
i=1

∥τi+1 − τi∥44 (8)

Therefore, the final loss function is:

loss(G; Φ) =
∑

(s,r,o,τ)∈G

− log

 f (s, r, o)∑
o′∈ε

f (s, r, o′)

− log

 f (s, r, o)∑
s′∈ε

f (s′, r, o)

+ λ1Ω
4 + λ2Λτ (9)

where λ1 and λ2 are hyperparameters.

4. Experimental Setup

4.1. Datasets and Baseline models, and Evaluation Methodology

We compare our model with other baselines through temporal knowledge graph completion on three popular
benchmarks namely ICEWS14, ICEWS05-15 and GDELT. The first two datasets are subsets of Integrated Crisis
Early Warning System(ICEWS) dataset that contains information about international events. ICEWS14 collects
the facts that occurred between January 1, 2014 and December 31, 2014, and ICEWS05-15 contain events from
January 1, 2005 to December 31, 2015. GDELT is a subset of the The Global Database of Events, Language,
and Tone (GDELT) that captures events and news coverage from around the world. This dataset includes conflict,
cooperation, diplomatic, economic, humanitarian events and so on. GDELT is a very dense TKG, it has 3.4 million
quadruples but only 500 entities and 20 relations. Table 1 is the statics of these three datasets.

In the experiments, baselines are chosen from both static KGE models and TKGE models. From the static KGE
models, we use TransE [15], DisMult [32], QuatE [33]. We also compare our model with some state-of-the-art
TKGE models, such as TTransE [23], HyTE [24], TA-DistMult [34], ATiSE [35], TeRo [29], RotateQVS [28],
TCompleEx [14], TNTComplEx [14], BoxTE [27], TLT-KGE(Complex) [11] and TLT-KGE(Quaternion) [11].

In this work, we perform the evaluations with a focus on link prediction task. This means to replace s and o
with all entities in E for each quadruple in the test set. Then the model scores all generated quadruples. In addition,
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Table 1
Statistics for ICEWS14, Yago15k and GDELT.

|E| |R| |T | Ntrain Nvalid Ntest Ntotal

ICEWS14 7128 230 365 72826 8963 8941 90730

ICEWS05-15 10488 251 4017 386962 46092 46275 479329

GDELT 500 20 366 2735685 341961 341961 3419607

the time-wise filter is used in experiments, which removes all the candidate entities that yield correct quadruples.
Following metrics are used for comparison: Mean Reciprocal Rank (MRR), and H@n where n ∈ {1, 3, 10}. MRR
is measured by

∑nt
j=1

1
r j

, where r j is the rank of the j-th test quadruple and nt is the number of triples in the test set.
H@n is the number of test quadruples ranked less than n.

4.2. Implementation Details

Main Experiment In this experiment, temporal knowledge graph completion is done for three datasets. On
ICEWS14 and ICEWS05-15, we tune λ1 and λ2 from [0.005, 0.05]. And on GDELT, they are tuned from
[0.0000005, 0.00005]. Our model is training with a learning rate 0.1, and it is optimized by Adagrad. The di-
mensions used on three datasets are all set as 1500 and 2000. We compare the best performance of our model with
others’ best results reported in their papers. The hyperparameters we used in the experiments are shown in Table 2.
To be fair, we also analyse and compare performance according to different number of parameters.

Table 2
Hyperparameters of TRKGE for ICEWS14, Yago15k and GDELT.

dimension epoch batch size λ1 λ2

ICEWS14 2000(1500) 200 500 0.01 0.5

ICEWS05-15 2000(1500) 200 1000 0.01 2.5

GDELT 2000(1500) 400 2000 1e-6 1e-5

Ablation Study In this part, to demonstrate the representation capabilities of temporal and relational information
in our model on different datasets, we establish two models, denoted as Rel-TR and Time-TR. In both models, we
removed the attention mechanism. Rel-TR only use relation embeddings for transformations, while Time-TR solely
utilize time embeddings for transformations. Both models are trained and evaluated with the same hyperparameters
as the main experiment. In addition, we also evaluate the design of the imaginary part for learning the relationships
between different elements and additional relation embeddings for enhancing semantic learning, namely Im-TR and
Sem-TR.

Performance under Different Number of Parameters In this section, we compare our model with the best-
performing baselines, TLT-KGE (Complex and Quaternion) and TNTComplEx. We trained these models in di-
mensions of 500, 1000, 1500, and 2000. TLT-KGE and TNTComplEx are trained by the optimal hyperparameters
provided in their work. The variation of the models’ performance with the number of parameters is shown in the
form of a line graph.

Time-Wise Entity Filtering. In our experiments, we utilize time-aware filters [36], which are also employed by
the baseline models. This filter differs from the static models as it incorporates timestamps during the process of
filtering out entities, which is meaningful for temporal knowledge graph representation.

5. Experiment

5.1. Main Experiment

We performed extensive evaluations ensuring to reflect the strength of the proposed model. First, we report the
performance of the TRKGE model and other baselines on the three aforementioned benchmark datasets. The exper-
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imental results for these performance evaluations are shown in Table 3. The main result which can be seen in the
table is that our model outperforms all other baseline models on 2000 dimensions in all the metrics. While on the
ICEWS14 and ICEWS05-15 datasets, the TLT-KGE model performs better that other baseline models, our model
still improves the results with a high margin. On the MRR metric, our model outperforms TLT-KGE model by a
delta of 1.6%, on the the ICEWS14 dataset and with a margin of 0.2% on the ICEWS05-15 dataset. On the GDELT
dataset, TNTComplEx model is the best baseline model. But our model TRKGE outperforms TNTComplEx by
4.1% on GDELT. In 1500 dimensions that is the setting used by most of the baseline models, our model is per-
forming better than any other model on the two ICEWS14 and GDELT datasets. Its results are comparative with
the best of state-of-the-art results on ICEWS05-15. As a sign of robustness, our proposed model shows a constant
performance increase on all these datasets which are challenging for the upfront models.

Table 3
Experimental results on ICEWS14, ICEWS05-15 and GDELT. The results labeled with * are from the paper [28]. The results of TComplEx and
TNTComplEx on GDELT are produced from their original code. Other results are reported in their own paper.

Model
ICEWS14 ICEWS05-15 GDELT

MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10

TransE* 28.0 9.4 - 63.7 29.4 9.0 - 66.3 11.3 0.0 15.8 31.2

DistMult* 43.9 32.3 - 67.2 45.6 33.7 - 69.1 19.6 11.7 20.8 34.8

QuatE* 47.1 35.3 53.0 71.2 48.2 37.0 52.9 72.7 - - - -

TTransE* 25.5 7.4 - 60.1 27.1 8.4 - 61.6 11.5 0.0 16.0 31.8

HyTE* 29.7 10.8 41.6 65.5 31.6 11.6 44.5 68.1 11.8 0.0 16.5 32.6

TA-DistMult* 47.7 36.3 - 68.6 47.4 34.6 - 72.8 20.6 12.4 21.9 36.5

ATiSE* 55.0 43.6 62.9 75.0 51.9 37.8 60.6 79.4 - - - -

TeRo* 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5 24.5 15.4 26.4 42.0

RotateQVS* 59.1 50.7 64.2 75.4 63.3 52.9 70.9 81.3 27.0 17.5 29.3 45.8

TComplEx 61.9 54.2 66.1 76.7 66.5 58.3 71.6 81.1 38.5 30.5 41.2 53.8

TNTComplEx 60.9 52.1 66.0 77.4 66.9 58.4 72.2 82.2 38.9 30.7 41.6 54.6

BoxTE(k=5) 61.3 52.8 66.4 76.3 66.7 58.2 71.9 82.0 35.2 26.9 37.7 51.1

TLT-KGE(Complex) 63.0 54.9 67.8 77.7 68.6 60.7 73.5 83.1 35.6 26.7 38.5 53.2

TLT-KGE(Quaternion) 63.4 55.1 68.4 78.6 69.0 60.9 74.1 83.1 35.8 26.5 38.8 54.3

TRKGE(1500) 64.0 56.1 68.8 78.9 68.7 60.6 73.9 83.4 37.1 29.1 39.7 52.5

TRKGE(2000) 64.4 56.6 69.0 79.2 69.2 61.1 74.3 83.8 40.5 32.6 43.3 55.2

Table 3 also shows that most of the baseline models have different representation capabilities on the versions of
ICEWS datasets and GDELT. For example, TLT-KGE performs well on both ICEWS14 and ICEWS05-15, but its
performance is mediocre on the GDELT dataset. In contrast, the T(NT)ComplEx model performs well on GDELT,
but badly on the other two datasets namely ICEWS14 and ICEWS05-15. This observation can be explained based
on the significant structural and statistical differences between those datasets and lack of models in handling those
differences. We observed three aspects on these differences including:

– Density of Relations - This refers to the distribution of facts among relations. A dataset is considered denser if
a higher number of relations have more facts associated with them.

– Temporal Relevance - This is determined by the number of timestamps in the dataset. A dataset with more
timestamps indicates richer temporal information.

– Semantic Richness of Relations - This is determined by the number of facts associated with each relation. A
dataset where most relations have a high number of facts indicates that the relations have rich semantics.
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(a) ICEWS05-15 (b) GDELT

Fig. 1. Percentage of existing quadruples per each relations in two datasets.

Table 4
Statistics of the number of quadruples associated with relations on ICEWS05-15 and GDELT.

Dataset ICEWS05-15 GDELT

#quadruples 10000<n<100000 1000<n<10000 100<n<1000 n<100 1000000<n<100000 10000<n<100000 n<10000

#relations 12 27 84 128 10 9 1

#quadruples 318168 107146 32200 3815 2982818 434307 2482

Ratio 69.20% 23.30% 7.00% 0.83% 87.23% 12.70% 0.07%

ICEWS14 and ICEWS05-15 have higher number of entities, relation types, and timestamps than GDELT which
are shown in Table 1. While the GDELT dataset has only 20 relations, it is way denser than the other two datasets
and have much larger data volume in terms of facts. We show the number of quadruples for different relations in
Fig 1, and we also give the information about the number of quadruples formed by each relation in Table 4. As the
statistics of the two datasets ICEWS14 and ICEWS05-15 are similar, we only show the case of ICEWS05-15. It is
noting that in both ICEWS14 and ICEWS05-15, the top 10 relations in terms of quantity almost construct the 60%
of the datasets. In ICEWS05-15, there are 212 relations, among which each relation is present in less than 1000
facts. Only 39 relations out of 212 is present in more than 1000 facts, which leads to less density, resulting in a
weak expression ability of most relations. At the same time, this dataset has more than 4000 timestamps that makes
the temporal information more relevant. Different from the ICEWS05-15 dataset, in GDELT, there are 10 relations
that each of them built more than 100 thousand facts, and 9 relations that each of them built more than 10 thousand
facts, so all relations are relatively fully used in different facts. Such a small number of relations and timestamps
contribute to a large amount of data, indicating that both relations and time have rich semantics in this dataset.

The baseline models, TNTComplEx and BoxTE, learn the semantics of relations and timestamps equally, allow-
ing them to have good representation capabilities on GDELT. In contrast, TLT-KGE specifically models temporal
information by using many extra embeddings related to time, leading to its strong performance on ICEWS05-15,
but its normal performance on GDELT shows their design is limited. Based on the best results of our model on
three datasets, it can be concluded that our model, by calculating temporal relevance and placing emphasis on learn-
ing temporal and relational information, demonstrates good adaptability to different types of datasets. Additionally,
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with the increase in dimensions, the model’s representational power also improves. The performance of some well-
performing baseline models in high dimensions will be discussed in the analysis of the model’s parameter quantity.

5.2. Ablation Study

We conducted an ablation experiment on the temporal relevance component. In order to do so, the attention
mechanism was removed from the model design with a focus on learning temporal information and relational
information. Rel-TR focuses on relational information, while Time-TR focuses on temporal information. Table 5
shows that Time-TR outperforms Rel-TR by 6% on ICEWS14 and 3% on ICEWS05-15, while these two models
perform similarly on GDELT.

Table 5
Impact of learning relational and temporal information is evaluated by Rel-TR and Time-TR, where Rel-TR only learns relational information
and Time-TR only learns temporal information. Im-TR only learns relational and temporal information with temporal relevance, ignoring the
original information of facts. Sem-TR removes the extra relation embedding for learning the semantics of facts

Model
ICEWS14 ICEWS05-15 GDELT

MRR h@1 h@3 h@10 MRR h@1 h@3 h@10 MRR h@1 h@3 h@10

Rel-TR 60.4 50.7 66.7 77.7 67.7 59.0 73.4 83.3 38.2 30.0 40.9 53.9

Time-TR 64.1 56.3 68.6 78.6 69.0 61.2 73.9 83.3 38.3 30.5 40.9 53.2

Im-TR 63.5 55.5 68.1 78.0 68.4 60.4 73.4 83.2 40.3 32.5 43.0 55.2

Sem-TR 59.3 51.0 64.2 74.3 63.0 54.3 68.2 79.0 40.2 32.3 43.0 55.1

Original 64.4 56.6 69.0 79.2 69.2 61.1 74.3 83.8 40.5 32.6 43.3 55.2

As mentioned in the main experiment, in ICEWS14 and ICEWS05-15, time plays a significant role, and in
GDELT, both temporal and relational information are important. The results of Time-TR and Rel-TR align with
these characteristics.

Furthermore, in order to test the design of the imaginary part in our original model which is used to save the
original information of facts, Im-TR is proposed, where both real and imaginary parts learn relational and temporal
information with temporal relevance.

On ICEWS14 and ICEWS05-15, Im-TR performs better than Rel-TR but worse than Time-TR., which means
that Selectively learning information leads to the improved performance, but it still loses some information when
compared with Time-TR and original model. On GDELT it performs better than both Rel-TR and Time-TR and
similarly to original model. As facts in GDELT have rich temporal and relational information, the attention mecha-
nism has a weak bias towards these two types of information, which is also shown in Fig 2(b). Therefore, Im-TR is
similar with original one on GDELT.

Sem-TR performs worse on both ICEWS14 and ICEWS05-15. From Fig 2(a), we can see on ICEWS datasets,
the attention mechanism mainly focus on the temporal information, which leads to a massive lack of relational
information, so extra relation embedding for enhancing the learning of the semantics of facts is important in our
orginal design. Similar with Im-TR, attention mechanism dose not play an important role on GDELT, so the lack of
information is less, and its performance is also close to TRKGE.

Overall, the original model TRKGE has the best performance, which demonstrates the meaningfulness of bi-
ased learning towards temporal and relational information. It not only improves the model’s performance but also
increases its adaptability to different datasets.

5.3. Attention Value of Time

In order to visualize the emphasis on time, we show attention values on two datasets of ICEWS05-15 and GDELT
in Fig 2. In the left hand side, the Fig 2 (a), we can see that the attention values for the frequent three relations on
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ICEWS05-15 are almost 1. This means the learning is entirely biased towards time, while the attention values for
the less frequent relations are evenly distributed around 0.5. However, the most frequent 10 relations constitute 60%
of the facts in ICEWS05-15. This indicates that the impact of the less frequent relations is not very high. Therefore,
Time-TR model can effectively capture the majority of the facts but cannot represent the remaining facts well,
resulting in slightly weaker performance compared to our model, TRKGE. In the case of the GDELT dataset, where
both relations and timestamps exhibit rich semantic information, the attention values are centered around 0.5 in the
visualization. This aligns with the characteristics of this dataset in terms of time relevance relations which is also
consistent with the performance of Rel-TR, Time-TR and Im-TR.

(a) ICEWS05-15 (b) GDELT

Fig. 2. Attention values on ICEWS05-15 and GDELT. In the left (a), the first 3 values are from the most frequent 3 relations, the last 4 values are
from the least frequent relations, and the middle 3 values are randomly selected. In the right (b), because of the small number of relations and
memory limitations, the values are selected from the middle 10 relations.

5.4. Analysis on Number of Parameters

In this section, we performed an experiment to compare TNTComplEx, TLT-KGE and our model in terms of the
number of parameters to reflect their efficiency. Table 6 provides a reference for the number of parameters of each
model. It is evident that the performance gain of our model is not with higher parameter count than the other leading
models, emphasizing its efficiency.

Table 6
Model parameter count for TRKGE, TNTComplEx and TLT-KGE. For TLT-KGE, w is the number of shared time windows.

Model Number of Parameters

TNTComplEx 2d (|E|+ 4 |R|+ |T |)

TLT-KGE 2d
(
|E|+ 2 |R|+ 3 |T |+ |T |

w

)
TRKGE 2d (|E|+ 5 |R|+ |T |)

These three models were evaluated on dimensions of 500, 1000, 1500, and 2000, and line graphs were plotted
and shown in Fig 3, to represent the model’s performance with the number of parameters in four dimensions. As the
Mean Reciprocal Rank (MRR) can indicate the overall effectiveness of a model, we correlated MRR with the number
of parameters in the the graphs to illustrate the performance of different models under varying parameter counts.
From Fig 3, it can be observed that TNTComplEx performed poorly on ICEWS14 and ICEWS05-15 but excelled on
GDELT due to its design for simultaneously learning relational and temporal information. TLT-KGE performed well
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Fig. 3. Performance under different numbers of parameters. Circles represent 500 dimensions, triangles represent 1000 dimensions, stars represent
1500 dimensions, and squares represent 2000 dimensions

on ICEWS14 and ICEWS05-15 but poorly on GDELT, since it is designed to capture more temporal information,
which results in more parameters, especially in the case of ICEWS05-15, where its number of parameters is much
more than TNTComplEx and our model. From the graphs, it is obvious that our model achieves better results on
ICEWS14 with similar parameter counts. On ICEWS05-15, our model can achieve similar optimal results with only
half of parameters of TLT-KGE. On GDELT, both our model and TNTComplEx effectively learn rich information
from relations and timestamps and achieve better results with much fewer parameters than TLT-KGE. The line
graphs on all three datasets indicate that our model can efficiently and effectively represent temporal facts well in
different types of TKGs.

6. Conclusion

By decomposing embeddings into real and imaginary parts, we have ensured that both temporal and relational
facets are well-represented. The real part plays a crucial role in preserving temporal relevance of relational knowl-
edge, guaranteeing that time-sensitive relations are not marginalized. In contrast, the imaginary component captures
the nature of the original information, preventing potential information loss. This distinction and simultaneous han-
dling of these components empower our model to preserve more complex characteristic in TKGs. Our experimental
results serve as a testament to the model’s proficiency. By excelling in link prediction tasks and outperforming exist-
ing state-of-the-art models, it underscores its capability to cater to the dynamics of TKGs. The novelty presented in
this paper is not just in the creation of an advanced embedding model but also the demonstration that understanding
and effectively representing the interplay between time and relationships in knowledge graphs can bring signifi-
cant improvements. This serves as a new direction for future research in refining temporal relevance measures or
exploring other complex space representations. In conclusion, as TKGs continue to grow in relevance, models like
ours will be instrumental in ensuring that the temporal and relational information they contain is comprehensively
captured and utilized. We believe that our proposed model sets a new benchmark in TKG embedding
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